| 1 | // (C) Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_SPECIAL_BETA_HPP |
| 7 | #define BOOST_MATH_SPECIAL_BETA_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/special_functions/math_fwd.hpp> |
| 14 | #include <boost/math/tools/config.hpp> |
| 15 | #include <boost/math/special_functions/gamma.hpp> |
| 16 | #include <boost/math/special_functions/binomial.hpp> |
| 17 | #include <boost/math/special_functions/factorials.hpp> |
| 18 | #include <boost/math/special_functions/erf.hpp> |
| 19 | #include <boost/math/special_functions/log1p.hpp> |
| 20 | #include <boost/math/special_functions/expm1.hpp> |
| 21 | #include <boost/math/special_functions/trunc.hpp> |
| 22 | #include <boost/math/tools/roots.hpp> |
| 23 | #include <boost/static_assert.hpp> |
| 24 | #include <boost/config/no_tr1/cmath.hpp> |
| 25 | |
| 26 | namespace boost{ namespace math{ |
| 27 | |
| 28 | namespace detail{ |
| 29 | |
| 30 | // |
| 31 | // Implementation of Beta(a,b) using the Lanczos approximation: |
| 32 | // |
| 33 | template <class T, class Lanczos, class Policy> |
| 34 | T beta_imp(T a, T b, const Lanczos&, const Policy& pol) |
| 35 | { |
| 36 | BOOST_MATH_STD_USING // for ADL of std names |
| 37 | |
| 38 | if(a <= 0) |
| 39 | return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)" , "The arguments to the beta function must be greater than zero (got a=%1%)." , a, pol); |
| 40 | if(b <= 0) |
| 41 | return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)" , "The arguments to the beta function must be greater than zero (got b=%1%)." , b, pol); |
| 42 | |
| 43 | T result; |
| 44 | |
| 45 | T prefix = 1; |
| 46 | T c = a + b; |
| 47 | |
| 48 | // Special cases: |
| 49 | if((c == a) && (b < tools::epsilon<T>())) |
| 50 | return 1 / b; |
| 51 | else if((c == b) && (a < tools::epsilon<T>())) |
| 52 | return 1 / a; |
| 53 | if(b == 1) |
| 54 | return 1/a; |
| 55 | else if(a == 1) |
| 56 | return 1/b; |
| 57 | else if(c < tools::epsilon<T>()) |
| 58 | { |
| 59 | result = c / a; |
| 60 | result /= b; |
| 61 | return result; |
| 62 | } |
| 63 | |
| 64 | /* |
| 65 | // |
| 66 | // This code appears to be no longer necessary: it was |
| 67 | // used to offset errors introduced from the Lanczos |
| 68 | // approximation, but the current Lanczos approximations |
| 69 | // are sufficiently accurate for all z that we can ditch |
| 70 | // this. It remains in the file for future reference... |
| 71 | // |
| 72 | // If a or b are less than 1, shift to greater than 1: |
| 73 | if(a < 1) |
| 74 | { |
| 75 | prefix *= c / a; |
| 76 | c += 1; |
| 77 | a += 1; |
| 78 | } |
| 79 | if(b < 1) |
| 80 | { |
| 81 | prefix *= c / b; |
| 82 | c += 1; |
| 83 | b += 1; |
| 84 | } |
| 85 | */ |
| 86 | |
| 87 | if(a < b) |
| 88 | std::swap(a, b); |
| 89 | |
| 90 | // Lanczos calculation: |
| 91 | T agh = static_cast<T>(a + Lanczos::g() - 0.5f); |
| 92 | T bgh = static_cast<T>(b + Lanczos::g() - 0.5f); |
| 93 | T cgh = static_cast<T>(c + Lanczos::g() - 0.5f); |
| 94 | result = Lanczos::lanczos_sum_expG_scaled(a) * (Lanczos::lanczos_sum_expG_scaled(b) / Lanczos::lanczos_sum_expG_scaled(c)); |
| 95 | T ambh = a - 0.5f - b; |
| 96 | if((fabs(b * ambh) < (cgh * 100)) && (a > 100)) |
| 97 | { |
| 98 | // Special case where the base of the power term is close to 1 |
| 99 | // compute (1+x)^y instead: |
| 100 | result *= exp(ambh * boost::math::log1p(-b / cgh, pol)); |
| 101 | } |
| 102 | else |
| 103 | { |
| 104 | result *= pow(agh / cgh, a - T(0.5) - b); |
| 105 | } |
| 106 | if(cgh > 1e10f) |
| 107 | // this avoids possible overflow, but appears to be marginally less accurate: |
| 108 | result *= pow((agh / cgh) * (bgh / cgh), b); |
| 109 | else |
| 110 | result *= pow((agh * bgh) / (cgh * cgh), b); |
| 111 | result *= sqrt(boost::math::constants::e<T>() / bgh); |
| 112 | |
| 113 | // If a and b were originally less than 1 we need to scale the result: |
| 114 | result *= prefix; |
| 115 | |
| 116 | return result; |
| 117 | } // template <class T, class Lanczos> beta_imp(T a, T b, const Lanczos&) |
| 118 | |
| 119 | // |
| 120 | // Generic implementation of Beta(a,b) without Lanczos approximation support |
| 121 | // (Caution this is slow!!!): |
| 122 | // |
| 123 | template <class T, class Policy> |
| 124 | T beta_imp(T a, T b, const lanczos::undefined_lanczos& l, const Policy& pol) |
| 125 | { |
| 126 | BOOST_MATH_STD_USING |
| 127 | |
| 128 | if(a <= 0) |
| 129 | return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)" , "The arguments to the beta function must be greater than zero (got a=%1%)." , a, pol); |
| 130 | if(b <= 0) |
| 131 | return policies::raise_domain_error<T>("boost::math::beta<%1%>(%1%,%1%)" , "The arguments to the beta function must be greater than zero (got b=%1%)." , b, pol); |
| 132 | |
| 133 | const T c = a + b; |
| 134 | |
| 135 | // Special cases: |
| 136 | if ((c == a) && (b < tools::epsilon<T>())) |
| 137 | return 1 / b; |
| 138 | else if ((c == b) && (a < tools::epsilon<T>())) |
| 139 | return 1 / a; |
| 140 | if (b == 1) |
| 141 | return 1 / a; |
| 142 | else if (a == 1) |
| 143 | return 1 / b; |
| 144 | else if (c < tools::epsilon<T>()) |
| 145 | { |
| 146 | T result = c / a; |
| 147 | result /= b; |
| 148 | return result; |
| 149 | } |
| 150 | |
| 151 | // Regular cases start here: |
| 152 | const T min_sterling = minimum_argument_for_bernoulli_recursion<T>(); |
| 153 | |
| 154 | long shift_a = 0; |
| 155 | long shift_b = 0; |
| 156 | |
| 157 | if(a < min_sterling) |
| 158 | shift_a = 1 + ltrunc(min_sterling - a); |
| 159 | if(b < min_sterling) |
| 160 | shift_b = 1 + ltrunc(min_sterling - b); |
| 161 | long shift_c = shift_a + shift_b; |
| 162 | |
| 163 | if ((shift_a == 0) && (shift_b == 0)) |
| 164 | { |
| 165 | return pow(a / c, a) * pow(b / c, b) * scaled_tgamma_no_lanczos(a, pol) * scaled_tgamma_no_lanczos(b, pol) / scaled_tgamma_no_lanczos(c, pol); |
| 166 | } |
| 167 | else if ((a < 1) && (b < 1)) |
| 168 | { |
| 169 | return boost::math::tgamma(a, pol) * (boost::math::tgamma(b, pol) / boost::math::tgamma(c)); |
| 170 | } |
| 171 | else if(a < 1) |
| 172 | return boost::math::tgamma(a, pol) * boost::math::tgamma_delta_ratio(b, a, pol); |
| 173 | else if(b < 1) |
| 174 | return boost::math::tgamma(b, pol) * boost::math::tgamma_delta_ratio(a, b, pol); |
| 175 | else |
| 176 | { |
| 177 | T result = beta_imp(T(a + shift_a), T(b + shift_b), l, pol); |
| 178 | // |
| 179 | // Recursion: |
| 180 | // |
| 181 | for (long i = 0; i < shift_c; ++i) |
| 182 | { |
| 183 | result *= c + i; |
| 184 | if (i < shift_a) |
| 185 | result /= a + i; |
| 186 | if (i < shift_b) |
| 187 | result /= b + i; |
| 188 | } |
| 189 | return result; |
| 190 | } |
| 191 | |
| 192 | } // template <class T>T beta_imp(T a, T b, const lanczos::undefined_lanczos& l) |
| 193 | |
| 194 | |
| 195 | // |
| 196 | // Compute the leading power terms in the incomplete Beta: |
| 197 | // |
| 198 | // (x^a)(y^b)/Beta(a,b) when normalised, and |
| 199 | // (x^a)(y^b) otherwise. |
| 200 | // |
| 201 | // Almost all of the error in the incomplete beta comes from this |
| 202 | // function: particularly when a and b are large. Computing large |
| 203 | // powers are *hard* though, and using logarithms just leads to |
| 204 | // horrendous cancellation errors. |
| 205 | // |
| 206 | template <class T, class Lanczos, class Policy> |
| 207 | T ibeta_power_terms(T a, |
| 208 | T b, |
| 209 | T x, |
| 210 | T y, |
| 211 | const Lanczos&, |
| 212 | bool normalised, |
| 213 | const Policy& pol, |
| 214 | T prefix = 1, |
| 215 | const char* function = "boost::math::ibeta<%1%>(%1%, %1%, %1%)" ) |
| 216 | { |
| 217 | BOOST_MATH_STD_USING |
| 218 | |
| 219 | if(!normalised) |
| 220 | { |
| 221 | // can we do better here? |
| 222 | return pow(x, a) * pow(y, b); |
| 223 | } |
| 224 | |
| 225 | T result; |
| 226 | |
| 227 | T c = a + b; |
| 228 | |
| 229 | // combine power terms with Lanczos approximation: |
| 230 | T agh = static_cast<T>(a + Lanczos::g() - 0.5f); |
| 231 | T bgh = static_cast<T>(b + Lanczos::g() - 0.5f); |
| 232 | T cgh = static_cast<T>(c + Lanczos::g() - 0.5f); |
| 233 | result = Lanczos::lanczos_sum_expG_scaled(c) / (Lanczos::lanczos_sum_expG_scaled(a) * Lanczos::lanczos_sum_expG_scaled(b)); |
| 234 | result *= prefix; |
| 235 | // combine with the leftover terms from the Lanczos approximation: |
| 236 | result *= sqrt(bgh / boost::math::constants::e<T>()); |
| 237 | result *= sqrt(agh / cgh); |
| 238 | |
| 239 | // l1 and l2 are the base of the exponents minus one: |
| 240 | T l1 = (x * b - y * agh) / agh; |
| 241 | T l2 = (y * a - x * bgh) / bgh; |
| 242 | if(((std::min)(fabs(l1), fabs(l2)) < 0.2)) |
| 243 | { |
| 244 | // when the base of the exponent is very near 1 we get really |
| 245 | // gross errors unless extra care is taken: |
| 246 | if((l1 * l2 > 0) || ((std::min)(a, b) < 1)) |
| 247 | { |
| 248 | // |
| 249 | // This first branch handles the simple cases where either: |
| 250 | // |
| 251 | // * The two power terms both go in the same direction |
| 252 | // (towards zero or towards infinity). In this case if either |
| 253 | // term overflows or underflows, then the product of the two must |
| 254 | // do so also. |
| 255 | // *Alternatively if one exponent is less than one, then we |
| 256 | // can't productively use it to eliminate overflow or underflow |
| 257 | // from the other term. Problems with spurious overflow/underflow |
| 258 | // can't be ruled out in this case, but it is *very* unlikely |
| 259 | // since one of the power terms will evaluate to a number close to 1. |
| 260 | // |
| 261 | if(fabs(l1) < 0.1) |
| 262 | { |
| 263 | result *= exp(a * boost::math::log1p(l1, pol)); |
| 264 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 265 | } |
| 266 | else |
| 267 | { |
| 268 | result *= pow((x * cgh) / agh, a); |
| 269 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 270 | } |
| 271 | if(fabs(l2) < 0.1) |
| 272 | { |
| 273 | result *= exp(b * boost::math::log1p(l2, pol)); |
| 274 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 275 | } |
| 276 | else |
| 277 | { |
| 278 | result *= pow((y * cgh) / bgh, b); |
| 279 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 280 | } |
| 281 | } |
| 282 | else if((std::max)(fabs(l1), fabs(l2)) < 0.5) |
| 283 | { |
| 284 | // |
| 285 | // Both exponents are near one and both the exponents are |
| 286 | // greater than one and further these two |
| 287 | // power terms tend in opposite directions (one towards zero, |
| 288 | // the other towards infinity), so we have to combine the terms |
| 289 | // to avoid any risk of overflow or underflow. |
| 290 | // |
| 291 | // We do this by moving one power term inside the other, we have: |
| 292 | // |
| 293 | // (1 + l1)^a * (1 + l2)^b |
| 294 | // = ((1 + l1)*(1 + l2)^(b/a))^a |
| 295 | // = (1 + l1 + l3 + l1*l3)^a ; l3 = (1 + l2)^(b/a) - 1 |
| 296 | // = exp((b/a) * log(1 + l2)) - 1 |
| 297 | // |
| 298 | // The tricky bit is deciding which term to move inside :-) |
| 299 | // By preference we move the larger term inside, so that the |
| 300 | // size of the largest exponent is reduced. However, that can |
| 301 | // only be done as long as l3 (see above) is also small. |
| 302 | // |
| 303 | bool small_a = a < b; |
| 304 | T ratio = b / a; |
| 305 | if((small_a && (ratio * l2 < 0.1)) || (!small_a && (l1 / ratio > 0.1))) |
| 306 | { |
| 307 | T l3 = boost::math::expm1(ratio * boost::math::log1p(l2, pol), pol); |
| 308 | l3 = l1 + l3 + l3 * l1; |
| 309 | l3 = a * boost::math::log1p(l3, pol); |
| 310 | result *= exp(l3); |
| 311 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 312 | } |
| 313 | else |
| 314 | { |
| 315 | T l3 = boost::math::expm1(boost::math::log1p(l1, pol) / ratio, pol); |
| 316 | l3 = l2 + l3 + l3 * l2; |
| 317 | l3 = b * boost::math::log1p(l3, pol); |
| 318 | result *= exp(l3); |
| 319 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 320 | } |
| 321 | } |
| 322 | else if(fabs(l1) < fabs(l2)) |
| 323 | { |
| 324 | // First base near 1 only: |
| 325 | T l = a * boost::math::log1p(l1, pol) |
| 326 | + b * log((y * cgh) / bgh); |
| 327 | if((l <= tools::log_min_value<T>()) || (l >= tools::log_max_value<T>())) |
| 328 | { |
| 329 | l += log(result); |
| 330 | if(l >= tools::log_max_value<T>()) |
| 331 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 332 | result = exp(l); |
| 333 | } |
| 334 | else |
| 335 | result *= exp(l); |
| 336 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 337 | } |
| 338 | else |
| 339 | { |
| 340 | // Second base near 1 only: |
| 341 | T l = b * boost::math::log1p(l2, pol) |
| 342 | + a * log((x * cgh) / agh); |
| 343 | if((l <= tools::log_min_value<T>()) || (l >= tools::log_max_value<T>())) |
| 344 | { |
| 345 | l += log(result); |
| 346 | if(l >= tools::log_max_value<T>()) |
| 347 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 348 | result = exp(l); |
| 349 | } |
| 350 | else |
| 351 | result *= exp(l); |
| 352 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 353 | } |
| 354 | } |
| 355 | else |
| 356 | { |
| 357 | // general case: |
| 358 | T b1 = (x * cgh) / agh; |
| 359 | T b2 = (y * cgh) / bgh; |
| 360 | l1 = a * log(b1); |
| 361 | l2 = b * log(b2); |
| 362 | BOOST_MATH_INSTRUMENT_VARIABLE(b1); |
| 363 | BOOST_MATH_INSTRUMENT_VARIABLE(b2); |
| 364 | BOOST_MATH_INSTRUMENT_VARIABLE(l1); |
| 365 | BOOST_MATH_INSTRUMENT_VARIABLE(l2); |
| 366 | if((l1 >= tools::log_max_value<T>()) |
| 367 | || (l1 <= tools::log_min_value<T>()) |
| 368 | || (l2 >= tools::log_max_value<T>()) |
| 369 | || (l2 <= tools::log_min_value<T>()) |
| 370 | ) |
| 371 | { |
| 372 | // Oops, under/overflow, sidestep if we can: |
| 373 | if(a < b) |
| 374 | { |
| 375 | T p1 = pow(b2, b / a); |
| 376 | T l3 = a * (log(b1) + log(p1)); |
| 377 | if((l3 < tools::log_max_value<T>()) |
| 378 | && (l3 > tools::log_min_value<T>())) |
| 379 | { |
| 380 | result *= pow(p1 * b1, a); |
| 381 | } |
| 382 | else |
| 383 | { |
| 384 | l2 += l1 + log(result); |
| 385 | if(l2 >= tools::log_max_value<T>()) |
| 386 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 387 | result = exp(l2); |
| 388 | } |
| 389 | } |
| 390 | else |
| 391 | { |
| 392 | T p1 = pow(b1, a / b); |
| 393 | T l3 = (log(p1) + log(b2)) * b; |
| 394 | if((l3 < tools::log_max_value<T>()) |
| 395 | && (l3 > tools::log_min_value<T>())) |
| 396 | { |
| 397 | result *= pow(p1 * b2, b); |
| 398 | } |
| 399 | else |
| 400 | { |
| 401 | l2 += l1 + log(result); |
| 402 | if(l2 >= tools::log_max_value<T>()) |
| 403 | return policies::raise_overflow_error<T>(function, 0, pol); |
| 404 | result = exp(l2); |
| 405 | } |
| 406 | } |
| 407 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 408 | } |
| 409 | else |
| 410 | { |
| 411 | // finally the normal case: |
| 412 | result *= pow(b1, a) * pow(b2, b); |
| 413 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 418 | |
| 419 | return result; |
| 420 | } |
| 421 | // |
| 422 | // Compute the leading power terms in the incomplete Beta: |
| 423 | // |
| 424 | // (x^a)(y^b)/Beta(a,b) when normalised, and |
| 425 | // (x^a)(y^b) otherwise. |
| 426 | // |
| 427 | // Almost all of the error in the incomplete beta comes from this |
| 428 | // function: particularly when a and b are large. Computing large |
| 429 | // powers are *hard* though, and using logarithms just leads to |
| 430 | // horrendous cancellation errors. |
| 431 | // |
| 432 | // This version is generic, slow, and does not use the Lanczos approximation. |
| 433 | // |
| 434 | template <class T, class Policy> |
| 435 | T ibeta_power_terms(T a, |
| 436 | T b, |
| 437 | T x, |
| 438 | T y, |
| 439 | const boost::math::lanczos::undefined_lanczos& l, |
| 440 | bool normalised, |
| 441 | const Policy& pol, |
| 442 | T prefix = 1, |
| 443 | const char* = "boost::math::ibeta<%1%>(%1%, %1%, %1%)" ) |
| 444 | { |
| 445 | BOOST_MATH_STD_USING |
| 446 | |
| 447 | if(!normalised) |
| 448 | { |
| 449 | return prefix * pow(x, a) * pow(y, b); |
| 450 | } |
| 451 | |
| 452 | T c = a + b; |
| 453 | |
| 454 | const T min_sterling = minimum_argument_for_bernoulli_recursion<T>(); |
| 455 | |
| 456 | long shift_a = 0; |
| 457 | long shift_b = 0; |
| 458 | |
| 459 | if (a < min_sterling) |
| 460 | shift_a = 1 + ltrunc(min_sterling - a); |
| 461 | if (b < min_sterling) |
| 462 | shift_b = 1 + ltrunc(min_sterling - b); |
| 463 | |
| 464 | if ((shift_a == 0) && (shift_b == 0)) |
| 465 | { |
| 466 | T power1, power2; |
| 467 | if (a < b) |
| 468 | { |
| 469 | power1 = pow((x * y * c * c) / (a * b), a); |
| 470 | power2 = pow((y * c) / b, b - a); |
| 471 | } |
| 472 | else |
| 473 | { |
| 474 | power1 = pow((x * y * c * c) / (a * b), b); |
| 475 | power2 = pow((x * c) / a, a - b); |
| 476 | } |
| 477 | if (!(boost::math::isnormal)(power1) || !(boost::math::isnormal)(power2)) |
| 478 | { |
| 479 | // We have to use logs :( |
| 480 | return prefix * exp(a * log(x * c / a) + b * log(y * c / b)) * scaled_tgamma_no_lanczos(c, pol) / (scaled_tgamma_no_lanczos(a, pol) * scaled_tgamma_no_lanczos(b, pol)); |
| 481 | } |
| 482 | return prefix * power1 * power2 * scaled_tgamma_no_lanczos(c, pol) / (scaled_tgamma_no_lanczos(a, pol) * scaled_tgamma_no_lanczos(b, pol)); |
| 483 | } |
| 484 | |
| 485 | T power1 = pow(x, a); |
| 486 | T power2 = pow(y, b); |
| 487 | T bet = beta_imp(a, b, l, pol); |
| 488 | |
| 489 | if(!(boost::math::isnormal)(power1) || !(boost::math::isnormal)(power2) || !(boost::math::isnormal)(bet)) |
| 490 | { |
| 491 | int shift_c = shift_a + shift_b; |
| 492 | T result = ibeta_power_terms(T(a + shift_a), T(b + shift_b), x, y, l, normalised, pol, prefix); |
| 493 | if ((boost::math::isnormal)(result)) |
| 494 | { |
| 495 | for (int i = 0; i < shift_c; ++i) |
| 496 | { |
| 497 | result /= c + i; |
| 498 | if (i < shift_a) |
| 499 | { |
| 500 | result *= a + i; |
| 501 | result /= x; |
| 502 | } |
| 503 | if (i < shift_b) |
| 504 | { |
| 505 | result *= b + i; |
| 506 | result /= y; |
| 507 | } |
| 508 | } |
| 509 | return prefix * result; |
| 510 | } |
| 511 | else |
| 512 | { |
| 513 | T log_result = log(x) * a + log(y) * b + log(prefix); |
| 514 | if ((boost::math::isnormal)(bet)) |
| 515 | log_result -= log(bet); |
| 516 | else |
| 517 | log_result += boost::math::lgamma(c, pol) - boost::math::lgamma(a) - boost::math::lgamma(c, pol); |
| 518 | return exp(log_result); |
| 519 | } |
| 520 | } |
| 521 | return prefix * power1 * (power2 / bet); |
| 522 | } |
| 523 | // |
| 524 | // Series approximation to the incomplete beta: |
| 525 | // |
| 526 | template <class T> |
| 527 | struct ibeta_series_t |
| 528 | { |
| 529 | typedef T result_type; |
| 530 | ibeta_series_t(T a_, T b_, T x_, T mult) : result(mult), x(x_), apn(a_), poch(1-b_), n(1) {} |
| 531 | T operator()() |
| 532 | { |
| 533 | T r = result / apn; |
| 534 | apn += 1; |
| 535 | result *= poch * x / n; |
| 536 | ++n; |
| 537 | poch += 1; |
| 538 | return r; |
| 539 | } |
| 540 | private: |
| 541 | T result, x, apn, poch; |
| 542 | int n; |
| 543 | }; |
| 544 | |
| 545 | template <class T, class Lanczos, class Policy> |
| 546 | T ibeta_series(T a, T b, T x, T s0, const Lanczos&, bool normalised, T* p_derivative, T y, const Policy& pol) |
| 547 | { |
| 548 | BOOST_MATH_STD_USING |
| 549 | |
| 550 | T result; |
| 551 | |
| 552 | BOOST_ASSERT((p_derivative == 0) || normalised); |
| 553 | |
| 554 | if(normalised) |
| 555 | { |
| 556 | T c = a + b; |
| 557 | |
| 558 | // incomplete beta power term, combined with the Lanczos approximation: |
| 559 | T agh = static_cast<T>(a + Lanczos::g() - 0.5f); |
| 560 | T bgh = static_cast<T>(b + Lanczos::g() - 0.5f); |
| 561 | T cgh = static_cast<T>(c + Lanczos::g() - 0.5f); |
| 562 | result = Lanczos::lanczos_sum_expG_scaled(c) / (Lanczos::lanczos_sum_expG_scaled(a) * Lanczos::lanczos_sum_expG_scaled(b)); |
| 563 | |
| 564 | T l1 = log(cgh / bgh) * (b - 0.5f); |
| 565 | T l2 = log(x * cgh / agh) * a; |
| 566 | // |
| 567 | // Check for over/underflow in the power terms: |
| 568 | // |
| 569 | if((l1 > tools::log_min_value<T>()) |
| 570 | && (l1 < tools::log_max_value<T>()) |
| 571 | && (l2 > tools::log_min_value<T>()) |
| 572 | && (l2 < tools::log_max_value<T>())) |
| 573 | { |
| 574 | if(a * b < bgh * 10) |
| 575 | result *= exp((b - 0.5f) * boost::math::log1p(a / bgh, pol)); |
| 576 | else |
| 577 | result *= pow(cgh / bgh, b - 0.5f); |
| 578 | result *= pow(x * cgh / agh, a); |
| 579 | result *= sqrt(agh / boost::math::constants::e<T>()); |
| 580 | |
| 581 | if(p_derivative) |
| 582 | { |
| 583 | *p_derivative = result * pow(y, b); |
| 584 | BOOST_ASSERT(*p_derivative >= 0); |
| 585 | } |
| 586 | } |
| 587 | else |
| 588 | { |
| 589 | // |
| 590 | // Oh dear, we need logs, and this *will* cancel: |
| 591 | // |
| 592 | result = log(result) + l1 + l2 + (log(agh) - 1) / 2; |
| 593 | if(p_derivative) |
| 594 | *p_derivative = exp(result + b * log(y)); |
| 595 | result = exp(result); |
| 596 | } |
| 597 | } |
| 598 | else |
| 599 | { |
| 600 | // Non-normalised, just compute the power: |
| 601 | result = pow(x, a); |
| 602 | } |
| 603 | if(result < tools::min_value<T>()) |
| 604 | return s0; // Safeguard: series can't cope with denorms. |
| 605 | ibeta_series_t<T> s(a, b, x, result); |
| 606 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 607 | result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, s0); |
| 608 | policies::check_series_iterations<T>("boost::math::ibeta<%1%>(%1%, %1%, %1%) in ibeta_series (with lanczos)" , max_iter, pol); |
| 609 | return result; |
| 610 | } |
| 611 | // |
| 612 | // Incomplete Beta series again, this time without Lanczos support: |
| 613 | // |
| 614 | template <class T, class Policy> |
| 615 | T ibeta_series(T a, T b, T x, T s0, const boost::math::lanczos::undefined_lanczos& l, bool normalised, T* p_derivative, T y, const Policy& pol) |
| 616 | { |
| 617 | BOOST_MATH_STD_USING |
| 618 | |
| 619 | T result; |
| 620 | BOOST_ASSERT((p_derivative == 0) || normalised); |
| 621 | |
| 622 | if(normalised) |
| 623 | { |
| 624 | const T min_sterling = minimum_argument_for_bernoulli_recursion<T>(); |
| 625 | |
| 626 | long shift_a = 0; |
| 627 | long shift_b = 0; |
| 628 | |
| 629 | if (a < min_sterling) |
| 630 | shift_a = 1 + ltrunc(min_sterling - a); |
| 631 | if (b < min_sterling) |
| 632 | shift_b = 1 + ltrunc(min_sterling - b); |
| 633 | |
| 634 | T c = a + b; |
| 635 | |
| 636 | if ((shift_a == 0) && (shift_b == 0)) |
| 637 | { |
| 638 | result = pow(x * c / a, a) * pow(c / b, b) * scaled_tgamma_no_lanczos(c, pol) / (scaled_tgamma_no_lanczos(a, pol) * scaled_tgamma_no_lanczos(b, pol)); |
| 639 | } |
| 640 | else if ((a < 1) && (b > 1)) |
| 641 | result = pow(x, a) / (boost::math::tgamma(a, pol) * boost::math::tgamma_delta_ratio(b, a, pol)); |
| 642 | else |
| 643 | { |
| 644 | T power = pow(x, a); |
| 645 | T bet = beta_imp(a, b, l, pol); |
| 646 | if (!(boost::math::isnormal)(power) || !(boost::math::isnormal)(bet)) |
| 647 | { |
| 648 | result = exp(a * log(x) + boost::math::lgamma(c, pol) - boost::math::lgamma(a, pol) - boost::math::lgamma(b, pol)); |
| 649 | } |
| 650 | else |
| 651 | result = power / bet; |
| 652 | } |
| 653 | if(p_derivative) |
| 654 | { |
| 655 | *p_derivative = result * pow(y, b); |
| 656 | BOOST_ASSERT(*p_derivative >= 0); |
| 657 | } |
| 658 | } |
| 659 | else |
| 660 | { |
| 661 | // Non-normalised, just compute the power: |
| 662 | result = pow(x, a); |
| 663 | } |
| 664 | if(result < tools::min_value<T>()) |
| 665 | return s0; // Safeguard: series can't cope with denorms. |
| 666 | ibeta_series_t<T> s(a, b, x, result); |
| 667 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 668 | result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, s0); |
| 669 | policies::check_series_iterations<T>("boost::math::ibeta<%1%>(%1%, %1%, %1%) in ibeta_series (without lanczos)" , max_iter, pol); |
| 670 | return result; |
| 671 | } |
| 672 | |
| 673 | // |
| 674 | // Continued fraction for the incomplete beta: |
| 675 | // |
| 676 | template <class T> |
| 677 | struct ibeta_fraction2_t |
| 678 | { |
| 679 | typedef std::pair<T, T> result_type; |
| 680 | |
| 681 | ibeta_fraction2_t(T a_, T b_, T x_, T y_) : a(a_), b(b_), x(x_), y(y_), m(0) {} |
| 682 | |
| 683 | result_type operator()() |
| 684 | { |
| 685 | T aN = (a + m - 1) * (a + b + m - 1) * m * (b - m) * x * x; |
| 686 | T denom = (a + 2 * m - 1); |
| 687 | aN /= denom * denom; |
| 688 | |
| 689 | T bN = static_cast<T>(m); |
| 690 | bN += (m * (b - m) * x) / (a + 2*m - 1); |
| 691 | bN += ((a + m) * (a * y - b * x + 1 + m *(2 - x))) / (a + 2*m + 1); |
| 692 | |
| 693 | ++m; |
| 694 | |
| 695 | return std::make_pair(aN, bN); |
| 696 | } |
| 697 | |
| 698 | private: |
| 699 | T a, b, x, y; |
| 700 | int m; |
| 701 | }; |
| 702 | // |
| 703 | // Evaluate the incomplete beta via the continued fraction representation: |
| 704 | // |
| 705 | template <class T, class Policy> |
| 706 | inline T ibeta_fraction2(T a, T b, T x, T y, const Policy& pol, bool normalised, T* p_derivative) |
| 707 | { |
| 708 | typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
| 709 | BOOST_MATH_STD_USING |
| 710 | T result = ibeta_power_terms(a, b, x, y, lanczos_type(), normalised, pol); |
| 711 | if(p_derivative) |
| 712 | { |
| 713 | *p_derivative = result; |
| 714 | BOOST_ASSERT(*p_derivative >= 0); |
| 715 | } |
| 716 | if(result == 0) |
| 717 | return result; |
| 718 | |
| 719 | ibeta_fraction2_t<T> f(a, b, x, y); |
| 720 | T fract = boost::math::tools::continued_fraction_b(f, boost::math::policies::get_epsilon<T, Policy>()); |
| 721 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 722 | BOOST_MATH_INSTRUMENT_VARIABLE(result); |
| 723 | return result / fract; |
| 724 | } |
| 725 | // |
| 726 | // Computes the difference between ibeta(a,b,x) and ibeta(a+k,b,x): |
| 727 | // |
| 728 | template <class T, class Policy> |
| 729 | T ibeta_a_step(T a, T b, T x, T y, int k, const Policy& pol, bool normalised, T* p_derivative) |
| 730 | { |
| 731 | typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
| 732 | |
| 733 | BOOST_MATH_INSTRUMENT_VARIABLE(k); |
| 734 | |
| 735 | T prefix = ibeta_power_terms(a, b, x, y, lanczos_type(), normalised, pol); |
| 736 | if(p_derivative) |
| 737 | { |
| 738 | *p_derivative = prefix; |
| 739 | BOOST_ASSERT(*p_derivative >= 0); |
| 740 | } |
| 741 | prefix /= a; |
| 742 | if(prefix == 0) |
| 743 | return prefix; |
| 744 | T sum = 1; |
| 745 | T term = 1; |
| 746 | // series summation from 0 to k-1: |
| 747 | for(int i = 0; i < k-1; ++i) |
| 748 | { |
| 749 | term *= (a+b+i) * x / (a+i+1); |
| 750 | sum += term; |
| 751 | } |
| 752 | prefix *= sum; |
| 753 | |
| 754 | return prefix; |
| 755 | } |
| 756 | // |
| 757 | // This function is only needed for the non-regular incomplete beta, |
| 758 | // it computes the delta in: |
| 759 | // beta(a,b,x) = prefix + delta * beta(a+k,b,x) |
| 760 | // it is currently only called for small k. |
| 761 | // |
| 762 | template <class T> |
| 763 | inline T rising_factorial_ratio(T a, T b, int k) |
| 764 | { |
| 765 | // calculate: |
| 766 | // (a)(a+1)(a+2)...(a+k-1) |
| 767 | // _______________________ |
| 768 | // (b)(b+1)(b+2)...(b+k-1) |
| 769 | |
| 770 | // This is only called with small k, for large k |
| 771 | // it is grossly inefficient, do not use outside it's |
| 772 | // intended purpose!!! |
| 773 | BOOST_MATH_INSTRUMENT_VARIABLE(k); |
| 774 | if(k == 0) |
| 775 | return 1; |
| 776 | T result = 1; |
| 777 | for(int i = 0; i < k; ++i) |
| 778 | result *= (a+i) / (b+i); |
| 779 | return result; |
| 780 | } |
| 781 | // |
| 782 | // Routine for a > 15, b < 1 |
| 783 | // |
| 784 | // Begin by figuring out how large our table of Pn's should be, |
| 785 | // quoted accuracies are "guesstimates" based on empirical observation. |
| 786 | // Note that the table size should never exceed the size of our |
| 787 | // tables of factorials. |
| 788 | // |
| 789 | template <class T> |
| 790 | struct Pn_size |
| 791 | { |
| 792 | // This is likely to be enough for ~35-50 digit accuracy |
| 793 | // but it's hard to quantify exactly: |
| 794 | BOOST_STATIC_CONSTANT(unsigned, value = |
| 795 | ::boost::math::max_factorial<T>::value >= 100 ? 50 |
| 796 | : ::boost::math::max_factorial<T>::value >= ::boost::math::max_factorial<double>::value ? 30 |
| 797 | : ::boost::math::max_factorial<T>::value >= ::boost::math::max_factorial<float>::value ? 15 : 1); |
| 798 | BOOST_STATIC_ASSERT(::boost::math::max_factorial<T>::value >= ::boost::math::max_factorial<float>::value); |
| 799 | }; |
| 800 | template <> |
| 801 | struct Pn_size<float> |
| 802 | { |
| 803 | BOOST_STATIC_CONSTANT(unsigned, value = 15); // ~8-15 digit accuracy |
| 804 | BOOST_STATIC_ASSERT(::boost::math::max_factorial<float>::value >= 30); |
| 805 | }; |
| 806 | template <> |
| 807 | struct Pn_size<double> |
| 808 | { |
| 809 | BOOST_STATIC_CONSTANT(unsigned, value = 30); // 16-20 digit accuracy |
| 810 | BOOST_STATIC_ASSERT(::boost::math::max_factorial<double>::value >= 60); |
| 811 | }; |
| 812 | template <> |
| 813 | struct Pn_size<long double> |
| 814 | { |
| 815 | BOOST_STATIC_CONSTANT(unsigned, value = 50); // ~35-50 digit accuracy |
| 816 | BOOST_STATIC_ASSERT(::boost::math::max_factorial<long double>::value >= 100); |
| 817 | }; |
| 818 | |
| 819 | template <class T, class Policy> |
| 820 | T beta_small_b_large_a_series(T a, T b, T x, T y, T s0, T mult, const Policy& pol, bool normalised) |
| 821 | { |
| 822 | typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
| 823 | BOOST_MATH_STD_USING |
| 824 | // |
| 825 | // This is DiDonato and Morris's BGRAT routine, see Eq's 9 through 9.6. |
| 826 | // |
| 827 | // Some values we'll need later, these are Eq 9.1: |
| 828 | // |
| 829 | T bm1 = b - 1; |
| 830 | T t = a + bm1 / 2; |
| 831 | T lx, u; |
| 832 | if(y < 0.35) |
| 833 | lx = boost::math::log1p(-y, pol); |
| 834 | else |
| 835 | lx = log(x); |
| 836 | u = -t * lx; |
| 837 | // and from from 9.2: |
| 838 | T prefix; |
| 839 | T h = regularised_gamma_prefix(b, u, pol, lanczos_type()); |
| 840 | if(h <= tools::min_value<T>()) |
| 841 | return s0; |
| 842 | if(normalised) |
| 843 | { |
| 844 | prefix = h / boost::math::tgamma_delta_ratio(a, b, pol); |
| 845 | prefix /= pow(t, b); |
| 846 | } |
| 847 | else |
| 848 | { |
| 849 | prefix = full_igamma_prefix(b, u, pol) / pow(t, b); |
| 850 | } |
| 851 | prefix *= mult; |
| 852 | // |
| 853 | // now we need the quantity Pn, unfortunately this is computed |
| 854 | // recursively, and requires a full history of all the previous values |
| 855 | // so no choice but to declare a big table and hope it's big enough... |
| 856 | // |
| 857 | T p[ ::boost::math::detail::Pn_size<T>::value ] = { 1 }; // see 9.3. |
| 858 | // |
| 859 | // Now an initial value for J, see 9.6: |
| 860 | // |
| 861 | T j = boost::math::gamma_q(b, u, pol) / h; |
| 862 | // |
| 863 | // Now we can start to pull things together and evaluate the sum in Eq 9: |
| 864 | // |
| 865 | T sum = s0 + prefix * j; // Value at N = 0 |
| 866 | // some variables we'll need: |
| 867 | unsigned tnp1 = 1; // 2*N+1 |
| 868 | T lx2 = lx / 2; |
| 869 | lx2 *= lx2; |
| 870 | T lxp = 1; |
| 871 | T t4 = 4 * t * t; |
| 872 | T b2n = b; |
| 873 | |
| 874 | for(unsigned n = 1; n < sizeof(p)/sizeof(p[0]); ++n) |
| 875 | { |
| 876 | /* |
| 877 | // debugging code, enable this if you want to determine whether |
| 878 | // the table of Pn's is large enough... |
| 879 | // |
| 880 | static int max_count = 2; |
| 881 | if(n > max_count) |
| 882 | { |
| 883 | max_count = n; |
| 884 | std::cerr << "Max iterations in BGRAT was " << n << std::endl; |
| 885 | } |
| 886 | */ |
| 887 | // |
| 888 | // begin by evaluating the next Pn from Eq 9.4: |
| 889 | // |
| 890 | tnp1 += 2; |
| 891 | p[n] = 0; |
| 892 | T mbn = b - n; |
| 893 | unsigned tmp1 = 3; |
| 894 | for(unsigned m = 1; m < n; ++m) |
| 895 | { |
| 896 | mbn = m * b - n; |
| 897 | p[n] += mbn * p[n-m] / boost::math::unchecked_factorial<T>(tmp1); |
| 898 | tmp1 += 2; |
| 899 | } |
| 900 | p[n] /= n; |
| 901 | p[n] += bm1 / boost::math::unchecked_factorial<T>(tnp1); |
| 902 | // |
| 903 | // Now we want Jn from Jn-1 using Eq 9.6: |
| 904 | // |
| 905 | j = (b2n * (b2n + 1) * j + (u + b2n + 1) * lxp) / t4; |
| 906 | lxp *= lx2; |
| 907 | b2n += 2; |
| 908 | // |
| 909 | // pull it together with Eq 9: |
| 910 | // |
| 911 | T r = prefix * p[n] * j; |
| 912 | sum += r; |
| 913 | if(r > 1) |
| 914 | { |
| 915 | if(fabs(r) < fabs(tools::epsilon<T>() * sum)) |
| 916 | break; |
| 917 | } |
| 918 | else |
| 919 | { |
| 920 | if(fabs(r / tools::epsilon<T>()) < fabs(sum)) |
| 921 | break; |
| 922 | } |
| 923 | } |
| 924 | return sum; |
| 925 | } // template <class T, class Lanczos>T beta_small_b_large_a_series(T a, T b, T x, T y, T s0, T mult, const Lanczos& l, bool normalised) |
| 926 | |
| 927 | // |
| 928 | // For integer arguments we can relate the incomplete beta to the |
| 929 | // complement of the binomial distribution cdf and use this finite sum. |
| 930 | // |
| 931 | template <class T> |
| 932 | T binomial_ccdf(T n, T k, T x, T y) |
| 933 | { |
| 934 | BOOST_MATH_STD_USING // ADL of std names |
| 935 | |
| 936 | T result = pow(x, n); |
| 937 | |
| 938 | if(result > tools::min_value<T>()) |
| 939 | { |
| 940 | T term = result; |
| 941 | for(unsigned i = itrunc(T(n - 1)); i > k; --i) |
| 942 | { |
| 943 | term *= ((i + 1) * y) / ((n - i) * x); |
| 944 | result += term; |
| 945 | } |
| 946 | } |
| 947 | else |
| 948 | { |
| 949 | // First term underflows so we need to start at the mode of the |
| 950 | // distribution and work outwards: |
| 951 | int start = itrunc(n * x); |
| 952 | if(start <= k + 1) |
| 953 | start = itrunc(k + 2); |
| 954 | result = pow(x, start) * pow(y, n - start) * boost::math::binomial_coefficient<T>(itrunc(n), itrunc(start)); |
| 955 | if(result == 0) |
| 956 | { |
| 957 | // OK, starting slightly above the mode didn't work, |
| 958 | // we'll have to sum the terms the old fashioned way: |
| 959 | for(unsigned i = start - 1; i > k; --i) |
| 960 | { |
| 961 | result += pow(x, (int)i) * pow(y, n - i) * boost::math::binomial_coefficient<T>(itrunc(n), itrunc(i)); |
| 962 | } |
| 963 | } |
| 964 | else |
| 965 | { |
| 966 | T term = result; |
| 967 | T start_term = result; |
| 968 | for(unsigned i = start - 1; i > k; --i) |
| 969 | { |
| 970 | term *= ((i + 1) * y) / ((n - i) * x); |
| 971 | result += term; |
| 972 | } |
| 973 | term = start_term; |
| 974 | for(unsigned i = start + 1; i <= n; ++i) |
| 975 | { |
| 976 | term *= (n - i + 1) * x / (i * y); |
| 977 | result += term; |
| 978 | } |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | return result; |
| 983 | } |
| 984 | |
| 985 | |
| 986 | // |
| 987 | // The incomplete beta function implementation: |
| 988 | // This is just a big bunch of spaghetti code to divide up the |
| 989 | // input range and select the right implementation method for |
| 990 | // each domain: |
| 991 | // |
| 992 | template <class T, class Policy> |
| 993 | T ibeta_imp(T a, T b, T x, const Policy& pol, bool inv, bool normalised, T* p_derivative) |
| 994 | { |
| 995 | static const char* function = "boost::math::ibeta<%1%>(%1%, %1%, %1%)" ; |
| 996 | typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
| 997 | BOOST_MATH_STD_USING // for ADL of std math functions. |
| 998 | |
| 999 | BOOST_MATH_INSTRUMENT_VARIABLE(a); |
| 1000 | BOOST_MATH_INSTRUMENT_VARIABLE(b); |
| 1001 | BOOST_MATH_INSTRUMENT_VARIABLE(x); |
| 1002 | BOOST_MATH_INSTRUMENT_VARIABLE(inv); |
| 1003 | BOOST_MATH_INSTRUMENT_VARIABLE(normalised); |
| 1004 | |
| 1005 | bool invert = inv; |
| 1006 | T fract; |
| 1007 | T y = 1 - x; |
| 1008 | |
| 1009 | BOOST_ASSERT((p_derivative == 0) || normalised); |
| 1010 | |
| 1011 | if(p_derivative) |
| 1012 | *p_derivative = -1; // value not set. |
| 1013 | |
| 1014 | if((x < 0) || (x > 1)) |
| 1015 | return policies::raise_domain_error<T>(function, "Parameter x outside the range [0,1] in the incomplete beta function (got x=%1%)." , x, pol); |
| 1016 | |
| 1017 | if(normalised) |
| 1018 | { |
| 1019 | if(a < 0) |
| 1020 | return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be >= zero (got a=%1%)." , a, pol); |
| 1021 | if(b < 0) |
| 1022 | return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be >= zero (got b=%1%)." , b, pol); |
| 1023 | // extend to a few very special cases: |
| 1024 | if(a == 0) |
| 1025 | { |
| 1026 | if(b == 0) |
| 1027 | return policies::raise_domain_error<T>(function, "The arguments a and b to the incomplete beta function cannot both be zero, with x=%1%." , x, pol); |
| 1028 | if(b > 0) |
| 1029 | return static_cast<T>(inv ? 0 : 1); |
| 1030 | } |
| 1031 | else if(b == 0) |
| 1032 | { |
| 1033 | if(a > 0) |
| 1034 | return static_cast<T>(inv ? 1 : 0); |
| 1035 | } |
| 1036 | } |
| 1037 | else |
| 1038 | { |
| 1039 | if(a <= 0) |
| 1040 | return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be greater than zero (got a=%1%)." , a, pol); |
| 1041 | if(b <= 0) |
| 1042 | return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be greater than zero (got b=%1%)." , b, pol); |
| 1043 | } |
| 1044 | |
| 1045 | if(x == 0) |
| 1046 | { |
| 1047 | if(p_derivative) |
| 1048 | { |
| 1049 | *p_derivative = (a == 1) ? (T)1 : (a < 1) ? T(tools::max_value<T>() / 2) : T(tools::min_value<T>() * 2); |
| 1050 | } |
| 1051 | return (invert ? (normalised ? T(1) : boost::math::beta(a, b, pol)) : T(0)); |
| 1052 | } |
| 1053 | if(x == 1) |
| 1054 | { |
| 1055 | if(p_derivative) |
| 1056 | { |
| 1057 | *p_derivative = (b == 1) ? T(1) : (b < 1) ? T(tools::max_value<T>() / 2) : T(tools::min_value<T>() * 2); |
| 1058 | } |
| 1059 | return (invert == 0 ? (normalised ? 1 : boost::math::beta(a, b, pol)) : 0); |
| 1060 | } |
| 1061 | if((a == 0.5f) && (b == 0.5f)) |
| 1062 | { |
| 1063 | // We have an arcsine distribution: |
| 1064 | if(p_derivative) |
| 1065 | { |
| 1066 | *p_derivative = 1 / constants::pi<T>() * sqrt(y * x); |
| 1067 | } |
| 1068 | T p = invert ? asin(sqrt(y)) / constants::half_pi<T>() : asin(sqrt(x)) / constants::half_pi<T>(); |
| 1069 | if(!normalised) |
| 1070 | p *= constants::pi<T>(); |
| 1071 | return p; |
| 1072 | } |
| 1073 | if(a == 1) |
| 1074 | { |
| 1075 | std::swap(a, b); |
| 1076 | std::swap(x, y); |
| 1077 | invert = !invert; |
| 1078 | } |
| 1079 | if(b == 1) |
| 1080 | { |
| 1081 | // |
| 1082 | // Special case see: http://functions.wolfram.com/GammaBetaErf/BetaRegularized/03/01/01/ |
| 1083 | // |
| 1084 | if(a == 1) |
| 1085 | { |
| 1086 | if(p_derivative) |
| 1087 | *p_derivative = 1; |
| 1088 | return invert ? y : x; |
| 1089 | } |
| 1090 | |
| 1091 | if(p_derivative) |
| 1092 | { |
| 1093 | *p_derivative = a * pow(x, a - 1); |
| 1094 | } |
| 1095 | T p; |
| 1096 | if(y < 0.5) |
| 1097 | p = invert ? T(-boost::math::expm1(a * boost::math::log1p(-y, pol), pol)) : T(exp(a * boost::math::log1p(-y, pol))); |
| 1098 | else |
| 1099 | p = invert ? T(-boost::math::powm1(x, a, pol)) : T(pow(x, a)); |
| 1100 | if(!normalised) |
| 1101 | p /= a; |
| 1102 | return p; |
| 1103 | } |
| 1104 | |
| 1105 | if((std::min)(a, b) <= 1) |
| 1106 | { |
| 1107 | if(x > 0.5) |
| 1108 | { |
| 1109 | std::swap(a, b); |
| 1110 | std::swap(x, y); |
| 1111 | invert = !invert; |
| 1112 | BOOST_MATH_INSTRUMENT_VARIABLE(invert); |
| 1113 | } |
| 1114 | if((std::max)(a, b) <= 1) |
| 1115 | { |
| 1116 | // Both a,b < 1: |
| 1117 | if((a >= (std::min)(T(0.2), b)) || (pow(x, a) <= 0.9)) |
| 1118 | { |
| 1119 | if(!invert) |
| 1120 | { |
| 1121 | fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol); |
| 1122 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1123 | } |
| 1124 | else |
| 1125 | { |
| 1126 | fract = -(normalised ? 1 : boost::math::beta(a, b, pol)); |
| 1127 | invert = false; |
| 1128 | fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol); |
| 1129 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1130 | } |
| 1131 | } |
| 1132 | else |
| 1133 | { |
| 1134 | std::swap(a, b); |
| 1135 | std::swap(x, y); |
| 1136 | invert = !invert; |
| 1137 | if(y >= 0.3) |
| 1138 | { |
| 1139 | if(!invert) |
| 1140 | { |
| 1141 | fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol); |
| 1142 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1143 | } |
| 1144 | else |
| 1145 | { |
| 1146 | fract = -(normalised ? 1 : boost::math::beta(a, b, pol)); |
| 1147 | invert = false; |
| 1148 | fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol); |
| 1149 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1150 | } |
| 1151 | } |
| 1152 | else |
| 1153 | { |
| 1154 | // Sidestep on a, and then use the series representation: |
| 1155 | T prefix; |
| 1156 | if(!normalised) |
| 1157 | { |
| 1158 | prefix = rising_factorial_ratio(T(a+b), a, 20); |
| 1159 | } |
| 1160 | else |
| 1161 | { |
| 1162 | prefix = 1; |
| 1163 | } |
| 1164 | fract = ibeta_a_step(a, b, x, y, 20, pol, normalised, p_derivative); |
| 1165 | if(!invert) |
| 1166 | { |
| 1167 | fract = beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised); |
| 1168 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1169 | } |
| 1170 | else |
| 1171 | { |
| 1172 | fract -= (normalised ? 1 : boost::math::beta(a, b, pol)); |
| 1173 | invert = false; |
| 1174 | fract = -beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised); |
| 1175 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1176 | } |
| 1177 | } |
| 1178 | } |
| 1179 | } |
| 1180 | else |
| 1181 | { |
| 1182 | // One of a, b < 1 only: |
| 1183 | if((b <= 1) || ((x < 0.1) && (pow(b * x, a) <= 0.7))) |
| 1184 | { |
| 1185 | if(!invert) |
| 1186 | { |
| 1187 | fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol); |
| 1188 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1189 | } |
| 1190 | else |
| 1191 | { |
| 1192 | fract = -(normalised ? 1 : boost::math::beta(a, b, pol)); |
| 1193 | invert = false; |
| 1194 | fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol); |
| 1195 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1196 | } |
| 1197 | } |
| 1198 | else |
| 1199 | { |
| 1200 | std::swap(a, b); |
| 1201 | std::swap(x, y); |
| 1202 | invert = !invert; |
| 1203 | |
| 1204 | if(y >= 0.3) |
| 1205 | { |
| 1206 | if(!invert) |
| 1207 | { |
| 1208 | fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol); |
| 1209 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1210 | } |
| 1211 | else |
| 1212 | { |
| 1213 | fract = -(normalised ? 1 : boost::math::beta(a, b, pol)); |
| 1214 | invert = false; |
| 1215 | fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol); |
| 1216 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1217 | } |
| 1218 | } |
| 1219 | else if(a >= 15) |
| 1220 | { |
| 1221 | if(!invert) |
| 1222 | { |
| 1223 | fract = beta_small_b_large_a_series(a, b, x, y, T(0), T(1), pol, normalised); |
| 1224 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1225 | } |
| 1226 | else |
| 1227 | { |
| 1228 | fract = -(normalised ? 1 : boost::math::beta(a, b, pol)); |
| 1229 | invert = false; |
| 1230 | fract = -beta_small_b_large_a_series(a, b, x, y, fract, T(1), pol, normalised); |
| 1231 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1232 | } |
| 1233 | } |
| 1234 | else |
| 1235 | { |
| 1236 | // Sidestep to improve errors: |
| 1237 | T prefix; |
| 1238 | if(!normalised) |
| 1239 | { |
| 1240 | prefix = rising_factorial_ratio(T(a+b), a, 20); |
| 1241 | } |
| 1242 | else |
| 1243 | { |
| 1244 | prefix = 1; |
| 1245 | } |
| 1246 | fract = ibeta_a_step(a, b, x, y, 20, pol, normalised, p_derivative); |
| 1247 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1248 | if(!invert) |
| 1249 | { |
| 1250 | fract = beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised); |
| 1251 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1252 | } |
| 1253 | else |
| 1254 | { |
| 1255 | fract -= (normalised ? 1 : boost::math::beta(a, b, pol)); |
| 1256 | invert = false; |
| 1257 | fract = -beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised); |
| 1258 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1259 | } |
| 1260 | } |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | else |
| 1265 | { |
| 1266 | // Both a,b >= 1: |
| 1267 | T lambda; |
| 1268 | if(a < b) |
| 1269 | { |
| 1270 | lambda = a - (a + b) * x; |
| 1271 | } |
| 1272 | else |
| 1273 | { |
| 1274 | lambda = (a + b) * y - b; |
| 1275 | } |
| 1276 | if(lambda < 0) |
| 1277 | { |
| 1278 | std::swap(a, b); |
| 1279 | std::swap(x, y); |
| 1280 | invert = !invert; |
| 1281 | BOOST_MATH_INSTRUMENT_VARIABLE(invert); |
| 1282 | } |
| 1283 | |
| 1284 | if(b < 40) |
| 1285 | { |
| 1286 | if((floor(a) == a) && (floor(b) == b) && (a < (std::numeric_limits<int>::max)() - 100) && (y != 1)) |
| 1287 | { |
| 1288 | // relate to the binomial distribution and use a finite sum: |
| 1289 | T k = a - 1; |
| 1290 | T n = b + k; |
| 1291 | fract = binomial_ccdf(n, k, x, y); |
| 1292 | if(!normalised) |
| 1293 | fract *= boost::math::beta(a, b, pol); |
| 1294 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1295 | } |
| 1296 | else if(b * x <= 0.7) |
| 1297 | { |
| 1298 | if(!invert) |
| 1299 | { |
| 1300 | fract = ibeta_series(a, b, x, T(0), lanczos_type(), normalised, p_derivative, y, pol); |
| 1301 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1302 | } |
| 1303 | else |
| 1304 | { |
| 1305 | fract = -(normalised ? 1 : boost::math::beta(a, b, pol)); |
| 1306 | invert = false; |
| 1307 | fract = -ibeta_series(a, b, x, fract, lanczos_type(), normalised, p_derivative, y, pol); |
| 1308 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1309 | } |
| 1310 | } |
| 1311 | else if(a > 15) |
| 1312 | { |
| 1313 | // sidestep so we can use the series representation: |
| 1314 | int n = itrunc(T(floor(b)), pol); |
| 1315 | if(n == b) |
| 1316 | --n; |
| 1317 | T bbar = b - n; |
| 1318 | T prefix; |
| 1319 | if(!normalised) |
| 1320 | { |
| 1321 | prefix = rising_factorial_ratio(T(a+bbar), bbar, n); |
| 1322 | } |
| 1323 | else |
| 1324 | { |
| 1325 | prefix = 1; |
| 1326 | } |
| 1327 | fract = ibeta_a_step(bbar, a, y, x, n, pol, normalised, static_cast<T*>(0)); |
| 1328 | fract = beta_small_b_large_a_series(a, bbar, x, y, fract, T(1), pol, normalised); |
| 1329 | fract /= prefix; |
| 1330 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1331 | } |
| 1332 | else if(normalised) |
| 1333 | { |
| 1334 | // The formula here for the non-normalised case is tricky to figure |
| 1335 | // out (for me!!), and requires two pochhammer calculations rather |
| 1336 | // than one, so leave it for now and only use this in the normalized case.... |
| 1337 | int n = itrunc(T(floor(b)), pol); |
| 1338 | T bbar = b - n; |
| 1339 | if(bbar <= 0) |
| 1340 | { |
| 1341 | --n; |
| 1342 | bbar += 1; |
| 1343 | } |
| 1344 | fract = ibeta_a_step(bbar, a, y, x, n, pol, normalised, static_cast<T*>(0)); |
| 1345 | fract += ibeta_a_step(a, bbar, x, y, 20, pol, normalised, static_cast<T*>(0)); |
| 1346 | if(invert) |
| 1347 | fract -= 1; // Note this line would need changing if we ever enable this branch in non-normalized case |
| 1348 | fract = beta_small_b_large_a_series(T(a+20), bbar, x, y, fract, T(1), pol, normalised); |
| 1349 | if(invert) |
| 1350 | { |
| 1351 | fract = -fract; |
| 1352 | invert = false; |
| 1353 | } |
| 1354 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1355 | } |
| 1356 | else |
| 1357 | { |
| 1358 | fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative); |
| 1359 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1360 | } |
| 1361 | } |
| 1362 | else |
| 1363 | { |
| 1364 | fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative); |
| 1365 | BOOST_MATH_INSTRUMENT_VARIABLE(fract); |
| 1366 | } |
| 1367 | } |
| 1368 | if(p_derivative) |
| 1369 | { |
| 1370 | if(*p_derivative < 0) |
| 1371 | { |
| 1372 | *p_derivative = ibeta_power_terms(a, b, x, y, lanczos_type(), true, pol); |
| 1373 | } |
| 1374 | T div = y * x; |
| 1375 | |
| 1376 | if(*p_derivative != 0) |
| 1377 | { |
| 1378 | if((tools::max_value<T>() * div < *p_derivative)) |
| 1379 | { |
| 1380 | // overflow, return an arbitrarily large value: |
| 1381 | *p_derivative = tools::max_value<T>() / 2; |
| 1382 | } |
| 1383 | else |
| 1384 | { |
| 1385 | *p_derivative /= div; |
| 1386 | } |
| 1387 | } |
| 1388 | } |
| 1389 | return invert ? (normalised ? 1 : boost::math::beta(a, b, pol)) - fract : fract; |
| 1390 | } // template <class T, class Lanczos>T ibeta_imp(T a, T b, T x, const Lanczos& l, bool inv, bool normalised) |
| 1391 | |
| 1392 | template <class T, class Policy> |
| 1393 | inline T ibeta_imp(T a, T b, T x, const Policy& pol, bool inv, bool normalised) |
| 1394 | { |
| 1395 | return ibeta_imp(a, b, x, pol, inv, normalised, static_cast<T*>(0)); |
| 1396 | } |
| 1397 | |
| 1398 | template <class T, class Policy> |
| 1399 | T ibeta_derivative_imp(T a, T b, T x, const Policy& pol) |
| 1400 | { |
| 1401 | static const char* function = "ibeta_derivative<%1%>(%1%,%1%,%1%)" ; |
| 1402 | // |
| 1403 | // start with the usual error checks: |
| 1404 | // |
| 1405 | if(a <= 0) |
| 1406 | return policies::raise_domain_error<T>(function, "The argument a to the incomplete beta function must be greater than zero (got a=%1%)." , a, pol); |
| 1407 | if(b <= 0) |
| 1408 | return policies::raise_domain_error<T>(function, "The argument b to the incomplete beta function must be greater than zero (got b=%1%)." , b, pol); |
| 1409 | if((x < 0) || (x > 1)) |
| 1410 | return policies::raise_domain_error<T>(function, "Parameter x outside the range [0,1] in the incomplete beta function (got x=%1%)." , x, pol); |
| 1411 | // |
| 1412 | // Now the corner cases: |
| 1413 | // |
| 1414 | if(x == 0) |
| 1415 | { |
| 1416 | return (a > 1) ? 0 : |
| 1417 | (a == 1) ? 1 / boost::math::beta(a, b, pol) : policies::raise_overflow_error<T>(function, 0, pol); |
| 1418 | } |
| 1419 | else if(x == 1) |
| 1420 | { |
| 1421 | return (b > 1) ? 0 : |
| 1422 | (b == 1) ? 1 / boost::math::beta(a, b, pol) : policies::raise_overflow_error<T>(function, 0, pol); |
| 1423 | } |
| 1424 | // |
| 1425 | // Now the regular cases: |
| 1426 | // |
| 1427 | typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
| 1428 | T y = (1 - x) * x; |
| 1429 | T f1 = ibeta_power_terms<T>(a, b, x, 1 - x, lanczos_type(), true, pol, 1 / y, function); |
| 1430 | return f1; |
| 1431 | } |
| 1432 | // |
| 1433 | // Some forwarding functions that dis-ambiguate the third argument type: |
| 1434 | // |
| 1435 | template <class RT1, class RT2, class Policy> |
| 1436 | inline typename tools::promote_args<RT1, RT2>::type |
| 1437 | beta(RT1 a, RT2 b, const Policy&, const boost::true_type*) |
| 1438 | { |
| 1439 | BOOST_FPU_EXCEPTION_GUARD |
| 1440 | typedef typename tools::promote_args<RT1, RT2>::type result_type; |
| 1441 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1442 | typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
| 1443 | typedef typename policies::normalise< |
| 1444 | Policy, |
| 1445 | policies::promote_float<false>, |
| 1446 | policies::promote_double<false>, |
| 1447 | policies::discrete_quantile<>, |
| 1448 | policies::assert_undefined<> >::type forwarding_policy; |
| 1449 | |
| 1450 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::beta_imp(static_cast<value_type>(a), static_cast<value_type>(b), evaluation_type(), forwarding_policy()), "boost::math::beta<%1%>(%1%,%1%)" ); |
| 1451 | } |
| 1452 | template <class RT1, class RT2, class RT3> |
| 1453 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1454 | beta(RT1 a, RT2 b, RT3 x, const boost::false_type*) |
| 1455 | { |
| 1456 | return boost::math::beta(a, b, x, policies::policy<>()); |
| 1457 | } |
| 1458 | } // namespace detail |
| 1459 | |
| 1460 | // |
| 1461 | // The actual function entry-points now follow, these just figure out |
| 1462 | // which Lanczos approximation to use |
| 1463 | // and forward to the implementation functions: |
| 1464 | // |
| 1465 | template <class RT1, class RT2, class A> |
| 1466 | inline typename tools::promote_args<RT1, RT2, A>::type |
| 1467 | beta(RT1 a, RT2 b, A arg) |
| 1468 | { |
| 1469 | typedef typename policies::is_policy<A>::type tag; |
| 1470 | return boost::math::detail::beta(a, b, arg, static_cast<tag*>(0)); |
| 1471 | } |
| 1472 | |
| 1473 | template <class RT1, class RT2> |
| 1474 | inline typename tools::promote_args<RT1, RT2>::type |
| 1475 | beta(RT1 a, RT2 b) |
| 1476 | { |
| 1477 | return boost::math::beta(a, b, policies::policy<>()); |
| 1478 | } |
| 1479 | |
| 1480 | template <class RT1, class RT2, class RT3, class Policy> |
| 1481 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1482 | beta(RT1 a, RT2 b, RT3 x, const Policy&) |
| 1483 | { |
| 1484 | BOOST_FPU_EXCEPTION_GUARD |
| 1485 | typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type; |
| 1486 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1487 | typedef typename policies::normalise< |
| 1488 | Policy, |
| 1489 | policies::promote_float<false>, |
| 1490 | policies::promote_double<false>, |
| 1491 | policies::discrete_quantile<>, |
| 1492 | policies::assert_undefined<> >::type forwarding_policy; |
| 1493 | |
| 1494 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), false, false), "boost::math::beta<%1%>(%1%,%1%,%1%)" ); |
| 1495 | } |
| 1496 | |
| 1497 | template <class RT1, class RT2, class RT3, class Policy> |
| 1498 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1499 | betac(RT1 a, RT2 b, RT3 x, const Policy&) |
| 1500 | { |
| 1501 | BOOST_FPU_EXCEPTION_GUARD |
| 1502 | typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type; |
| 1503 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1504 | typedef typename policies::normalise< |
| 1505 | Policy, |
| 1506 | policies::promote_float<false>, |
| 1507 | policies::promote_double<false>, |
| 1508 | policies::discrete_quantile<>, |
| 1509 | policies::assert_undefined<> >::type forwarding_policy; |
| 1510 | |
| 1511 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), true, false), "boost::math::betac<%1%>(%1%,%1%,%1%)" ); |
| 1512 | } |
| 1513 | template <class RT1, class RT2, class RT3> |
| 1514 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1515 | betac(RT1 a, RT2 b, RT3 x) |
| 1516 | { |
| 1517 | return boost::math::betac(a, b, x, policies::policy<>()); |
| 1518 | } |
| 1519 | |
| 1520 | template <class RT1, class RT2, class RT3, class Policy> |
| 1521 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1522 | ibeta(RT1 a, RT2 b, RT3 x, const Policy&) |
| 1523 | { |
| 1524 | BOOST_FPU_EXCEPTION_GUARD |
| 1525 | typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type; |
| 1526 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1527 | typedef typename policies::normalise< |
| 1528 | Policy, |
| 1529 | policies::promote_float<false>, |
| 1530 | policies::promote_double<false>, |
| 1531 | policies::discrete_quantile<>, |
| 1532 | policies::assert_undefined<> >::type forwarding_policy; |
| 1533 | |
| 1534 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), false, true), "boost::math::ibeta<%1%>(%1%,%1%,%1%)" ); |
| 1535 | } |
| 1536 | template <class RT1, class RT2, class RT3> |
| 1537 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1538 | ibeta(RT1 a, RT2 b, RT3 x) |
| 1539 | { |
| 1540 | return boost::math::ibeta(a, b, x, policies::policy<>()); |
| 1541 | } |
| 1542 | |
| 1543 | template <class RT1, class RT2, class RT3, class Policy> |
| 1544 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1545 | ibetac(RT1 a, RT2 b, RT3 x, const Policy&) |
| 1546 | { |
| 1547 | BOOST_FPU_EXCEPTION_GUARD |
| 1548 | typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type; |
| 1549 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1550 | typedef typename policies::normalise< |
| 1551 | Policy, |
| 1552 | policies::promote_float<false>, |
| 1553 | policies::promote_double<false>, |
| 1554 | policies::discrete_quantile<>, |
| 1555 | policies::assert_undefined<> >::type forwarding_policy; |
| 1556 | |
| 1557 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy(), true, true), "boost::math::ibetac<%1%>(%1%,%1%,%1%)" ); |
| 1558 | } |
| 1559 | template <class RT1, class RT2, class RT3> |
| 1560 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1561 | ibetac(RT1 a, RT2 b, RT3 x) |
| 1562 | { |
| 1563 | return boost::math::ibetac(a, b, x, policies::policy<>()); |
| 1564 | } |
| 1565 | |
| 1566 | template <class RT1, class RT2, class RT3, class Policy> |
| 1567 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1568 | ibeta_derivative(RT1 a, RT2 b, RT3 x, const Policy&) |
| 1569 | { |
| 1570 | BOOST_FPU_EXCEPTION_GUARD |
| 1571 | typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type; |
| 1572 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 1573 | typedef typename policies::normalise< |
| 1574 | Policy, |
| 1575 | policies::promote_float<false>, |
| 1576 | policies::promote_double<false>, |
| 1577 | policies::discrete_quantile<>, |
| 1578 | policies::assert_undefined<> >::type forwarding_policy; |
| 1579 | |
| 1580 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::ibeta_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(b), static_cast<value_type>(x), forwarding_policy()), "boost::math::ibeta_derivative<%1%>(%1%,%1%,%1%)" ); |
| 1581 | } |
| 1582 | template <class RT1, class RT2, class RT3> |
| 1583 | inline typename tools::promote_args<RT1, RT2, RT3>::type |
| 1584 | ibeta_derivative(RT1 a, RT2 b, RT3 x) |
| 1585 | { |
| 1586 | return boost::math::ibeta_derivative(a, b, x, policies::policy<>()); |
| 1587 | } |
| 1588 | |
| 1589 | } // namespace math |
| 1590 | } // namespace boost |
| 1591 | |
| 1592 | #include <boost/math/special_functions/detail/ibeta_inverse.hpp> |
| 1593 | #include <boost/math/special_functions/detail/ibeta_inv_ab.hpp> |
| 1594 | |
| 1595 | #endif // BOOST_MATH_SPECIAL_BETA_HPP |
| 1596 | |