1 | // Copyright (c) 2006 Xiaogang Zhang |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. (See accompanying file |
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
5 | |
6 | #ifndef BOOST_MATH_BESSEL_YN_HPP |
7 | #define BOOST_MATH_BESSEL_YN_HPP |
8 | |
9 | #ifdef _MSC_VER |
10 | #pragma once |
11 | #endif |
12 | |
13 | #include <boost/math/special_functions/detail/bessel_y0.hpp> |
14 | #include <boost/math/special_functions/detail/bessel_y1.hpp> |
15 | #include <boost/math/special_functions/detail/bessel_jy_series.hpp> |
16 | #include <boost/math/policies/error_handling.hpp> |
17 | |
18 | // Bessel function of the second kind of integer order |
19 | // Y_n(z) is the dominant solution, forward recurrence always OK (though unstable) |
20 | |
21 | namespace boost { namespace math { namespace detail{ |
22 | |
23 | template <typename T, typename Policy> |
24 | T bessel_yn(int n, T x, const Policy& pol) |
25 | { |
26 | BOOST_MATH_STD_USING |
27 | T value, factor, current, prev; |
28 | |
29 | using namespace boost::math::tools; |
30 | |
31 | static const char* function = "boost::math::bessel_yn<%1%>(%1%,%1%)" ; |
32 | |
33 | if ((x == 0) && (n == 0)) |
34 | { |
35 | return -policies::raise_overflow_error<T>(function, 0, pol); |
36 | } |
37 | if (x <= 0) |
38 | { |
39 | return policies::raise_domain_error<T>(function, |
40 | "Got x = %1%, but x must be > 0, complex result not supported." , x, pol); |
41 | } |
42 | |
43 | // |
44 | // Reflection comes first: |
45 | // |
46 | if (n < 0) |
47 | { |
48 | factor = static_cast<T>((n & 0x1) ? -1 : 1); // Y_{-n}(z) = (-1)^n Y_n(z) |
49 | n = -n; |
50 | } |
51 | else |
52 | { |
53 | factor = 1; |
54 | } |
55 | if(x < policies::get_epsilon<T, Policy>()) |
56 | { |
57 | T scale = 1; |
58 | value = bessel_yn_small_z(n, x, &scale, pol); |
59 | if(tools::max_value<T>() * fabs(scale) < fabs(value)) |
60 | return boost::math::sign(scale) * boost::math::sign(value) * policies::raise_overflow_error<T>(function, 0, pol); |
61 | value /= scale; |
62 | } |
63 | else if(asymptotic_bessel_large_x_limit(n, x)) |
64 | { |
65 | value = factor * asymptotic_bessel_y_large_x_2(static_cast<T>(abs(n)), x); |
66 | } |
67 | else if (n == 0) |
68 | { |
69 | value = bessel_y0(x, pol); |
70 | } |
71 | else if (n == 1) |
72 | { |
73 | value = factor * bessel_y1(x, pol); |
74 | } |
75 | else |
76 | { |
77 | prev = bessel_y0(x, pol); |
78 | current = bessel_y1(x, pol); |
79 | int k = 1; |
80 | BOOST_ASSERT(k < n); |
81 | policies::check_series_iterations<T>("boost::math::bessel_y_n<%1%>(%1%,%1%)" , n, pol); |
82 | T mult = 2 * k / x; |
83 | value = mult * current - prev; |
84 | prev = current; |
85 | current = value; |
86 | ++k; |
87 | if((mult > 1) && (fabs(current) > 1)) |
88 | { |
89 | prev /= current; |
90 | factor /= current; |
91 | value /= current; |
92 | current = 1; |
93 | } |
94 | while(k < n) |
95 | { |
96 | mult = 2 * k / x; |
97 | value = mult * current - prev; |
98 | prev = current; |
99 | current = value; |
100 | ++k; |
101 | } |
102 | if(fabs(tools::max_value<T>() * factor) < fabs(value)) |
103 | return sign(value) * sign(factor) * policies::raise_overflow_error<T>(function, 0, pol); |
104 | value /= factor; |
105 | } |
106 | return value; |
107 | } |
108 | |
109 | }}} // namespaces |
110 | |
111 | #endif // BOOST_MATH_BESSEL_YN_HPP |
112 | |
113 | |