| 1 | //! This module contains the entry points for `slice::sort_unstable`. |
| 2 | |
| 3 | use crate::mem::SizedTypeProperties; |
| 4 | use crate::ops::{Range, RangeBounds}; |
| 5 | use crate::slice::sort::select::partition_at_index; |
| 6 | #[cfg (not(any(feature = "optimize_for_size" , target_pointer_width = "16" )))] |
| 7 | use crate::slice::sort::shared::find_existing_run; |
| 8 | #[cfg (not(any(feature = "optimize_for_size" , target_pointer_width = "16" )))] |
| 9 | use crate::slice::sort::shared::smallsort::insertion_sort_shift_left; |
| 10 | use crate::{cfg_select, intrinsics, slice}; |
| 11 | |
| 12 | pub(crate) mod heapsort; |
| 13 | pub(crate) mod quicksort; |
| 14 | |
| 15 | /// Unstable sort called ipnsort by Lukas Bergdoll and Orson Peters. |
| 16 | /// Design document: |
| 17 | /// <https://github.com/Voultapher/sort-research-rs/blob/main/writeup/ipnsort_introduction/text.md> |
| 18 | /// |
| 19 | /// Upholds all safety properties outlined here: |
| 20 | /// <https://github.com/Voultapher/sort-research-rs/blob/main/writeup/sort_safety/text.md> |
| 21 | #[inline (always)] |
| 22 | pub fn sort<T, F>(v: &mut [T], is_less: &mut F) |
| 23 | where |
| 24 | F: FnMut(&T, &T) -> bool, |
| 25 | { |
| 26 | // Arrays of zero-sized types are always all-equal, and thus sorted. |
| 27 | if T::IS_ZST { |
| 28 | return; |
| 29 | } |
| 30 | |
| 31 | // Instrumenting the standard library showed that 90+% of the calls to sort |
| 32 | // by rustc are either of size 0 or 1. |
| 33 | let len = v.len(); |
| 34 | if intrinsics::likely(len < 2) { |
| 35 | return; |
| 36 | } |
| 37 | |
| 38 | cfg_select! { |
| 39 | any(feature = "optimize_for_size" , target_pointer_width = "16" ) => { |
| 40 | heapsort::heapsort(v, is_less); |
| 41 | } |
| 42 | _ => { |
| 43 | // More advanced sorting methods than insertion sort are faster if called in |
| 44 | // a hot loop for small inputs, but for general-purpose code the small |
| 45 | // binary size of insertion sort is more important. The instruction cache in |
| 46 | // modern processors is very valuable, and for a single sort call in general |
| 47 | // purpose code any gains from an advanced method are cancelled by i-cache |
| 48 | // misses during the sort, and thrashing the i-cache for surrounding code. |
| 49 | const MAX_LEN_ALWAYS_INSERTION_SORT: usize = 20; |
| 50 | if intrinsics::likely(len <= MAX_LEN_ALWAYS_INSERTION_SORT) { |
| 51 | insertion_sort_shift_left(v, 1, is_less); |
| 52 | return; |
| 53 | } |
| 54 | |
| 55 | ipnsort(v, is_less); |
| 56 | } |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | /// Unstable partial sort the range `start..end`, after which it's guaranteed that: |
| 61 | /// |
| 62 | /// 1. Every element in `v[..start]` is smaller than or equal to |
| 63 | /// 2. Every element in `v[start..end]`, which is sorted, and smaller than or equal to |
| 64 | /// 3. Every element in `v[end..]`. |
| 65 | #[inline ] |
| 66 | pub fn partial_sort<T, F, R>(v: &mut [T], range: R, mut is_less: F) |
| 67 | where |
| 68 | F: FnMut(&T, &T) -> bool, |
| 69 | R: RangeBounds<usize>, |
| 70 | { |
| 71 | // Arrays of zero-sized types are always all-equal, and thus sorted. |
| 72 | if T::IS_ZST { |
| 73 | return; |
| 74 | } |
| 75 | |
| 76 | let len = v.len(); |
| 77 | let Range { start, end } = slice::range(range, ..len); |
| 78 | |
| 79 | if end - start <= 1 { |
| 80 | // Empty range or single element. This case can be resolved in at most |
| 81 | // single partition_at_index call, without further sorting. |
| 82 | |
| 83 | if end == 0 || start == len { |
| 84 | // Do nothing if it is an empty range at start or end: all guarantees |
| 85 | // are already upheld. |
| 86 | return; |
| 87 | } |
| 88 | |
| 89 | partition_at_index(v, start, &mut is_less); |
| 90 | return; |
| 91 | } |
| 92 | |
| 93 | // A heuristic factor to decide whether to partition the slice or not. |
| 94 | // If the range bound is close to the edges of the slice, it's not worth |
| 95 | // partitioning first. |
| 96 | const PARTITION_THRESHOLD: usize = 8; |
| 97 | let mut v = v; |
| 98 | if end + PARTITION_THRESHOLD <= len { |
| 99 | v = partition_at_index(v, end - 1, &mut is_less).0; |
| 100 | } |
| 101 | if start >= PARTITION_THRESHOLD { |
| 102 | v = partition_at_index(v, start, &mut is_less).2; |
| 103 | } |
| 104 | |
| 105 | sort(v, &mut is_less); |
| 106 | } |
| 107 | |
| 108 | /// See [`sort`] |
| 109 | /// |
| 110 | /// Deliberately don't inline the main sorting routine entrypoint to ensure the |
| 111 | /// inlined insertion sort i-cache footprint remains minimal. |
| 112 | #[cfg (not(any(feature = "optimize_for_size" , target_pointer_width = "16" )))] |
| 113 | #[inline (never)] |
| 114 | fn ipnsort<T, F>(v: &mut [T], is_less: &mut F) |
| 115 | where |
| 116 | F: FnMut(&T, &T) -> bool, |
| 117 | { |
| 118 | let len: usize = v.len(); |
| 119 | let (run_len: usize, was_reversed: bool) = find_existing_run(v, is_less); |
| 120 | |
| 121 | // SAFETY: find_existing_run promises to return a valid run_len. |
| 122 | unsafe { intrinsics::assume(run_len <= len) }; |
| 123 | |
| 124 | if run_len == len { |
| 125 | if was_reversed { |
| 126 | v.reverse(); |
| 127 | } |
| 128 | |
| 129 | // It would be possible to a do in-place merging here for a long existing streak. But that |
| 130 | // makes the implementation a lot bigger, users can use `slice::sort` for that use-case. |
| 131 | return; |
| 132 | } |
| 133 | |
| 134 | // Limit the number of imbalanced partitions to `2 * floor(log2(len))`. |
| 135 | // The binary OR by one is used to eliminate the zero-check in the logarithm. |
| 136 | let limit: u32 = 2 * (len | 1).ilog2(); |
| 137 | crate::slice::sort::unstable::quicksort::quicksort(v, ancestor_pivot:None, limit, is_less); |
| 138 | } |
| 139 | |