| 1 | // This is a part of Chrono. | 
| 2 | // See README.md and LICENSE.txt for details. | 
|---|
| 3 |  | 
|---|
| 4 | //! ISO 8601 time without timezone. | 
|---|
| 5 |  | 
|---|
| 6 | #[ cfg(feature = "alloc")] | 
|---|
| 7 | use core::borrow::Borrow; | 
|---|
| 8 | use core::ops::{Add, AddAssign, Sub, SubAssign}; | 
|---|
| 9 | use core::time::Duration; | 
|---|
| 10 | use core::{fmt, str}; | 
|---|
| 11 |  | 
|---|
| 12 | #[ cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))] | 
|---|
| 13 | use rkyv::{Archive, Deserialize, Serialize}; | 
|---|
| 14 |  | 
|---|
| 15 | #[ cfg(feature = "alloc")] | 
|---|
| 16 | use crate::format::DelayedFormat; | 
|---|
| 17 | use crate::format::{ | 
|---|
| 18 | parse, parse_and_remainder, write_hundreds, Fixed, Item, Numeric, Pad, ParseError, ParseResult, | 
|---|
| 19 | Parsed, StrftimeItems, | 
|---|
| 20 | }; | 
|---|
| 21 | use crate::{expect, try_opt}; | 
|---|
| 22 | use crate::{FixedOffset, TimeDelta, Timelike}; | 
|---|
| 23 |  | 
|---|
| 24 | #[ cfg(feature = "serde")] | 
|---|
| 25 | mod serde; | 
|---|
| 26 |  | 
|---|
| 27 | #[ cfg(test)] | 
|---|
| 28 | mod tests; | 
|---|
| 29 |  | 
|---|
| 30 | /// ISO 8601 time without timezone. | 
|---|
| 31 | /// Allows for the nanosecond precision and optional leap second representation. | 
|---|
| 32 | /// | 
|---|
| 33 | /// # Leap Second Handling | 
|---|
| 34 | /// | 
|---|
| 35 | /// Since 1960s, the manmade atomic clock has been so accurate that | 
|---|
| 36 | /// it is much more accurate than Earth's own motion. | 
|---|
| 37 | /// It became desirable to define the civil time in terms of the atomic clock, | 
|---|
| 38 | /// but that risks the desynchronization of the civil time from Earth. | 
|---|
| 39 | /// To account for this, the designers of the Coordinated Universal Time (UTC) | 
|---|
| 40 | /// made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time. | 
|---|
| 41 | /// When the mean solar day is longer than the ideal (86,400 seconds), | 
|---|
| 42 | /// the error slowly accumulates and it is necessary to add a **leap second** | 
|---|
| 43 | /// to slow the UTC down a bit. | 
|---|
| 44 | /// (We may also remove a second to speed the UTC up a bit, but it never happened.) | 
|---|
| 45 | /// The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC. | 
|---|
| 46 | /// | 
|---|
| 47 | /// Fast forward to the 21st century, | 
|---|
| 48 | /// we have seen 26 leap seconds from January 1972 to December 2015. | 
|---|
| 49 | /// Yes, 26 seconds. Probably you can read this paragraph within 26 seconds. | 
|---|
| 50 | /// But those 26 seconds, and possibly more in the future, are never predictable, | 
|---|
| 51 | /// and whether to add a leap second or not is known only before 6 months. | 
|---|
| 52 | /// Internet-based clocks (via NTP) do account for known leap seconds, | 
|---|
| 53 | /// but the system API normally doesn't (and often can't, with no network connection) | 
|---|
| 54 | /// and there is no reliable way to retrieve leap second information. | 
|---|
| 55 | /// | 
|---|
| 56 | /// Chrono does not try to accurately implement leap seconds; it is impossible. | 
|---|
| 57 | /// Rather, **it allows for leap seconds but behaves as if there are *no other* leap seconds.** | 
|---|
| 58 | /// Various operations will ignore any possible leap second(s) | 
|---|
| 59 | /// except when any of the operands were actually leap seconds. | 
|---|
| 60 | /// | 
|---|
| 61 | /// If you cannot tolerate this behavior, | 
|---|
| 62 | /// you must use a separate `TimeZone` for the International Atomic Time (TAI). | 
|---|
| 63 | /// TAI is like UTC but has no leap seconds, and thus slightly differs from UTC. | 
|---|
| 64 | /// Chrono does not yet provide such implementation, but it is planned. | 
|---|
| 65 | /// | 
|---|
| 66 | /// ## Representing Leap Seconds | 
|---|
| 67 | /// | 
|---|
| 68 | /// The leap second is indicated via fractional seconds more than 1 second. | 
|---|
| 69 | /// This makes possible to treat a leap second as the prior non-leap second | 
|---|
| 70 | /// if you don't care about sub-second accuracy. | 
|---|
| 71 | /// You should use the proper formatting to get the raw leap second. | 
|---|
| 72 | /// | 
|---|
| 73 | /// All methods accepting fractional seconds will accept such values. | 
|---|
| 74 | /// | 
|---|
| 75 | /// ``` | 
|---|
| 76 | /// use chrono::{NaiveDate, NaiveTime}; | 
|---|
| 77 | /// | 
|---|
| 78 | /// let t = NaiveTime::from_hms_milli_opt(8, 59, 59, 1_000).unwrap(); | 
|---|
| 79 | /// | 
|---|
| 80 | /// let dt1 = NaiveDate::from_ymd_opt(2015, 7, 1) | 
|---|
| 81 | ///     .unwrap() | 
|---|
| 82 | ///     .and_hms_micro_opt(8, 59, 59, 1_000_000) | 
|---|
| 83 | ///     .unwrap(); | 
|---|
| 84 | /// | 
|---|
| 85 | /// let dt2 = NaiveDate::from_ymd_opt(2015, 6, 30) | 
|---|
| 86 | ///     .unwrap() | 
|---|
| 87 | ///     .and_hms_nano_opt(23, 59, 59, 1_000_000_000) | 
|---|
| 88 | ///     .unwrap() | 
|---|
| 89 | ///     .and_utc(); | 
|---|
| 90 | /// # let _ = (t, dt1, dt2); | 
|---|
| 91 | /// ``` | 
|---|
| 92 | /// | 
|---|
| 93 | /// Note that the leap second can happen anytime given an appropriate time zone; | 
|---|
| 94 | /// 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed. | 
|---|
| 95 | /// Practically speaking, though, by the time of the first leap second on 1972-06-30, | 
|---|
| 96 | /// every time zone offset around the world has standardized to the 5-minute alignment. | 
|---|
| 97 | /// | 
|---|
| 98 | /// ## Date And Time Arithmetics | 
|---|
| 99 | /// | 
|---|
| 100 | /// As a concrete example, let's assume that `03:00:60` and `04:00:60` are leap seconds. | 
|---|
| 101 | /// In reality, of course, leap seconds are separated by at least 6 months. | 
|---|
| 102 | /// We will also use some intuitive concise notations for the explanation. | 
|---|
| 103 | /// | 
|---|
| 104 | /// `Time + TimeDelta` | 
|---|
| 105 | /// (short for [`NaiveTime::overflowing_add_signed`](#method.overflowing_add_signed)): | 
|---|
| 106 | /// | 
|---|
| 107 | /// - `03:00:00 + 1s = 03:00:01`. | 
|---|
| 108 | /// - `03:00:59 + 60s = 03:01:59`. | 
|---|
| 109 | /// - `03:00:59 + 61s = 03:02:00`. | 
|---|
| 110 | /// - `03:00:59 + 1s = 03:01:00`. | 
|---|
| 111 | /// - `03:00:60 + 1s = 03:01:00`. | 
|---|
| 112 | ///   Note that the sum is identical to the previous. | 
|---|
| 113 | /// - `03:00:60 + 60s = 03:01:59`. | 
|---|
| 114 | /// - `03:00:60 + 61s = 03:02:00`. | 
|---|
| 115 | /// - `03:00:60.1 + 0.8s = 03:00:60.9`. | 
|---|
| 116 | /// | 
|---|
| 117 | /// `Time - TimeDelta` | 
|---|
| 118 | /// (short for [`NaiveTime::overflowing_sub_signed`](#method.overflowing_sub_signed)): | 
|---|
| 119 | /// | 
|---|
| 120 | /// - `03:00:00 - 1s = 02:59:59`. | 
|---|
| 121 | /// - `03:01:00 - 1s = 03:00:59`. | 
|---|
| 122 | /// - `03:01:00 - 60s = 03:00:00`. | 
|---|
| 123 | /// - `03:00:60 - 60s = 03:00:00`. | 
|---|
| 124 | ///   Note that the result is identical to the previous. | 
|---|
| 125 | /// - `03:00:60.7 - 0.4s = 03:00:60.3`. | 
|---|
| 126 | /// - `03:00:60.7 - 0.9s = 03:00:59.8`. | 
|---|
| 127 | /// | 
|---|
| 128 | /// `Time - Time` | 
|---|
| 129 | /// (short for [`NaiveTime::signed_duration_since`](#method.signed_duration_since)): | 
|---|
| 130 | /// | 
|---|
| 131 | /// - `04:00:00 - 03:00:00 = 3600s`. | 
|---|
| 132 | /// - `03:01:00 - 03:00:00 = 60s`. | 
|---|
| 133 | /// - `03:00:60 - 03:00:00 = 60s`. | 
|---|
| 134 | ///   Note that the difference is identical to the previous. | 
|---|
| 135 | /// - `03:00:60.6 - 03:00:59.4 = 1.2s`. | 
|---|
| 136 | /// - `03:01:00 - 03:00:59.8 = 0.2s`. | 
|---|
| 137 | /// - `03:01:00 - 03:00:60.5 = 0.5s`. | 
|---|
| 138 | ///   Note that the difference is larger than the previous, | 
|---|
| 139 | ///   even though the leap second clearly follows the previous whole second. | 
|---|
| 140 | /// - `04:00:60.9 - 03:00:60.1 = | 
|---|
| 141 | ///   (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) = | 
|---|
| 142 | ///   60.9s + 3540s + 0.9s = 3601.8s`. | 
|---|
| 143 | /// | 
|---|
| 144 | /// In general, | 
|---|
| 145 | /// | 
|---|
| 146 | /// - `Time + TimeDelta` unconditionally equals to `TimeDelta + Time`. | 
|---|
| 147 | /// | 
|---|
| 148 | /// - `Time - TimeDelta` unconditionally equals to `Time + (-TimeDelta)`. | 
|---|
| 149 | /// | 
|---|
| 150 | /// - `Time1 - Time2` unconditionally equals to `-(Time2 - Time1)`. | 
|---|
| 151 | /// | 
|---|
| 152 | /// - Associativity does not generally hold, because | 
|---|
| 153 | ///   `(Time + TimeDelta1) - TimeDelta2` no longer equals to `Time + (TimeDelta1 - TimeDelta2)` | 
|---|
| 154 | ///   for two positive durations. | 
|---|
| 155 | /// | 
|---|
| 156 | ///     - As a special case, `(Time + TimeDelta) - TimeDelta` also does not equal to `Time`. | 
|---|
| 157 | /// | 
|---|
| 158 | ///     - If you can assume that all durations have the same sign, however, | 
|---|
| 159 | ///       then the associativity holds: | 
|---|
| 160 | ///       `(Time + TimeDelta1) + TimeDelta2` equals to `Time + (TimeDelta1 + TimeDelta2)` | 
|---|
| 161 | ///       for two positive durations. | 
|---|
| 162 | /// | 
|---|
| 163 | /// ## Reading And Writing Leap Seconds | 
|---|
| 164 | /// | 
|---|
| 165 | /// The "typical" leap seconds on the minute boundary are | 
|---|
| 166 | /// correctly handled both in the formatting and parsing. | 
|---|
| 167 | /// The leap second in the human-readable representation | 
|---|
| 168 | /// will be represented as the second part being 60, as required by ISO 8601. | 
|---|
| 169 | /// | 
|---|
| 170 | /// ``` | 
|---|
| 171 | /// use chrono::NaiveDate; | 
|---|
| 172 | /// | 
|---|
| 173 | /// let dt = NaiveDate::from_ymd_opt(2015, 6, 30) | 
|---|
| 174 | ///     .unwrap() | 
|---|
| 175 | ///     .and_hms_milli_opt(23, 59, 59, 1_000) | 
|---|
| 176 | ///     .unwrap() | 
|---|
| 177 | ///     .and_utc(); | 
|---|
| 178 | /// assert_eq!(format!( "{:?}", dt), "2015-06-30T23:59:60Z"); | 
|---|
| 179 | /// ``` | 
|---|
| 180 | /// | 
|---|
| 181 | /// There are hypothetical leap seconds not on the minute boundary nevertheless supported by Chrono. | 
|---|
| 182 | /// They are allowed for the sake of completeness and consistency; there were several "exotic" time | 
|---|
| 183 | /// zone offsets with fractional minutes prior to UTC after all. | 
|---|
| 184 | /// For such cases the human-readable representation is ambiguous and would be read back to the next | 
|---|
| 185 | /// non-leap second. | 
|---|
| 186 | /// | 
|---|
| 187 | /// A `NaiveTime` with a leap second that is not on a minute boundary can only be created from a | 
|---|
| 188 | /// [`DateTime`](crate::DateTime) with fractional minutes as offset, or using | 
|---|
| 189 | /// [`Timelike::with_nanosecond()`]. | 
|---|
| 190 | /// | 
|---|
| 191 | /// ``` | 
|---|
| 192 | /// use chrono::{FixedOffset, NaiveDate, TimeZone}; | 
|---|
| 193 | /// | 
|---|
| 194 | /// let paramaribo_pre1945 = FixedOffset::east_opt(-13236).unwrap(); // -03:40:36 | 
|---|
| 195 | /// let leap_sec_2015 = | 
|---|
| 196 | ///     NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap(); | 
|---|
| 197 | /// let dt1 = paramaribo_pre1945.from_utc_datetime(&leap_sec_2015); | 
|---|
| 198 | /// assert_eq!(format!( "{:?}", dt1), "2015-06-30T20:19:24-03:40:36"); | 
|---|
| 199 | /// assert_eq!(format!( "{:?}", dt1.time()), "20:19:24"); | 
|---|
| 200 | /// | 
|---|
| 201 | /// let next_sec = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_opt(0, 0, 0).unwrap(); | 
|---|
| 202 | /// let dt2 = paramaribo_pre1945.from_utc_datetime(&next_sec); | 
|---|
| 203 | /// assert_eq!(format!( "{:?}", dt2), "2015-06-30T20:19:24-03:40:36"); | 
|---|
| 204 | /// assert_eq!(format!( "{:?}", dt2.time()), "20:19:24"); | 
|---|
| 205 | /// | 
|---|
| 206 | /// assert!(dt1.time() != dt2.time()); | 
|---|
| 207 | /// assert!(dt1.time().to_string() == dt2.time().to_string()); | 
|---|
| 208 | /// ``` | 
|---|
| 209 | /// | 
|---|
| 210 | /// Since Chrono alone cannot determine any existence of leap seconds, | 
|---|
| 211 | /// **there is absolutely no guarantee that the leap second read has actually happened**. | 
|---|
| 212 | #[ derive(PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)] | 
|---|
| 213 | #[ cfg_attr( | 
|---|
| 214 | any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"), | 
|---|
| 215 | derive(Archive, Deserialize, Serialize), | 
|---|
| 216 | archive(compare(PartialEq, PartialOrd)), | 
|---|
| 217 | archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)) | 
|---|
| 218 | )] | 
|---|
| 219 | #[ cfg_attr(feature = "rkyv-validation", archive(check_bytes))] | 
|---|
| 220 | pub struct NaiveTime { | 
|---|
| 221 | secs: u32, | 
|---|
| 222 | frac: u32, | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | #[ cfg(feature = "arbitrary")] | 
|---|
| 226 | impl arbitrary::Arbitrary<'_> for NaiveTime { | 
|---|
| 227 | fn arbitrary(u: &mut arbitrary::Unstructured) -> arbitrary::Result<NaiveTime> { | 
|---|
| 228 | let mins = u.int_in_range(0..=1439)?; | 
|---|
| 229 | let mut secs = u.int_in_range(0..=60)?; | 
|---|
| 230 | let mut nano = u.int_in_range(0..=999_999_999)?; | 
|---|
| 231 | if secs == 60 { | 
|---|
| 232 | secs = 59; | 
|---|
| 233 | nano += 1_000_000_000; | 
|---|
| 234 | } | 
|---|
| 235 | let time = NaiveTime::from_num_seconds_from_midnight_opt(mins * 60 + secs, nano) | 
|---|
| 236 | .expect( "Could not generate a valid chrono::NaiveTime. It looks like implementation of Arbitrary for NaiveTime is erroneous."); | 
|---|
| 237 | Ok(time) | 
|---|
| 238 | } | 
|---|
| 239 | } | 
|---|
| 240 |  | 
|---|
| 241 | impl NaiveTime { | 
|---|
| 242 | /// Makes a new `NaiveTime` from hour, minute and second. | 
|---|
| 243 | /// | 
|---|
| 244 | /// No [leap second](#leap-second-handling) is allowed here; | 
|---|
| 245 | /// use `NaiveTime::from_hms_*` methods with a subsecond parameter instead. | 
|---|
| 246 | /// | 
|---|
| 247 | /// # Panics | 
|---|
| 248 | /// | 
|---|
| 249 | /// Panics on invalid hour, minute and/or second. | 
|---|
| 250 | #[ deprecated(since = "0.4.23", note = "use `from_hms_opt()` instead")] | 
|---|
| 251 | #[ inline] | 
|---|
| 252 | #[ must_use] | 
|---|
| 253 | pub const fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime { | 
|---|
| 254 | expect(NaiveTime::from_hms_opt(hour, min, sec), "invalid time") | 
|---|
| 255 | } | 
|---|
| 256 |  | 
|---|
| 257 | /// Makes a new `NaiveTime` from hour, minute and second. | 
|---|
| 258 | /// | 
|---|
| 259 | /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a | 
|---|
| 260 | /// [leap second](#leap-second-handling), but only when `sec == 59`. | 
|---|
| 261 | /// | 
|---|
| 262 | /// # Errors | 
|---|
| 263 | /// | 
|---|
| 264 | /// Returns `None` on invalid hour, minute and/or second. | 
|---|
| 265 | /// | 
|---|
| 266 | /// # Example | 
|---|
| 267 | /// | 
|---|
| 268 | /// ``` | 
|---|
| 269 | /// use chrono::NaiveTime; | 
|---|
| 270 | /// | 
|---|
| 271 | /// let from_hms_opt = NaiveTime::from_hms_opt; | 
|---|
| 272 | /// | 
|---|
| 273 | /// assert!(from_hms_opt(0, 0, 0).is_some()); | 
|---|
| 274 | /// assert!(from_hms_opt(23, 59, 59).is_some()); | 
|---|
| 275 | /// assert!(from_hms_opt(24, 0, 0).is_none()); | 
|---|
| 276 | /// assert!(from_hms_opt(23, 60, 0).is_none()); | 
|---|
| 277 | /// assert!(from_hms_opt(23, 59, 60).is_none()); | 
|---|
| 278 | /// ``` | 
|---|
| 279 | #[ inline] | 
|---|
| 280 | #[ must_use] | 
|---|
| 281 | pub const fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime> { | 
|---|
| 282 | NaiveTime::from_hms_nano_opt(hour, min, sec, 0) | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | /// Makes a new `NaiveTime` from hour, minute, second and millisecond. | 
|---|
| 286 | /// | 
|---|
| 287 | /// The millisecond part can exceed 1,000 | 
|---|
| 288 | /// in order to represent the [leap second](#leap-second-handling). | 
|---|
| 289 | /// | 
|---|
| 290 | /// # Panics | 
|---|
| 291 | /// | 
|---|
| 292 | /// Panics on invalid hour, minute, second and/or millisecond. | 
|---|
| 293 | #[ deprecated(since = "0.4.23", note = "use `from_hms_milli_opt()` instead")] | 
|---|
| 294 | #[ inline] | 
|---|
| 295 | #[ must_use] | 
|---|
| 296 | pub const fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime { | 
|---|
| 297 | expect(NaiveTime::from_hms_milli_opt(hour, min, sec, milli), "invalid time") | 
|---|
| 298 | } | 
|---|
| 299 |  | 
|---|
| 300 | /// Makes a new `NaiveTime` from hour, minute, second and millisecond. | 
|---|
| 301 | /// | 
|---|
| 302 | /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a | 
|---|
| 303 | /// [leap second](#leap-second-handling), but only when `sec == 59`. | 
|---|
| 304 | /// | 
|---|
| 305 | /// # Errors | 
|---|
| 306 | /// | 
|---|
| 307 | /// Returns `None` on invalid hour, minute, second and/or millisecond. | 
|---|
| 308 | /// | 
|---|
| 309 | /// # Example | 
|---|
| 310 | /// | 
|---|
| 311 | /// ``` | 
|---|
| 312 | /// use chrono::NaiveTime; | 
|---|
| 313 | /// | 
|---|
| 314 | /// let from_hmsm_opt = NaiveTime::from_hms_milli_opt; | 
|---|
| 315 | /// | 
|---|
| 316 | /// assert!(from_hmsm_opt(0, 0, 0, 0).is_some()); | 
|---|
| 317 | /// assert!(from_hmsm_opt(23, 59, 59, 999).is_some()); | 
|---|
| 318 | /// assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59 | 
|---|
| 319 | /// assert!(from_hmsm_opt(24, 0, 0, 0).is_none()); | 
|---|
| 320 | /// assert!(from_hmsm_opt(23, 60, 0, 0).is_none()); | 
|---|
| 321 | /// assert!(from_hmsm_opt(23, 59, 60, 0).is_none()); | 
|---|
| 322 | /// assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none()); | 
|---|
| 323 | /// ``` | 
|---|
| 324 | #[ inline] | 
|---|
| 325 | #[ must_use] | 
|---|
| 326 | pub const fn from_hms_milli_opt( | 
|---|
| 327 | hour: u32, | 
|---|
| 328 | min: u32, | 
|---|
| 329 | sec: u32, | 
|---|
| 330 | milli: u32, | 
|---|
| 331 | ) -> Option<NaiveTime> { | 
|---|
| 332 | let nano = try_opt!(milli.checked_mul(1_000_000)); | 
|---|
| 333 | NaiveTime::from_hms_nano_opt(hour, min, sec, nano) | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | /// Makes a new `NaiveTime` from hour, minute, second and microsecond. | 
|---|
| 337 | /// | 
|---|
| 338 | /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a | 
|---|
| 339 | /// [leap second](#leap-second-handling), but only when `sec == 59`. | 
|---|
| 340 | /// | 
|---|
| 341 | /// # Panics | 
|---|
| 342 | /// | 
|---|
| 343 | /// Panics on invalid hour, minute, second and/or microsecond. | 
|---|
| 344 | #[ deprecated(since = "0.4.23", note = "use `from_hms_micro_opt()` instead")] | 
|---|
| 345 | #[ inline] | 
|---|
| 346 | #[ must_use] | 
|---|
| 347 | pub const fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime { | 
|---|
| 348 | expect(NaiveTime::from_hms_micro_opt(hour, min, sec, micro), "invalid time") | 
|---|
| 349 | } | 
|---|
| 350 |  | 
|---|
| 351 | /// Makes a new `NaiveTime` from hour, minute, second and microsecond. | 
|---|
| 352 | /// | 
|---|
| 353 | /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a | 
|---|
| 354 | /// [leap second](#leap-second-handling), but only when `sec == 59`. | 
|---|
| 355 | /// | 
|---|
| 356 | /// # Errors | 
|---|
| 357 | /// | 
|---|
| 358 | /// Returns `None` on invalid hour, minute, second and/or microsecond. | 
|---|
| 359 | /// | 
|---|
| 360 | /// # Example | 
|---|
| 361 | /// | 
|---|
| 362 | /// ``` | 
|---|
| 363 | /// use chrono::NaiveTime; | 
|---|
| 364 | /// | 
|---|
| 365 | /// let from_hmsu_opt = NaiveTime::from_hms_micro_opt; | 
|---|
| 366 | /// | 
|---|
| 367 | /// assert!(from_hmsu_opt(0, 0, 0, 0).is_some()); | 
|---|
| 368 | /// assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some()); | 
|---|
| 369 | /// assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59 | 
|---|
| 370 | /// assert!(from_hmsu_opt(24, 0, 0, 0).is_none()); | 
|---|
| 371 | /// assert!(from_hmsu_opt(23, 60, 0, 0).is_none()); | 
|---|
| 372 | /// assert!(from_hmsu_opt(23, 59, 60, 0).is_none()); | 
|---|
| 373 | /// assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none()); | 
|---|
| 374 | /// ``` | 
|---|
| 375 | #[ inline] | 
|---|
| 376 | #[ must_use] | 
|---|
| 377 | pub const fn from_hms_micro_opt( | 
|---|
| 378 | hour: u32, | 
|---|
| 379 | min: u32, | 
|---|
| 380 | sec: u32, | 
|---|
| 381 | micro: u32, | 
|---|
| 382 | ) -> Option<NaiveTime> { | 
|---|
| 383 | let nano = try_opt!(micro.checked_mul(1_000)); | 
|---|
| 384 | NaiveTime::from_hms_nano_opt(hour, min, sec, nano) | 
|---|
| 385 | } | 
|---|
| 386 |  | 
|---|
| 387 | /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. | 
|---|
| 388 | /// | 
|---|
| 389 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a | 
|---|
| 390 | /// [leap second](#leap-second-handling), but only when `sec == 59`. | 
|---|
| 391 | /// | 
|---|
| 392 | /// # Panics | 
|---|
| 393 | /// | 
|---|
| 394 | /// Panics on invalid hour, minute, second and/or nanosecond. | 
|---|
| 395 | #[ deprecated(since = "0.4.23", note = "use `from_hms_nano_opt()` instead")] | 
|---|
| 396 | #[ inline] | 
|---|
| 397 | #[ must_use] | 
|---|
| 398 | pub const fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime { | 
|---|
| 399 | expect(NaiveTime::from_hms_nano_opt(hour, min, sec, nano), "invalid time") | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. | 
|---|
| 403 | /// | 
|---|
| 404 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a | 
|---|
| 405 | /// [leap second](#leap-second-handling), but only when `sec == 59`. | 
|---|
| 406 | /// | 
|---|
| 407 | /// # Errors | 
|---|
| 408 | /// | 
|---|
| 409 | /// Returns `None` on invalid hour, minute, second and/or nanosecond. | 
|---|
| 410 | /// | 
|---|
| 411 | /// # Example | 
|---|
| 412 | /// | 
|---|
| 413 | /// ``` | 
|---|
| 414 | /// use chrono::NaiveTime; | 
|---|
| 415 | /// | 
|---|
| 416 | /// let from_hmsn_opt = NaiveTime::from_hms_nano_opt; | 
|---|
| 417 | /// | 
|---|
| 418 | /// assert!(from_hmsn_opt(0, 0, 0, 0).is_some()); | 
|---|
| 419 | /// assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some()); | 
|---|
| 420 | /// assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59 | 
|---|
| 421 | /// assert!(from_hmsn_opt(24, 0, 0, 0).is_none()); | 
|---|
| 422 | /// assert!(from_hmsn_opt(23, 60, 0, 0).is_none()); | 
|---|
| 423 | /// assert!(from_hmsn_opt(23, 59, 60, 0).is_none()); | 
|---|
| 424 | /// assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none()); | 
|---|
| 425 | /// ``` | 
|---|
| 426 | #[ inline] | 
|---|
| 427 | #[ must_use] | 
|---|
| 428 | pub const fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option<NaiveTime> { | 
|---|
| 429 | if (hour >= 24 || min >= 60 || sec >= 60) | 
|---|
| 430 | || (nano >= 1_000_000_000 && sec != 59) | 
|---|
| 431 | || nano >= 2_000_000_000 | 
|---|
| 432 | { | 
|---|
| 433 | return None; | 
|---|
| 434 | } | 
|---|
| 435 | let secs = hour * 3600 + min * 60 + sec; | 
|---|
| 436 | Some(NaiveTime { secs, frac: nano }) | 
|---|
| 437 | } | 
|---|
| 438 |  | 
|---|
| 439 | /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. | 
|---|
| 440 | /// | 
|---|
| 441 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a | 
|---|
| 442 | /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`. | 
|---|
| 443 | /// | 
|---|
| 444 | /// # Panics | 
|---|
| 445 | /// | 
|---|
| 446 | /// Panics on invalid number of seconds and/or nanosecond. | 
|---|
| 447 | #[ deprecated(since = "0.4.23", note = "use `from_num_seconds_from_midnight_opt()` instead")] | 
|---|
| 448 | #[ inline] | 
|---|
| 449 | #[ must_use] | 
|---|
| 450 | pub const fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime { | 
|---|
| 451 | expect(NaiveTime::from_num_seconds_from_midnight_opt(secs, nano), "invalid time") | 
|---|
| 452 | } | 
|---|
| 453 |  | 
|---|
| 454 | /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. | 
|---|
| 455 | /// | 
|---|
| 456 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a | 
|---|
| 457 | /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`. | 
|---|
| 458 | /// | 
|---|
| 459 | /// # Errors | 
|---|
| 460 | /// | 
|---|
| 461 | /// Returns `None` on invalid number of seconds and/or nanosecond. | 
|---|
| 462 | /// | 
|---|
| 463 | /// # Example | 
|---|
| 464 | /// | 
|---|
| 465 | /// ``` | 
|---|
| 466 | /// use chrono::NaiveTime; | 
|---|
| 467 | /// | 
|---|
| 468 | /// let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt; | 
|---|
| 469 | /// | 
|---|
| 470 | /// assert!(from_nsecs_opt(0, 0).is_some()); | 
|---|
| 471 | /// assert!(from_nsecs_opt(86399, 999_999_999).is_some()); | 
|---|
| 472 | /// assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59 | 
|---|
| 473 | /// assert!(from_nsecs_opt(86_400, 0).is_none()); | 
|---|
| 474 | /// assert!(from_nsecs_opt(86399, 2_000_000_000).is_none()); | 
|---|
| 475 | /// ``` | 
|---|
| 476 | #[ inline] | 
|---|
| 477 | #[ must_use] | 
|---|
| 478 | pub const fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime> { | 
|---|
| 479 | if secs >= 86_400 || nano >= 2_000_000_000 || (nano >= 1_000_000_000 && secs % 60 != 59) { | 
|---|
| 480 | return None; | 
|---|
| 481 | } | 
|---|
| 482 | Some(NaiveTime { secs, frac: nano }) | 
|---|
| 483 | } | 
|---|
| 484 |  | 
|---|
| 485 | /// Parses a string with the specified format string and returns a new `NaiveTime`. | 
|---|
| 486 | /// See the [`format::strftime` module](crate::format::strftime) | 
|---|
| 487 | /// on the supported escape sequences. | 
|---|
| 488 | /// | 
|---|
| 489 | /// # Example | 
|---|
| 490 | /// | 
|---|
| 491 | /// ``` | 
|---|
| 492 | /// use chrono::NaiveTime; | 
|---|
| 493 | /// | 
|---|
| 494 | /// let parse_from_str = NaiveTime::parse_from_str; | 
|---|
| 495 | /// | 
|---|
| 496 | /// assert_eq!( | 
|---|
| 497 | ///     parse_from_str( "23:56:04", "%H:%M:%S"), | 
|---|
| 498 | ///     Ok(NaiveTime::from_hms_opt(23, 56, 4).unwrap()) | 
|---|
| 499 | /// ); | 
|---|
| 500 | /// assert_eq!( | 
|---|
| 501 | ///     parse_from_str( "pm012345.6789", "%p%I%M%S%.f"), | 
|---|
| 502 | ///     Ok(NaiveTime::from_hms_micro_opt(13, 23, 45, 678_900).unwrap()) | 
|---|
| 503 | /// ); | 
|---|
| 504 | /// ``` | 
|---|
| 505 | /// | 
|---|
| 506 | /// Date and offset is ignored for the purpose of parsing. | 
|---|
| 507 | /// | 
|---|
| 508 | /// ``` | 
|---|
| 509 | /// # use chrono::NaiveTime; | 
|---|
| 510 | /// # let parse_from_str = NaiveTime::parse_from_str; | 
|---|
| 511 | /// assert_eq!( | 
|---|
| 512 | ///     parse_from_str( "2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), | 
|---|
| 513 | ///     Ok(NaiveTime::from_hms_opt(12, 34, 56).unwrap()) | 
|---|
| 514 | /// ); | 
|---|
| 515 | /// ``` | 
|---|
| 516 | /// | 
|---|
| 517 | /// [Leap seconds](#leap-second-handling) are correctly handled by | 
|---|
| 518 | /// treating any time of the form `hh:mm:60` as a leap second. | 
|---|
| 519 | /// (This equally applies to the formatting, so the round trip is possible.) | 
|---|
| 520 | /// | 
|---|
| 521 | /// ``` | 
|---|
| 522 | /// # use chrono::NaiveTime; | 
|---|
| 523 | /// # let parse_from_str = NaiveTime::parse_from_str; | 
|---|
| 524 | /// assert_eq!( | 
|---|
| 525 | ///     parse_from_str( "08:59:60.123", "%H:%M:%S%.f"), | 
|---|
| 526 | ///     Ok(NaiveTime::from_hms_milli_opt(8, 59, 59, 1_123).unwrap()) | 
|---|
| 527 | /// ); | 
|---|
| 528 | /// ``` | 
|---|
| 529 | /// | 
|---|
| 530 | /// Missing seconds are assumed to be zero, | 
|---|
| 531 | /// but out-of-bound times or insufficient fields are errors otherwise. | 
|---|
| 532 | /// | 
|---|
| 533 | /// ``` | 
|---|
| 534 | /// # use chrono::NaiveTime; | 
|---|
| 535 | /// # let parse_from_str = NaiveTime::parse_from_str; | 
|---|
| 536 | /// assert_eq!(parse_from_str( "7:15", "%H:%M"), Ok(NaiveTime::from_hms_opt(7, 15, 0).unwrap())); | 
|---|
| 537 | /// | 
|---|
| 538 | /// assert!(parse_from_str( "04m33s", "%Mm%Ss").is_err()); | 
|---|
| 539 | /// assert!(parse_from_str( "12", "%H").is_err()); | 
|---|
| 540 | /// assert!(parse_from_str( "17:60", "%H:%M").is_err()); | 
|---|
| 541 | /// assert!(parse_from_str( "24:00:00", "%H:%M:%S").is_err()); | 
|---|
| 542 | /// ``` | 
|---|
| 543 | /// | 
|---|
| 544 | /// All parsed fields should be consistent to each other, otherwise it's an error. | 
|---|
| 545 | /// Here `%H` is for 24-hour clocks, unlike `%I`, | 
|---|
| 546 | /// and thus can be independently determined without AM/PM. | 
|---|
| 547 | /// | 
|---|
| 548 | /// ``` | 
|---|
| 549 | /// # use chrono::NaiveTime; | 
|---|
| 550 | /// # let parse_from_str = NaiveTime::parse_from_str; | 
|---|
| 551 | /// assert!(parse_from_str( "13:07 AM", "%H:%M %p").is_err()); | 
|---|
| 552 | /// ``` | 
|---|
| 553 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime> { | 
|---|
| 554 | let mut parsed = Parsed::new(); | 
|---|
| 555 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; | 
|---|
| 556 | parsed.to_naive_time() | 
|---|
| 557 | } | 
|---|
| 558 |  | 
|---|
| 559 | /// Parses a string from a user-specified format into a new `NaiveTime` value, and a slice with | 
|---|
| 560 | /// the remaining portion of the string. | 
|---|
| 561 | /// See the [`format::strftime` module](crate::format::strftime) | 
|---|
| 562 | /// on the supported escape sequences. | 
|---|
| 563 | /// | 
|---|
| 564 | /// Similar to [`parse_from_str`](#method.parse_from_str). | 
|---|
| 565 | /// | 
|---|
| 566 | /// # Example | 
|---|
| 567 | /// | 
|---|
| 568 | /// ```rust | 
|---|
| 569 | /// # use chrono::{NaiveTime}; | 
|---|
| 570 | /// let (time, remainder) = | 
|---|
| 571 | ///     NaiveTime::parse_and_remainder( "3h4m33s trailing text", "%-Hh%-Mm%-Ss").unwrap(); | 
|---|
| 572 | /// assert_eq!(time, NaiveTime::from_hms_opt(3, 4, 33).unwrap()); | 
|---|
| 573 | /// assert_eq!(remainder, " trailing text"); | 
|---|
| 574 | /// ``` | 
|---|
| 575 | pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveTime, &'a str)> { | 
|---|
| 576 | let mut parsed = Parsed::new(); | 
|---|
| 577 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; | 
|---|
| 578 | parsed.to_naive_time().map(|t| (t, remainder)) | 
|---|
| 579 | } | 
|---|
| 580 |  | 
|---|
| 581 | /// Adds given `TimeDelta` to the current time, and also returns the number of *seconds* | 
|---|
| 582 | /// in the integral number of days ignored from the addition. | 
|---|
| 583 | /// | 
|---|
| 584 | /// # Example | 
|---|
| 585 | /// | 
|---|
| 586 | /// ``` | 
|---|
| 587 | /// use chrono::{NaiveTime, TimeDelta}; | 
|---|
| 588 | /// | 
|---|
| 589 | /// let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); | 
|---|
| 590 | /// | 
|---|
| 591 | /// assert_eq!( | 
|---|
| 592 | ///     from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(11).unwrap()), | 
|---|
| 593 | ///     (from_hms(14, 4, 5), 0) | 
|---|
| 594 | /// ); | 
|---|
| 595 | /// assert_eq!( | 
|---|
| 596 | ///     from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(23).unwrap()), | 
|---|
| 597 | ///     (from_hms(2, 4, 5), 86_400) | 
|---|
| 598 | /// ); | 
|---|
| 599 | /// assert_eq!( | 
|---|
| 600 | ///     from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(-7).unwrap()), | 
|---|
| 601 | ///     (from_hms(20, 4, 5), -86_400) | 
|---|
| 602 | /// ); | 
|---|
| 603 | /// ``` | 
|---|
| 604 | #[ must_use] | 
|---|
| 605 | pub const fn overflowing_add_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) { | 
|---|
| 606 | let mut secs = self.secs as i64; | 
|---|
| 607 | let mut frac = self.frac as i32; | 
|---|
| 608 | let secs_to_add = rhs.num_seconds(); | 
|---|
| 609 | let frac_to_add = rhs.subsec_nanos(); | 
|---|
| 610 |  | 
|---|
| 611 | // Check if `self` is a leap second and adding `rhs` would escape that leap second. | 
|---|
| 612 | // If that is the case, update `frac` and `secs` to involve no leap second. | 
|---|
| 613 | // If it stays within the leap second or the second before, and only adds a fractional | 
|---|
| 614 | // second, just do that and return (this way the rest of the code can ignore leap seconds). | 
|---|
| 615 | if frac >= 1_000_000_000 { | 
|---|
| 616 | // check below is adjusted to not overflow an i32: `frac + frac_to_add >= 2_000_000_000` | 
|---|
| 617 | if secs_to_add > 0 || (frac_to_add > 0 && frac >= 2_000_000_000 - frac_to_add) { | 
|---|
| 618 | frac -= 1_000_000_000; | 
|---|
| 619 | } else if secs_to_add < 0 { | 
|---|
| 620 | frac -= 1_000_000_000; | 
|---|
| 621 | secs += 1; | 
|---|
| 622 | } else { | 
|---|
| 623 | return (NaiveTime { secs: self.secs, frac: (frac + frac_to_add) as u32 }, 0); | 
|---|
| 624 | } | 
|---|
| 625 | } | 
|---|
| 626 |  | 
|---|
| 627 | let mut secs = secs + secs_to_add; | 
|---|
| 628 | frac += frac_to_add; | 
|---|
| 629 |  | 
|---|
| 630 | if frac < 0 { | 
|---|
| 631 | frac += 1_000_000_000; | 
|---|
| 632 | secs -= 1; | 
|---|
| 633 | } else if frac >= 1_000_000_000 { | 
|---|
| 634 | frac -= 1_000_000_000; | 
|---|
| 635 | secs += 1; | 
|---|
| 636 | } | 
|---|
| 637 |  | 
|---|
| 638 | let secs_in_day = secs.rem_euclid(86_400); | 
|---|
| 639 | let remaining = secs - secs_in_day; | 
|---|
| 640 | (NaiveTime { secs: secs_in_day as u32, frac: frac as u32 }, remaining) | 
|---|
| 641 | } | 
|---|
| 642 |  | 
|---|
| 643 | /// Subtracts given `TimeDelta` from the current time, and also returns the number of *seconds* | 
|---|
| 644 | /// in the integral number of days ignored from the subtraction. | 
|---|
| 645 | /// | 
|---|
| 646 | /// # Example | 
|---|
| 647 | /// | 
|---|
| 648 | /// ``` | 
|---|
| 649 | /// use chrono::{NaiveTime, TimeDelta}; | 
|---|
| 650 | /// | 
|---|
| 651 | /// let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); | 
|---|
| 652 | /// | 
|---|
| 653 | /// assert_eq!( | 
|---|
| 654 | ///     from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(2).unwrap()), | 
|---|
| 655 | ///     (from_hms(1, 4, 5), 0) | 
|---|
| 656 | /// ); | 
|---|
| 657 | /// assert_eq!( | 
|---|
| 658 | ///     from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(17).unwrap()), | 
|---|
| 659 | ///     (from_hms(10, 4, 5), 86_400) | 
|---|
| 660 | /// ); | 
|---|
| 661 | /// assert_eq!( | 
|---|
| 662 | ///     from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(-22).unwrap()), | 
|---|
| 663 | ///     (from_hms(1, 4, 5), -86_400) | 
|---|
| 664 | /// ); | 
|---|
| 665 | /// ``` | 
|---|
| 666 | #[ inline] | 
|---|
| 667 | #[ must_use] | 
|---|
| 668 | pub const fn overflowing_sub_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) { | 
|---|
| 669 | let (time, rhs) = self.overflowing_add_signed(rhs.neg()); | 
|---|
| 670 | (time, -rhs) // safe to negate, rhs is within +/- (2^63 / 1000) | 
|---|
| 671 | } | 
|---|
| 672 |  | 
|---|
| 673 | /// Subtracts another `NaiveTime` from the current time. | 
|---|
| 674 | /// Returns a `TimeDelta` within +/- 1 day. | 
|---|
| 675 | /// This does not overflow or underflow at all. | 
|---|
| 676 | /// | 
|---|
| 677 | /// As a part of Chrono's [leap second handling](#leap-second-handling), | 
|---|
| 678 | /// the subtraction assumes that **there is no leap second ever**, | 
|---|
| 679 | /// except when any of the `NaiveTime`s themselves represents a leap second | 
|---|
| 680 | /// in which case the assumption becomes that | 
|---|
| 681 | /// **there are exactly one (or two) leap second(s) ever**. | 
|---|
| 682 | /// | 
|---|
| 683 | /// # Example | 
|---|
| 684 | /// | 
|---|
| 685 | /// ``` | 
|---|
| 686 | /// use chrono::{NaiveTime, TimeDelta}; | 
|---|
| 687 | /// | 
|---|
| 688 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); | 
|---|
| 689 | /// let since = NaiveTime::signed_duration_since; | 
|---|
| 690 | /// | 
|---|
| 691 | /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)), TimeDelta::zero()); | 
|---|
| 692 | /// assert_eq!( | 
|---|
| 693 | ///     since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)), | 
|---|
| 694 | ///     TimeDelta::try_milliseconds(25).unwrap() | 
|---|
| 695 | /// ); | 
|---|
| 696 | /// assert_eq!( | 
|---|
| 697 | ///     since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)), | 
|---|
| 698 | ///     TimeDelta::try_milliseconds(975).unwrap() | 
|---|
| 699 | /// ); | 
|---|
| 700 | /// assert_eq!( | 
|---|
| 701 | ///     since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)), | 
|---|
| 702 | ///     TimeDelta::try_seconds(7).unwrap() | 
|---|
| 703 | /// ); | 
|---|
| 704 | /// assert_eq!( | 
|---|
| 705 | ///     since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)), | 
|---|
| 706 | ///     TimeDelta::try_seconds(5 * 60).unwrap() | 
|---|
| 707 | /// ); | 
|---|
| 708 | /// assert_eq!( | 
|---|
| 709 | ///     since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)), | 
|---|
| 710 | ///     TimeDelta::try_seconds(3 * 3600).unwrap() | 
|---|
| 711 | /// ); | 
|---|
| 712 | /// assert_eq!( | 
|---|
| 713 | ///     since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)), | 
|---|
| 714 | ///     TimeDelta::try_seconds(-3600).unwrap() | 
|---|
| 715 | /// ); | 
|---|
| 716 | /// assert_eq!( | 
|---|
| 717 | ///     since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)), | 
|---|
| 718 | ///     TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap() | 
|---|
| 719 | /// ); | 
|---|
| 720 | /// ``` | 
|---|
| 721 | /// | 
|---|
| 722 | /// Leap seconds are handled, but the subtraction assumes that | 
|---|
| 723 | /// there were no other leap seconds happened. | 
|---|
| 724 | /// | 
|---|
| 725 | /// ``` | 
|---|
| 726 | /// # use chrono::{TimeDelta, NaiveTime}; | 
|---|
| 727 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; | 
|---|
| 728 | /// # let since = NaiveTime::signed_duration_since; | 
|---|
| 729 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)), | 
|---|
| 730 | ///            TimeDelta::try_seconds(1).unwrap()); | 
|---|
| 731 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)), | 
|---|
| 732 | ///            TimeDelta::try_milliseconds(1500).unwrap()); | 
|---|
| 733 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)), | 
|---|
| 734 | ///            TimeDelta::try_seconds(60).unwrap()); | 
|---|
| 735 | /// assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)), | 
|---|
| 736 | ///            TimeDelta::try_seconds(1).unwrap()); | 
|---|
| 737 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)), | 
|---|
| 738 | ///            TimeDelta::try_seconds(61).unwrap()); | 
|---|
| 739 | /// ``` | 
|---|
| 740 | #[ must_use] | 
|---|
| 741 | pub const fn signed_duration_since(self, rhs: NaiveTime) -> TimeDelta { | 
|---|
| 742 | //     |    |    :leap|    |    |    |    |    |    |    :leap|    | | 
|---|
| 743 | //     |    |    :    |    |    |    |    |    |    |    :    |    | | 
|---|
| 744 | // ----+----+-----*---+----+----+----+----+----+----+-------*-+----+---- | 
|---|
| 745 | //          |   `rhs` |                             |    `self` | 
|---|
| 746 | //          |======================================>|       | | 
|---|
| 747 | //          |     |  `self.secs - rhs.secs`         |`self.frac` | 
|---|
| 748 | //          |====>|   |                             |======>| | 
|---|
| 749 | //      `rhs.frac`|========================================>| | 
|---|
| 750 | //          |     |   |        `self - rhs`         |       | | 
|---|
| 751 |  | 
|---|
| 752 | let mut secs = self.secs as i64 - rhs.secs as i64; | 
|---|
| 753 | let frac = self.frac as i64 - rhs.frac as i64; | 
|---|
| 754 |  | 
|---|
| 755 | // `secs` may contain a leap second yet to be counted | 
|---|
| 756 | if self.secs > rhs.secs && rhs.frac >= 1_000_000_000 { | 
|---|
| 757 | secs += 1; | 
|---|
| 758 | } else if self.secs < rhs.secs && self.frac >= 1_000_000_000 { | 
|---|
| 759 | secs -= 1; | 
|---|
| 760 | } | 
|---|
| 761 |  | 
|---|
| 762 | let secs_from_frac = frac.div_euclid(1_000_000_000); | 
|---|
| 763 | let frac = frac.rem_euclid(1_000_000_000) as u32; | 
|---|
| 764 |  | 
|---|
| 765 | expect(TimeDelta::new(secs + secs_from_frac, frac), "must be in range") | 
|---|
| 766 | } | 
|---|
| 767 |  | 
|---|
| 768 | /// Adds given `FixedOffset` to the current time, and returns the number of days that should be | 
|---|
| 769 | /// added to a date as a result of the offset (either `-1`, `0`, or `1` because the offset is | 
|---|
| 770 | /// always less than 24h). | 
|---|
| 771 | /// | 
|---|
| 772 | /// This method is similar to [`overflowing_add_signed`](#method.overflowing_add_signed), but | 
|---|
| 773 | /// preserves leap seconds. | 
|---|
| 774 | pub(super) const fn overflowing_add_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) { | 
|---|
| 775 | let secs = self.secs as i32 + offset.local_minus_utc(); | 
|---|
| 776 | let days = secs.div_euclid(86_400); | 
|---|
| 777 | let secs = secs.rem_euclid(86_400); | 
|---|
| 778 | (NaiveTime { secs: secs as u32, frac: self.frac }, days) | 
|---|
| 779 | } | 
|---|
| 780 |  | 
|---|
| 781 | /// Subtracts given `FixedOffset` from the current time, and returns the number of days that | 
|---|
| 782 | /// should be added to a date as a result of the offset (either `-1`, `0`, or `1` because the | 
|---|
| 783 | /// offset is always less than 24h). | 
|---|
| 784 | /// | 
|---|
| 785 | /// This method is similar to [`overflowing_sub_signed`](#method.overflowing_sub_signed), but | 
|---|
| 786 | /// preserves leap seconds. | 
|---|
| 787 | pub(super) const fn overflowing_sub_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) { | 
|---|
| 788 | let secs = self.secs as i32 - offset.local_minus_utc(); | 
|---|
| 789 | let days = secs.div_euclid(86_400); | 
|---|
| 790 | let secs = secs.rem_euclid(86_400); | 
|---|
| 791 | (NaiveTime { secs: secs as u32, frac: self.frac }, days) | 
|---|
| 792 | } | 
|---|
| 793 |  | 
|---|
| 794 | /// Formats the time with the specified formatting items. | 
|---|
| 795 | /// Otherwise it is the same as the ordinary [`format`](#method.format) method. | 
|---|
| 796 | /// | 
|---|
| 797 | /// The `Iterator` of items should be `Clone`able, | 
|---|
| 798 | /// since the resulting `DelayedFormat` value may be formatted multiple times. | 
|---|
| 799 | /// | 
|---|
| 800 | /// # Example | 
|---|
| 801 | /// | 
|---|
| 802 | /// ``` | 
|---|
| 803 | /// use chrono::format::strftime::StrftimeItems; | 
|---|
| 804 | /// use chrono::NaiveTime; | 
|---|
| 805 | /// | 
|---|
| 806 | /// let fmt = StrftimeItems::new( "%H:%M:%S"); | 
|---|
| 807 | /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); | 
|---|
| 808 | /// assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04"); | 
|---|
| 809 | /// assert_eq!(t.format( "%H:%M:%S").to_string(), "23:56:04"); | 
|---|
| 810 | /// ``` | 
|---|
| 811 | /// | 
|---|
| 812 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. | 
|---|
| 813 | /// | 
|---|
| 814 | /// ``` | 
|---|
| 815 | /// # use chrono::NaiveTime; | 
|---|
| 816 | /// # use chrono::format::strftime::StrftimeItems; | 
|---|
| 817 | /// # let fmt = StrftimeItems::new( "%H:%M:%S").clone(); | 
|---|
| 818 | /// # let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); | 
|---|
| 819 | /// assert_eq!(format!( "{}", t.format_with_items(fmt)), "23:56:04"); | 
|---|
| 820 | /// ``` | 
|---|
| 821 | #[ cfg(feature = "alloc")] | 
|---|
| 822 | #[ inline] | 
|---|
| 823 | #[ must_use] | 
|---|
| 824 | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> | 
|---|
| 825 | where | 
|---|
| 826 | I: Iterator<Item = B> + Clone, | 
|---|
| 827 | B: Borrow<Item<'a>>, | 
|---|
| 828 | { | 
|---|
| 829 | DelayedFormat::new(None, Some(*self), items) | 
|---|
| 830 | } | 
|---|
| 831 |  | 
|---|
| 832 | /// Formats the time with the specified format string. | 
|---|
| 833 | /// See the [`format::strftime` module](crate::format::strftime) | 
|---|
| 834 | /// on the supported escape sequences. | 
|---|
| 835 | /// | 
|---|
| 836 | /// This returns a `DelayedFormat`, | 
|---|
| 837 | /// which gets converted to a string only when actual formatting happens. | 
|---|
| 838 | /// You may use the `to_string` method to get a `String`, | 
|---|
| 839 | /// or just feed it into `print!` and other formatting macros. | 
|---|
| 840 | /// (In this way it avoids the redundant memory allocation.) | 
|---|
| 841 | /// | 
|---|
| 842 | /// A wrong format string does *not* issue an error immediately. | 
|---|
| 843 | /// Rather, converting or formatting the `DelayedFormat` fails. | 
|---|
| 844 | /// You are recommended to immediately use `DelayedFormat` for this reason. | 
|---|
| 845 | /// | 
|---|
| 846 | /// # Example | 
|---|
| 847 | /// | 
|---|
| 848 | /// ``` | 
|---|
| 849 | /// use chrono::NaiveTime; | 
|---|
| 850 | /// | 
|---|
| 851 | /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); | 
|---|
| 852 | /// assert_eq!(t.format( "%H:%M:%S").to_string(), "23:56:04"); | 
|---|
| 853 | /// assert_eq!(t.format( "%H:%M:%S%.6f").to_string(), "23:56:04.012345"); | 
|---|
| 854 | /// assert_eq!(t.format( "%-I:%M %p").to_string(), "11:56 PM"); | 
|---|
| 855 | /// ``` | 
|---|
| 856 | /// | 
|---|
| 857 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. | 
|---|
| 858 | /// | 
|---|
| 859 | /// ``` | 
|---|
| 860 | /// # use chrono::NaiveTime; | 
|---|
| 861 | /// # let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); | 
|---|
| 862 | /// assert_eq!(format!( "{}", t.format( "%H:%M:%S")), "23:56:04"); | 
|---|
| 863 | /// assert_eq!(format!( "{}", t.format( "%H:%M:%S%.6f")), "23:56:04.012345"); | 
|---|
| 864 | /// assert_eq!(format!( "{}", t.format( "%-I:%M %p")), "11:56 PM"); | 
|---|
| 865 | /// ``` | 
|---|
| 866 | #[ cfg(feature = "alloc")] | 
|---|
| 867 | #[ inline] | 
|---|
| 868 | #[ must_use] | 
|---|
| 869 | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { | 
|---|
| 870 | self.format_with_items(StrftimeItems::new(fmt)) | 
|---|
| 871 | } | 
|---|
| 872 |  | 
|---|
| 873 | /// Returns a triple of the hour, minute and second numbers. | 
|---|
| 874 | pub(crate) fn hms(&self) -> (u32, u32, u32) { | 
|---|
| 875 | let sec = self.secs % 60; | 
|---|
| 876 | let mins = self.secs / 60; | 
|---|
| 877 | let min = mins % 60; | 
|---|
| 878 | let hour = mins / 60; | 
|---|
| 879 | (hour, min, sec) | 
|---|
| 880 | } | 
|---|
| 881 |  | 
|---|
| 882 | /// Returns the number of non-leap seconds past the last midnight. | 
|---|
| 883 | // This duplicates `Timelike::num_seconds_from_midnight()`, because trait methods can't be const | 
|---|
| 884 | // yet. | 
|---|
| 885 | #[ inline] | 
|---|
| 886 | pub(crate) const fn num_seconds_from_midnight(&self) -> u32 { | 
|---|
| 887 | self.secs | 
|---|
| 888 | } | 
|---|
| 889 |  | 
|---|
| 890 | /// Returns the number of nanoseconds since the whole non-leap second. | 
|---|
| 891 | // This duplicates `Timelike::nanosecond()`, because trait methods can't be const yet. | 
|---|
| 892 | #[ inline] | 
|---|
| 893 | pub(crate) const fn nanosecond(&self) -> u32 { | 
|---|
| 894 | self.frac | 
|---|
| 895 | } | 
|---|
| 896 |  | 
|---|
| 897 | /// The earliest possible `NaiveTime` | 
|---|
| 898 | pub const MIN: Self = Self { secs: 0, frac: 0 }; | 
|---|
| 899 | pub(super) const MAX: Self = Self { secs: 23 * 3600 + 59 * 60 + 59, frac: 999_999_999 }; | 
|---|
| 900 | } | 
|---|
| 901 |  | 
|---|
| 902 | impl Timelike for NaiveTime { | 
|---|
| 903 | /// Returns the hour number from 0 to 23. | 
|---|
| 904 | /// | 
|---|
| 905 | /// # Example | 
|---|
| 906 | /// | 
|---|
| 907 | /// ``` | 
|---|
| 908 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 909 | /// | 
|---|
| 910 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().hour(), 0); | 
|---|
| 911 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().hour(), 23); | 
|---|
| 912 | /// ``` | 
|---|
| 913 | #[ inline] | 
|---|
| 914 | fn hour(&self) -> u32 { | 
|---|
| 915 | self.hms().0 | 
|---|
| 916 | } | 
|---|
| 917 |  | 
|---|
| 918 | /// Returns the minute number from 0 to 59. | 
|---|
| 919 | /// | 
|---|
| 920 | /// # Example | 
|---|
| 921 | /// | 
|---|
| 922 | /// ``` | 
|---|
| 923 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 924 | /// | 
|---|
| 925 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().minute(), 0); | 
|---|
| 926 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().minute(), 56); | 
|---|
| 927 | /// ``` | 
|---|
| 928 | #[ inline] | 
|---|
| 929 | fn minute(&self) -> u32 { | 
|---|
| 930 | self.hms().1 | 
|---|
| 931 | } | 
|---|
| 932 |  | 
|---|
| 933 | /// Returns the second number from 0 to 59. | 
|---|
| 934 | /// | 
|---|
| 935 | /// # Example | 
|---|
| 936 | /// | 
|---|
| 937 | /// ``` | 
|---|
| 938 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 939 | /// | 
|---|
| 940 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().second(), 0); | 
|---|
| 941 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().second(), 4); | 
|---|
| 942 | /// ``` | 
|---|
| 943 | /// | 
|---|
| 944 | /// This method never returns 60 even when it is a leap second. | 
|---|
| 945 | /// ([Why?](#leap-second-handling)) | 
|---|
| 946 | /// Use the proper [formatting method](#method.format) to get a human-readable representation. | 
|---|
| 947 | /// | 
|---|
| 948 | /// ``` | 
|---|
| 949 | /// # #[ cfg(feature = "alloc")] { | 
|---|
| 950 | /// # use chrono::{NaiveTime, Timelike}; | 
|---|
| 951 | /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap(); | 
|---|
| 952 | /// assert_eq!(leap.second(), 59); | 
|---|
| 953 | /// assert_eq!(leap.format( "%H:%M:%S").to_string(), "23:59:60"); | 
|---|
| 954 | /// # } | 
|---|
| 955 | /// ``` | 
|---|
| 956 | #[ inline] | 
|---|
| 957 | fn second(&self) -> u32 { | 
|---|
| 958 | self.hms().2 | 
|---|
| 959 | } | 
|---|
| 960 |  | 
|---|
| 961 | /// Returns the number of nanoseconds since the whole non-leap second. | 
|---|
| 962 | /// The range from 1,000,000,000 to 1,999,999,999 represents | 
|---|
| 963 | /// the [leap second](#leap-second-handling). | 
|---|
| 964 | /// | 
|---|
| 965 | /// # Example | 
|---|
| 966 | /// | 
|---|
| 967 | /// ``` | 
|---|
| 968 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 969 | /// | 
|---|
| 970 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().nanosecond(), 0); | 
|---|
| 971 | /// assert_eq!( | 
|---|
| 972 | ///     NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().nanosecond(), | 
|---|
| 973 | ///     12_345_678 | 
|---|
| 974 | /// ); | 
|---|
| 975 | /// ``` | 
|---|
| 976 | /// | 
|---|
| 977 | /// Leap seconds may have seemingly out-of-range return values. | 
|---|
| 978 | /// You can reduce the range with `time.nanosecond() % 1_000_000_000`, or | 
|---|
| 979 | /// use the proper [formatting method](#method.format) to get a human-readable representation. | 
|---|
| 980 | /// | 
|---|
| 981 | /// ``` | 
|---|
| 982 | /// # #[ cfg(feature = "alloc")] { | 
|---|
| 983 | /// # use chrono::{NaiveTime, Timelike}; | 
|---|
| 984 | /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap(); | 
|---|
| 985 | /// assert_eq!(leap.nanosecond(), 1_000_000_000); | 
|---|
| 986 | /// assert_eq!(leap.format( "%H:%M:%S%.9f").to_string(), "23:59:60.000000000"); | 
|---|
| 987 | /// # } | 
|---|
| 988 | /// ``` | 
|---|
| 989 | #[ inline] | 
|---|
| 990 | fn nanosecond(&self) -> u32 { | 
|---|
| 991 | self.frac | 
|---|
| 992 | } | 
|---|
| 993 |  | 
|---|
| 994 | /// Makes a new `NaiveTime` with the hour number changed. | 
|---|
| 995 | /// | 
|---|
| 996 | /// # Errors | 
|---|
| 997 | /// | 
|---|
| 998 | /// Returns `None` if the value for `hour` is invalid. | 
|---|
| 999 | /// | 
|---|
| 1000 | /// # Example | 
|---|
| 1001 | /// | 
|---|
| 1002 | /// ``` | 
|---|
| 1003 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 1004 | /// | 
|---|
| 1005 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); | 
|---|
| 1006 | /// assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano_opt(7, 56, 4, 12_345_678).unwrap())); | 
|---|
| 1007 | /// assert_eq!(dt.with_hour(24), None); | 
|---|
| 1008 | /// ``` | 
|---|
| 1009 | #[ inline] | 
|---|
| 1010 | fn with_hour(&self, hour: u32) -> Option<NaiveTime> { | 
|---|
| 1011 | if hour >= 24 { | 
|---|
| 1012 | return None; | 
|---|
| 1013 | } | 
|---|
| 1014 | let secs = hour * 3600 + self.secs % 3600; | 
|---|
| 1015 | Some(NaiveTime { secs, ..*self }) | 
|---|
| 1016 | } | 
|---|
| 1017 |  | 
|---|
| 1018 | /// Makes a new `NaiveTime` with the minute number changed. | 
|---|
| 1019 | /// | 
|---|
| 1020 | /// # Errors | 
|---|
| 1021 | /// | 
|---|
| 1022 | /// Returns `None` if the value for `minute` is invalid. | 
|---|
| 1023 | /// | 
|---|
| 1024 | /// # Example | 
|---|
| 1025 | /// | 
|---|
| 1026 | /// ``` | 
|---|
| 1027 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 1028 | /// | 
|---|
| 1029 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); | 
|---|
| 1030 | /// assert_eq!( | 
|---|
| 1031 | ///     dt.with_minute(45), | 
|---|
| 1032 | ///     Some(NaiveTime::from_hms_nano_opt(23, 45, 4, 12_345_678).unwrap()) | 
|---|
| 1033 | /// ); | 
|---|
| 1034 | /// assert_eq!(dt.with_minute(60), None); | 
|---|
| 1035 | /// ``` | 
|---|
| 1036 | #[ inline] | 
|---|
| 1037 | fn with_minute(&self, min: u32) -> Option<NaiveTime> { | 
|---|
| 1038 | if min >= 60 { | 
|---|
| 1039 | return None; | 
|---|
| 1040 | } | 
|---|
| 1041 | let secs = self.secs / 3600 * 3600 + min * 60 + self.secs % 60; | 
|---|
| 1042 | Some(NaiveTime { secs, ..*self }) | 
|---|
| 1043 | } | 
|---|
| 1044 |  | 
|---|
| 1045 | /// Makes a new `NaiveTime` with the second number changed. | 
|---|
| 1046 | /// | 
|---|
| 1047 | /// As with the [`second`](#method.second) method, | 
|---|
| 1048 | /// the input range is restricted to 0 through 59. | 
|---|
| 1049 | /// | 
|---|
| 1050 | /// # Errors | 
|---|
| 1051 | /// | 
|---|
| 1052 | /// Returns `None` if the value for `second` is invalid. | 
|---|
| 1053 | /// | 
|---|
| 1054 | /// # Example | 
|---|
| 1055 | /// | 
|---|
| 1056 | /// ``` | 
|---|
| 1057 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 1058 | /// | 
|---|
| 1059 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); | 
|---|
| 1060 | /// assert_eq!( | 
|---|
| 1061 | ///     dt.with_second(17), | 
|---|
| 1062 | ///     Some(NaiveTime::from_hms_nano_opt(23, 56, 17, 12_345_678).unwrap()) | 
|---|
| 1063 | /// ); | 
|---|
| 1064 | /// assert_eq!(dt.with_second(60), None); | 
|---|
| 1065 | /// ``` | 
|---|
| 1066 | #[ inline] | 
|---|
| 1067 | fn with_second(&self, sec: u32) -> Option<NaiveTime> { | 
|---|
| 1068 | if sec >= 60 { | 
|---|
| 1069 | return None; | 
|---|
| 1070 | } | 
|---|
| 1071 | let secs = self.secs / 60 * 60 + sec; | 
|---|
| 1072 | Some(NaiveTime { secs, ..*self }) | 
|---|
| 1073 | } | 
|---|
| 1074 |  | 
|---|
| 1075 | /// Makes a new `NaiveTime` with nanoseconds since the whole non-leap second changed. | 
|---|
| 1076 | /// | 
|---|
| 1077 | /// As with the [`nanosecond`](#method.nanosecond) method, | 
|---|
| 1078 | /// the input range can exceed 1,000,000,000 for leap seconds. | 
|---|
| 1079 | /// | 
|---|
| 1080 | /// # Errors | 
|---|
| 1081 | /// | 
|---|
| 1082 | /// Returns `None` if `nanosecond >= 2,000,000,000`. | 
|---|
| 1083 | /// | 
|---|
| 1084 | /// # Example | 
|---|
| 1085 | /// | 
|---|
| 1086 | /// ``` | 
|---|
| 1087 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 1088 | /// | 
|---|
| 1089 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); | 
|---|
| 1090 | /// assert_eq!( | 
|---|
| 1091 | ///     dt.with_nanosecond(333_333_333), | 
|---|
| 1092 | ///     Some(NaiveTime::from_hms_nano_opt(23, 56, 4, 333_333_333).unwrap()) | 
|---|
| 1093 | /// ); | 
|---|
| 1094 | /// assert_eq!(dt.with_nanosecond(2_000_000_000), None); | 
|---|
| 1095 | /// ``` | 
|---|
| 1096 | /// | 
|---|
| 1097 | /// Leap seconds can theoretically follow *any* whole second. | 
|---|
| 1098 | /// The following would be a proper leap second at the time zone offset of UTC-00:03:57 | 
|---|
| 1099 | /// (there are several historical examples comparable to this "non-sense" offset), | 
|---|
| 1100 | /// and therefore is allowed. | 
|---|
| 1101 | /// | 
|---|
| 1102 | /// ``` | 
|---|
| 1103 | /// # use chrono::{NaiveTime, Timelike}; | 
|---|
| 1104 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); | 
|---|
| 1105 | /// let strange_leap_second = dt.with_nanosecond(1_333_333_333).unwrap(); | 
|---|
| 1106 | /// assert_eq!(strange_leap_second.nanosecond(), 1_333_333_333); | 
|---|
| 1107 | /// ``` | 
|---|
| 1108 | #[ inline] | 
|---|
| 1109 | fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime> { | 
|---|
| 1110 | if nano >= 2_000_000_000 { | 
|---|
| 1111 | return None; | 
|---|
| 1112 | } | 
|---|
| 1113 | Some(NaiveTime { frac: nano, ..*self }) | 
|---|
| 1114 | } | 
|---|
| 1115 |  | 
|---|
| 1116 | /// Returns the number of non-leap seconds past the last midnight. | 
|---|
| 1117 | /// | 
|---|
| 1118 | /// # Example | 
|---|
| 1119 | /// | 
|---|
| 1120 | /// ``` | 
|---|
| 1121 | /// use chrono::{NaiveTime, Timelike}; | 
|---|
| 1122 | /// | 
|---|
| 1123 | /// assert_eq!(NaiveTime::from_hms_opt(1, 2, 3).unwrap().num_seconds_from_midnight(), 3723); | 
|---|
| 1124 | /// assert_eq!( | 
|---|
| 1125 | ///     NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().num_seconds_from_midnight(), | 
|---|
| 1126 | ///     86164 | 
|---|
| 1127 | /// ); | 
|---|
| 1128 | /// assert_eq!( | 
|---|
| 1129 | ///     NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap().num_seconds_from_midnight(), | 
|---|
| 1130 | ///     86399 | 
|---|
| 1131 | /// ); | 
|---|
| 1132 | /// ``` | 
|---|
| 1133 | #[ inline] | 
|---|
| 1134 | fn num_seconds_from_midnight(&self) -> u32 { | 
|---|
| 1135 | self.secs // do not repeat the calculation! | 
|---|
| 1136 | } | 
|---|
| 1137 | } | 
|---|
| 1138 |  | 
|---|
| 1139 | /// Add `TimeDelta` to `NaiveTime`. | 
|---|
| 1140 | /// | 
|---|
| 1141 | /// This wraps around and never overflows or underflows. | 
|---|
| 1142 | /// In particular the addition ignores integral number of days. | 
|---|
| 1143 | /// | 
|---|
| 1144 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap | 
|---|
| 1145 | /// second ever**, except when the `NaiveTime` itself represents a leap second in which case the | 
|---|
| 1146 | /// assumption becomes that **there is exactly a single leap second ever**. | 
|---|
| 1147 | /// | 
|---|
| 1148 | /// # Example | 
|---|
| 1149 | /// | 
|---|
| 1150 | /// ``` | 
|---|
| 1151 | /// use chrono::{NaiveTime, TimeDelta}; | 
|---|
| 1152 | /// | 
|---|
| 1153 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); | 
|---|
| 1154 | /// | 
|---|
| 1155 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::zero(), from_hmsm(3, 5, 7, 0)); | 
|---|
| 1156 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 8, 0)); | 
|---|
| 1157 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-1).unwrap(), from_hmsm(3, 5, 6, 0)); | 
|---|
| 1158 | /// assert_eq!( | 
|---|
| 1159 | ///     from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(60 + 4).unwrap(), | 
|---|
| 1160 | ///     from_hmsm(3, 6, 11, 0) | 
|---|
| 1161 | /// ); | 
|---|
| 1162 | /// assert_eq!( | 
|---|
| 1163 | ///     from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(7 * 60 * 60 - 6 * 60).unwrap(), | 
|---|
| 1164 | ///     from_hmsm(9, 59, 7, 0) | 
|---|
| 1165 | /// ); | 
|---|
| 1166 | /// assert_eq!( | 
|---|
| 1167 | ///     from_hmsm(3, 5, 7, 0) + TimeDelta::try_milliseconds(80).unwrap(), | 
|---|
| 1168 | ///     from_hmsm(3, 5, 7, 80) | 
|---|
| 1169 | /// ); | 
|---|
| 1170 | /// assert_eq!( | 
|---|
| 1171 | ///     from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(280).unwrap(), | 
|---|
| 1172 | ///     from_hmsm(3, 5, 8, 230) | 
|---|
| 1173 | /// ); | 
|---|
| 1174 | /// assert_eq!( | 
|---|
| 1175 | ///     from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(-980).unwrap(), | 
|---|
| 1176 | ///     from_hmsm(3, 5, 6, 970) | 
|---|
| 1177 | /// ); | 
|---|
| 1178 | /// ``` | 
|---|
| 1179 | /// | 
|---|
| 1180 | /// The addition wraps around. | 
|---|
| 1181 | /// | 
|---|
| 1182 | /// ``` | 
|---|
| 1183 | /// # use chrono::{TimeDelta, NaiveTime}; | 
|---|
| 1184 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; | 
|---|
| 1185 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(22*60*60).unwrap(), from_hmsm(1, 5, 7, 0)); | 
|---|
| 1186 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-8*60*60).unwrap(), from_hmsm(19, 5, 7, 0)); | 
|---|
| 1187 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0)); | 
|---|
| 1188 | /// ``` | 
|---|
| 1189 | /// | 
|---|
| 1190 | /// Leap seconds are handled, but the addition assumes that it is the only leap second happened. | 
|---|
| 1191 | /// | 
|---|
| 1192 | /// ``` | 
|---|
| 1193 | /// # use chrono::{TimeDelta, NaiveTime}; | 
|---|
| 1194 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; | 
|---|
| 1195 | /// let leap = from_hmsm(3, 5, 59, 1_300); | 
|---|
| 1196 | /// assert_eq!(leap + TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300)); | 
|---|
| 1197 | /// assert_eq!(leap + TimeDelta::try_milliseconds(-500).unwrap(), from_hmsm(3, 5, 59, 800)); | 
|---|
| 1198 | /// assert_eq!(leap + TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 1_800)); | 
|---|
| 1199 | /// assert_eq!(leap + TimeDelta::try_milliseconds(800).unwrap(), from_hmsm(3, 6, 0, 100)); | 
|---|
| 1200 | /// assert_eq!(leap + TimeDelta::try_seconds(10).unwrap(), from_hmsm(3, 6, 9, 300)); | 
|---|
| 1201 | /// assert_eq!(leap + TimeDelta::try_seconds(-10).unwrap(), from_hmsm(3, 5, 50, 300)); | 
|---|
| 1202 | /// assert_eq!(leap + TimeDelta::try_days(1).unwrap(), from_hmsm(3, 5, 59, 300)); | 
|---|
| 1203 | /// ``` | 
|---|
| 1204 | /// | 
|---|
| 1205 | /// [leap second handling]: crate::NaiveTime#leap-second-handling | 
|---|
| 1206 | impl Add<TimeDelta> for NaiveTime { | 
|---|
| 1207 | type Output = NaiveTime; | 
|---|
| 1208 |  | 
|---|
| 1209 | #[ inline] | 
|---|
| 1210 | fn add(self, rhs: TimeDelta) -> NaiveTime { | 
|---|
| 1211 | self.overflowing_add_signed(rhs).0 | 
|---|
| 1212 | } | 
|---|
| 1213 | } | 
|---|
| 1214 |  | 
|---|
| 1215 | /// Add-assign `TimeDelta` to `NaiveTime`. | 
|---|
| 1216 | /// | 
|---|
| 1217 | /// This wraps around and never overflows or underflows. | 
|---|
| 1218 | /// In particular the addition ignores integral number of days. | 
|---|
| 1219 | impl AddAssign<TimeDelta> for NaiveTime { | 
|---|
| 1220 | #[ inline] | 
|---|
| 1221 | fn add_assign(&mut self, rhs: TimeDelta) { | 
|---|
| 1222 | *self = self.add(rhs); | 
|---|
| 1223 | } | 
|---|
| 1224 | } | 
|---|
| 1225 |  | 
|---|
| 1226 | /// Add `std::time::Duration` to `NaiveTime`. | 
|---|
| 1227 | /// | 
|---|
| 1228 | /// This wraps around and never overflows or underflows. | 
|---|
| 1229 | /// In particular the addition ignores integral number of days. | 
|---|
| 1230 | impl Add<Duration> for NaiveTime { | 
|---|
| 1231 | type Output = NaiveTime; | 
|---|
| 1232 |  | 
|---|
| 1233 | #[ inline] | 
|---|
| 1234 | fn add(self, rhs: Duration) -> NaiveTime { | 
|---|
| 1235 | // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid | 
|---|
| 1236 | // overflow during the conversion to `TimeDelta`. | 
|---|
| 1237 | // But we limit to double that just in case `self` is a leap-second. | 
|---|
| 1238 | let secs: u64 = rhs.as_secs() % (2 * 24 * 60 * 60); | 
|---|
| 1239 | let d: TimeDelta = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap(); | 
|---|
| 1240 | self.overflowing_add_signed(d).0 | 
|---|
| 1241 | } | 
|---|
| 1242 | } | 
|---|
| 1243 |  | 
|---|
| 1244 | /// Add-assign `std::time::Duration` to `NaiveTime`. | 
|---|
| 1245 | /// | 
|---|
| 1246 | /// This wraps around and never overflows or underflows. | 
|---|
| 1247 | /// In particular the addition ignores integral number of days. | 
|---|
| 1248 | impl AddAssign<Duration> for NaiveTime { | 
|---|
| 1249 | #[ inline] | 
|---|
| 1250 | fn add_assign(&mut self, rhs: Duration) { | 
|---|
| 1251 | *self = *self + rhs; | 
|---|
| 1252 | } | 
|---|
| 1253 | } | 
|---|
| 1254 |  | 
|---|
| 1255 | /// Add `FixedOffset` to `NaiveTime`. | 
|---|
| 1256 | /// | 
|---|
| 1257 | /// This wraps around and never overflows or underflows. | 
|---|
| 1258 | /// In particular the addition ignores integral number of days. | 
|---|
| 1259 | impl Add<FixedOffset> for NaiveTime { | 
|---|
| 1260 | type Output = NaiveTime; | 
|---|
| 1261 |  | 
|---|
| 1262 | #[ inline] | 
|---|
| 1263 | fn add(self, rhs: FixedOffset) -> NaiveTime { | 
|---|
| 1264 | self.overflowing_add_offset(rhs).0 | 
|---|
| 1265 | } | 
|---|
| 1266 | } | 
|---|
| 1267 |  | 
|---|
| 1268 | /// Subtract `TimeDelta` from `NaiveTime`. | 
|---|
| 1269 | /// | 
|---|
| 1270 | /// This wraps around and never overflows or underflows. | 
|---|
| 1271 | /// In particular the subtraction ignores integral number of days. | 
|---|
| 1272 | /// This is the same as addition with a negated `TimeDelta`. | 
|---|
| 1273 | /// | 
|---|
| 1274 | /// As a part of Chrono's [leap second handling], the subtraction assumes that **there is no leap | 
|---|
| 1275 | /// second ever**, except when the `NaiveTime` itself represents a leap second in which case the | 
|---|
| 1276 | /// assumption becomes that **there is exactly a single leap second ever**. | 
|---|
| 1277 | /// | 
|---|
| 1278 | /// # Example | 
|---|
| 1279 | /// | 
|---|
| 1280 | /// ``` | 
|---|
| 1281 | /// use chrono::{NaiveTime, TimeDelta}; | 
|---|
| 1282 | /// | 
|---|
| 1283 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); | 
|---|
| 1284 | /// | 
|---|
| 1285 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::zero(), from_hmsm(3, 5, 7, 0)); | 
|---|
| 1286 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 6, 0)); | 
|---|
| 1287 | /// assert_eq!( | 
|---|
| 1288 | ///     from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(60 + 5).unwrap(), | 
|---|
| 1289 | ///     from_hmsm(3, 4, 2, 0) | 
|---|
| 1290 | /// ); | 
|---|
| 1291 | /// assert_eq!( | 
|---|
| 1292 | ///     from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(2 * 60 * 60 + 6 * 60).unwrap(), | 
|---|
| 1293 | ///     from_hmsm(0, 59, 7, 0) | 
|---|
| 1294 | /// ); | 
|---|
| 1295 | /// assert_eq!( | 
|---|
| 1296 | ///     from_hmsm(3, 5, 7, 0) - TimeDelta::try_milliseconds(80).unwrap(), | 
|---|
| 1297 | ///     from_hmsm(3, 5, 6, 920) | 
|---|
| 1298 | /// ); | 
|---|
| 1299 | /// assert_eq!( | 
|---|
| 1300 | ///     from_hmsm(3, 5, 7, 950) - TimeDelta::try_milliseconds(280).unwrap(), | 
|---|
| 1301 | ///     from_hmsm(3, 5, 7, 670) | 
|---|
| 1302 | /// ); | 
|---|
| 1303 | /// ``` | 
|---|
| 1304 | /// | 
|---|
| 1305 | /// The subtraction wraps around. | 
|---|
| 1306 | /// | 
|---|
| 1307 | /// ``` | 
|---|
| 1308 | /// # use chrono::{TimeDelta, NaiveTime}; | 
|---|
| 1309 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; | 
|---|
| 1310 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(8*60*60).unwrap(), from_hmsm(19, 5, 7, 0)); | 
|---|
| 1311 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0)); | 
|---|
| 1312 | /// ``` | 
|---|
| 1313 | /// | 
|---|
| 1314 | /// Leap seconds are handled, but the subtraction assumes that it is the only leap second happened. | 
|---|
| 1315 | /// | 
|---|
| 1316 | /// ``` | 
|---|
| 1317 | /// # use chrono::{TimeDelta, NaiveTime}; | 
|---|
| 1318 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; | 
|---|
| 1319 | /// let leap = from_hmsm(3, 5, 59, 1_300); | 
|---|
| 1320 | /// assert_eq!(leap - TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300)); | 
|---|
| 1321 | /// assert_eq!(leap - TimeDelta::try_milliseconds(200).unwrap(), from_hmsm(3, 5, 59, 1_100)); | 
|---|
| 1322 | /// assert_eq!(leap - TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 800)); | 
|---|
| 1323 | /// assert_eq!(leap - TimeDelta::try_seconds(60).unwrap(), from_hmsm(3, 5, 0, 300)); | 
|---|
| 1324 | /// assert_eq!(leap - TimeDelta::try_days(1).unwrap(), from_hmsm(3, 6, 0, 300)); | 
|---|
| 1325 | /// ``` | 
|---|
| 1326 | /// | 
|---|
| 1327 | /// [leap second handling]: crate::NaiveTime#leap-second-handling | 
|---|
| 1328 | impl Sub<TimeDelta> for NaiveTime { | 
|---|
| 1329 | type Output = NaiveTime; | 
|---|
| 1330 |  | 
|---|
| 1331 | #[ inline] | 
|---|
| 1332 | fn sub(self, rhs: TimeDelta) -> NaiveTime { | 
|---|
| 1333 | self.overflowing_sub_signed(rhs).0 | 
|---|
| 1334 | } | 
|---|
| 1335 | } | 
|---|
| 1336 |  | 
|---|
| 1337 | /// Subtract-assign `TimeDelta` from `NaiveTime`. | 
|---|
| 1338 | /// | 
|---|
| 1339 | /// This wraps around and never overflows or underflows. | 
|---|
| 1340 | /// In particular the subtraction ignores integral number of days. | 
|---|
| 1341 | impl SubAssign<TimeDelta> for NaiveTime { | 
|---|
| 1342 | #[ inline] | 
|---|
| 1343 | fn sub_assign(&mut self, rhs: TimeDelta) { | 
|---|
| 1344 | *self = self.sub(rhs); | 
|---|
| 1345 | } | 
|---|
| 1346 | } | 
|---|
| 1347 |  | 
|---|
| 1348 | /// Subtract `std::time::Duration` from `NaiveTime`. | 
|---|
| 1349 | /// | 
|---|
| 1350 | /// This wraps around and never overflows or underflows. | 
|---|
| 1351 | /// In particular the subtraction ignores integral number of days. | 
|---|
| 1352 | impl Sub<Duration> for NaiveTime { | 
|---|
| 1353 | type Output = NaiveTime; | 
|---|
| 1354 |  | 
|---|
| 1355 | #[ inline] | 
|---|
| 1356 | fn sub(self, rhs: Duration) -> NaiveTime { | 
|---|
| 1357 | // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid | 
|---|
| 1358 | // overflow during the conversion to `TimeDelta`. | 
|---|
| 1359 | // But we limit to double that just in case `self` is a leap-second. | 
|---|
| 1360 | let secs: u64 = rhs.as_secs() % (2 * 24 * 60 * 60); | 
|---|
| 1361 | let d: TimeDelta = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap(); | 
|---|
| 1362 | self.overflowing_sub_signed(d).0 | 
|---|
| 1363 | } | 
|---|
| 1364 | } | 
|---|
| 1365 |  | 
|---|
| 1366 | /// Subtract-assign `std::time::Duration` from `NaiveTime`. | 
|---|
| 1367 | /// | 
|---|
| 1368 | /// This wraps around and never overflows or underflows. | 
|---|
| 1369 | /// In particular the subtraction ignores integral number of days. | 
|---|
| 1370 | impl SubAssign<Duration> for NaiveTime { | 
|---|
| 1371 | #[ inline] | 
|---|
| 1372 | fn sub_assign(&mut self, rhs: Duration) { | 
|---|
| 1373 | *self = *self - rhs; | 
|---|
| 1374 | } | 
|---|
| 1375 | } | 
|---|
| 1376 |  | 
|---|
| 1377 | /// Subtract `FixedOffset` from `NaiveTime`. | 
|---|
| 1378 | /// | 
|---|
| 1379 | /// This wraps around and never overflows or underflows. | 
|---|
| 1380 | /// In particular the subtraction ignores integral number of days. | 
|---|
| 1381 | impl Sub<FixedOffset> for NaiveTime { | 
|---|
| 1382 | type Output = NaiveTime; | 
|---|
| 1383 |  | 
|---|
| 1384 | #[ inline] | 
|---|
| 1385 | fn sub(self, rhs: FixedOffset) -> NaiveTime { | 
|---|
| 1386 | self.overflowing_sub_offset(rhs).0 | 
|---|
| 1387 | } | 
|---|
| 1388 | } | 
|---|
| 1389 |  | 
|---|
| 1390 | /// Subtracts another `NaiveTime` from the current time. | 
|---|
| 1391 | /// Returns a `TimeDelta` within +/- 1 day. | 
|---|
| 1392 | /// This does not overflow or underflow at all. | 
|---|
| 1393 | /// | 
|---|
| 1394 | /// As a part of Chrono's [leap second handling](#leap-second-handling), | 
|---|
| 1395 | /// the subtraction assumes that **there is no leap second ever**, | 
|---|
| 1396 | /// except when any of the `NaiveTime`s themselves represents a leap second | 
|---|
| 1397 | /// in which case the assumption becomes that | 
|---|
| 1398 | /// **there are exactly one (or two) leap second(s) ever**. | 
|---|
| 1399 | /// | 
|---|
| 1400 | /// The implementation is a wrapper around | 
|---|
| 1401 | /// [`NaiveTime::signed_duration_since`](#method.signed_duration_since). | 
|---|
| 1402 | /// | 
|---|
| 1403 | /// # Example | 
|---|
| 1404 | /// | 
|---|
| 1405 | /// ``` | 
|---|
| 1406 | /// use chrono::{NaiveTime, TimeDelta}; | 
|---|
| 1407 | /// | 
|---|
| 1408 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); | 
|---|
| 1409 | /// | 
|---|
| 1410 | /// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), TimeDelta::zero()); | 
|---|
| 1411 | /// assert_eq!( | 
|---|
| 1412 | ///     from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), | 
|---|
| 1413 | ///     TimeDelta::try_milliseconds(25).unwrap() | 
|---|
| 1414 | /// ); | 
|---|
| 1415 | /// assert_eq!( | 
|---|
| 1416 | ///     from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), | 
|---|
| 1417 | ///     TimeDelta::try_milliseconds(975).unwrap() | 
|---|
| 1418 | /// ); | 
|---|
| 1419 | /// assert_eq!( | 
|---|
| 1420 | ///     from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), | 
|---|
| 1421 | ///     TimeDelta::try_seconds(7).unwrap() | 
|---|
| 1422 | /// ); | 
|---|
| 1423 | /// assert_eq!( | 
|---|
| 1424 | ///     from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), | 
|---|
| 1425 | ///     TimeDelta::try_seconds(5 * 60).unwrap() | 
|---|
| 1426 | /// ); | 
|---|
| 1427 | /// assert_eq!( | 
|---|
| 1428 | ///     from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), | 
|---|
| 1429 | ///     TimeDelta::try_seconds(3 * 3600).unwrap() | 
|---|
| 1430 | /// ); | 
|---|
| 1431 | /// assert_eq!( | 
|---|
| 1432 | ///     from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), | 
|---|
| 1433 | ///     TimeDelta::try_seconds(-3600).unwrap() | 
|---|
| 1434 | /// ); | 
|---|
| 1435 | /// assert_eq!( | 
|---|
| 1436 | ///     from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800), | 
|---|
| 1437 | ///     TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap() | 
|---|
| 1438 | /// ); | 
|---|
| 1439 | /// ``` | 
|---|
| 1440 | /// | 
|---|
| 1441 | /// Leap seconds are handled, but the subtraction assumes that | 
|---|
| 1442 | /// there were no other leap seconds happened. | 
|---|
| 1443 | /// | 
|---|
| 1444 | /// ``` | 
|---|
| 1445 | /// # use chrono::{TimeDelta, NaiveTime}; | 
|---|
| 1446 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; | 
|---|
| 1447 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), TimeDelta::try_seconds(1).unwrap()); | 
|---|
| 1448 | /// assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0), | 
|---|
| 1449 | ///            TimeDelta::try_milliseconds(1500).unwrap()); | 
|---|
| 1450 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), TimeDelta::try_seconds(60).unwrap()); | 
|---|
| 1451 | /// assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), TimeDelta::try_seconds(1).unwrap()); | 
|---|
| 1452 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000), | 
|---|
| 1453 | ///            TimeDelta::try_seconds(61).unwrap()); | 
|---|
| 1454 | /// ``` | 
|---|
| 1455 | impl Sub<NaiveTime> for NaiveTime { | 
|---|
| 1456 | type Output = TimeDelta; | 
|---|
| 1457 |  | 
|---|
| 1458 | #[ inline] | 
|---|
| 1459 | fn sub(self, rhs: NaiveTime) -> TimeDelta { | 
|---|
| 1460 | self.signed_duration_since(rhs) | 
|---|
| 1461 | } | 
|---|
| 1462 | } | 
|---|
| 1463 |  | 
|---|
| 1464 | /// The `Debug` output of the naive time `t` is the same as | 
|---|
| 1465 | /// [`t.format("%H:%M:%S%.f")`](crate::format::strftime). | 
|---|
| 1466 | /// | 
|---|
| 1467 | /// The string printed can be readily parsed via the `parse` method on `str`. | 
|---|
| 1468 | /// | 
|---|
| 1469 | /// It should be noted that, for leap seconds not on the minute boundary, | 
|---|
| 1470 | /// it may print a representation not distinguishable from non-leap seconds. | 
|---|
| 1471 | /// This doesn't matter in practice, since such leap seconds never happened. | 
|---|
| 1472 | /// (By the time of the first leap second on 1972-06-30, | 
|---|
| 1473 | /// every time zone offset around the world has standardized to the 5-minute alignment.) | 
|---|
| 1474 | /// | 
|---|
| 1475 | /// # Example | 
|---|
| 1476 | /// | 
|---|
| 1477 | /// ``` | 
|---|
| 1478 | /// use chrono::NaiveTime; | 
|---|
| 1479 | /// | 
|---|
| 1480 | /// assert_eq!(format!( "{:?}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04"); | 
|---|
| 1481 | /// assert_eq!( | 
|---|
| 1482 | ///     format!( "{:?}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), | 
|---|
| 1483 | /// "23:56:04.012" | 
|---|
| 1484 | /// ); | 
|---|
| 1485 | /// assert_eq!( | 
|---|
| 1486 | ///     format!( "{:?}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), | 
|---|
| 1487 | /// "23:56:04.001234" | 
|---|
| 1488 | /// ); | 
|---|
| 1489 | /// assert_eq!( | 
|---|
| 1490 | ///     format!( "{:?}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), | 
|---|
| 1491 | /// "23:56:04.000123456" | 
|---|
| 1492 | /// ); | 
|---|
| 1493 | /// ``` | 
|---|
| 1494 | /// | 
|---|
| 1495 | /// Leap seconds may also be used. | 
|---|
| 1496 | /// | 
|---|
| 1497 | /// ``` | 
|---|
| 1498 | /// # use chrono::NaiveTime; | 
|---|
| 1499 | /// assert_eq!( | 
|---|
| 1500 | ///     format!( "{:?}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), | 
|---|
| 1501 | /// "06:59:60.500" | 
|---|
| 1502 | /// ); | 
|---|
| 1503 | /// ``` | 
|---|
| 1504 | impl fmt::Debug for NaiveTime { | 
|---|
| 1505 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | 
|---|
| 1506 | let (hour, min, sec) = self.hms(); | 
|---|
| 1507 | let (sec, nano) = if self.frac >= 1_000_000_000 { | 
|---|
| 1508 | (sec + 1, self.frac - 1_000_000_000) | 
|---|
| 1509 | } else { | 
|---|
| 1510 | (sec, self.frac) | 
|---|
| 1511 | }; | 
|---|
| 1512 |  | 
|---|
| 1513 | use core::fmt::Write; | 
|---|
| 1514 | write_hundreds(f, hour as u8)?; | 
|---|
| 1515 | f.write_char( ':')?; | 
|---|
| 1516 | write_hundreds(f, min as u8)?; | 
|---|
| 1517 | f.write_char( ':')?; | 
|---|
| 1518 | write_hundreds(f, sec as u8)?; | 
|---|
| 1519 |  | 
|---|
| 1520 | if nano == 0 { | 
|---|
| 1521 | Ok(()) | 
|---|
| 1522 | } else if nano % 1_000_000 == 0 { | 
|---|
| 1523 | write!(f, ".{:03} ", nano / 1_000_000) | 
|---|
| 1524 | } else if nano % 1_000 == 0 { | 
|---|
| 1525 | write!(f, ".{:06} ", nano / 1_000) | 
|---|
| 1526 | } else { | 
|---|
| 1527 | write!(f, ".{:09} ", nano) | 
|---|
| 1528 | } | 
|---|
| 1529 | } | 
|---|
| 1530 | } | 
|---|
| 1531 |  | 
|---|
| 1532 | /// The `Display` output of the naive time `t` is the same as | 
|---|
| 1533 | /// [`t.format("%H:%M:%S%.f")`](crate::format::strftime). | 
|---|
| 1534 | /// | 
|---|
| 1535 | /// The string printed can be readily parsed via the `parse` method on `str`. | 
|---|
| 1536 | /// | 
|---|
| 1537 | /// It should be noted that, for leap seconds not on the minute boundary, | 
|---|
| 1538 | /// it may print a representation not distinguishable from non-leap seconds. | 
|---|
| 1539 | /// This doesn't matter in practice, since such leap seconds never happened. | 
|---|
| 1540 | /// (By the time of the first leap second on 1972-06-30, | 
|---|
| 1541 | /// every time zone offset around the world has standardized to the 5-minute alignment.) | 
|---|
| 1542 | /// | 
|---|
| 1543 | /// # Example | 
|---|
| 1544 | /// | 
|---|
| 1545 | /// ``` | 
|---|
| 1546 | /// use chrono::NaiveTime; | 
|---|
| 1547 | /// | 
|---|
| 1548 | /// assert_eq!(format!( "{}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04"); | 
|---|
| 1549 | /// assert_eq!( | 
|---|
| 1550 | ///     format!( "{}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), | 
|---|
| 1551 | /// "23:56:04.012" | 
|---|
| 1552 | /// ); | 
|---|
| 1553 | /// assert_eq!( | 
|---|
| 1554 | ///     format!( "{}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), | 
|---|
| 1555 | /// "23:56:04.001234" | 
|---|
| 1556 | /// ); | 
|---|
| 1557 | /// assert_eq!( | 
|---|
| 1558 | ///     format!( "{}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), | 
|---|
| 1559 | /// "23:56:04.000123456" | 
|---|
| 1560 | /// ); | 
|---|
| 1561 | /// ``` | 
|---|
| 1562 | /// | 
|---|
| 1563 | /// Leap seconds may also be used. | 
|---|
| 1564 | /// | 
|---|
| 1565 | /// ``` | 
|---|
| 1566 | /// # use chrono::NaiveTime; | 
|---|
| 1567 | /// assert_eq!( | 
|---|
| 1568 | ///     format!( "{}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), | 
|---|
| 1569 | /// "06:59:60.500" | 
|---|
| 1570 | /// ); | 
|---|
| 1571 | /// ``` | 
|---|
| 1572 | impl fmt::Display for NaiveTime { | 
|---|
| 1573 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | 
|---|
| 1574 | fmt::Debug::fmt(self, f) | 
|---|
| 1575 | } | 
|---|
| 1576 | } | 
|---|
| 1577 |  | 
|---|
| 1578 | /// Parsing a `str` into a `NaiveTime` uses the same format, | 
|---|
| 1579 | /// [`%H:%M:%S%.f`](crate::format::strftime), as in `Debug` and `Display`. | 
|---|
| 1580 | /// | 
|---|
| 1581 | /// # Example | 
|---|
| 1582 | /// | 
|---|
| 1583 | /// ``` | 
|---|
| 1584 | /// use chrono::NaiveTime; | 
|---|
| 1585 | /// | 
|---|
| 1586 | /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); | 
|---|
| 1587 | /// assert_eq!( "23:56:04".parse::<NaiveTime>(), Ok(t)); | 
|---|
| 1588 | /// | 
|---|
| 1589 | /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); | 
|---|
| 1590 | /// assert_eq!( "23:56:4.012345678".parse::<NaiveTime>(), Ok(t)); | 
|---|
| 1591 | /// | 
|---|
| 1592 | /// let t = NaiveTime::from_hms_nano_opt(23, 59, 59, 1_234_567_890).unwrap(); // leap second | 
|---|
| 1593 | /// assert_eq!( "23:59:60.23456789".parse::<NaiveTime>(), Ok(t)); | 
|---|
| 1594 | /// | 
|---|
| 1595 | /// // Seconds are optional | 
|---|
| 1596 | /// let t = NaiveTime::from_hms_opt(23, 56, 0).unwrap(); | 
|---|
| 1597 | /// assert_eq!( "23:56".parse::<NaiveTime>(), Ok(t)); | 
|---|
| 1598 | /// | 
|---|
| 1599 | /// assert!( "foo".parse::<NaiveTime>().is_err()); | 
|---|
| 1600 | /// ``` | 
|---|
| 1601 | impl str::FromStr for NaiveTime { | 
|---|
| 1602 | type Err = ParseError; | 
|---|
| 1603 |  | 
|---|
| 1604 | fn from_str(s: &str) -> ParseResult<NaiveTime> { | 
|---|
| 1605 | const HOUR_AND_MINUTE: &[Item<'static>] = &[ | 
|---|
| 1606 | Item::Numeric(Numeric::Hour, Pad::Zero), | 
|---|
| 1607 | Item::Space( ""), | 
|---|
| 1608 | Item::Literal( ":"), | 
|---|
| 1609 | Item::Numeric(Numeric::Minute, Pad::Zero), | 
|---|
| 1610 | ]; | 
|---|
| 1611 | const SECOND_AND_NANOS: &[Item<'static>] = &[ | 
|---|
| 1612 | Item::Space( ""), | 
|---|
| 1613 | Item::Literal( ":"), | 
|---|
| 1614 | Item::Numeric(Numeric::Second, Pad::Zero), | 
|---|
| 1615 | Item::Fixed(Fixed::Nanosecond), | 
|---|
| 1616 | Item::Space( ""), | 
|---|
| 1617 | ]; | 
|---|
| 1618 | const TRAILING_WHITESPACE: [Item<'static>; 1] = [Item::Space( "")]; | 
|---|
| 1619 |  | 
|---|
| 1620 | let mut parsed = Parsed::new(); | 
|---|
| 1621 | let s = parse_and_remainder(&mut parsed, s, HOUR_AND_MINUTE.iter())?; | 
|---|
| 1622 | // Seconds are optional, don't fail if parsing them doesn't succeed. | 
|---|
| 1623 | let s = parse_and_remainder(&mut parsed, s, SECOND_AND_NANOS.iter()).unwrap_or(s); | 
|---|
| 1624 | parse(&mut parsed, s, TRAILING_WHITESPACE.iter())?; | 
|---|
| 1625 | parsed.to_naive_time() | 
|---|
| 1626 | } | 
|---|
| 1627 | } | 
|---|
| 1628 |  | 
|---|
| 1629 | /// The default value for a NaiveTime is midnight, 00:00:00 exactly. | 
|---|
| 1630 | /// | 
|---|
| 1631 | /// # Example | 
|---|
| 1632 | /// | 
|---|
| 1633 | /// ```rust | 
|---|
| 1634 | /// use chrono::NaiveTime; | 
|---|
| 1635 | /// | 
|---|
| 1636 | /// let default_time = NaiveTime::default(); | 
|---|
| 1637 | /// assert_eq!(default_time, NaiveTime::from_hms_opt(0, 0, 0).unwrap()); | 
|---|
| 1638 | /// ``` | 
|---|
| 1639 | impl Default for NaiveTime { | 
|---|
| 1640 | fn default() -> Self { | 
|---|
| 1641 | NaiveTime::from_hms_opt(hour:0, min:0, sec:0).unwrap() | 
|---|
| 1642 | } | 
|---|
| 1643 | } | 
|---|
| 1644 |  | 
|---|