| 1 | use crate::{engine::Engine, DecodeError, PAD_BYTE}; |
| 2 | use std::{cmp, fmt, io}; |
| 3 | |
| 4 | // This should be large, but it has to fit on the stack. |
| 5 | pub(crate) const BUF_SIZE: usize = 1024; |
| 6 | |
| 7 | // 4 bytes of base64 data encode 3 bytes of raw data (modulo padding). |
| 8 | const BASE64_CHUNK_SIZE: usize = 4; |
| 9 | const DECODED_CHUNK_SIZE: usize = 3; |
| 10 | |
| 11 | /// A `Read` implementation that decodes base64 data read from an underlying reader. |
| 12 | /// |
| 13 | /// # Examples |
| 14 | /// |
| 15 | /// ``` |
| 16 | /// use std::io::Read; |
| 17 | /// use std::io::Cursor; |
| 18 | /// use base64::engine::general_purpose; |
| 19 | /// |
| 20 | /// // use a cursor as the simplest possible `Read` -- in real code this is probably a file, etc. |
| 21 | /// let mut wrapped_reader = Cursor::new(b"YXNkZg==" ); |
| 22 | /// let mut decoder = base64::read::DecoderReader::new( |
| 23 | /// &mut wrapped_reader, |
| 24 | /// &general_purpose::STANDARD); |
| 25 | /// |
| 26 | /// // handle errors as you normally would |
| 27 | /// let mut result = Vec::new(); |
| 28 | /// decoder.read_to_end(&mut result).unwrap(); |
| 29 | /// |
| 30 | /// assert_eq!(b"asdf" , &result[..]); |
| 31 | /// |
| 32 | /// ``` |
| 33 | pub struct DecoderReader<'e, E: Engine, R: io::Read> { |
| 34 | engine: &'e E, |
| 35 | /// Where b64 data is read from |
| 36 | inner: R, |
| 37 | |
| 38 | // Holds b64 data read from the delegate reader. |
| 39 | b64_buffer: [u8; BUF_SIZE], |
| 40 | // The start of the pending buffered data in b64_buffer. |
| 41 | b64_offset: usize, |
| 42 | // The amount of buffered b64 data. |
| 43 | b64_len: usize, |
| 44 | // Since the caller may provide us with a buffer of size 1 or 2 that's too small to copy a |
| 45 | // decoded chunk in to, we have to be able to hang on to a few decoded bytes. |
| 46 | // Technically we only need to hold 2 bytes but then we'd need a separate temporary buffer to |
| 47 | // decode 3 bytes into and then juggle copying one byte into the provided read buf and the rest |
| 48 | // into here, which seems like a lot of complexity for 1 extra byte of storage. |
| 49 | decoded_buffer: [u8; DECODED_CHUNK_SIZE], |
| 50 | // index of start of decoded data |
| 51 | decoded_offset: usize, |
| 52 | // length of decoded data |
| 53 | decoded_len: usize, |
| 54 | // used to provide accurate offsets in errors |
| 55 | total_b64_decoded: usize, |
| 56 | // offset of previously seen padding, if any |
| 57 | padding_offset: Option<usize>, |
| 58 | } |
| 59 | |
| 60 | impl<'e, E: Engine, R: io::Read> fmt::Debug for DecoderReader<'e, E, R> { |
| 61 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 62 | f&mut DebugStruct<'_, '_>.debug_struct("DecoderReader" ) |
| 63 | .field("b64_offset" , &self.b64_offset) |
| 64 | .field("b64_len" , &self.b64_len) |
| 65 | .field("decoded_buffer" , &self.decoded_buffer) |
| 66 | .field("decoded_offset" , &self.decoded_offset) |
| 67 | .field("decoded_len" , &self.decoded_len) |
| 68 | .field("total_b64_decoded" , &self.total_b64_decoded) |
| 69 | .field(name:"padding_offset" , &self.padding_offset) |
| 70 | .finish() |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | impl<'e, E: Engine, R: io::Read> DecoderReader<'e, E, R> { |
| 75 | /// Create a new decoder that will read from the provided reader `r`. |
| 76 | pub fn new(reader: R, engine: &'e E) -> Self { |
| 77 | DecoderReader { |
| 78 | engine, |
| 79 | inner: reader, |
| 80 | b64_buffer: [0; BUF_SIZE], |
| 81 | b64_offset: 0, |
| 82 | b64_len: 0, |
| 83 | decoded_buffer: [0; DECODED_CHUNK_SIZE], |
| 84 | decoded_offset: 0, |
| 85 | decoded_len: 0, |
| 86 | total_b64_decoded: 0, |
| 87 | padding_offset: None, |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | /// Write as much as possible of the decoded buffer into the target buffer. |
| 92 | /// Must only be called when there is something to write and space to write into. |
| 93 | /// Returns a Result with the number of (decoded) bytes copied. |
| 94 | fn flush_decoded_buf(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
| 95 | debug_assert!(self.decoded_len > 0); |
| 96 | debug_assert!(!buf.is_empty()); |
| 97 | |
| 98 | let copy_len = cmp::min(self.decoded_len, buf.len()); |
| 99 | debug_assert!(copy_len > 0); |
| 100 | debug_assert!(copy_len <= self.decoded_len); |
| 101 | |
| 102 | buf[..copy_len].copy_from_slice( |
| 103 | &self.decoded_buffer[self.decoded_offset..self.decoded_offset + copy_len], |
| 104 | ); |
| 105 | |
| 106 | self.decoded_offset += copy_len; |
| 107 | self.decoded_len -= copy_len; |
| 108 | |
| 109 | debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE); |
| 110 | |
| 111 | Ok(copy_len) |
| 112 | } |
| 113 | |
| 114 | /// Read into the remaining space in the buffer after the current contents. |
| 115 | /// Must only be called when there is space to read into in the buffer. |
| 116 | /// Returns the number of bytes read. |
| 117 | fn read_from_delegate(&mut self) -> io::Result<usize> { |
| 118 | debug_assert!(self.b64_offset + self.b64_len < BUF_SIZE); |
| 119 | |
| 120 | let read = self |
| 121 | .inner |
| 122 | .read(&mut self.b64_buffer[self.b64_offset + self.b64_len..])?; |
| 123 | self.b64_len += read; |
| 124 | |
| 125 | debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE); |
| 126 | |
| 127 | Ok(read) |
| 128 | } |
| 129 | |
| 130 | /// Decode the requested number of bytes from the b64 buffer into the provided buffer. It's the |
| 131 | /// caller's responsibility to choose the number of b64 bytes to decode correctly. |
| 132 | /// |
| 133 | /// Returns a Result with the number of decoded bytes written to `buf`. |
| 134 | fn decode_to_buf(&mut self, b64_len_to_decode: usize, buf: &mut [u8]) -> io::Result<usize> { |
| 135 | debug_assert!(self.b64_len >= b64_len_to_decode); |
| 136 | debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE); |
| 137 | debug_assert!(!buf.is_empty()); |
| 138 | |
| 139 | let b64_to_decode = &self.b64_buffer[self.b64_offset..self.b64_offset + b64_len_to_decode]; |
| 140 | let decode_metadata = self |
| 141 | .engine |
| 142 | .internal_decode( |
| 143 | b64_to_decode, |
| 144 | buf, |
| 145 | self.engine.internal_decoded_len_estimate(b64_len_to_decode), |
| 146 | ) |
| 147 | .map_err(|e| match e { |
| 148 | DecodeError::InvalidByte(offset, byte) => { |
| 149 | // This can be incorrect, but not in a way that probably matters to anyone: |
| 150 | // if there was padding handled in a previous decode, and we are now getting |
| 151 | // InvalidByte due to more padding, we should arguably report InvalidByte with |
| 152 | // PAD_BYTE at the original padding position (`self.padding_offset`), but we |
| 153 | // don't have a good way to tie those two cases together, so instead we |
| 154 | // just report the invalid byte as if the previous padding, and its possibly |
| 155 | // related downgrade to a now invalid byte, didn't happen. |
| 156 | DecodeError::InvalidByte(self.total_b64_decoded + offset, byte) |
| 157 | } |
| 158 | DecodeError::InvalidLength => DecodeError::InvalidLength, |
| 159 | DecodeError::InvalidLastSymbol(offset, byte) => { |
| 160 | DecodeError::InvalidLastSymbol(self.total_b64_decoded + offset, byte) |
| 161 | } |
| 162 | DecodeError::InvalidPadding => DecodeError::InvalidPadding, |
| 163 | }) |
| 164 | .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; |
| 165 | |
| 166 | if let Some(offset) = self.padding_offset { |
| 167 | // we've already seen padding |
| 168 | if decode_metadata.decoded_len > 0 { |
| 169 | // we read more after already finding padding; report error at first padding byte |
| 170 | return Err(io::Error::new( |
| 171 | io::ErrorKind::InvalidData, |
| 172 | DecodeError::InvalidByte(offset, PAD_BYTE), |
| 173 | )); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | self.padding_offset = self.padding_offset.or(decode_metadata |
| 178 | .padding_offset |
| 179 | .map(|offset| self.total_b64_decoded + offset)); |
| 180 | self.total_b64_decoded += b64_len_to_decode; |
| 181 | self.b64_offset += b64_len_to_decode; |
| 182 | self.b64_len -= b64_len_to_decode; |
| 183 | |
| 184 | debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE); |
| 185 | |
| 186 | Ok(decode_metadata.decoded_len) |
| 187 | } |
| 188 | |
| 189 | /// Unwraps this `DecoderReader`, returning the base reader which it reads base64 encoded |
| 190 | /// input from. |
| 191 | /// |
| 192 | /// Because `DecoderReader` performs internal buffering, the state of the inner reader is |
| 193 | /// unspecified. This function is mainly provided because the inner reader type may provide |
| 194 | /// additional functionality beyond the `Read` implementation which may still be useful. |
| 195 | pub fn into_inner(self) -> R { |
| 196 | self.inner |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | impl<'e, E: Engine, R: io::Read> io::Read for DecoderReader<'e, E, R> { |
| 201 | /// Decode input from the wrapped reader. |
| 202 | /// |
| 203 | /// Under non-error circumstances, this returns `Ok` with the value being the number of bytes |
| 204 | /// written in `buf`. |
| 205 | /// |
| 206 | /// Where possible, this function buffers base64 to minimize the number of read() calls to the |
| 207 | /// delegate reader. |
| 208 | /// |
| 209 | /// # Errors |
| 210 | /// |
| 211 | /// Any errors emitted by the delegate reader are returned. Decoding errors due to invalid |
| 212 | /// base64 are also possible, and will have `io::ErrorKind::InvalidData`. |
| 213 | fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
| 214 | if buf.is_empty() { |
| 215 | return Ok(0); |
| 216 | } |
| 217 | |
| 218 | // offset == BUF_SIZE when we copied it all last time |
| 219 | debug_assert!(self.b64_offset <= BUF_SIZE); |
| 220 | debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE); |
| 221 | debug_assert!(if self.b64_offset == BUF_SIZE { |
| 222 | self.b64_len == 0 |
| 223 | } else { |
| 224 | self.b64_len <= BUF_SIZE |
| 225 | }); |
| 226 | |
| 227 | debug_assert!(if self.decoded_len == 0 { |
| 228 | // can be = when we were able to copy the complete chunk |
| 229 | self.decoded_offset <= DECODED_CHUNK_SIZE |
| 230 | } else { |
| 231 | self.decoded_offset < DECODED_CHUNK_SIZE |
| 232 | }); |
| 233 | |
| 234 | // We shouldn't ever decode into decoded_buffer when we can't immediately write at least one |
| 235 | // byte into the provided buf, so the effective length should only be 3 momentarily between |
| 236 | // when we decode and when we copy into the target buffer. |
| 237 | debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE); |
| 238 | debug_assert!(self.decoded_len + self.decoded_offset <= DECODED_CHUNK_SIZE); |
| 239 | |
| 240 | if self.decoded_len > 0 { |
| 241 | // we have a few leftover decoded bytes; flush that rather than pull in more b64 |
| 242 | self.flush_decoded_buf(buf) |
| 243 | } else { |
| 244 | let mut at_eof = false; |
| 245 | while self.b64_len < BASE64_CHUNK_SIZE { |
| 246 | // Copy any bytes we have to the start of the buffer. |
| 247 | self.b64_buffer |
| 248 | .copy_within(self.b64_offset..self.b64_offset + self.b64_len, 0); |
| 249 | self.b64_offset = 0; |
| 250 | |
| 251 | // then fill in more data |
| 252 | let read = self.read_from_delegate()?; |
| 253 | if read == 0 { |
| 254 | // we never read into an empty buf, so 0 => we've hit EOF |
| 255 | at_eof = true; |
| 256 | break; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | if self.b64_len == 0 { |
| 261 | debug_assert!(at_eof); |
| 262 | // we must be at EOF, and we have no data left to decode |
| 263 | return Ok(0); |
| 264 | }; |
| 265 | |
| 266 | debug_assert!(if at_eof { |
| 267 | // if we are at eof, we may not have a complete chunk |
| 268 | self.b64_len > 0 |
| 269 | } else { |
| 270 | // otherwise, we must have at least one chunk |
| 271 | self.b64_len >= BASE64_CHUNK_SIZE |
| 272 | }); |
| 273 | |
| 274 | debug_assert_eq!(0, self.decoded_len); |
| 275 | |
| 276 | if buf.len() < DECODED_CHUNK_SIZE { |
| 277 | // caller requested an annoyingly short read |
| 278 | // have to write to a tmp buf first to avoid double mutable borrow |
| 279 | let mut decoded_chunk = [0_u8; DECODED_CHUNK_SIZE]; |
| 280 | // if we are at eof, could have less than BASE64_CHUNK_SIZE, in which case we have |
| 281 | // to assume that these last few tokens are, in fact, valid (i.e. must be 2-4 b64 |
| 282 | // tokens, not 1, since 1 token can't decode to 1 byte). |
| 283 | let to_decode = cmp::min(self.b64_len, BASE64_CHUNK_SIZE); |
| 284 | |
| 285 | let decoded = self.decode_to_buf(to_decode, &mut decoded_chunk[..])?; |
| 286 | self.decoded_buffer[..decoded].copy_from_slice(&decoded_chunk[..decoded]); |
| 287 | |
| 288 | self.decoded_offset = 0; |
| 289 | self.decoded_len = decoded; |
| 290 | |
| 291 | // can be less than 3 on last block due to padding |
| 292 | debug_assert!(decoded <= 3); |
| 293 | |
| 294 | self.flush_decoded_buf(buf) |
| 295 | } else { |
| 296 | let b64_bytes_that_can_decode_into_buf = (buf.len() / DECODED_CHUNK_SIZE) |
| 297 | .checked_mul(BASE64_CHUNK_SIZE) |
| 298 | .expect("too many chunks" ); |
| 299 | debug_assert!(b64_bytes_that_can_decode_into_buf >= BASE64_CHUNK_SIZE); |
| 300 | |
| 301 | let b64_bytes_available_to_decode = if at_eof { |
| 302 | self.b64_len |
| 303 | } else { |
| 304 | // only use complete chunks |
| 305 | self.b64_len - self.b64_len % 4 |
| 306 | }; |
| 307 | |
| 308 | let actual_decode_len = cmp::min( |
| 309 | b64_bytes_that_can_decode_into_buf, |
| 310 | b64_bytes_available_to_decode, |
| 311 | ); |
| 312 | self.decode_to_buf(actual_decode_len, buf) |
| 313 | } |
| 314 | } |
| 315 | } |
| 316 | } |
| 317 | |