| 1 | // Copyright (c) 2006 Xiaogang Zhang |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_BESSEL_JN_HPP |
| 7 | #define BOOST_MATH_BESSEL_JN_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/special_functions/detail/bessel_j0.hpp> |
| 14 | #include <boost/math/special_functions/detail/bessel_j1.hpp> |
| 15 | #include <boost/math/special_functions/detail/bessel_jy.hpp> |
| 16 | #include <boost/math/special_functions/detail/bessel_jy_asym.hpp> |
| 17 | #include <boost/math/special_functions/detail/bessel_jy_series.hpp> |
| 18 | |
| 19 | // Bessel function of the first kind of integer order |
| 20 | // J_n(z) is the minimal solution |
| 21 | // n < abs(z), forward recurrence stable and usable |
| 22 | // n >= abs(z), forward recurrence unstable, use Miller's algorithm |
| 23 | |
| 24 | namespace boost { namespace math { namespace detail{ |
| 25 | |
| 26 | template <typename T, typename Policy> |
| 27 | T bessel_jn(int n, T x, const Policy& pol) |
| 28 | { |
| 29 | T value(0), factor, current, prev, next; |
| 30 | |
| 31 | BOOST_MATH_STD_USING |
| 32 | |
| 33 | // |
| 34 | // Reflection has to come first: |
| 35 | // |
| 36 | if (n < 0) |
| 37 | { |
| 38 | factor = static_cast<T>((n & 0x1) ? -1 : 1); // J_{-n}(z) = (-1)^n J_n(z) |
| 39 | n = -n; |
| 40 | } |
| 41 | else |
| 42 | { |
| 43 | factor = 1; |
| 44 | } |
| 45 | if(x < 0) |
| 46 | { |
| 47 | factor *= (n & 0x1) ? -1 : 1; // J_{n}(-z) = (-1)^n J_n(z) |
| 48 | x = -x; |
| 49 | } |
| 50 | // |
| 51 | // Special cases: |
| 52 | // |
| 53 | if(asymptotic_bessel_large_x_limit(T(n), x)) |
| 54 | return factor * asymptotic_bessel_j_large_x_2<T>(T(n), x); |
| 55 | if (n == 0) |
| 56 | { |
| 57 | return factor * bessel_j0(x); |
| 58 | } |
| 59 | if (n == 1) |
| 60 | { |
| 61 | return factor * bessel_j1(x); |
| 62 | } |
| 63 | |
| 64 | if (x == 0) // n >= 2 |
| 65 | { |
| 66 | return static_cast<T>(0); |
| 67 | } |
| 68 | |
| 69 | BOOST_ASSERT(n > 1); |
| 70 | T scale = 1; |
| 71 | if (n < abs(x)) // forward recurrence |
| 72 | { |
| 73 | prev = bessel_j0(x); |
| 74 | current = bessel_j1(x); |
| 75 | policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)" , n, pol); |
| 76 | for (int k = 1; k < n; k++) |
| 77 | { |
| 78 | T fact = 2 * k / x; |
| 79 | // |
| 80 | // rescale if we would overflow or underflow: |
| 81 | // |
| 82 | if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current))) |
| 83 | { |
| 84 | scale /= current; |
| 85 | prev /= current; |
| 86 | current = 1; |
| 87 | } |
| 88 | value = fact * current - prev; |
| 89 | prev = current; |
| 90 | current = value; |
| 91 | } |
| 92 | } |
| 93 | else if((x < 1) || (n > x * x / 4) || (x < 5)) |
| 94 | { |
| 95 | return factor * bessel_j_small_z_series(T(n), x, pol); |
| 96 | } |
| 97 | else // backward recurrence |
| 98 | { |
| 99 | T fn; int s; // fn = J_(n+1) / J_n |
| 100 | // |x| <= n, fast convergence for continued fraction CF1 |
| 101 | boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol); |
| 102 | prev = fn; |
| 103 | current = 1; |
| 104 | // Check recursion won't go on too far: |
| 105 | policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)" , n, pol); |
| 106 | for (int k = n; k > 0; k--) |
| 107 | { |
| 108 | T fact = 2 * k / x; |
| 109 | if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current))) |
| 110 | { |
| 111 | prev /= current; |
| 112 | scale /= current; |
| 113 | current = 1; |
| 114 | } |
| 115 | next = fact * current - prev; |
| 116 | prev = current; |
| 117 | current = next; |
| 118 | } |
| 119 | value = bessel_j0(x) / current; // normalization |
| 120 | scale = 1 / scale; |
| 121 | } |
| 122 | value *= factor; |
| 123 | |
| 124 | if(tools::max_value<T>() * scale < fabs(value)) |
| 125 | return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)" , 0, pol); |
| 126 | |
| 127 | return value / scale; |
| 128 | } |
| 129 | |
| 130 | }}} // namespaces |
| 131 | |
| 132 | #endif // BOOST_MATH_BESSEL_JN_HPP |
| 133 | |
| 134 | |