| 1 | //! Fixsliced implementations of AES-128, AES-192 and AES-256 (64-bit) |
| 2 | //! adapted from the C implementation. |
| 3 | //! |
| 4 | //! All implementations are fully bitsliced and do not rely on any |
| 5 | //! Look-Up Table (LUT). |
| 6 | //! |
| 7 | //! See the paper at <https://eprint.iacr.org/2020/1123.pdf> for more details. |
| 8 | //! |
| 9 | //! # Author (original C code) |
| 10 | //! |
| 11 | //! Alexandre Adomnicai, Nanyang Technological University, Singapore |
| 12 | //! <alexandre.adomnicai@ntu.edu.sg> |
| 13 | //! |
| 14 | //! Originally licensed MIT. Relicensed as Apache 2.0+MIT with permission. |
| 15 | |
| 16 | #![allow (clippy::unreadable_literal)] |
| 17 | |
| 18 | use crate::Block; |
| 19 | use cipher::{consts::U4, generic_array::GenericArray}; |
| 20 | |
| 21 | /// AES block batch size for this implementation |
| 22 | pub(crate) type FixsliceBlocks = U4; |
| 23 | |
| 24 | pub(crate) type BatchBlocks = GenericArray<Block, FixsliceBlocks>; |
| 25 | |
| 26 | /// AES-128 round keys |
| 27 | pub(crate) type FixsliceKeys128 = [u64; 88]; |
| 28 | |
| 29 | /// AES-192 round keys |
| 30 | pub(crate) type FixsliceKeys192 = [u64; 104]; |
| 31 | |
| 32 | /// AES-256 round keys |
| 33 | pub(crate) type FixsliceKeys256 = [u64; 120]; |
| 34 | |
| 35 | /// 512-bit internal state |
| 36 | pub(crate) type State = [u64; 8]; |
| 37 | |
| 38 | /// Fully bitsliced AES-128 key schedule to match the fully-fixsliced representation. |
| 39 | pub(crate) fn aes128_key_schedule(key: &[u8; 16]) -> FixsliceKeys128 { |
| 40 | let mut rkeys = [0u64; 88]; |
| 41 | |
| 42 | bitslice(&mut rkeys[..8], key, key, key, key); |
| 43 | |
| 44 | let mut rk_off = 0; |
| 45 | for rcon in 0..10 { |
| 46 | memshift32(&mut rkeys, rk_off); |
| 47 | rk_off += 8; |
| 48 | |
| 49 | sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]); |
| 50 | sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]); |
| 51 | |
| 52 | if rcon < 8 { |
| 53 | add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon); |
| 54 | } else { |
| 55 | add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 8); |
| 56 | add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 7); |
| 57 | add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 5); |
| 58 | add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon - 4); |
| 59 | } |
| 60 | |
| 61 | xor_columns(&mut rkeys, rk_off, 8, ror_distance(1, 3)); |
| 62 | } |
| 63 | |
| 64 | // Adjust to match fixslicing format |
| 65 | #[cfg (aes_compact)] |
| 66 | { |
| 67 | for i in (8..88).step_by(16) { |
| 68 | inv_shift_rows_1(&mut rkeys[i..(i + 8)]); |
| 69 | } |
| 70 | } |
| 71 | #[cfg (not(aes_compact))] |
| 72 | { |
| 73 | for i in (8..72).step_by(32) { |
| 74 | inv_shift_rows_1(&mut rkeys[i..(i + 8)]); |
| 75 | inv_shift_rows_2(&mut rkeys[(i + 8)..(i + 16)]); |
| 76 | inv_shift_rows_3(&mut rkeys[(i + 16)..(i + 24)]); |
| 77 | } |
| 78 | inv_shift_rows_1(&mut rkeys[72..80]); |
| 79 | } |
| 80 | |
| 81 | // Account for NOTs removed from sub_bytes |
| 82 | for i in 1..11 { |
| 83 | sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]); |
| 84 | } |
| 85 | |
| 86 | rkeys |
| 87 | } |
| 88 | |
| 89 | /// Fully bitsliced AES-192 key schedule to match the fully-fixsliced representation. |
| 90 | pub(crate) fn aes192_key_schedule(key: &[u8; 24]) -> FixsliceKeys192 { |
| 91 | let mut rkeys = [0u64; 104]; |
| 92 | let mut tmp = [0u64; 8]; |
| 93 | |
| 94 | bitslice( |
| 95 | &mut rkeys[..8], |
| 96 | &key[..16], |
| 97 | &key[..16], |
| 98 | &key[..16], |
| 99 | &key[..16], |
| 100 | ); |
| 101 | bitslice(&mut tmp, &key[8..], &key[8..], &key[8..], &key[8..]); |
| 102 | |
| 103 | let mut rcon = 0; |
| 104 | let mut rk_off = 8; |
| 105 | |
| 106 | loop { |
| 107 | for i in 0..8 { |
| 108 | rkeys[rk_off + i] = (0x00ff00ff00ff00ff & (tmp[i] >> 8)) |
| 109 | | (0xff00ff00ff00ff00 & (rkeys[(rk_off - 8) + i] << 8)); |
| 110 | } |
| 111 | |
| 112 | sub_bytes(&mut tmp); |
| 113 | sub_bytes_nots(&mut tmp); |
| 114 | |
| 115 | add_round_constant_bit(&mut tmp, rcon); |
| 116 | rcon += 1; |
| 117 | |
| 118 | for i in 0..8 { |
| 119 | let mut ti = rkeys[rk_off + i]; |
| 120 | ti ^= 0x0f000f000f000f00 & ror(tmp[i], ror_distance(1, 1)); |
| 121 | ti ^= 0xf000f000f000f000 & (ti << 4); |
| 122 | tmp[i] = ti; |
| 123 | } |
| 124 | rkeys[rk_off..(rk_off + 8)].copy_from_slice(&tmp); |
| 125 | rk_off += 8; |
| 126 | |
| 127 | for i in 0..8 { |
| 128 | let ui = tmp[i]; |
| 129 | let mut ti = (0x00ff00ff00ff00ff & (rkeys[(rk_off - 16) + i] >> 8)) |
| 130 | | (0xff00ff00ff00ff00 & (ui << 8)); |
| 131 | ti ^= 0x000f000f000f000f & (ui >> 12); |
| 132 | tmp[i] = ti |
| 133 | ^ (0xfff0fff0fff0fff0 & (ti << 4)) |
| 134 | ^ (0xff00ff00ff00ff00 & (ti << 8)) |
| 135 | ^ (0xf000f000f000f000 & (ti << 12)); |
| 136 | } |
| 137 | rkeys[rk_off..(rk_off + 8)].copy_from_slice(&tmp); |
| 138 | rk_off += 8; |
| 139 | |
| 140 | sub_bytes(&mut tmp); |
| 141 | sub_bytes_nots(&mut tmp); |
| 142 | |
| 143 | add_round_constant_bit(&mut tmp, rcon); |
| 144 | rcon += 1; |
| 145 | |
| 146 | for i in 0..8 { |
| 147 | let mut ti = (0x00ff00ff00ff00ff & (rkeys[(rk_off - 16) + i] >> 8)) |
| 148 | | (0xff00ff00ff00ff00 & (rkeys[(rk_off - 8) + i] << 8)); |
| 149 | ti ^= 0x000f000f000f000f & ror(tmp[i], ror_distance(1, 3)); |
| 150 | rkeys[rk_off + i] = ti |
| 151 | ^ (0xfff0fff0fff0fff0 & (ti << 4)) |
| 152 | ^ (0xff00ff00ff00ff00 & (ti << 8)) |
| 153 | ^ (0xf000f000f000f000 & (ti << 12)); |
| 154 | } |
| 155 | rk_off += 8; |
| 156 | |
| 157 | if rcon >= 8 { |
| 158 | break; |
| 159 | } |
| 160 | |
| 161 | for i in 0..8 { |
| 162 | let ui = rkeys[(rk_off - 8) + i]; |
| 163 | let mut ti = rkeys[(rk_off - 16) + i]; |
| 164 | ti ^= 0x0f000f000f000f00 & (ui >> 4); |
| 165 | ti ^= 0xf000f000f000f000 & (ti << 4); |
| 166 | tmp[i] = ti; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | // Adjust to match fixslicing format |
| 171 | #[cfg (aes_compact)] |
| 172 | { |
| 173 | for i in (8..104).step_by(16) { |
| 174 | inv_shift_rows_1(&mut rkeys[i..(i + 8)]); |
| 175 | } |
| 176 | } |
| 177 | #[cfg (not(aes_compact))] |
| 178 | { |
| 179 | for i in (0..96).step_by(32) { |
| 180 | inv_shift_rows_1(&mut rkeys[(i + 8)..(i + 16)]); |
| 181 | inv_shift_rows_2(&mut rkeys[(i + 16)..(i + 24)]); |
| 182 | inv_shift_rows_3(&mut rkeys[(i + 24)..(i + 32)]); |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | // Account for NOTs removed from sub_bytes |
| 187 | for i in 1..13 { |
| 188 | sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]); |
| 189 | } |
| 190 | |
| 191 | rkeys |
| 192 | } |
| 193 | |
| 194 | /// Fully bitsliced AES-256 key schedule to match the fully-fixsliced representation. |
| 195 | pub(crate) fn aes256_key_schedule(key: &[u8; 32]) -> FixsliceKeys256 { |
| 196 | let mut rkeys = [0u64; 120]; |
| 197 | |
| 198 | bitslice( |
| 199 | &mut rkeys[..8], |
| 200 | &key[..16], |
| 201 | &key[..16], |
| 202 | &key[..16], |
| 203 | &key[..16], |
| 204 | ); |
| 205 | bitslice( |
| 206 | &mut rkeys[8..16], |
| 207 | &key[16..], |
| 208 | &key[16..], |
| 209 | &key[16..], |
| 210 | &key[16..], |
| 211 | ); |
| 212 | |
| 213 | let mut rk_off = 8; |
| 214 | |
| 215 | let mut rcon = 0; |
| 216 | loop { |
| 217 | memshift32(&mut rkeys, rk_off); |
| 218 | rk_off += 8; |
| 219 | |
| 220 | sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]); |
| 221 | sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]); |
| 222 | |
| 223 | add_round_constant_bit(&mut rkeys[rk_off..(rk_off + 8)], rcon); |
| 224 | xor_columns(&mut rkeys, rk_off, 16, ror_distance(1, 3)); |
| 225 | rcon += 1; |
| 226 | |
| 227 | if rcon == 7 { |
| 228 | break; |
| 229 | } |
| 230 | |
| 231 | memshift32(&mut rkeys, rk_off); |
| 232 | rk_off += 8; |
| 233 | |
| 234 | sub_bytes(&mut rkeys[rk_off..(rk_off + 8)]); |
| 235 | sub_bytes_nots(&mut rkeys[rk_off..(rk_off + 8)]); |
| 236 | |
| 237 | xor_columns(&mut rkeys, rk_off, 16, ror_distance(0, 3)); |
| 238 | } |
| 239 | |
| 240 | // Adjust to match fixslicing format |
| 241 | #[cfg (aes_compact)] |
| 242 | { |
| 243 | for i in (8..120).step_by(16) { |
| 244 | inv_shift_rows_1(&mut rkeys[i..(i + 8)]); |
| 245 | } |
| 246 | } |
| 247 | #[cfg (not(aes_compact))] |
| 248 | { |
| 249 | for i in (8..104).step_by(32) { |
| 250 | inv_shift_rows_1(&mut rkeys[i..(i + 8)]); |
| 251 | inv_shift_rows_2(&mut rkeys[(i + 8)..(i + 16)]); |
| 252 | inv_shift_rows_3(&mut rkeys[(i + 16)..(i + 24)]); |
| 253 | } |
| 254 | inv_shift_rows_1(&mut rkeys[104..112]); |
| 255 | } |
| 256 | |
| 257 | // Account for NOTs removed from sub_bytes |
| 258 | for i in 1..15 { |
| 259 | sub_bytes_nots(&mut rkeys[(i * 8)..(i * 8 + 8)]); |
| 260 | } |
| 261 | |
| 262 | rkeys |
| 263 | } |
| 264 | |
| 265 | /// Fully-fixsliced AES-128 decryption (the InvShiftRows is completely omitted). |
| 266 | /// |
| 267 | /// Decrypts four blocks in-place and in parallel. |
| 268 | pub(crate) fn aes128_decrypt(rkeys: &FixsliceKeys128, blocks: &BatchBlocks) -> BatchBlocks { |
| 269 | let mut state = State::default(); |
| 270 | |
| 271 | bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]); |
| 272 | |
| 273 | add_round_key(&mut state, &rkeys[80..]); |
| 274 | inv_sub_bytes(&mut state); |
| 275 | |
| 276 | #[cfg (not(aes_compact))] |
| 277 | { |
| 278 | inv_shift_rows_2(&mut state); |
| 279 | } |
| 280 | |
| 281 | let mut rk_off = 72; |
| 282 | loop { |
| 283 | #[cfg (aes_compact)] |
| 284 | { |
| 285 | inv_shift_rows_2(&mut state); |
| 286 | } |
| 287 | |
| 288 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 289 | inv_mix_columns_1(&mut state); |
| 290 | inv_sub_bytes(&mut state); |
| 291 | rk_off -= 8; |
| 292 | |
| 293 | if rk_off == 0 { |
| 294 | break; |
| 295 | } |
| 296 | |
| 297 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 298 | inv_mix_columns_0(&mut state); |
| 299 | inv_sub_bytes(&mut state); |
| 300 | rk_off -= 8; |
| 301 | |
| 302 | #[cfg (not(aes_compact))] |
| 303 | { |
| 304 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 305 | inv_mix_columns_3(&mut state); |
| 306 | inv_sub_bytes(&mut state); |
| 307 | rk_off -= 8; |
| 308 | |
| 309 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 310 | inv_mix_columns_2(&mut state); |
| 311 | inv_sub_bytes(&mut state); |
| 312 | rk_off -= 8; |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | add_round_key(&mut state, &rkeys[..8]); |
| 317 | |
| 318 | inv_bitslice(&state) |
| 319 | } |
| 320 | |
| 321 | /// Fully-fixsliced AES-128 encryption (the ShiftRows is completely omitted). |
| 322 | /// |
| 323 | /// Encrypts four blocks in-place and in parallel. |
| 324 | pub(crate) fn aes128_encrypt(rkeys: &FixsliceKeys128, blocks: &BatchBlocks) -> BatchBlocks { |
| 325 | let mut state = State::default(); |
| 326 | |
| 327 | bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]); |
| 328 | |
| 329 | add_round_key(&mut state, &rkeys[..8]); |
| 330 | |
| 331 | let mut rk_off = 8; |
| 332 | loop { |
| 333 | sub_bytes(&mut state); |
| 334 | mix_columns_1(&mut state); |
| 335 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 336 | rk_off += 8; |
| 337 | |
| 338 | #[cfg (aes_compact)] |
| 339 | { |
| 340 | shift_rows_2(&mut state); |
| 341 | } |
| 342 | |
| 343 | if rk_off == 80 { |
| 344 | break; |
| 345 | } |
| 346 | |
| 347 | #[cfg (not(aes_compact))] |
| 348 | { |
| 349 | sub_bytes(&mut state); |
| 350 | mix_columns_2(&mut state); |
| 351 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 352 | rk_off += 8; |
| 353 | |
| 354 | sub_bytes(&mut state); |
| 355 | mix_columns_3(&mut state); |
| 356 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 357 | rk_off += 8; |
| 358 | } |
| 359 | |
| 360 | sub_bytes(&mut state); |
| 361 | mix_columns_0(&mut state); |
| 362 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 363 | rk_off += 8; |
| 364 | } |
| 365 | |
| 366 | #[cfg (not(aes_compact))] |
| 367 | { |
| 368 | shift_rows_2(&mut state); |
| 369 | } |
| 370 | |
| 371 | sub_bytes(&mut state); |
| 372 | add_round_key(&mut state, &rkeys[80..]); |
| 373 | |
| 374 | inv_bitslice(&state) |
| 375 | } |
| 376 | |
| 377 | /// Fully-fixsliced AES-192 decryption (the InvShiftRows is completely omitted). |
| 378 | /// |
| 379 | /// Decrypts four blocks in-place and in parallel. |
| 380 | pub(crate) fn aes192_decrypt(rkeys: &FixsliceKeys192, blocks: &BatchBlocks) -> BatchBlocks { |
| 381 | let mut state = State::default(); |
| 382 | |
| 383 | bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]); |
| 384 | |
| 385 | add_round_key(&mut state, &rkeys[96..]); |
| 386 | inv_sub_bytes(&mut state); |
| 387 | |
| 388 | let mut rk_off = 88; |
| 389 | loop { |
| 390 | #[cfg (aes_compact)] |
| 391 | { |
| 392 | inv_shift_rows_2(&mut state); |
| 393 | } |
| 394 | #[cfg (not(aes_compact))] |
| 395 | { |
| 396 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 397 | inv_mix_columns_3(&mut state); |
| 398 | inv_sub_bytes(&mut state); |
| 399 | rk_off -= 8; |
| 400 | |
| 401 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 402 | inv_mix_columns_2(&mut state); |
| 403 | inv_sub_bytes(&mut state); |
| 404 | rk_off -= 8; |
| 405 | } |
| 406 | |
| 407 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 408 | inv_mix_columns_1(&mut state); |
| 409 | inv_sub_bytes(&mut state); |
| 410 | rk_off -= 8; |
| 411 | |
| 412 | if rk_off == 0 { |
| 413 | break; |
| 414 | } |
| 415 | |
| 416 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 417 | inv_mix_columns_0(&mut state); |
| 418 | inv_sub_bytes(&mut state); |
| 419 | rk_off -= 8; |
| 420 | } |
| 421 | |
| 422 | add_round_key(&mut state, &rkeys[..8]); |
| 423 | |
| 424 | inv_bitslice(&state) |
| 425 | } |
| 426 | |
| 427 | /// Fully-fixsliced AES-192 encryption (the ShiftRows is completely omitted). |
| 428 | /// |
| 429 | /// Encrypts four blocks in-place and in parallel. |
| 430 | pub(crate) fn aes192_encrypt(rkeys: &FixsliceKeys192, blocks: &BatchBlocks) -> BatchBlocks { |
| 431 | let mut state = State::default(); |
| 432 | |
| 433 | bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]); |
| 434 | |
| 435 | add_round_key(&mut state, &rkeys[..8]); |
| 436 | |
| 437 | let mut rk_off = 8; |
| 438 | loop { |
| 439 | sub_bytes(&mut state); |
| 440 | mix_columns_1(&mut state); |
| 441 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 442 | rk_off += 8; |
| 443 | |
| 444 | #[cfg (aes_compact)] |
| 445 | { |
| 446 | shift_rows_2(&mut state); |
| 447 | } |
| 448 | #[cfg (not(aes_compact))] |
| 449 | { |
| 450 | sub_bytes(&mut state); |
| 451 | mix_columns_2(&mut state); |
| 452 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 453 | rk_off += 8; |
| 454 | |
| 455 | sub_bytes(&mut state); |
| 456 | mix_columns_3(&mut state); |
| 457 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 458 | rk_off += 8; |
| 459 | } |
| 460 | |
| 461 | if rk_off == 96 { |
| 462 | break; |
| 463 | } |
| 464 | |
| 465 | sub_bytes(&mut state); |
| 466 | mix_columns_0(&mut state); |
| 467 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 468 | rk_off += 8; |
| 469 | } |
| 470 | |
| 471 | sub_bytes(&mut state); |
| 472 | add_round_key(&mut state, &rkeys[96..]); |
| 473 | |
| 474 | inv_bitslice(&state) |
| 475 | } |
| 476 | |
| 477 | /// Fully-fixsliced AES-256 decryption (the InvShiftRows is completely omitted). |
| 478 | /// |
| 479 | /// Decrypts four blocks in-place and in parallel. |
| 480 | pub(crate) fn aes256_decrypt(rkeys: &FixsliceKeys256, blocks: &BatchBlocks) -> BatchBlocks { |
| 481 | let mut state = State::default(); |
| 482 | |
| 483 | bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]); |
| 484 | |
| 485 | add_round_key(&mut state, &rkeys[112..]); |
| 486 | inv_sub_bytes(&mut state); |
| 487 | |
| 488 | #[cfg (not(aes_compact))] |
| 489 | { |
| 490 | inv_shift_rows_2(&mut state); |
| 491 | } |
| 492 | |
| 493 | let mut rk_off = 104; |
| 494 | loop { |
| 495 | #[cfg (aes_compact)] |
| 496 | { |
| 497 | inv_shift_rows_2(&mut state); |
| 498 | } |
| 499 | |
| 500 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 501 | inv_mix_columns_1(&mut state); |
| 502 | inv_sub_bytes(&mut state); |
| 503 | rk_off -= 8; |
| 504 | |
| 505 | if rk_off == 0 { |
| 506 | break; |
| 507 | } |
| 508 | |
| 509 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 510 | inv_mix_columns_0(&mut state); |
| 511 | inv_sub_bytes(&mut state); |
| 512 | rk_off -= 8; |
| 513 | |
| 514 | #[cfg (not(aes_compact))] |
| 515 | { |
| 516 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 517 | inv_mix_columns_3(&mut state); |
| 518 | inv_sub_bytes(&mut state); |
| 519 | rk_off -= 8; |
| 520 | |
| 521 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 522 | inv_mix_columns_2(&mut state); |
| 523 | inv_sub_bytes(&mut state); |
| 524 | rk_off -= 8; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | add_round_key(&mut state, &rkeys[..8]); |
| 529 | |
| 530 | inv_bitslice(&state) |
| 531 | } |
| 532 | |
| 533 | /// Fully-fixsliced AES-256 encryption (the ShiftRows is completely omitted). |
| 534 | /// |
| 535 | /// Encrypts four blocks in-place and in parallel. |
| 536 | pub(crate) fn aes256_encrypt(rkeys: &FixsliceKeys256, blocks: &BatchBlocks) -> BatchBlocks { |
| 537 | let mut state = State::default(); |
| 538 | |
| 539 | bitslice(&mut state, &blocks[0], &blocks[1], &blocks[2], &blocks[3]); |
| 540 | |
| 541 | add_round_key(&mut state, &rkeys[..8]); |
| 542 | |
| 543 | let mut rk_off = 8; |
| 544 | loop { |
| 545 | sub_bytes(&mut state); |
| 546 | mix_columns_1(&mut state); |
| 547 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 548 | rk_off += 8; |
| 549 | |
| 550 | #[cfg (aes_compact)] |
| 551 | { |
| 552 | shift_rows_2(&mut state); |
| 553 | } |
| 554 | |
| 555 | if rk_off == 112 { |
| 556 | break; |
| 557 | } |
| 558 | |
| 559 | #[cfg (not(aes_compact))] |
| 560 | { |
| 561 | sub_bytes(&mut state); |
| 562 | mix_columns_2(&mut state); |
| 563 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 564 | rk_off += 8; |
| 565 | |
| 566 | sub_bytes(&mut state); |
| 567 | mix_columns_3(&mut state); |
| 568 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 569 | rk_off += 8; |
| 570 | } |
| 571 | |
| 572 | sub_bytes(&mut state); |
| 573 | mix_columns_0(&mut state); |
| 574 | add_round_key(&mut state, &rkeys[rk_off..(rk_off + 8)]); |
| 575 | rk_off += 8; |
| 576 | } |
| 577 | |
| 578 | #[cfg (not(aes_compact))] |
| 579 | { |
| 580 | shift_rows_2(&mut state); |
| 581 | } |
| 582 | |
| 583 | sub_bytes(&mut state); |
| 584 | add_round_key(&mut state, &rkeys[112..]); |
| 585 | |
| 586 | inv_bitslice(&state) |
| 587 | } |
| 588 | |
| 589 | /// Note that the 4 bitwise NOT (^= 0xffffffffffffffff) are accounted for here so that it is a true |
| 590 | /// inverse of 'sub_bytes'. |
| 591 | fn inv_sub_bytes(state: &mut [u64]) { |
| 592 | debug_assert_eq!(state.len(), 8); |
| 593 | |
| 594 | // Scheduled using https://github.com/Ko-/aes-armcortexm/tree/public/scheduler |
| 595 | // Inline "stack" comments reflect suggested stores and loads (ARM Cortex-M3 and M4) |
| 596 | |
| 597 | let u7 = state[0]; |
| 598 | let u6 = state[1]; |
| 599 | let u5 = state[2]; |
| 600 | let u4 = state[3]; |
| 601 | let u3 = state[4]; |
| 602 | let u2 = state[5]; |
| 603 | let u1 = state[6]; |
| 604 | let u0 = state[7]; |
| 605 | |
| 606 | let t23 = u0 ^ u3; |
| 607 | let t8 = u1 ^ t23; |
| 608 | let m2 = t23 & t8; |
| 609 | let t4 = u4 ^ t8; |
| 610 | let t22 = u1 ^ u3; |
| 611 | let t2 = u0 ^ u1; |
| 612 | let t1 = u3 ^ u4; |
| 613 | // t23 -> stack |
| 614 | let t9 = u7 ^ t1; |
| 615 | // t8 -> stack |
| 616 | let m7 = t22 & t9; |
| 617 | // t9 -> stack |
| 618 | let t24 = u4 ^ u7; |
| 619 | // m7 -> stack |
| 620 | let t10 = t2 ^ t24; |
| 621 | // u4 -> stack |
| 622 | let m14 = t2 & t10; |
| 623 | let r5 = u6 ^ u7; |
| 624 | // m2 -> stack |
| 625 | let t3 = t1 ^ r5; |
| 626 | // t2 -> stack |
| 627 | let t13 = t2 ^ r5; |
| 628 | let t19 = t22 ^ r5; |
| 629 | // t3 -> stack |
| 630 | let t17 = u2 ^ t19; |
| 631 | // t4 -> stack |
| 632 | let t25 = u2 ^ t1; |
| 633 | let r13 = u1 ^ u6; |
| 634 | // t25 -> stack |
| 635 | let t20 = t24 ^ r13; |
| 636 | // t17 -> stack |
| 637 | let m9 = t20 & t17; |
| 638 | // t20 -> stack |
| 639 | let r17 = u2 ^ u5; |
| 640 | // t22 -> stack |
| 641 | let t6 = t22 ^ r17; |
| 642 | // t13 -> stack |
| 643 | let m1 = t13 & t6; |
| 644 | let y5 = u0 ^ r17; |
| 645 | let m4 = t19 & y5; |
| 646 | let m5 = m4 ^ m1; |
| 647 | let m17 = m5 ^ t24; |
| 648 | let r18 = u5 ^ u6; |
| 649 | let t27 = t1 ^ r18; |
| 650 | let t15 = t10 ^ t27; |
| 651 | // t6 -> stack |
| 652 | let m11 = t1 & t15; |
| 653 | let m15 = m14 ^ m11; |
| 654 | let m21 = m17 ^ m15; |
| 655 | // t1 -> stack |
| 656 | // t4 <- stack |
| 657 | let m12 = t4 & t27; |
| 658 | let m13 = m12 ^ m11; |
| 659 | let t14 = t10 ^ r18; |
| 660 | let m3 = t14 ^ m1; |
| 661 | // m2 <- stack |
| 662 | let m16 = m3 ^ m2; |
| 663 | let m20 = m16 ^ m13; |
| 664 | // u4 <- stack |
| 665 | let r19 = u2 ^ u4; |
| 666 | let t16 = r13 ^ r19; |
| 667 | // t3 <- stack |
| 668 | let t26 = t3 ^ t16; |
| 669 | let m6 = t3 & t16; |
| 670 | let m8 = t26 ^ m6; |
| 671 | // t10 -> stack |
| 672 | // m7 <- stack |
| 673 | let m18 = m8 ^ m7; |
| 674 | let m22 = m18 ^ m13; |
| 675 | let m25 = m22 & m20; |
| 676 | let m26 = m21 ^ m25; |
| 677 | let m10 = m9 ^ m6; |
| 678 | let m19 = m10 ^ m15; |
| 679 | // t25 <- stack |
| 680 | let m23 = m19 ^ t25; |
| 681 | let m28 = m23 ^ m25; |
| 682 | let m24 = m22 ^ m23; |
| 683 | let m30 = m26 & m24; |
| 684 | let m39 = m23 ^ m30; |
| 685 | let m48 = m39 & y5; |
| 686 | let m57 = m39 & t19; |
| 687 | // m48 -> stack |
| 688 | let m36 = m24 ^ m25; |
| 689 | let m31 = m20 & m23; |
| 690 | let m27 = m20 ^ m21; |
| 691 | let m32 = m27 & m31; |
| 692 | let m29 = m28 & m27; |
| 693 | let m37 = m21 ^ m29; |
| 694 | // m39 -> stack |
| 695 | let m42 = m37 ^ m39; |
| 696 | let m52 = m42 & t15; |
| 697 | // t27 -> stack |
| 698 | // t1 <- stack |
| 699 | let m61 = m42 & t1; |
| 700 | let p0 = m52 ^ m61; |
| 701 | let p16 = m57 ^ m61; |
| 702 | // m57 -> stack |
| 703 | // t20 <- stack |
| 704 | let m60 = m37 & t20; |
| 705 | // p16 -> stack |
| 706 | // t17 <- stack |
| 707 | let m51 = m37 & t17; |
| 708 | let m33 = m27 ^ m25; |
| 709 | let m38 = m32 ^ m33; |
| 710 | let m43 = m37 ^ m38; |
| 711 | let m49 = m43 & t16; |
| 712 | let p6 = m49 ^ m60; |
| 713 | let p13 = m49 ^ m51; |
| 714 | let m58 = m43 & t3; |
| 715 | // t9 <- stack |
| 716 | let m50 = m38 & t9; |
| 717 | // t22 <- stack |
| 718 | let m59 = m38 & t22; |
| 719 | // p6 -> stack |
| 720 | let p1 = m58 ^ m59; |
| 721 | let p7 = p0 ^ p1; |
| 722 | let m34 = m21 & m22; |
| 723 | let m35 = m24 & m34; |
| 724 | let m40 = m35 ^ m36; |
| 725 | let m41 = m38 ^ m40; |
| 726 | let m45 = m42 ^ m41; |
| 727 | // t27 <- stack |
| 728 | let m53 = m45 & t27; |
| 729 | let p8 = m50 ^ m53; |
| 730 | let p23 = p7 ^ p8; |
| 731 | // t4 <- stack |
| 732 | let m62 = m45 & t4; |
| 733 | let p14 = m49 ^ m62; |
| 734 | let s6 = p14 ^ p23; |
| 735 | // t10 <- stack |
| 736 | let m54 = m41 & t10; |
| 737 | let p2 = m54 ^ m62; |
| 738 | let p22 = p2 ^ p7; |
| 739 | let s0 = p13 ^ p22; |
| 740 | let p17 = m58 ^ p2; |
| 741 | let p15 = m54 ^ m59; |
| 742 | // t2 <- stack |
| 743 | let m63 = m41 & t2; |
| 744 | // m39 <- stack |
| 745 | let m44 = m39 ^ m40; |
| 746 | // p17 -> stack |
| 747 | // t6 <- stack |
| 748 | let m46 = m44 & t6; |
| 749 | let p5 = m46 ^ m51; |
| 750 | // p23 -> stack |
| 751 | let p18 = m63 ^ p5; |
| 752 | let p24 = p5 ^ p7; |
| 753 | // m48 <- stack |
| 754 | let p12 = m46 ^ m48; |
| 755 | let s3 = p12 ^ p22; |
| 756 | // t13 <- stack |
| 757 | let m55 = m44 & t13; |
| 758 | let p9 = m55 ^ m63; |
| 759 | // p16 <- stack |
| 760 | let s7 = p9 ^ p16; |
| 761 | // t8 <- stack |
| 762 | let m47 = m40 & t8; |
| 763 | let p3 = m47 ^ m50; |
| 764 | let p19 = p2 ^ p3; |
| 765 | let s5 = p19 ^ p24; |
| 766 | let p11 = p0 ^ p3; |
| 767 | let p26 = p9 ^ p11; |
| 768 | // t23 <- stack |
| 769 | let m56 = m40 & t23; |
| 770 | let p4 = m48 ^ m56; |
| 771 | // p6 <- stack |
| 772 | let p20 = p4 ^ p6; |
| 773 | let p29 = p15 ^ p20; |
| 774 | let s1 = p26 ^ p29; |
| 775 | // m57 <- stack |
| 776 | let p10 = m57 ^ p4; |
| 777 | let p27 = p10 ^ p18; |
| 778 | // p23 <- stack |
| 779 | let s4 = p23 ^ p27; |
| 780 | let p25 = p6 ^ p10; |
| 781 | let p28 = p11 ^ p25; |
| 782 | // p17 <- stack |
| 783 | let s2 = p17 ^ p28; |
| 784 | |
| 785 | state[0] = s7; |
| 786 | state[1] = s6; |
| 787 | state[2] = s5; |
| 788 | state[3] = s4; |
| 789 | state[4] = s3; |
| 790 | state[5] = s2; |
| 791 | state[6] = s1; |
| 792 | state[7] = s0; |
| 793 | } |
| 794 | |
| 795 | /// Bitsliced implementation of the AES Sbox based on Boyar, Peralta and Calik. |
| 796 | /// |
| 797 | /// See: <http://www.cs.yale.edu/homes/peralta/CircuitStuff/SLP_AES_113.txt> |
| 798 | /// |
| 799 | /// Note that the 4 bitwise NOT (^= 0xffffffffffffffff) are moved to the key schedule. |
| 800 | fn sub_bytes(state: &mut [u64]) { |
| 801 | debug_assert_eq!(state.len(), 8); |
| 802 | |
| 803 | // Scheduled using https://github.com/Ko-/aes-armcortexm/tree/public/scheduler |
| 804 | // Inline "stack" comments reflect suggested stores and loads (ARM Cortex-M3 and M4) |
| 805 | |
| 806 | let u7 = state[0]; |
| 807 | let u6 = state[1]; |
| 808 | let u5 = state[2]; |
| 809 | let u4 = state[3]; |
| 810 | let u3 = state[4]; |
| 811 | let u2 = state[5]; |
| 812 | let u1 = state[6]; |
| 813 | let u0 = state[7]; |
| 814 | |
| 815 | let y14 = u3 ^ u5; |
| 816 | let y13 = u0 ^ u6; |
| 817 | let y12 = y13 ^ y14; |
| 818 | let t1 = u4 ^ y12; |
| 819 | let y15 = t1 ^ u5; |
| 820 | let t2 = y12 & y15; |
| 821 | let y6 = y15 ^ u7; |
| 822 | let y20 = t1 ^ u1; |
| 823 | // y12 -> stack |
| 824 | let y9 = u0 ^ u3; |
| 825 | // y20 -> stack |
| 826 | let y11 = y20 ^ y9; |
| 827 | // y9 -> stack |
| 828 | let t12 = y9 & y11; |
| 829 | // y6 -> stack |
| 830 | let y7 = u7 ^ y11; |
| 831 | let y8 = u0 ^ u5; |
| 832 | let t0 = u1 ^ u2; |
| 833 | let y10 = y15 ^ t0; |
| 834 | // y15 -> stack |
| 835 | let y17 = y10 ^ y11; |
| 836 | // y14 -> stack |
| 837 | let t13 = y14 & y17; |
| 838 | let t14 = t13 ^ t12; |
| 839 | // y17 -> stack |
| 840 | let y19 = y10 ^ y8; |
| 841 | // y10 -> stack |
| 842 | let t15 = y8 & y10; |
| 843 | let t16 = t15 ^ t12; |
| 844 | let y16 = t0 ^ y11; |
| 845 | // y11 -> stack |
| 846 | let y21 = y13 ^ y16; |
| 847 | // y13 -> stack |
| 848 | let t7 = y13 & y16; |
| 849 | // y16 -> stack |
| 850 | let y18 = u0 ^ y16; |
| 851 | let y1 = t0 ^ u7; |
| 852 | let y4 = y1 ^ u3; |
| 853 | // u7 -> stack |
| 854 | let t5 = y4 & u7; |
| 855 | let t6 = t5 ^ t2; |
| 856 | let t18 = t6 ^ t16; |
| 857 | let t22 = t18 ^ y19; |
| 858 | let y2 = y1 ^ u0; |
| 859 | let t10 = y2 & y7; |
| 860 | let t11 = t10 ^ t7; |
| 861 | let t20 = t11 ^ t16; |
| 862 | let t24 = t20 ^ y18; |
| 863 | let y5 = y1 ^ u6; |
| 864 | let t8 = y5 & y1; |
| 865 | let t9 = t8 ^ t7; |
| 866 | let t19 = t9 ^ t14; |
| 867 | let t23 = t19 ^ y21; |
| 868 | let y3 = y5 ^ y8; |
| 869 | // y6 <- stack |
| 870 | let t3 = y3 & y6; |
| 871 | let t4 = t3 ^ t2; |
| 872 | // y20 <- stack |
| 873 | let t17 = t4 ^ y20; |
| 874 | let t21 = t17 ^ t14; |
| 875 | let t26 = t21 & t23; |
| 876 | let t27 = t24 ^ t26; |
| 877 | let t31 = t22 ^ t26; |
| 878 | let t25 = t21 ^ t22; |
| 879 | // y4 -> stack |
| 880 | let t28 = t25 & t27; |
| 881 | let t29 = t28 ^ t22; |
| 882 | let z14 = t29 & y2; |
| 883 | let z5 = t29 & y7; |
| 884 | let t30 = t23 ^ t24; |
| 885 | let t32 = t31 & t30; |
| 886 | let t33 = t32 ^ t24; |
| 887 | let t35 = t27 ^ t33; |
| 888 | let t36 = t24 & t35; |
| 889 | let t38 = t27 ^ t36; |
| 890 | let t39 = t29 & t38; |
| 891 | let t40 = t25 ^ t39; |
| 892 | let t43 = t29 ^ t40; |
| 893 | // y16 <- stack |
| 894 | let z3 = t43 & y16; |
| 895 | let tc12 = z3 ^ z5; |
| 896 | // tc12 -> stack |
| 897 | // y13 <- stack |
| 898 | let z12 = t43 & y13; |
| 899 | let z13 = t40 & y5; |
| 900 | let z4 = t40 & y1; |
| 901 | let tc6 = z3 ^ z4; |
| 902 | let t34 = t23 ^ t33; |
| 903 | let t37 = t36 ^ t34; |
| 904 | let t41 = t40 ^ t37; |
| 905 | // y10 <- stack |
| 906 | let z8 = t41 & y10; |
| 907 | let z17 = t41 & y8; |
| 908 | let t44 = t33 ^ t37; |
| 909 | // y15 <- stack |
| 910 | let z0 = t44 & y15; |
| 911 | // z17 -> stack |
| 912 | // y12 <- stack |
| 913 | let z9 = t44 & y12; |
| 914 | let z10 = t37 & y3; |
| 915 | let z1 = t37 & y6; |
| 916 | let tc5 = z1 ^ z0; |
| 917 | let tc11 = tc6 ^ tc5; |
| 918 | // y4 <- stack |
| 919 | let z11 = t33 & y4; |
| 920 | let t42 = t29 ^ t33; |
| 921 | let t45 = t42 ^ t41; |
| 922 | // y17 <- stack |
| 923 | let z7 = t45 & y17; |
| 924 | let tc8 = z7 ^ tc6; |
| 925 | // y14 <- stack |
| 926 | let z16 = t45 & y14; |
| 927 | // y11 <- stack |
| 928 | let z6 = t42 & y11; |
| 929 | let tc16 = z6 ^ tc8; |
| 930 | // z14 -> stack |
| 931 | // y9 <- stack |
| 932 | let z15 = t42 & y9; |
| 933 | let tc20 = z15 ^ tc16; |
| 934 | let tc1 = z15 ^ z16; |
| 935 | let tc2 = z10 ^ tc1; |
| 936 | let tc21 = tc2 ^ z11; |
| 937 | let tc3 = z9 ^ tc2; |
| 938 | let s0 = tc3 ^ tc16; |
| 939 | let s3 = tc3 ^ tc11; |
| 940 | let s1 = s3 ^ tc16; |
| 941 | let tc13 = z13 ^ tc1; |
| 942 | // u7 <- stack |
| 943 | let z2 = t33 & u7; |
| 944 | let tc4 = z0 ^ z2; |
| 945 | let tc7 = z12 ^ tc4; |
| 946 | let tc9 = z8 ^ tc7; |
| 947 | let tc10 = tc8 ^ tc9; |
| 948 | // z14 <- stack |
| 949 | let tc17 = z14 ^ tc10; |
| 950 | let s5 = tc21 ^ tc17; |
| 951 | let tc26 = tc17 ^ tc20; |
| 952 | // z17 <- stack |
| 953 | let s2 = tc26 ^ z17; |
| 954 | // tc12 <- stack |
| 955 | let tc14 = tc4 ^ tc12; |
| 956 | let tc18 = tc13 ^ tc14; |
| 957 | let s6 = tc10 ^ tc18; |
| 958 | let s7 = z12 ^ tc18; |
| 959 | let s4 = tc14 ^ s3; |
| 960 | |
| 961 | state[0] = s7; |
| 962 | state[1] = s6; |
| 963 | state[2] = s5; |
| 964 | state[3] = s4; |
| 965 | state[4] = s3; |
| 966 | state[5] = s2; |
| 967 | state[6] = s1; |
| 968 | state[7] = s0; |
| 969 | } |
| 970 | |
| 971 | /// NOT operations that are omitted in S-box |
| 972 | #[inline ] |
| 973 | fn sub_bytes_nots(state: &mut [u64]) { |
| 974 | debug_assert_eq!(state.len(), 8); |
| 975 | state[0] ^= 0xffffffffffffffff; |
| 976 | state[1] ^= 0xffffffffffffffff; |
| 977 | state[5] ^= 0xffffffffffffffff; |
| 978 | state[6] ^= 0xffffffffffffffff; |
| 979 | } |
| 980 | |
| 981 | /// Computation of the MixColumns transformation in the fixsliced representation, with different |
| 982 | /// rotations used according to the round number mod 4. |
| 983 | /// |
| 984 | /// Based on Käsper-Schwabe, similar to https://github.com/Ko-/aes-armcortexm. |
| 985 | macro_rules! define_mix_columns { |
| 986 | ( |
| 987 | $name:ident, |
| 988 | $name_inv:ident, |
| 989 | $first_rotate:path, |
| 990 | $second_rotate:path |
| 991 | ) => { |
| 992 | #[rustfmt::skip] |
| 993 | fn $name(state: &mut State) { |
| 994 | let (a0, a1, a2, a3, a4, a5, a6, a7) = ( |
| 995 | state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7] |
| 996 | ); |
| 997 | let (b0, b1, b2, b3, b4, b5, b6, b7) = ( |
| 998 | $first_rotate(a0), |
| 999 | $first_rotate(a1), |
| 1000 | $first_rotate(a2), |
| 1001 | $first_rotate(a3), |
| 1002 | $first_rotate(a4), |
| 1003 | $first_rotate(a5), |
| 1004 | $first_rotate(a6), |
| 1005 | $first_rotate(a7), |
| 1006 | ); |
| 1007 | let (c0, c1, c2, c3, c4, c5, c6, c7) = ( |
| 1008 | a0 ^ b0, |
| 1009 | a1 ^ b1, |
| 1010 | a2 ^ b2, |
| 1011 | a3 ^ b3, |
| 1012 | a4 ^ b4, |
| 1013 | a5 ^ b5, |
| 1014 | a6 ^ b6, |
| 1015 | a7 ^ b7, |
| 1016 | ); |
| 1017 | state[0] = b0 ^ c7 ^ $second_rotate(c0); |
| 1018 | state[1] = b1 ^ c0 ^ c7 ^ $second_rotate(c1); |
| 1019 | state[2] = b2 ^ c1 ^ $second_rotate(c2); |
| 1020 | state[3] = b3 ^ c2 ^ c7 ^ $second_rotate(c3); |
| 1021 | state[4] = b4 ^ c3 ^ c7 ^ $second_rotate(c4); |
| 1022 | state[5] = b5 ^ c4 ^ $second_rotate(c5); |
| 1023 | state[6] = b6 ^ c5 ^ $second_rotate(c6); |
| 1024 | state[7] = b7 ^ c6 ^ $second_rotate(c7); |
| 1025 | } |
| 1026 | |
| 1027 | #[rustfmt::skip] |
| 1028 | fn $name_inv(state: &mut State) { |
| 1029 | let (a0, a1, a2, a3, a4, a5, a6, a7) = ( |
| 1030 | state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7] |
| 1031 | ); |
| 1032 | let (b0, b1, b2, b3, b4, b5, b6, b7) = ( |
| 1033 | $first_rotate(a0), |
| 1034 | $first_rotate(a1), |
| 1035 | $first_rotate(a2), |
| 1036 | $first_rotate(a3), |
| 1037 | $first_rotate(a4), |
| 1038 | $first_rotate(a5), |
| 1039 | $first_rotate(a6), |
| 1040 | $first_rotate(a7), |
| 1041 | ); |
| 1042 | let (c0, c1, c2, c3, c4, c5, c6, c7) = ( |
| 1043 | a0 ^ b0, |
| 1044 | a1 ^ b1, |
| 1045 | a2 ^ b2, |
| 1046 | a3 ^ b3, |
| 1047 | a4 ^ b4, |
| 1048 | a5 ^ b5, |
| 1049 | a6 ^ b6, |
| 1050 | a7 ^ b7, |
| 1051 | ); |
| 1052 | let (d0, d1, d2, d3, d4, d5, d6, d7) = ( |
| 1053 | a0 ^ c7, |
| 1054 | a1 ^ c0 ^ c7, |
| 1055 | a2 ^ c1, |
| 1056 | a3 ^ c2 ^ c7, |
| 1057 | a4 ^ c3 ^ c7, |
| 1058 | a5 ^ c4, |
| 1059 | a6 ^ c5, |
| 1060 | a7 ^ c6, |
| 1061 | ); |
| 1062 | let (e0, e1, e2, e3, e4, e5, e6, e7) = ( |
| 1063 | c0 ^ d6, |
| 1064 | c1 ^ d6 ^ d7, |
| 1065 | c2 ^ d0 ^ d7, |
| 1066 | c3 ^ d1 ^ d6, |
| 1067 | c4 ^ d2 ^ d6 ^ d7, |
| 1068 | c5 ^ d3 ^ d7, |
| 1069 | c6 ^ d4, |
| 1070 | c7 ^ d5, |
| 1071 | ); |
| 1072 | state[0] = d0 ^ e0 ^ $second_rotate(e0); |
| 1073 | state[1] = d1 ^ e1 ^ $second_rotate(e1); |
| 1074 | state[2] = d2 ^ e2 ^ $second_rotate(e2); |
| 1075 | state[3] = d3 ^ e3 ^ $second_rotate(e3); |
| 1076 | state[4] = d4 ^ e4 ^ $second_rotate(e4); |
| 1077 | state[5] = d5 ^ e5 ^ $second_rotate(e5); |
| 1078 | state[6] = d6 ^ e6 ^ $second_rotate(e6); |
| 1079 | state[7] = d7 ^ e7 ^ $second_rotate(e7); |
| 1080 | } |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | define_mix_columns!( |
| 1085 | mix_columns_0, |
| 1086 | inv_mix_columns_0, |
| 1087 | rotate_rows_1, |
| 1088 | rotate_rows_2 |
| 1089 | ); |
| 1090 | |
| 1091 | define_mix_columns!( |
| 1092 | mix_columns_1, |
| 1093 | inv_mix_columns_1, |
| 1094 | rotate_rows_and_columns_1_1, |
| 1095 | rotate_rows_and_columns_2_2 |
| 1096 | ); |
| 1097 | |
| 1098 | #[cfg (not(aes_compact))] |
| 1099 | define_mix_columns!( |
| 1100 | mix_columns_2, |
| 1101 | inv_mix_columns_2, |
| 1102 | rotate_rows_and_columns_1_2, |
| 1103 | rotate_rows_2 |
| 1104 | ); |
| 1105 | |
| 1106 | #[cfg (not(aes_compact))] |
| 1107 | define_mix_columns!( |
| 1108 | mix_columns_3, |
| 1109 | inv_mix_columns_3, |
| 1110 | rotate_rows_and_columns_1_3, |
| 1111 | rotate_rows_and_columns_2_2 |
| 1112 | ); |
| 1113 | |
| 1114 | #[inline ] |
| 1115 | fn delta_swap_1(a: &mut u64, shift: u32, mask: u64) { |
| 1116 | let t: u64 = (*a ^ ((*a) >> shift)) & mask; |
| 1117 | *a ^= t ^ (t << shift); |
| 1118 | } |
| 1119 | |
| 1120 | #[inline ] |
| 1121 | fn delta_swap_2(a: &mut u64, b: &mut u64, shift: u32, mask: u64) { |
| 1122 | let t: u64 = (*a ^ ((*b) >> shift)) & mask; |
| 1123 | *a ^= t; |
| 1124 | *b ^= t << shift; |
| 1125 | } |
| 1126 | |
| 1127 | /// Applies ShiftRows once on an AES state (or key). |
| 1128 | #[cfg (any(not(aes_compact), feature = "hazmat" ))] |
| 1129 | #[inline ] |
| 1130 | fn shift_rows_1(state: &mut [u64]) { |
| 1131 | debug_assert_eq!(state.len(), 8); |
| 1132 | for x: &mut u64 in state.iter_mut() { |
| 1133 | delta_swap_1(a:x, shift:8, mask:0x00f000ff000f0000); |
| 1134 | delta_swap_1(a:x, shift:4, mask:0x0f0f00000f0f0000); |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | /// Applies ShiftRows twice on an AES state (or key). |
| 1139 | #[inline ] |
| 1140 | fn shift_rows_2(state: &mut [u64]) { |
| 1141 | debug_assert_eq!(state.len(), 8); |
| 1142 | for x: &mut u64 in state.iter_mut() { |
| 1143 | delta_swap_1(a:x, shift:8, mask:0x00ff000000ff0000); |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | /// Applies ShiftRows three times on an AES state (or key). |
| 1148 | #[inline ] |
| 1149 | fn shift_rows_3(state: &mut [u64]) { |
| 1150 | debug_assert_eq!(state.len(), 8); |
| 1151 | for x: &mut u64 in state.iter_mut() { |
| 1152 | delta_swap_1(a:x, shift:8, mask:0x000f00ff00f00000); |
| 1153 | delta_swap_1(a:x, shift:4, mask:0x0f0f00000f0f0000); |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | #[inline (always)] |
| 1158 | fn inv_shift_rows_1(state: &mut [u64]) { |
| 1159 | shift_rows_3(state); |
| 1160 | } |
| 1161 | |
| 1162 | #[inline (always)] |
| 1163 | fn inv_shift_rows_2(state: &mut [u64]) { |
| 1164 | shift_rows_2(state); |
| 1165 | } |
| 1166 | |
| 1167 | #[cfg (not(aes_compact))] |
| 1168 | #[inline (always)] |
| 1169 | fn inv_shift_rows_3(state: &mut [u64]) { |
| 1170 | shift_rows_1(state); |
| 1171 | } |
| 1172 | |
| 1173 | /// XOR the columns after the S-box during the key schedule round function. |
| 1174 | /// |
| 1175 | /// The `idx_xor` parameter refers to the index of the previous round key that is |
| 1176 | /// involved in the XOR computation (should be 8 and 16 for AES-128 and AES-256, |
| 1177 | /// respectively). |
| 1178 | /// |
| 1179 | /// The `idx_ror` parameter refers to the rotation value, which varies between the |
| 1180 | /// different key schedules. |
| 1181 | fn xor_columns(rkeys: &mut [u64], offset: usize, idx_xor: usize, idx_ror: u32) { |
| 1182 | for i: usize in 0..8 { |
| 1183 | let off_i: usize = offset + i; |
| 1184 | let rk: u64 = rkeys[off_i - idx_xor] ^ (0x000f000f000f000f & ror(x:rkeys[off_i], y:idx_ror)); |
| 1185 | rkeys[off_i] = rk |
| 1186 | ^ (0xfff0fff0fff0fff0 & (rk << 4)) |
| 1187 | ^ (0xff00ff00ff00ff00 & (rk << 8)) |
| 1188 | ^ (0xf000f000f000f000 & (rk << 12)); |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | /// Bitslice four 128-bit input blocks input0, input1, input2, input3 into a 512-bit internal state. |
| 1193 | fn bitslice(output: &mut [u64], input0: &[u8], input1: &[u8], input2: &[u8], input3: &[u8]) { |
| 1194 | debug_assert_eq!(output.len(), 8); |
| 1195 | debug_assert_eq!(input0.len(), 16); |
| 1196 | debug_assert_eq!(input1.len(), 16); |
| 1197 | debug_assert_eq!(input2.len(), 16); |
| 1198 | debug_assert_eq!(input3.len(), 16); |
| 1199 | |
| 1200 | // Bitslicing is a bit index manipulation. 512 bits of data means each bit is positioned at a |
| 1201 | // 9-bit index. AES data is 4 blocks, each one a 4x4 column-major matrix of bytes, so the |
| 1202 | // index is initially ([b]lock, [c]olumn, [r]ow, [p]osition): |
| 1203 | // b1 b0 c1 c0 r1 r0 p2 p1 p0 |
| 1204 | // |
| 1205 | // The desired bitsliced data groups first by bit position, then row, column, block: |
| 1206 | // p2 p1 p0 r1 r0 c1 c0 b1 b0 |
| 1207 | |
| 1208 | #[rustfmt::skip] |
| 1209 | fn read_reordered(input: &[u8]) -> u64 { |
| 1210 | (u64::from(input[0x0]) ) | |
| 1211 | (u64::from(input[0x1]) << 0x10) | |
| 1212 | (u64::from(input[0x2]) << 0x20) | |
| 1213 | (u64::from(input[0x3]) << 0x30) | |
| 1214 | (u64::from(input[0x8]) << 0x08) | |
| 1215 | (u64::from(input[0x9]) << 0x18) | |
| 1216 | (u64::from(input[0xa]) << 0x28) | |
| 1217 | (u64::from(input[0xb]) << 0x38) |
| 1218 | } |
| 1219 | |
| 1220 | // Reorder each block's bytes on input |
| 1221 | // __ __ c1 c0 r1 r0 __ __ __ => __ __ c0 r1 r0 c1 __ __ __ |
| 1222 | // Reorder by relabeling (note the order of input) |
| 1223 | // b1 b0 c0 __ __ __ __ __ __ => c0 b1 b0 __ __ __ __ __ __ |
| 1224 | let mut t0 = read_reordered(&input0[0x00..0x0c]); |
| 1225 | let mut t4 = read_reordered(&input0[0x04..0x10]); |
| 1226 | let mut t1 = read_reordered(&input1[0x00..0x0c]); |
| 1227 | let mut t5 = read_reordered(&input1[0x04..0x10]); |
| 1228 | let mut t2 = read_reordered(&input2[0x00..0x0c]); |
| 1229 | let mut t6 = read_reordered(&input2[0x04..0x10]); |
| 1230 | let mut t3 = read_reordered(&input3[0x00..0x0c]); |
| 1231 | let mut t7 = read_reordered(&input3[0x04..0x10]); |
| 1232 | |
| 1233 | // Bit Index Swap 6 <-> 0: |
| 1234 | // __ __ b0 __ __ __ __ __ p0 => __ __ p0 __ __ __ __ __ b0 |
| 1235 | let m0 = 0x5555555555555555; |
| 1236 | delta_swap_2(&mut t1, &mut t0, 1, m0); |
| 1237 | delta_swap_2(&mut t3, &mut t2, 1, m0); |
| 1238 | delta_swap_2(&mut t5, &mut t4, 1, m0); |
| 1239 | delta_swap_2(&mut t7, &mut t6, 1, m0); |
| 1240 | |
| 1241 | // Bit Index Swap 7 <-> 1: |
| 1242 | // __ b1 __ __ __ __ __ p1 __ => __ p1 __ __ __ __ __ b1 __ |
| 1243 | let m1 = 0x3333333333333333; |
| 1244 | delta_swap_2(&mut t2, &mut t0, 2, m1); |
| 1245 | delta_swap_2(&mut t3, &mut t1, 2, m1); |
| 1246 | delta_swap_2(&mut t6, &mut t4, 2, m1); |
| 1247 | delta_swap_2(&mut t7, &mut t5, 2, m1); |
| 1248 | |
| 1249 | // Bit Index Swap 8 <-> 2: |
| 1250 | // c0 __ __ __ __ __ p2 __ __ => p2 __ __ __ __ __ c0 __ __ |
| 1251 | let m2 = 0x0f0f0f0f0f0f0f0f; |
| 1252 | delta_swap_2(&mut t4, &mut t0, 4, m2); |
| 1253 | delta_swap_2(&mut t5, &mut t1, 4, m2); |
| 1254 | delta_swap_2(&mut t6, &mut t2, 4, m2); |
| 1255 | delta_swap_2(&mut t7, &mut t3, 4, m2); |
| 1256 | |
| 1257 | // Final bitsliced bit index, as desired: |
| 1258 | // p2 p1 p0 r1 r0 c1 c0 b1 b0 |
| 1259 | output[0] = t0; |
| 1260 | output[1] = t1; |
| 1261 | output[2] = t2; |
| 1262 | output[3] = t3; |
| 1263 | output[4] = t4; |
| 1264 | output[5] = t5; |
| 1265 | output[6] = t6; |
| 1266 | output[7] = t7; |
| 1267 | } |
| 1268 | |
| 1269 | /// Un-bitslice a 512-bit internal state into four 128-bit blocks of output. |
| 1270 | fn inv_bitslice(input: &[u64]) -> BatchBlocks { |
| 1271 | debug_assert_eq!(input.len(), 8); |
| 1272 | |
| 1273 | // Unbitslicing is a bit index manipulation. 512 bits of data means each bit is positioned at |
| 1274 | // a 9-bit index. AES data is 4 blocks, each one a 4x4 column-major matrix of bytes, so the |
| 1275 | // desired index for the output is ([b]lock, [c]olumn, [r]ow, [p]osition): |
| 1276 | // b1 b0 c1 c0 r1 r0 p2 p1 p0 |
| 1277 | // |
| 1278 | // The initially bitsliced data groups first by bit position, then row, column, block: |
| 1279 | // p2 p1 p0 r1 r0 c1 c0 b1 b0 |
| 1280 | |
| 1281 | let mut t0 = input[0]; |
| 1282 | let mut t1 = input[1]; |
| 1283 | let mut t2 = input[2]; |
| 1284 | let mut t3 = input[3]; |
| 1285 | let mut t4 = input[4]; |
| 1286 | let mut t5 = input[5]; |
| 1287 | let mut t6 = input[6]; |
| 1288 | let mut t7 = input[7]; |
| 1289 | |
| 1290 | // TODO: these bit index swaps are identical to those in 'packing' |
| 1291 | |
| 1292 | // Bit Index Swap 6 <-> 0: |
| 1293 | // __ __ p0 __ __ __ __ __ b0 => __ __ b0 __ __ __ __ __ p0 |
| 1294 | let m0 = 0x5555555555555555; |
| 1295 | delta_swap_2(&mut t1, &mut t0, 1, m0); |
| 1296 | delta_swap_2(&mut t3, &mut t2, 1, m0); |
| 1297 | delta_swap_2(&mut t5, &mut t4, 1, m0); |
| 1298 | delta_swap_2(&mut t7, &mut t6, 1, m0); |
| 1299 | |
| 1300 | // Bit Index Swap 7 <-> 1: |
| 1301 | // __ p1 __ __ __ __ __ b1 __ => __ b1 __ __ __ __ __ p1 __ |
| 1302 | let m1 = 0x3333333333333333; |
| 1303 | delta_swap_2(&mut t2, &mut t0, 2, m1); |
| 1304 | delta_swap_2(&mut t3, &mut t1, 2, m1); |
| 1305 | delta_swap_2(&mut t6, &mut t4, 2, m1); |
| 1306 | delta_swap_2(&mut t7, &mut t5, 2, m1); |
| 1307 | |
| 1308 | // Bit Index Swap 8 <-> 2: |
| 1309 | // p2 __ __ __ __ __ c0 __ __ => c0 __ __ __ __ __ p2 __ __ |
| 1310 | let m2 = 0x0f0f0f0f0f0f0f0f; |
| 1311 | delta_swap_2(&mut t4, &mut t0, 4, m2); |
| 1312 | delta_swap_2(&mut t5, &mut t1, 4, m2); |
| 1313 | delta_swap_2(&mut t6, &mut t2, 4, m2); |
| 1314 | delta_swap_2(&mut t7, &mut t3, 4, m2); |
| 1315 | |
| 1316 | #[rustfmt::skip] |
| 1317 | fn write_reordered(columns: u64, output: &mut [u8]) { |
| 1318 | output[0x0] = (columns ) as u8; |
| 1319 | output[0x1] = (columns >> 0x10) as u8; |
| 1320 | output[0x2] = (columns >> 0x20) as u8; |
| 1321 | output[0x3] = (columns >> 0x30) as u8; |
| 1322 | output[0x8] = (columns >> 0x08) as u8; |
| 1323 | output[0x9] = (columns >> 0x18) as u8; |
| 1324 | output[0xa] = (columns >> 0x28) as u8; |
| 1325 | output[0xb] = (columns >> 0x38) as u8; |
| 1326 | } |
| 1327 | |
| 1328 | let mut output = BatchBlocks::default(); |
| 1329 | // Reorder by relabeling (note the order of output) |
| 1330 | // c0 b1 b0 __ __ __ __ __ __ => b1 b0 c0 __ __ __ __ __ __ |
| 1331 | // Reorder each block's bytes on output |
| 1332 | // __ __ c0 r1 r0 c1 __ __ __ => __ __ c1 c0 r1 r0 __ __ __ |
| 1333 | write_reordered(t0, &mut output[0][0x00..0x0c]); |
| 1334 | write_reordered(t4, &mut output[0][0x04..0x10]); |
| 1335 | write_reordered(t1, &mut output[1][0x00..0x0c]); |
| 1336 | write_reordered(t5, &mut output[1][0x04..0x10]); |
| 1337 | write_reordered(t2, &mut output[2][0x00..0x0c]); |
| 1338 | write_reordered(t6, &mut output[2][0x04..0x10]); |
| 1339 | write_reordered(t3, &mut output[3][0x00..0x0c]); |
| 1340 | write_reordered(t7, &mut output[3][0x04..0x10]); |
| 1341 | |
| 1342 | // Final AES bit index, as desired: |
| 1343 | // b1 b0 c1 c0 r1 r0 p2 p1 p0 |
| 1344 | output |
| 1345 | } |
| 1346 | |
| 1347 | /// Copy 32-bytes within the provided slice to an 8-byte offset |
| 1348 | fn memshift32(buffer: &mut [u64], src_offset: usize) { |
| 1349 | debug_assert_eq!(src_offset % 8, 0); |
| 1350 | |
| 1351 | let dst_offset: usize = src_offset + 8; |
| 1352 | debug_assert!(dst_offset + 8 <= buffer.len()); |
| 1353 | |
| 1354 | for i: usize in (0..8).rev() { |
| 1355 | buffer[dst_offset + i] = buffer[src_offset + i]; |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | /// XOR the round key to the internal state. The round keys are expected to be |
| 1360 | /// pre-computed and to be packed in the fixsliced representation. |
| 1361 | #[inline ] |
| 1362 | fn add_round_key(state: &mut State, rkey: &[u64]) { |
| 1363 | debug_assert_eq!(rkey.len(), 8); |
| 1364 | for (a: &mut u64, b: &u64) in state.iter_mut().zip(rkey) { |
| 1365 | *a ^= b; |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | #[inline (always)] |
| 1370 | fn add_round_constant_bit(state: &mut [u64], bit: usize) { |
| 1371 | state[bit] ^= 0x00000000f0000000; |
| 1372 | } |
| 1373 | |
| 1374 | #[inline (always)] |
| 1375 | fn ror(x: u64, y: u32) -> u64 { |
| 1376 | x.rotate_right(y) |
| 1377 | } |
| 1378 | |
| 1379 | #[inline (always)] |
| 1380 | fn ror_distance(rows: u32, cols: u32) -> u32 { |
| 1381 | (rows << 4) + (cols << 2) |
| 1382 | } |
| 1383 | |
| 1384 | #[inline (always)] |
| 1385 | fn rotate_rows_1(x: u64) -> u64 { |
| 1386 | ror(x, y:ror_distance(rows:1, cols:0)) |
| 1387 | } |
| 1388 | |
| 1389 | #[inline (always)] |
| 1390 | fn rotate_rows_2(x: u64) -> u64 { |
| 1391 | ror(x, y:ror_distance(rows:2, cols:0)) |
| 1392 | } |
| 1393 | |
| 1394 | #[inline (always)] |
| 1395 | #[rustfmt::skip] |
| 1396 | fn rotate_rows_and_columns_1_1(x: u64) -> u64 { |
| 1397 | (ror(x, y:ror_distance(rows:1, cols:1)) & 0x0fff0fff0fff0fff) | |
| 1398 | (ror(x, y:ror_distance(rows:0, cols:1)) & 0xf000f000f000f000) |
| 1399 | } |
| 1400 | |
| 1401 | #[cfg (not(aes_compact))] |
| 1402 | #[inline (always)] |
| 1403 | #[rustfmt::skip] |
| 1404 | fn rotate_rows_and_columns_1_2(x: u64) -> u64 { |
| 1405 | (ror(x, y:ror_distance(rows:1, cols:2)) & 0x00ff00ff00ff00ff) | |
| 1406 | (ror(x, y:ror_distance(rows:0, cols:2)) & 0xff00ff00ff00ff00) |
| 1407 | } |
| 1408 | |
| 1409 | #[cfg (not(aes_compact))] |
| 1410 | #[inline (always)] |
| 1411 | #[rustfmt::skip] |
| 1412 | fn rotate_rows_and_columns_1_3(x: u64) -> u64 { |
| 1413 | (ror(x, y:ror_distance(rows:1, cols:3)) & 0x000f000f000f000f) | |
| 1414 | (ror(x, y:ror_distance(rows:0, cols:3)) & 0xfff0fff0fff0fff0) |
| 1415 | } |
| 1416 | |
| 1417 | #[inline (always)] |
| 1418 | #[rustfmt::skip] |
| 1419 | fn rotate_rows_and_columns_2_2(x: u64) -> u64 { |
| 1420 | (ror(x, y:ror_distance(rows:2, cols:2)) & 0x00ff00ff00ff00ff) | |
| 1421 | (ror(x, y:ror_distance(rows:1, cols:2)) & 0xff00ff00ff00ff00) |
| 1422 | } |
| 1423 | |
| 1424 | /// Low-level "hazmat" AES functions. |
| 1425 | /// |
| 1426 | /// Note: this isn't actually used in the `Aes128`/`Aes192`/`Aes256` |
| 1427 | /// implementations in this crate, but instead provides raw access to |
| 1428 | /// the AES round function gated under the `hazmat` crate feature. |
| 1429 | #[cfg (feature = "hazmat" )] |
| 1430 | pub(crate) mod hazmat { |
| 1431 | use super::{ |
| 1432 | bitslice, inv_bitslice, inv_mix_columns_0, inv_shift_rows_1, inv_sub_bytes, mix_columns_0, |
| 1433 | shift_rows_1, sub_bytes, sub_bytes_nots, State, |
| 1434 | }; |
| 1435 | use crate::{Block, Block8}; |
| 1436 | |
| 1437 | /// XOR the `src` block into the `dst` block in-place. |
| 1438 | fn xor_in_place(dst: &mut Block, src: &Block) { |
| 1439 | for (a, b) in dst.iter_mut().zip(src.as_slice()) { |
| 1440 | *a ^= *b; |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | /// Perform a bitslice operation, loading a single block. |
| 1445 | fn bitslice_block(block: &Block) -> State { |
| 1446 | let mut state = State::default(); |
| 1447 | bitslice(&mut state, block, block, block, block); |
| 1448 | state |
| 1449 | } |
| 1450 | |
| 1451 | /// Perform an inverse bitslice operation, extracting a single block. |
| 1452 | fn inv_bitslice_block(block: &mut Block, state: &State) { |
| 1453 | block.copy_from_slice(&inv_bitslice(state)[0]); |
| 1454 | } |
| 1455 | |
| 1456 | /// AES cipher (encrypt) round function. |
| 1457 | #[inline ] |
| 1458 | pub(crate) fn cipher_round(block: &mut Block, round_key: &Block) { |
| 1459 | let mut state = bitslice_block(block); |
| 1460 | sub_bytes(&mut state); |
| 1461 | sub_bytes_nots(&mut state); |
| 1462 | shift_rows_1(&mut state); |
| 1463 | mix_columns_0(&mut state); |
| 1464 | inv_bitslice_block(block, &state); |
| 1465 | xor_in_place(block, round_key); |
| 1466 | } |
| 1467 | |
| 1468 | /// AES cipher (encrypt) round function: parallel version. |
| 1469 | #[inline ] |
| 1470 | pub(crate) fn cipher_round_par(blocks: &mut Block8, round_keys: &Block8) { |
| 1471 | for (chunk, keys) in blocks.chunks_exact_mut(4).zip(round_keys.chunks_exact(4)) { |
| 1472 | let mut state = State::default(); |
| 1473 | bitslice(&mut state, &chunk[0], &chunk[1], &chunk[2], &chunk[3]); |
| 1474 | sub_bytes(&mut state); |
| 1475 | sub_bytes_nots(&mut state); |
| 1476 | shift_rows_1(&mut state); |
| 1477 | mix_columns_0(&mut state); |
| 1478 | let res = inv_bitslice(&state); |
| 1479 | |
| 1480 | for i in 0..4 { |
| 1481 | chunk[i] = res[i]; |
| 1482 | xor_in_place(&mut chunk[i], &keys[i]); |
| 1483 | } |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | /// AES cipher (encrypt) round function. |
| 1488 | #[inline ] |
| 1489 | pub(crate) fn equiv_inv_cipher_round(block: &mut Block, round_key: &Block) { |
| 1490 | let mut state = State::default(); |
| 1491 | bitslice(&mut state, block, block, block, block); |
| 1492 | sub_bytes_nots(&mut state); |
| 1493 | inv_sub_bytes(&mut state); |
| 1494 | inv_shift_rows_1(&mut state); |
| 1495 | inv_mix_columns_0(&mut state); |
| 1496 | inv_bitslice_block(block, &state); |
| 1497 | xor_in_place(block, round_key); |
| 1498 | } |
| 1499 | |
| 1500 | /// AES cipher (encrypt) round function: parallel version. |
| 1501 | #[inline ] |
| 1502 | pub(crate) fn equiv_inv_cipher_round_par(blocks: &mut Block8, round_keys: &Block8) { |
| 1503 | for (chunk, keys) in blocks.chunks_exact_mut(4).zip(round_keys.chunks_exact(4)) { |
| 1504 | let mut state = State::default(); |
| 1505 | bitslice(&mut state, &chunk[0], &chunk[1], &chunk[2], &chunk[3]); |
| 1506 | sub_bytes_nots(&mut state); |
| 1507 | inv_sub_bytes(&mut state); |
| 1508 | inv_shift_rows_1(&mut state); |
| 1509 | inv_mix_columns_0(&mut state); |
| 1510 | let res = inv_bitslice(&state); |
| 1511 | |
| 1512 | for i in 0..4 { |
| 1513 | chunk[i] = res[i]; |
| 1514 | xor_in_place(&mut chunk[i], &keys[i]); |
| 1515 | } |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | /// AES mix columns function. |
| 1520 | #[inline ] |
| 1521 | pub(crate) fn mix_columns(block: &mut Block) { |
| 1522 | let mut state = bitslice_block(block); |
| 1523 | mix_columns_0(&mut state); |
| 1524 | inv_bitslice_block(block, &state); |
| 1525 | } |
| 1526 | |
| 1527 | /// AES inverse mix columns function. |
| 1528 | #[inline ] |
| 1529 | pub(crate) fn inv_mix_columns(block: &mut Block) { |
| 1530 | let mut state = bitslice_block(block); |
| 1531 | inv_mix_columns_0(&mut state); |
| 1532 | inv_bitslice_block(block, &state); |
| 1533 | } |
| 1534 | } |
| 1535 | |