1 | //! This module contains the implementation for `slice::select_nth_unstable`. |
2 | //! It uses an introselect algorithm based on ipnsort by Lukas Bergdoll and Orson Peters, |
3 | //! published at: <https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort> |
4 | //! |
5 | //! The fallback algorithm used for introselect is Median of Medians using Tukey's Ninther |
6 | //! for pivot selection. Using this as a fallback ensures O(n) worst case running time with |
7 | //! better performance than one would get using heapsort as fallback. |
8 | |
9 | use crate::cfg_select; |
10 | use crate::mem::{self, SizedTypeProperties}; |
11 | #[cfg (not(feature = "optimize_for_size" ))] |
12 | use crate::slice::sort::shared::pivot::choose_pivot; |
13 | use crate::slice::sort::shared::smallsort::insertion_sort_shift_left; |
14 | use crate::slice::sort::unstable::quicksort::partition; |
15 | |
16 | /// Reorders the slice such that the element at `index` is at its final sorted position. |
17 | pub(crate) fn partition_at_index<T, F>( |
18 | v: &mut [T], |
19 | index: usize, |
20 | mut is_less: F, |
21 | ) -> (&mut [T], &mut T, &mut [T]) |
22 | where |
23 | F: FnMut(&T, &T) -> bool, |
24 | { |
25 | let len = v.len(); |
26 | |
27 | // Puts a lower limit of 1 on `len`. |
28 | if index >= len { |
29 | panic!("partition_at_index index {} greater than length of slice {}" , index, len); |
30 | } |
31 | |
32 | if T::IS_ZST { |
33 | // Sorting has no meaningful behavior on zero-sized types. Do nothing. |
34 | } else if index == len - 1 { |
35 | // Find max element and place it in the last position of the array. We're free to use |
36 | // `unwrap()` here because we checked that `v` is not empty. |
37 | let max_idx = max_index(v, &mut is_less).unwrap(); |
38 | v.swap(max_idx, index); |
39 | } else if index == 0 { |
40 | // Find min element and place it in the first position of the array. We're free to use |
41 | // `unwrap()` here because we checked that `v` is not empty. |
42 | let min_idx = min_index(v, &mut is_less).unwrap(); |
43 | v.swap(min_idx, index); |
44 | } else { |
45 | cfg_select! { |
46 | feature = "optimize_for_size" => { |
47 | median_of_medians(v, &mut is_less, index); |
48 | } |
49 | _ => { |
50 | partition_at_index_loop(v, index, None, &mut is_less); |
51 | } |
52 | } |
53 | } |
54 | |
55 | let (left, right) = v.split_at_mut(index); |
56 | let (pivot, right) = right.split_at_mut(1); |
57 | let pivot = &mut pivot[0]; |
58 | (left, pivot, right) |
59 | } |
60 | |
61 | // For small sub-slices it's faster to use a dedicated small-sort, but because it is only called at |
62 | // most once, it doesn't make sense to use something more sophisticated than insertion-sort. |
63 | const INSERTION_SORT_THRESHOLD: usize = 16; |
64 | |
65 | #[cfg (not(feature = "optimize_for_size" ))] |
66 | fn partition_at_index_loop<'a, T, F>( |
67 | mut v: &'a mut [T], |
68 | mut index: usize, |
69 | mut ancestor_pivot: Option<&'a T>, |
70 | is_less: &mut F, |
71 | ) where |
72 | F: FnMut(&T, &T) -> bool, |
73 | { |
74 | // Limit the amount of iterations and fall back to fast deterministic selection to ensure O(n) |
75 | // worst case running time. This limit needs to be constant, because using `ilog2(len)` like in |
76 | // `sort` would result in O(n log n) time complexity. The exact value of the limit is chosen |
77 | // somewhat arbitrarily, but for most inputs bad pivot selections should be relatively rare, so |
78 | // the limit is reached for sub-slices len / (2^limit or less). Which makes the remaining work |
79 | // with the fallback minimal in relative terms. |
80 | let mut limit = 16; |
81 | |
82 | loop { |
83 | if v.len() <= INSERTION_SORT_THRESHOLD { |
84 | if v.len() >= 2 { |
85 | insertion_sort_shift_left(v, 1, is_less); |
86 | } |
87 | return; |
88 | } |
89 | |
90 | if limit == 0 { |
91 | median_of_medians(v, is_less, index); |
92 | return; |
93 | } |
94 | |
95 | limit -= 1; |
96 | |
97 | // Choose a pivot |
98 | let pivot_pos = choose_pivot(v, is_less); |
99 | |
100 | // If the chosen pivot is equal to the predecessor, then it's the smallest element in the |
101 | // slice. Partition the slice into elements equal to and elements greater than the pivot. |
102 | // This case is usually hit when the slice contains many duplicate elements. |
103 | if let Some(p) = ancestor_pivot { |
104 | // SAFETY: choose_pivot promises to return a valid pivot position. |
105 | let pivot = unsafe { v.get_unchecked(pivot_pos) }; |
106 | |
107 | if !is_less(p, pivot) { |
108 | let num_lt = partition(v, pivot_pos, &mut |a, b| !is_less(b, a)); |
109 | |
110 | // Continue sorting elements greater than the pivot. We know that `mid` contains |
111 | // the pivot. So we can continue after `mid`. |
112 | let mid = num_lt + 1; |
113 | |
114 | // If we've passed our index, then we're good. |
115 | if mid > index { |
116 | return; |
117 | } |
118 | |
119 | v = &mut v[mid..]; |
120 | index = index - mid; |
121 | ancestor_pivot = None; |
122 | continue; |
123 | } |
124 | } |
125 | |
126 | let mid = partition(v, pivot_pos, is_less); |
127 | |
128 | // Split the slice into `left`, `pivot`, and `right`. |
129 | let (left, right) = v.split_at_mut(mid); |
130 | let (pivot, right) = right.split_at_mut(1); |
131 | let pivot = &pivot[0]; |
132 | |
133 | if mid < index { |
134 | v = right; |
135 | index = index - mid - 1; |
136 | ancestor_pivot = Some(pivot); |
137 | } else if mid > index { |
138 | v = left; |
139 | } else { |
140 | // If mid == index, then we're done, since partition() guaranteed that all elements |
141 | // after mid are greater than or equal to mid. |
142 | return; |
143 | } |
144 | } |
145 | } |
146 | |
147 | /// Helper function that returns the index of the minimum element in the slice using the given |
148 | /// comparator function |
149 | fn min_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> { |
150 | sliceOption<(usize, &T)> |
151 | .iter() |
152 | .enumerate() |
153 | .reduce(|acc: (usize, &T), t: (usize, &T)| if is_less(t.1, acc.1) { t } else { acc }) |
154 | .map(|(i: usize, _)| i) |
155 | } |
156 | |
157 | /// Helper function that returns the index of the maximum element in the slice using the given |
158 | /// comparator function |
159 | fn max_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> { |
160 | sliceOption<(usize, &T)> |
161 | .iter() |
162 | .enumerate() |
163 | .reduce(|acc: (usize, &T), t: (usize, &T)| if is_less(acc.1, t.1) { t } else { acc }) |
164 | .map(|(i: usize, _)| i) |
165 | } |
166 | |
167 | /// Selection algorithm to select the k-th element from the slice in guaranteed O(n) time. |
168 | /// This is essentially a quickselect that uses Tukey's Ninther for pivot selection |
169 | fn median_of_medians<T, F: FnMut(&T, &T) -> bool>(mut v: &mut [T], is_less: &mut F, mut k: usize) { |
170 | // Since this function isn't public, it should never be called with an out-of-bounds index. |
171 | debug_assert!(k < v.len()); |
172 | |
173 | // If T is as ZST, `partition_at_index` will already return early. |
174 | debug_assert!(!T::IS_ZST); |
175 | |
176 | // We now know that `k < v.len() <= isize::MAX` |
177 | loop { |
178 | if v.len() <= INSERTION_SORT_THRESHOLD { |
179 | if v.len() >= 2 { |
180 | insertion_sort_shift_left(v, 1, is_less); |
181 | } |
182 | |
183 | return; |
184 | } |
185 | |
186 | // `median_of_{minima,maxima}` can't handle the extreme cases of the first/last element, |
187 | // so we catch them here and just do a linear search. |
188 | if k == v.len() - 1 { |
189 | // Find max element and place it in the last position of the array. We're free to use |
190 | // `unwrap()` here because we know v must not be empty. |
191 | let max_idx = max_index(v, is_less).unwrap(); |
192 | v.swap(max_idx, k); |
193 | return; |
194 | } else if k == 0 { |
195 | // Find min element and place it in the first position of the array. We're free to use |
196 | // `unwrap()` here because we know v must not be empty. |
197 | let min_idx = min_index(v, is_less).unwrap(); |
198 | v.swap(min_idx, k); |
199 | return; |
200 | } |
201 | |
202 | let p = median_of_ninthers(v, is_less); |
203 | |
204 | if p == k { |
205 | return; |
206 | } else if p > k { |
207 | v = &mut v[..p]; |
208 | } else { |
209 | // Since `p < k < v.len()`, `p + 1` doesn't overflow and is |
210 | // a valid index into the slice. |
211 | v = &mut v[p + 1..]; |
212 | k -= p + 1; |
213 | } |
214 | } |
215 | } |
216 | |
217 | // Optimized for when `k` lies somewhere in the middle of the slice. Selects a pivot |
218 | // as close as possible to the median of the slice. For more details on how the algorithm |
219 | // operates, refer to the paper <https://drops.dagstuhl.de/opus/volltexte/2017/7612/pdf/LIPIcs-SEA-2017-24.pdf>. |
220 | fn median_of_ninthers<T, F: FnMut(&T, &T) -> bool>(v: &mut [T], is_less: &mut F) -> usize { |
221 | // use `saturating_mul` so the multiplication doesn't overflow on 16-bit platforms. |
222 | let frac = if v.len() <= 1024 { |
223 | v.len() / 12 |
224 | } else if v.len() <= 128_usize.saturating_mul(1024) { |
225 | v.len() / 64 |
226 | } else { |
227 | v.len() / 1024 |
228 | }; |
229 | |
230 | let pivot = frac / 2; |
231 | let lo = v.len() / 2 - pivot; |
232 | let hi = frac + lo; |
233 | let gap = (v.len() - 9 * frac) / 4; |
234 | let mut a = lo - 4 * frac - gap; |
235 | let mut b = hi + gap; |
236 | for i in lo..hi { |
237 | ninther(v, is_less, a, i - frac, b, a + 1, i, b + 1, a + 2, i + frac, b + 2); |
238 | a += 3; |
239 | b += 3; |
240 | } |
241 | |
242 | median_of_medians(&mut v[lo..lo + frac], is_less, pivot); |
243 | |
244 | partition(v, lo + pivot, is_less) |
245 | } |
246 | |
247 | /// Moves around the 9 elements at the indices a..i, such that |
248 | /// `v[d]` contains the median of the 9 elements and the other |
249 | /// elements are partitioned around it. |
250 | fn ninther<T, F: FnMut(&T, &T) -> bool>( |
251 | v: &mut [T], |
252 | is_less: &mut F, |
253 | a: usize, |
254 | mut b: usize, |
255 | c: usize, |
256 | mut d: usize, |
257 | e: usize, |
258 | mut f: usize, |
259 | g: usize, |
260 | mut h: usize, |
261 | i: usize, |
262 | ) { |
263 | b = median_idx(v, is_less, a, b, c); |
264 | h = median_idx(v, is_less, g, h, i); |
265 | if is_less(&v[h], &v[b]) { |
266 | mem::swap(&mut b, &mut h); |
267 | } |
268 | if is_less(&v[f], &v[d]) { |
269 | mem::swap(&mut d, &mut f); |
270 | } |
271 | if is_less(&v[e], &v[d]) { |
272 | // do nothing |
273 | } else if is_less(&v[f], &v[e]) { |
274 | d = f; |
275 | } else { |
276 | if is_less(&v[e], &v[b]) { |
277 | v.swap(e, b); |
278 | } else if is_less(&v[h], &v[e]) { |
279 | v.swap(e, h); |
280 | } |
281 | return; |
282 | } |
283 | if is_less(&v[d], &v[b]) { |
284 | d = b; |
285 | } else if is_less(&v[h], &v[d]) { |
286 | d = h; |
287 | } |
288 | |
289 | v.swap(d, e); |
290 | } |
291 | |
292 | /// returns the index pointing to the median of the 3 |
293 | /// elements `v[a]`, `v[b]` and `v[c]` |
294 | fn median_idx<T, F: FnMut(&T, &T) -> bool>( |
295 | v: &[T], |
296 | is_less: &mut F, |
297 | mut a: usize, |
298 | b: usize, |
299 | mut c: usize, |
300 | ) -> usize { |
301 | if is_less(&v[c], &v[a]) { |
302 | mem::swap(&mut a, &mut c); |
303 | } |
304 | if is_less(&v[c], &v[b]) { |
305 | return c; |
306 | } |
307 | if is_less(&v[b], &v[a]) { |
308 | return a; |
309 | } |
310 | b |
311 | } |
312 | |