1 | //! The string Pattern API. |
---|---|
2 | //! |
3 | //! The Pattern API provides a generic mechanism for using different pattern |
4 | //! types when searching through a string. |
5 | //! |
6 | //! For more details, see the traits [`Pattern`], [`Searcher`], |
7 | //! [`ReverseSearcher`], and [`DoubleEndedSearcher`]. |
8 | //! |
9 | //! Although this API is unstable, it is exposed via stable APIs on the |
10 | //! [`str`] type. |
11 | //! |
12 | //! # Examples |
13 | //! |
14 | //! [`Pattern`] is [implemented][pattern-impls] in the stable API for |
15 | //! [`&str`][`str`], [`char`], slices of [`char`], and functions and closures |
16 | //! implementing `FnMut(char) -> bool`. |
17 | //! |
18 | //! ``` |
19 | //! let s = "Can you find a needle in a haystack?"; |
20 | //! |
21 | //! // &str pattern |
22 | //! assert_eq!(s.find("you"), Some(4)); |
23 | //! // char pattern |
24 | //! assert_eq!(s.find('n'), Some(2)); |
25 | //! // array of chars pattern |
26 | //! assert_eq!(s.find(&['a', 'e', 'i', 'o', 'u']), Some(1)); |
27 | //! // slice of chars pattern |
28 | //! assert_eq!(s.find(&['a', 'e', 'i', 'o', 'u'][..]), Some(1)); |
29 | //! // closure pattern |
30 | //! assert_eq!(s.find(|c: char| c.is_ascii_punctuation()), Some(35)); |
31 | //! ``` |
32 | //! |
33 | //! [pattern-impls]: Pattern#implementors |
34 | |
35 | #![unstable( |
36 | feature = "pattern", |
37 | reason = "API not fully fleshed out and ready to be stabilized", |
38 | issue = "27721" |
39 | )] |
40 | |
41 | use crate::char::MAX_LEN_UTF8; |
42 | use crate::cmp::Ordering; |
43 | use crate::convert::TryInto as _; |
44 | use crate::slice::memchr; |
45 | use crate::{cmp, fmt}; |
46 | |
47 | // Pattern |
48 | |
49 | /// A string pattern. |
50 | /// |
51 | /// A `Pattern` expresses that the implementing type |
52 | /// can be used as a string pattern for searching in a [`&str`][str]. |
53 | /// |
54 | /// For example, both `'a'` and `"aa"` are patterns that |
55 | /// would match at index `1` in the string `"baaaab"`. |
56 | /// |
57 | /// The trait itself acts as a builder for an associated |
58 | /// [`Searcher`] type, which does the actual work of finding |
59 | /// occurrences of the pattern in a string. |
60 | /// |
61 | /// Depending on the type of the pattern, the behavior of methods like |
62 | /// [`str::find`] and [`str::contains`] can change. The table below describes |
63 | /// some of those behaviors. |
64 | /// |
65 | /// | Pattern type | Match condition | |
66 | /// |--------------------------|-------------------------------------------| |
67 | /// | `&str` | is substring | |
68 | /// | `char` | is contained in string | |
69 | /// | `&[char]` | any char in slice is contained in string | |
70 | /// | `F: FnMut(char) -> bool` | `F` returns `true` for a char in string | |
71 | /// | `&&str` | is substring | |
72 | /// | `&String` | is substring | |
73 | /// |
74 | /// # Examples |
75 | /// |
76 | /// ``` |
77 | /// // &str |
78 | /// assert_eq!("abaaa".find( "ba"), Some(1)); |
79 | /// assert_eq!("abaaa".find( "bac"), None); |
80 | /// |
81 | /// // char |
82 | /// assert_eq!("abaaa".find( 'a'), Some(0)); |
83 | /// assert_eq!("abaaa".find( 'b'), Some(1)); |
84 | /// assert_eq!("abaaa".find( 'c'), None); |
85 | /// |
86 | /// // &[char; N] |
87 | /// assert_eq!("ab".find(&[ 'b', 'a']), Some(0)); |
88 | /// assert_eq!("abaaa".find(&[ 'a', 'z']), Some(0)); |
89 | /// assert_eq!("abaaa".find(&[ 'c', 'd']), None); |
90 | /// |
91 | /// // &[char] |
92 | /// assert_eq!("ab".find(&[ 'b', 'a'][..]), Some(0)); |
93 | /// assert_eq!("abaaa".find(&[ 'a', 'z'][..]), Some(0)); |
94 | /// assert_eq!("abaaa".find(&[ 'c', 'd'][..]), None); |
95 | /// |
96 | /// // FnMut(char) -> bool |
97 | /// assert_eq!("abcdef_z".find(|ch| ch > 'd'&& ch < 'y'), Some(4)); |
98 | /// assert_eq!("abcddd_z".find(|ch| ch > 'd'&& ch < 'y'), None); |
99 | /// ``` |
100 | pub trait Pattern: Sized { |
101 | /// Associated searcher for this pattern |
102 | type Searcher<'a>: Searcher<'a>; |
103 | |
104 | /// Constructs the associated searcher from |
105 | /// `self` and the `haystack` to search in. |
106 | fn into_searcher(self, haystack: &str) -> Self::Searcher<'_>; |
107 | |
108 | /// Checks whether the pattern matches anywhere in the haystack |
109 | #[inline] |
110 | fn is_contained_in(self, haystack: &str) -> bool { |
111 | self.into_searcher(haystack).next_match().is_some() |
112 | } |
113 | |
114 | /// Checks whether the pattern matches at the front of the haystack |
115 | #[inline] |
116 | fn is_prefix_of(self, haystack: &str) -> bool { |
117 | matches!(self.into_searcher(haystack).next(), SearchStep::Match(0, _)) |
118 | } |
119 | |
120 | /// Checks whether the pattern matches at the back of the haystack |
121 | #[inline] |
122 | fn is_suffix_of<'a>(self, haystack: &'a str) -> bool |
123 | where |
124 | Self::Searcher<'a>: ReverseSearcher<'a>, |
125 | { |
126 | matches!(self.into_searcher(haystack).next_back(), SearchStep::Match(_, j) if haystack.len() == j) |
127 | } |
128 | |
129 | /// Removes the pattern from the front of haystack, if it matches. |
130 | #[inline] |
131 | fn strip_prefix_of(self, haystack: &str) -> Option<&str> { |
132 | if let SearchStep::Match(start, len) = self.into_searcher(haystack).next() { |
133 | debug_assert_eq!( |
134 | start, 0, |
135 | "The first search step from Searcher \ |
136 | must include the first character" |
137 | ); |
138 | // SAFETY: `Searcher` is known to return valid indices. |
139 | unsafe { Some(haystack.get_unchecked(len..)) } |
140 | } else { |
141 | None |
142 | } |
143 | } |
144 | |
145 | /// Removes the pattern from the back of haystack, if it matches. |
146 | #[inline] |
147 | fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str> |
148 | where |
149 | Self::Searcher<'a>: ReverseSearcher<'a>, |
150 | { |
151 | if let SearchStep::Match(start, end) = self.into_searcher(haystack).next_back() { |
152 | debug_assert_eq!( |
153 | end, |
154 | haystack.len(), |
155 | "The first search step from ReverseSearcher \ |
156 | must include the last character" |
157 | ); |
158 | // SAFETY: `Searcher` is known to return valid indices. |
159 | unsafe { Some(haystack.get_unchecked(..start)) } |
160 | } else { |
161 | None |
162 | } |
163 | } |
164 | |
165 | /// Returns the pattern as utf-8 bytes if possible. |
166 | fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> { |
167 | None |
168 | } |
169 | } |
170 | /// Result of calling [`Pattern::as_utf8_pattern()`]. |
171 | /// Can be used for inspecting the contents of a [`Pattern`] in cases |
172 | /// where the underlying representation can be represented as UTF-8. |
173 | #[derive(Copy, Clone, Eq, PartialEq, Debug)] |
174 | pub enum Utf8Pattern<'a> { |
175 | /// Type returned by String and str types. |
176 | StringPattern(&'a [u8]), |
177 | /// Type returned by char types. |
178 | CharPattern(char), |
179 | } |
180 | |
181 | // Searcher |
182 | |
183 | /// Result of calling [`Searcher::next()`] or [`ReverseSearcher::next_back()`]. |
184 | #[derive(Copy, Clone, Eq, PartialEq, Debug)] |
185 | pub enum SearchStep { |
186 | /// Expresses that a match of the pattern has been found at |
187 | /// `haystack[a..b]`. |
188 | Match(usize, usize), |
189 | /// Expresses that `haystack[a..b]` has been rejected as a possible match |
190 | /// of the pattern. |
191 | /// |
192 | /// Note that there might be more than one `Reject` between two `Match`es, |
193 | /// there is no requirement for them to be combined into one. |
194 | Reject(usize, usize), |
195 | /// Expresses that every byte of the haystack has been visited, ending |
196 | /// the iteration. |
197 | Done, |
198 | } |
199 | |
200 | /// A searcher for a string pattern. |
201 | /// |
202 | /// This trait provides methods for searching for non-overlapping |
203 | /// matches of a pattern starting from the front (left) of a string. |
204 | /// |
205 | /// It will be implemented by associated `Searcher` |
206 | /// types of the [`Pattern`] trait. |
207 | /// |
208 | /// The trait is marked unsafe because the indices returned by the |
209 | /// [`next()`][Searcher::next] methods are required to lie on valid utf8 |
210 | /// boundaries in the haystack. This enables consumers of this trait to |
211 | /// slice the haystack without additional runtime checks. |
212 | pub unsafe trait Searcher<'a> { |
213 | /// Getter for the underlying string to be searched in |
214 | /// |
215 | /// Will always return the same [`&str`][str]. |
216 | fn haystack(&self) -> &'a str; |
217 | |
218 | /// Performs the next search step starting from the front. |
219 | /// |
220 | /// - Returns [`Match(a, b)`][SearchStep::Match] if `haystack[a..b]` matches |
221 | /// the pattern. |
222 | /// - Returns [`Reject(a, b)`][SearchStep::Reject] if `haystack[a..b]` can |
223 | /// not match the pattern, even partially. |
224 | /// - Returns [`Done`][SearchStep::Done] if every byte of the haystack has |
225 | /// been visited. |
226 | /// |
227 | /// The stream of [`Match`][SearchStep::Match] and |
228 | /// [`Reject`][SearchStep::Reject] values up to a [`Done`][SearchStep::Done] |
229 | /// will contain index ranges that are adjacent, non-overlapping, |
230 | /// covering the whole haystack, and laying on utf8 boundaries. |
231 | /// |
232 | /// A [`Match`][SearchStep::Match] result needs to contain the whole matched |
233 | /// pattern, however [`Reject`][SearchStep::Reject] results may be split up |
234 | /// into arbitrary many adjacent fragments. Both ranges may have zero length. |
235 | /// |
236 | /// As an example, the pattern `"aaa"` and the haystack `"cbaaaaab"` |
237 | /// might produce the stream |
238 | /// `[Reject(0, 1), Reject(1, 2), Match(2, 5), Reject(5, 8)]` |
239 | fn next(&mut self) -> SearchStep; |
240 | |
241 | /// Finds the next [`Match`][SearchStep::Match] result. See [`next()`][Searcher::next]. |
242 | /// |
243 | /// Unlike [`next()`][Searcher::next], there is no guarantee that the returned ranges |
244 | /// of this and [`next_reject`][Searcher::next_reject] will overlap. This will return |
245 | /// `(start_match, end_match)`, where start_match is the index of where |
246 | /// the match begins, and end_match is the index after the end of the match. |
247 | #[inline] |
248 | fn next_match(&mut self) -> Option<(usize, usize)> { |
249 | loop { |
250 | match self.next() { |
251 | SearchStep::Match(a, b) => return Some((a, b)), |
252 | SearchStep::Done => return None, |
253 | _ => continue, |
254 | } |
255 | } |
256 | } |
257 | |
258 | /// Finds the next [`Reject`][SearchStep::Reject] result. See [`next()`][Searcher::next] |
259 | /// and [`next_match()`][Searcher::next_match]. |
260 | /// |
261 | /// Unlike [`next()`][Searcher::next], there is no guarantee that the returned ranges |
262 | /// of this and [`next_match`][Searcher::next_match] will overlap. |
263 | #[inline] |
264 | fn next_reject(&mut self) -> Option<(usize, usize)> { |
265 | loop { |
266 | match self.next() { |
267 | SearchStep::Reject(a, b) => return Some((a, b)), |
268 | SearchStep::Done => return None, |
269 | _ => continue, |
270 | } |
271 | } |
272 | } |
273 | } |
274 | |
275 | /// A reverse searcher for a string pattern. |
276 | /// |
277 | /// This trait provides methods for searching for non-overlapping |
278 | /// matches of a pattern starting from the back (right) of a string. |
279 | /// |
280 | /// It will be implemented by associated [`Searcher`] |
281 | /// types of the [`Pattern`] trait if the pattern supports searching |
282 | /// for it from the back. |
283 | /// |
284 | /// The index ranges returned by this trait are not required |
285 | /// to exactly match those of the forward search in reverse. |
286 | /// |
287 | /// For the reason why this trait is marked unsafe, see the |
288 | /// parent trait [`Searcher`]. |
289 | pub unsafe trait ReverseSearcher<'a>: Searcher<'a> { |
290 | /// Performs the next search step starting from the back. |
291 | /// |
292 | /// - Returns [`Match(a, b)`][SearchStep::Match] if `haystack[a..b]` |
293 | /// matches the pattern. |
294 | /// - Returns [`Reject(a, b)`][SearchStep::Reject] if `haystack[a..b]` |
295 | /// can not match the pattern, even partially. |
296 | /// - Returns [`Done`][SearchStep::Done] if every byte of the haystack |
297 | /// has been visited |
298 | /// |
299 | /// The stream of [`Match`][SearchStep::Match] and |
300 | /// [`Reject`][SearchStep::Reject] values up to a [`Done`][SearchStep::Done] |
301 | /// will contain index ranges that are adjacent, non-overlapping, |
302 | /// covering the whole haystack, and laying on utf8 boundaries. |
303 | /// |
304 | /// A [`Match`][SearchStep::Match] result needs to contain the whole matched |
305 | /// pattern, however [`Reject`][SearchStep::Reject] results may be split up |
306 | /// into arbitrary many adjacent fragments. Both ranges may have zero length. |
307 | /// |
308 | /// As an example, the pattern `"aaa"` and the haystack `"cbaaaaab"` |
309 | /// might produce the stream |
310 | /// `[Reject(7, 8), Match(4, 7), Reject(1, 4), Reject(0, 1)]`. |
311 | fn next_back(&mut self) -> SearchStep; |
312 | |
313 | /// Finds the next [`Match`][SearchStep::Match] result. |
314 | /// See [`next_back()`][ReverseSearcher::next_back]. |
315 | #[inline] |
316 | fn next_match_back(&mut self) -> Option<(usize, usize)> { |
317 | loop { |
318 | match self.next_back() { |
319 | SearchStep::Match(a, b) => return Some((a, b)), |
320 | SearchStep::Done => return None, |
321 | _ => continue, |
322 | } |
323 | } |
324 | } |
325 | |
326 | /// Finds the next [`Reject`][SearchStep::Reject] result. |
327 | /// See [`next_back()`][ReverseSearcher::next_back]. |
328 | #[inline] |
329 | fn next_reject_back(&mut self) -> Option<(usize, usize)> { |
330 | loop { |
331 | match self.next_back() { |
332 | SearchStep::Reject(a, b) => return Some((a, b)), |
333 | SearchStep::Done => return None, |
334 | _ => continue, |
335 | } |
336 | } |
337 | } |
338 | } |
339 | |
340 | /// A marker trait to express that a [`ReverseSearcher`] |
341 | /// can be used for a [`DoubleEndedIterator`] implementation. |
342 | /// |
343 | /// For this, the impl of [`Searcher`] and [`ReverseSearcher`] need |
344 | /// to follow these conditions: |
345 | /// |
346 | /// - All results of `next()` need to be identical |
347 | /// to the results of `next_back()` in reverse order. |
348 | /// - `next()` and `next_back()` need to behave as |
349 | /// the two ends of a range of values, that is they |
350 | /// can not "walk past each other". |
351 | /// |
352 | /// # Examples |
353 | /// |
354 | /// `char::Searcher` is a `DoubleEndedSearcher` because searching for a |
355 | /// [`char`] only requires looking at one at a time, which behaves the same |
356 | /// from both ends. |
357 | /// |
358 | /// `(&str)::Searcher` is not a `DoubleEndedSearcher` because |
359 | /// the pattern `"aa"` in the haystack `"aaa"` matches as either |
360 | /// `"[aa]a"` or `"a[aa]"`, depending on which side it is searched. |
361 | pub trait DoubleEndedSearcher<'a>: ReverseSearcher<'a> {} |
362 | |
363 | ///////////////////////////////////////////////////////////////////////////// |
364 | // Impl for char |
365 | ///////////////////////////////////////////////////////////////////////////// |
366 | |
367 | /// Associated type for `<char as Pattern>::Searcher<'a>`. |
368 | #[derive(Clone, Debug)] |
369 | pub struct CharSearcher<'a> { |
370 | haystack: &'a str, |
371 | // safety invariant: `finger`/`finger_back` must be a valid utf8 byte index of `haystack` |
372 | // This invariant can be broken *within* next_match and next_match_back, however |
373 | // they must exit with fingers on valid code point boundaries. |
374 | /// `finger` is the current byte index of the forward search. |
375 | /// Imagine that it exists before the byte at its index, i.e. |
376 | /// `haystack[finger]` is the first byte of the slice we must inspect during |
377 | /// forward searching |
378 | finger: usize, |
379 | /// `finger_back` is the current byte index of the reverse search. |
380 | /// Imagine that it exists after the byte at its index, i.e. |
381 | /// haystack[finger_back - 1] is the last byte of the slice we must inspect during |
382 | /// forward searching (and thus the first byte to be inspected when calling next_back()). |
383 | finger_back: usize, |
384 | /// The character being searched for |
385 | needle: char, |
386 | |
387 | // safety invariant: `utf8_size` must be less than 5 |
388 | /// The number of bytes `needle` takes up when encoded in utf8. |
389 | utf8_size: u8, |
390 | /// A utf8 encoded copy of the `needle` |
391 | utf8_encoded: [u8; 4], |
392 | } |
393 | |
394 | impl CharSearcher<'_> { |
395 | fn utf8_size(&self) -> usize { |
396 | self.utf8_size.into() |
397 | } |
398 | } |
399 | |
400 | unsafe impl<'a> Searcher<'a> for CharSearcher<'a> { |
401 | #[inline] |
402 | fn haystack(&self) -> &'a str { |
403 | self.haystack |
404 | } |
405 | #[inline] |
406 | fn next(&mut self) -> SearchStep { |
407 | let old_finger = self.finger; |
408 | // SAFETY: 1-4 guarantee safety of `get_unchecked` |
409 | // 1. `self.finger` and `self.finger_back` are kept on unicode boundaries |
410 | // (this is invariant) |
411 | // 2. `self.finger >= 0` since it starts at 0 and only increases |
412 | // 3. `self.finger < self.finger_back` because otherwise the char `iter` |
413 | // would return `SearchStep::Done` |
414 | // 4. `self.finger` comes before the end of the haystack because `self.finger_back` |
415 | // starts at the end and only decreases |
416 | let slice = unsafe { self.haystack.get_unchecked(old_finger..self.finger_back) }; |
417 | let mut iter = slice.chars(); |
418 | let old_len = iter.iter.len(); |
419 | if let Some(ch) = iter.next() { |
420 | // add byte offset of current character |
421 | // without re-encoding as utf-8 |
422 | self.finger += old_len - iter.iter.len(); |
423 | if ch == self.needle { |
424 | SearchStep::Match(old_finger, self.finger) |
425 | } else { |
426 | SearchStep::Reject(old_finger, self.finger) |
427 | } |
428 | } else { |
429 | SearchStep::Done |
430 | } |
431 | } |
432 | #[inline] |
433 | fn next_match(&mut self) -> Option<(usize, usize)> { |
434 | loop { |
435 | // get the haystack after the last character found |
436 | let bytes = self.haystack.as_bytes().get(self.finger..self.finger_back)?; |
437 | // the last byte of the utf8 encoded needle |
438 | // SAFETY: we have an invariant that `utf8_size < 5` |
439 | let last_byte = unsafe { *self.utf8_encoded.get_unchecked(self.utf8_size() - 1) }; |
440 | if let Some(index) = memchr::memchr(last_byte, bytes) { |
441 | // The new finger is the index of the byte we found, |
442 | // plus one, since we memchr'd for the last byte of the character. |
443 | // |
444 | // Note that this doesn't always give us a finger on a UTF8 boundary. |
445 | // If we *didn't* find our character |
446 | // we may have indexed to the non-last byte of a 3-byte or 4-byte character. |
447 | // We can't just skip to the next valid starting byte because a character like |
448 | // ꁁ (U+A041 YI SYLLABLE PA), utf-8 `EA 81 81` will have us always find |
449 | // the second byte when searching for the third. |
450 | // |
451 | // However, this is totally okay. While we have the invariant that |
452 | // self.finger is on a UTF8 boundary, this invariant is not relied upon |
453 | // within this method (it is relied upon in CharSearcher::next()). |
454 | // |
455 | // We only exit this method when we reach the end of the string, or if we |
456 | // find something. When we find something the `finger` will be set |
457 | // to a UTF8 boundary. |
458 | self.finger += index + 1; |
459 | if self.finger >= self.utf8_size() { |
460 | let found_char = self.finger - self.utf8_size(); |
461 | if let Some(slice) = self.haystack.as_bytes().get(found_char..self.finger) { |
462 | if slice == &self.utf8_encoded[0..self.utf8_size()] { |
463 | return Some((found_char, self.finger)); |
464 | } |
465 | } |
466 | } |
467 | } else { |
468 | // found nothing, exit |
469 | self.finger = self.finger_back; |
470 | return None; |
471 | } |
472 | } |
473 | } |
474 | |
475 | // let next_reject use the default implementation from the Searcher trait |
476 | } |
477 | |
478 | unsafe impl<'a> ReverseSearcher<'a> for CharSearcher<'a> { |
479 | #[inline] |
480 | fn next_back(&mut self) -> SearchStep { |
481 | let old_finger = self.finger_back; |
482 | // SAFETY: see the comment for next() above |
483 | let slice = unsafe { self.haystack.get_unchecked(self.finger..old_finger) }; |
484 | let mut iter = slice.chars(); |
485 | let old_len = iter.iter.len(); |
486 | if let Some(ch) = iter.next_back() { |
487 | // subtract byte offset of current character |
488 | // without re-encoding as utf-8 |
489 | self.finger_back -= old_len - iter.iter.len(); |
490 | if ch == self.needle { |
491 | SearchStep::Match(self.finger_back, old_finger) |
492 | } else { |
493 | SearchStep::Reject(self.finger_back, old_finger) |
494 | } |
495 | } else { |
496 | SearchStep::Done |
497 | } |
498 | } |
499 | #[inline] |
500 | fn next_match_back(&mut self) -> Option<(usize, usize)> { |
501 | let haystack = self.haystack.as_bytes(); |
502 | loop { |
503 | // get the haystack up to but not including the last character searched |
504 | let bytes = haystack.get(self.finger..self.finger_back)?; |
505 | // the last byte of the utf8 encoded needle |
506 | // SAFETY: we have an invariant that `utf8_size < 5` |
507 | let last_byte = unsafe { *self.utf8_encoded.get_unchecked(self.utf8_size() - 1) }; |
508 | if let Some(index) = memchr::memrchr(last_byte, bytes) { |
509 | // we searched a slice that was offset by self.finger, |
510 | // add self.finger to recoup the original index |
511 | let index = self.finger + index; |
512 | // memrchr will return the index of the byte we wish to |
513 | // find. In case of an ASCII character, this is indeed |
514 | // were we wish our new finger to be ("after" the found |
515 | // char in the paradigm of reverse iteration). For |
516 | // multibyte chars we need to skip down by the number of more |
517 | // bytes they have than ASCII |
518 | let shift = self.utf8_size() - 1; |
519 | if index >= shift { |
520 | let found_char = index - shift; |
521 | if let Some(slice) = haystack.get(found_char..(found_char + self.utf8_size())) { |
522 | if slice == &self.utf8_encoded[0..self.utf8_size()] { |
523 | // move finger to before the character found (i.e., at its start index) |
524 | self.finger_back = found_char; |
525 | return Some((self.finger_back, self.finger_back + self.utf8_size())); |
526 | } |
527 | } |
528 | } |
529 | // We can't use finger_back = index - size + 1 here. If we found the last char |
530 | // of a different-sized character (or the middle byte of a different character) |
531 | // we need to bump the finger_back down to `index`. This similarly makes |
532 | // `finger_back` have the potential to no longer be on a boundary, |
533 | // but this is OK since we only exit this function on a boundary |
534 | // or when the haystack has been searched completely. |
535 | // |
536 | // Unlike next_match this does not |
537 | // have the problem of repeated bytes in utf-8 because |
538 | // we're searching for the last byte, and we can only have |
539 | // found the last byte when searching in reverse. |
540 | self.finger_back = index; |
541 | } else { |
542 | self.finger_back = self.finger; |
543 | // found nothing, exit |
544 | return None; |
545 | } |
546 | } |
547 | } |
548 | |
549 | // let next_reject_back use the default implementation from the Searcher trait |
550 | } |
551 | |
552 | impl<'a> DoubleEndedSearcher<'a> for CharSearcher<'a> {} |
553 | |
554 | /// Searches for chars that are equal to a given [`char`]. |
555 | /// |
556 | /// # Examples |
557 | /// |
558 | /// ``` |
559 | /// assert_eq!("Hello world".find( 'o'), Some(4)); |
560 | /// ``` |
561 | impl Pattern for char { |
562 | type Searcher<'a> = CharSearcher<'a>; |
563 | |
564 | #[inline] |
565 | fn into_searcher<'a>(self, haystack: &'a str) -> Self::Searcher<'a> { |
566 | let mut utf8_encoded = [0; MAX_LEN_UTF8]; |
567 | let utf8_size = self |
568 | .encode_utf8(&mut utf8_encoded) |
569 | .len() |
570 | .try_into() |
571 | .expect("char len should be less than 255"); |
572 | |
573 | CharSearcher { |
574 | haystack, |
575 | finger: 0, |
576 | finger_back: haystack.len(), |
577 | needle: self, |
578 | utf8_size, |
579 | utf8_encoded, |
580 | } |
581 | } |
582 | |
583 | #[inline] |
584 | fn is_contained_in(self, haystack: &str) -> bool { |
585 | if (self as u32) < 128 { |
586 | haystack.as_bytes().contains(&(self as u8)) |
587 | } else { |
588 | let mut buffer = [0u8; 4]; |
589 | self.encode_utf8(&mut buffer).is_contained_in(haystack) |
590 | } |
591 | } |
592 | |
593 | #[inline] |
594 | fn is_prefix_of(self, haystack: &str) -> bool { |
595 | self.encode_utf8(&mut [0u8; 4]).is_prefix_of(haystack) |
596 | } |
597 | |
598 | #[inline] |
599 | fn strip_prefix_of(self, haystack: &str) -> Option<&str> { |
600 | self.encode_utf8(&mut [0u8; 4]).strip_prefix_of(haystack) |
601 | } |
602 | |
603 | #[inline] |
604 | fn is_suffix_of<'a>(self, haystack: &'a str) -> bool |
605 | where |
606 | Self::Searcher<'a>: ReverseSearcher<'a>, |
607 | { |
608 | self.encode_utf8(&mut [0u8; 4]).is_suffix_of(haystack) |
609 | } |
610 | |
611 | #[inline] |
612 | fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str> |
613 | where |
614 | Self::Searcher<'a>: ReverseSearcher<'a>, |
615 | { |
616 | self.encode_utf8(&mut [0u8; 4]).strip_suffix_of(haystack) |
617 | } |
618 | |
619 | #[inline] |
620 | fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> { |
621 | Some(Utf8Pattern::CharPattern(*self)) |
622 | } |
623 | } |
624 | |
625 | ///////////////////////////////////////////////////////////////////////////// |
626 | // Impl for a MultiCharEq wrapper |
627 | ///////////////////////////////////////////////////////////////////////////// |
628 | |
629 | #[doc(hidden)] |
630 | trait MultiCharEq { |
631 | fn matches(&mut self, c: char) -> bool; |
632 | } |
633 | |
634 | impl<F> MultiCharEq for F |
635 | where |
636 | F: FnMut(char) -> bool, |
637 | { |
638 | #[inline] |
639 | fn matches(&mut self, c: char) -> bool { |
640 | (*self)(c) |
641 | } |
642 | } |
643 | |
644 | impl<const N: usize> MultiCharEq for [char; N] { |
645 | #[inline] |
646 | fn matches(&mut self, c: char) -> bool { |
647 | self.contains(&c) |
648 | } |
649 | } |
650 | |
651 | impl<const N: usize> MultiCharEq for &[char; N] { |
652 | #[inline] |
653 | fn matches(&mut self, c: char) -> bool { |
654 | self.contains(&c) |
655 | } |
656 | } |
657 | |
658 | impl MultiCharEq for &[char] { |
659 | #[inline] |
660 | fn matches(&mut self, c: char) -> bool { |
661 | self.contains(&c) |
662 | } |
663 | } |
664 | |
665 | struct MultiCharEqPattern<C: MultiCharEq>(C); |
666 | |
667 | #[derive(Clone, Debug)] |
668 | struct MultiCharEqSearcher<'a, C: MultiCharEq> { |
669 | char_eq: C, |
670 | haystack: &'a str, |
671 | char_indices: super::CharIndices<'a>, |
672 | } |
673 | |
674 | impl<C: MultiCharEq> Pattern for MultiCharEqPattern<C> { |
675 | type Searcher<'a> = MultiCharEqSearcher<'a, C>; |
676 | |
677 | #[inline] |
678 | fn into_searcher(self, haystack: &str) -> MultiCharEqSearcher<'_, C> { |
679 | MultiCharEqSearcher { haystack, char_eq: self.0, char_indices: haystack.char_indices() } |
680 | } |
681 | } |
682 | |
683 | unsafe impl<'a, C: MultiCharEq> Searcher<'a> for MultiCharEqSearcher<'a, C> { |
684 | #[inline] |
685 | fn haystack(&self) -> &'a str { |
686 | self.haystack |
687 | } |
688 | |
689 | #[inline] |
690 | fn next(&mut self) -> SearchStep { |
691 | let s: &mut CharIndices<'a> = &mut self.char_indices; |
692 | // Compare lengths of the internal byte slice iterator |
693 | // to find length of current char |
694 | let pre_len: usize = s.iter.iter.len(); |
695 | if let Some((i: usize, c: char)) = s.next() { |
696 | let len: usize = s.iter.iter.len(); |
697 | let char_len: usize = pre_len - len; |
698 | if self.char_eq.matches(c) { |
699 | return SearchStep::Match(i, i + char_len); |
700 | } else { |
701 | return SearchStep::Reject(i, i + char_len); |
702 | } |
703 | } |
704 | SearchStep::Done |
705 | } |
706 | } |
707 | |
708 | unsafe impl<'a, C: MultiCharEq> ReverseSearcher<'a> for MultiCharEqSearcher<'a, C> { |
709 | #[inline] |
710 | fn next_back(&mut self) -> SearchStep { |
711 | let s: &mut CharIndices<'a> = &mut self.char_indices; |
712 | // Compare lengths of the internal byte slice iterator |
713 | // to find length of current char |
714 | let pre_len: usize = s.iter.iter.len(); |
715 | if let Some((i: usize, c: char)) = s.next_back() { |
716 | let len: usize = s.iter.iter.len(); |
717 | let char_len: usize = pre_len - len; |
718 | if self.char_eq.matches(c) { |
719 | return SearchStep::Match(i, i + char_len); |
720 | } else { |
721 | return SearchStep::Reject(i, i + char_len); |
722 | } |
723 | } |
724 | SearchStep::Done |
725 | } |
726 | } |
727 | |
728 | impl<'a, C: MultiCharEq> DoubleEndedSearcher<'a> for MultiCharEqSearcher<'a, C> {} |
729 | |
730 | ///////////////////////////////////////////////////////////////////////////// |
731 | |
732 | macro_rules! pattern_methods { |
733 | ($a:lifetime, $t:ty, $pmap:expr, $smap:expr) => { |
734 | type Searcher<$a> = $t; |
735 | |
736 | #[inline] |
737 | fn into_searcher<$a>(self, haystack: &$a str) -> $t { |
738 | ($smap)(($pmap)(self).into_searcher(haystack)) |
739 | } |
740 | |
741 | #[inline] |
742 | fn is_contained_in<$a>(self, haystack: &$a str) -> bool { |
743 | ($pmap)(self).is_contained_in(haystack) |
744 | } |
745 | |
746 | #[inline] |
747 | fn is_prefix_of<$a>(self, haystack: &$a str) -> bool { |
748 | ($pmap)(self).is_prefix_of(haystack) |
749 | } |
750 | |
751 | #[inline] |
752 | fn strip_prefix_of<$a>(self, haystack: &$a str) -> Option<&$a str> { |
753 | ($pmap)(self).strip_prefix_of(haystack) |
754 | } |
755 | |
756 | #[inline] |
757 | fn is_suffix_of<$a>(self, haystack: &$a str) -> bool |
758 | where |
759 | $t: ReverseSearcher<$a>, |
760 | { |
761 | ($pmap)(self).is_suffix_of(haystack) |
762 | } |
763 | |
764 | #[inline] |
765 | fn strip_suffix_of<$a>(self, haystack: &$a str) -> Option<&$a str> |
766 | where |
767 | $t: ReverseSearcher<$a>, |
768 | { |
769 | ($pmap)(self).strip_suffix_of(haystack) |
770 | } |
771 | }; |
772 | } |
773 | |
774 | macro_rules! searcher_methods { |
775 | (forward) => { |
776 | #[inline] |
777 | fn haystack(&self) -> &'a str { |
778 | self.0.haystack() |
779 | } |
780 | #[inline] |
781 | fn next(&mut self) -> SearchStep { |
782 | self.0.next() |
783 | } |
784 | #[inline] |
785 | fn next_match(&mut self) -> Option<(usize, usize)> { |
786 | self.0.next_match() |
787 | } |
788 | #[inline] |
789 | fn next_reject(&mut self) -> Option<(usize, usize)> { |
790 | self.0.next_reject() |
791 | } |
792 | }; |
793 | (reverse) => { |
794 | #[inline] |
795 | fn next_back(&mut self) -> SearchStep { |
796 | self.0.next_back() |
797 | } |
798 | #[inline] |
799 | fn next_match_back(&mut self) -> Option<(usize, usize)> { |
800 | self.0.next_match_back() |
801 | } |
802 | #[inline] |
803 | fn next_reject_back(&mut self) -> Option<(usize, usize)> { |
804 | self.0.next_reject_back() |
805 | } |
806 | }; |
807 | } |
808 | |
809 | /// Associated type for `<[char; N] as Pattern>::Searcher<'a>`. |
810 | #[derive(Clone, Debug)] |
811 | pub struct CharArraySearcher<'a, const N: usize>( |
812 | <MultiCharEqPattern<[char; N]> as Pattern>::Searcher<'a>, |
813 | ); |
814 | |
815 | /// Associated type for `<&[char; N] as Pattern>::Searcher<'a>`. |
816 | #[derive(Clone, Debug)] |
817 | pub struct CharArrayRefSearcher<'a, 'b, const N: usize>( |
818 | <MultiCharEqPattern<&'b [char; N]> as Pattern>::Searcher<'a>, |
819 | ); |
820 | |
821 | /// Searches for chars that are equal to any of the [`char`]s in the array. |
822 | /// |
823 | /// # Examples |
824 | /// |
825 | /// ``` |
826 | /// assert_eq!("Hello world".find([ 'o', 'l']), Some(2)); |
827 | /// assert_eq!("Hello world".find([ 'h', 'w']), Some(6)); |
828 | /// ``` |
829 | impl<const N: usize> Pattern for [char; N] { |
830 | pattern_methods!('a, CharArraySearcher<'a, N>, MultiCharEqPattern, CharArraySearcher); |
831 | } |
832 | |
833 | unsafe impl<'a, const N: usize> Searcher<'a> for CharArraySearcher<'a, N> { |
834 | searcher_methods!(forward); |
835 | } |
836 | |
837 | unsafe impl<'a, const N: usize> ReverseSearcher<'a> for CharArraySearcher<'a, N> { |
838 | searcher_methods!(reverse); |
839 | } |
840 | |
841 | impl<'a, const N: usize> DoubleEndedSearcher<'a> for CharArraySearcher<'a, N> {} |
842 | |
843 | /// Searches for chars that are equal to any of the [`char`]s in the array. |
844 | /// |
845 | /// # Examples |
846 | /// |
847 | /// ``` |
848 | /// assert_eq!("Hello world".find(&[ 'o', 'l']), Some(2)); |
849 | /// assert_eq!("Hello world".find(&[ 'h', 'w']), Some(6)); |
850 | /// ``` |
851 | impl<'b, const N: usize> Pattern for &'b [char; N] { |
852 | pattern_methods!('a, CharArrayRefSearcher<'a, 'b, N>, MultiCharEqPattern, CharArrayRefSearcher); |
853 | } |
854 | |
855 | unsafe impl<'a, 'b, const N: usize> Searcher<'a> for CharArrayRefSearcher<'a, 'b, N> { |
856 | searcher_methods!(forward); |
857 | } |
858 | |
859 | unsafe impl<'a, 'b, const N: usize> ReverseSearcher<'a> for CharArrayRefSearcher<'a, 'b, N> { |
860 | searcher_methods!(reverse); |
861 | } |
862 | |
863 | impl<'a, 'b, const N: usize> DoubleEndedSearcher<'a> for CharArrayRefSearcher<'a, 'b, N> {} |
864 | |
865 | ///////////////////////////////////////////////////////////////////////////// |
866 | // Impl for &[char] |
867 | ///////////////////////////////////////////////////////////////////////////// |
868 | |
869 | // Todo: Change / Remove due to ambiguity in meaning. |
870 | |
871 | /// Associated type for `<&[char] as Pattern>::Searcher<'a>`. |
872 | #[derive(Clone, Debug)] |
873 | pub struct CharSliceSearcher<'a, 'b>(<MultiCharEqPattern<&'b [char]> as Pattern>::Searcher<'a>); |
874 | |
875 | unsafe impl<'a, 'b> Searcher<'a> for CharSliceSearcher<'a, 'b> { |
876 | searcher_methods!(forward); |
877 | } |
878 | |
879 | unsafe impl<'a, 'b> ReverseSearcher<'a> for CharSliceSearcher<'a, 'b> { |
880 | searcher_methods!(reverse); |
881 | } |
882 | |
883 | impl<'a, 'b> DoubleEndedSearcher<'a> for CharSliceSearcher<'a, 'b> {} |
884 | |
885 | /// Searches for chars that are equal to any of the [`char`]s in the slice. |
886 | /// |
887 | /// # Examples |
888 | /// |
889 | /// ``` |
890 | /// assert_eq!("Hello world".find(&[ 'o', 'l'][..]), Some(2)); |
891 | /// assert_eq!("Hello world".find(&[ 'h', 'w'][..]), Some(6)); |
892 | /// ``` |
893 | impl<'b> Pattern for &'b [char] { |
894 | pattern_methods!('a, CharSliceSearcher<'a, 'b>, MultiCharEqPattern, CharSliceSearcher); |
895 | } |
896 | |
897 | ///////////////////////////////////////////////////////////////////////////// |
898 | // Impl for F: FnMut(char) -> bool |
899 | ///////////////////////////////////////////////////////////////////////////// |
900 | |
901 | /// Associated type for `<F as Pattern>::Searcher<'a>`. |
902 | #[derive(Clone)] |
903 | pub struct CharPredicateSearcher<'a, F>(<MultiCharEqPattern<F> as Pattern>::Searcher<'a>) |
904 | where |
905 | F: FnMut(char) -> bool; |
906 | |
907 | impl<F> fmt::Debug for CharPredicateSearcher<'_, F> |
908 | where |
909 | F: FnMut(char) -> bool, |
910 | { |
911 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
912 | f&mut DebugStruct<'_, '_>.debug_struct("CharPredicateSearcher") |
913 | .field("haystack", &self.0.haystack) |
914 | .field(name:"char_indices", &self.0.char_indices) |
915 | .finish() |
916 | } |
917 | } |
918 | unsafe impl<'a, F> Searcher<'a> for CharPredicateSearcher<'a, F> |
919 | where |
920 | F: FnMut(char) -> bool, |
921 | { |
922 | searcher_methods!(forward); |
923 | } |
924 | |
925 | unsafe impl<'a, F> ReverseSearcher<'a> for CharPredicateSearcher<'a, F> |
926 | where |
927 | F: FnMut(char) -> bool, |
928 | { |
929 | searcher_methods!(reverse); |
930 | } |
931 | |
932 | impl<'a, F> DoubleEndedSearcher<'a> for CharPredicateSearcher<'a, F> where F: FnMut(char) -> bool {} |
933 | |
934 | /// Searches for [`char`]s that match the given predicate. |
935 | /// |
936 | /// # Examples |
937 | /// |
938 | /// ``` |
939 | /// assert_eq!("Hello world".find(char::is_uppercase), Some(0)); |
940 | /// assert_eq!("Hello world".find(|c| "aeiou".contains(c)), Some(1)); |
941 | /// ``` |
942 | impl<F> Pattern for F |
943 | where |
944 | F: FnMut(char) -> bool, |
945 | { |
946 | pattern_methods!('a, CharPredicateSearcher<'a, F>, MultiCharEqPattern, CharPredicateSearcher); |
947 | } |
948 | |
949 | ///////////////////////////////////////////////////////////////////////////// |
950 | // Impl for &&str |
951 | ///////////////////////////////////////////////////////////////////////////// |
952 | |
953 | /// Delegates to the `&str` impl. |
954 | impl<'b, 'c> Pattern for &'c &'b str { |
955 | pattern_methods!('a, StrSearcher<'a, 'b>, |&s| s, |s| s); |
956 | } |
957 | |
958 | ///////////////////////////////////////////////////////////////////////////// |
959 | // Impl for &str |
960 | ///////////////////////////////////////////////////////////////////////////// |
961 | |
962 | /// Non-allocating substring search. |
963 | /// |
964 | /// Will handle the pattern `""` as returning empty matches at each character |
965 | /// boundary. |
966 | /// |
967 | /// # Examples |
968 | /// |
969 | /// ``` |
970 | /// assert_eq!("Hello world".find( "world"), Some(6)); |
971 | /// ``` |
972 | impl<'b> Pattern for &'b str { |
973 | type Searcher<'a> = StrSearcher<'a, 'b>; |
974 | |
975 | #[inline] |
976 | fn into_searcher(self, haystack: &str) -> StrSearcher<'_, 'b> { |
977 | StrSearcher::new(haystack, self) |
978 | } |
979 | |
980 | /// Checks whether the pattern matches at the front of the haystack. |
981 | #[inline] |
982 | fn is_prefix_of(self, haystack: &str) -> bool { |
983 | haystack.as_bytes().starts_with(self.as_bytes()) |
984 | } |
985 | |
986 | /// Checks whether the pattern matches anywhere in the haystack |
987 | #[inline] |
988 | fn is_contained_in(self, haystack: &str) -> bool { |
989 | if self.len() == 0 { |
990 | return true; |
991 | } |
992 | |
993 | match self.len().cmp(&haystack.len()) { |
994 | Ordering::Less => { |
995 | if self.len() == 1 { |
996 | return haystack.as_bytes().contains(&self.as_bytes()[0]); |
997 | } |
998 | |
999 | #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))] |
1000 | if self.len() <= 32 { |
1001 | if let Some(result) = simd_contains(self, haystack) { |
1002 | return result; |
1003 | } |
1004 | } |
1005 | |
1006 | self.into_searcher(haystack).next_match().is_some() |
1007 | } |
1008 | _ => self == haystack, |
1009 | } |
1010 | } |
1011 | |
1012 | /// Removes the pattern from the front of haystack, if it matches. |
1013 | #[inline] |
1014 | fn strip_prefix_of(self, haystack: &str) -> Option<&str> { |
1015 | if self.is_prefix_of(haystack) { |
1016 | // SAFETY: prefix was just verified to exist. |
1017 | unsafe { Some(haystack.get_unchecked(self.as_bytes().len()..)) } |
1018 | } else { |
1019 | None |
1020 | } |
1021 | } |
1022 | |
1023 | /// Checks whether the pattern matches at the back of the haystack. |
1024 | #[inline] |
1025 | fn is_suffix_of<'a>(self, haystack: &'a str) -> bool |
1026 | where |
1027 | Self::Searcher<'a>: ReverseSearcher<'a>, |
1028 | { |
1029 | haystack.as_bytes().ends_with(self.as_bytes()) |
1030 | } |
1031 | |
1032 | /// Removes the pattern from the back of haystack, if it matches. |
1033 | #[inline] |
1034 | fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str> |
1035 | where |
1036 | Self::Searcher<'a>: ReverseSearcher<'a>, |
1037 | { |
1038 | if self.is_suffix_of(haystack) { |
1039 | let i = haystack.len() - self.as_bytes().len(); |
1040 | // SAFETY: suffix was just verified to exist. |
1041 | unsafe { Some(haystack.get_unchecked(..i)) } |
1042 | } else { |
1043 | None |
1044 | } |
1045 | } |
1046 | |
1047 | #[inline] |
1048 | fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> { |
1049 | Some(Utf8Pattern::StringPattern(self.as_bytes())) |
1050 | } |
1051 | } |
1052 | |
1053 | ///////////////////////////////////////////////////////////////////////////// |
1054 | // Two Way substring searcher |
1055 | ///////////////////////////////////////////////////////////////////////////// |
1056 | |
1057 | #[derive(Clone, Debug)] |
1058 | /// Associated type for `<&str as Pattern>::Searcher<'a>`. |
1059 | pub struct StrSearcher<'a, 'b> { |
1060 | haystack: &'a str, |
1061 | needle: &'b str, |
1062 | |
1063 | searcher: StrSearcherImpl, |
1064 | } |
1065 | |
1066 | #[derive(Clone, Debug)] |
1067 | enum StrSearcherImpl { |
1068 | Empty(EmptyNeedle), |
1069 | TwoWay(TwoWaySearcher), |
1070 | } |
1071 | |
1072 | #[derive(Clone, Debug)] |
1073 | struct EmptyNeedle { |
1074 | position: usize, |
1075 | end: usize, |
1076 | is_match_fw: bool, |
1077 | is_match_bw: bool, |
1078 | // Needed in case of an empty haystack, see #85462 |
1079 | is_finished: bool, |
1080 | } |
1081 | |
1082 | impl<'a, 'b> StrSearcher<'a, 'b> { |
1083 | fn new(haystack: &'a str, needle: &'b str) -> StrSearcher<'a, 'b> { |
1084 | if needle.is_empty() { |
1085 | StrSearcher { |
1086 | haystack, |
1087 | needle, |
1088 | searcher: StrSearcherImpl::Empty(EmptyNeedle { |
1089 | position: 0, |
1090 | end: haystack.len(), |
1091 | is_match_fw: true, |
1092 | is_match_bw: true, |
1093 | is_finished: false, |
1094 | }), |
1095 | } |
1096 | } else { |
1097 | StrSearcher { |
1098 | haystack, |
1099 | needle, |
1100 | searcher: StrSearcherImpl::TwoWay(TwoWaySearcher::new( |
1101 | needle.as_bytes(), |
1102 | haystack.len(), |
1103 | )), |
1104 | } |
1105 | } |
1106 | } |
1107 | } |
1108 | |
1109 | unsafe impl<'a, 'b> Searcher<'a> for StrSearcher<'a, 'b> { |
1110 | #[inline] |
1111 | fn haystack(&self) -> &'a str { |
1112 | self.haystack |
1113 | } |
1114 | |
1115 | #[inline] |
1116 | fn next(&mut self) -> SearchStep { |
1117 | match self.searcher { |
1118 | StrSearcherImpl::Empty(ref mut searcher) => { |
1119 | if searcher.is_finished { |
1120 | return SearchStep::Done; |
1121 | } |
1122 | // empty needle rejects every char and matches every empty string between them |
1123 | let is_match = searcher.is_match_fw; |
1124 | searcher.is_match_fw = !searcher.is_match_fw; |
1125 | let pos = searcher.position; |
1126 | match self.haystack[pos..].chars().next() { |
1127 | _ if is_match => SearchStep::Match(pos, pos), |
1128 | None => { |
1129 | searcher.is_finished = true; |
1130 | SearchStep::Done |
1131 | } |
1132 | Some(ch) => { |
1133 | searcher.position += ch.len_utf8(); |
1134 | SearchStep::Reject(pos, searcher.position) |
1135 | } |
1136 | } |
1137 | } |
1138 | StrSearcherImpl::TwoWay(ref mut searcher) => { |
1139 | // TwoWaySearcher produces valid *Match* indices that split at char boundaries |
1140 | // as long as it does correct matching and that haystack and needle are |
1141 | // valid UTF-8 |
1142 | // *Rejects* from the algorithm can fall on any indices, but we will walk them |
1143 | // manually to the next character boundary, so that they are utf-8 safe. |
1144 | if searcher.position == self.haystack.len() { |
1145 | return SearchStep::Done; |
1146 | } |
1147 | let is_long = searcher.memory == usize::MAX; |
1148 | match searcher.next::<RejectAndMatch>( |
1149 | self.haystack.as_bytes(), |
1150 | self.needle.as_bytes(), |
1151 | is_long, |
1152 | ) { |
1153 | SearchStep::Reject(a, mut b) => { |
1154 | // skip to next char boundary |
1155 | while !self.haystack.is_char_boundary(b) { |
1156 | b += 1; |
1157 | } |
1158 | searcher.position = cmp::max(b, searcher.position); |
1159 | SearchStep::Reject(a, b) |
1160 | } |
1161 | otherwise => otherwise, |
1162 | } |
1163 | } |
1164 | } |
1165 | } |
1166 | |
1167 | #[inline] |
1168 | fn next_match(&mut self) -> Option<(usize, usize)> { |
1169 | match self.searcher { |
1170 | StrSearcherImpl::Empty(..) => loop { |
1171 | match self.next() { |
1172 | SearchStep::Match(a, b) => return Some((a, b)), |
1173 | SearchStep::Done => return None, |
1174 | SearchStep::Reject(..) => {} |
1175 | } |
1176 | }, |
1177 | StrSearcherImpl::TwoWay(ref mut searcher) => { |
1178 | let is_long = searcher.memory == usize::MAX; |
1179 | // write out `true` and `false` cases to encourage the compiler |
1180 | // to specialize the two cases separately. |
1181 | if is_long { |
1182 | searcher.next::<MatchOnly>( |
1183 | self.haystack.as_bytes(), |
1184 | self.needle.as_bytes(), |
1185 | true, |
1186 | ) |
1187 | } else { |
1188 | searcher.next::<MatchOnly>( |
1189 | self.haystack.as_bytes(), |
1190 | self.needle.as_bytes(), |
1191 | false, |
1192 | ) |
1193 | } |
1194 | } |
1195 | } |
1196 | } |
1197 | } |
1198 | |
1199 | unsafe impl<'a, 'b> ReverseSearcher<'a> for StrSearcher<'a, 'b> { |
1200 | #[inline] |
1201 | fn next_back(&mut self) -> SearchStep { |
1202 | match self.searcher { |
1203 | StrSearcherImpl::Empty(ref mut searcher) => { |
1204 | if searcher.is_finished { |
1205 | return SearchStep::Done; |
1206 | } |
1207 | let is_match = searcher.is_match_bw; |
1208 | searcher.is_match_bw = !searcher.is_match_bw; |
1209 | let end = searcher.end; |
1210 | match self.haystack[..end].chars().next_back() { |
1211 | _ if is_match => SearchStep::Match(end, end), |
1212 | None => { |
1213 | searcher.is_finished = true; |
1214 | SearchStep::Done |
1215 | } |
1216 | Some(ch) => { |
1217 | searcher.end -= ch.len_utf8(); |
1218 | SearchStep::Reject(searcher.end, end) |
1219 | } |
1220 | } |
1221 | } |
1222 | StrSearcherImpl::TwoWay(ref mut searcher) => { |
1223 | if searcher.end == 0 { |
1224 | return SearchStep::Done; |
1225 | } |
1226 | let is_long = searcher.memory == usize::MAX; |
1227 | match searcher.next_back::<RejectAndMatch>( |
1228 | self.haystack.as_bytes(), |
1229 | self.needle.as_bytes(), |
1230 | is_long, |
1231 | ) { |
1232 | SearchStep::Reject(mut a, b) => { |
1233 | // skip to next char boundary |
1234 | while !self.haystack.is_char_boundary(a) { |
1235 | a -= 1; |
1236 | } |
1237 | searcher.end = cmp::min(a, searcher.end); |
1238 | SearchStep::Reject(a, b) |
1239 | } |
1240 | otherwise => otherwise, |
1241 | } |
1242 | } |
1243 | } |
1244 | } |
1245 | |
1246 | #[inline] |
1247 | fn next_match_back(&mut self) -> Option<(usize, usize)> { |
1248 | match self.searcher { |
1249 | StrSearcherImpl::Empty(..) => loop { |
1250 | match self.next_back() { |
1251 | SearchStep::Match(a, b) => return Some((a, b)), |
1252 | SearchStep::Done => return None, |
1253 | SearchStep::Reject(..) => {} |
1254 | } |
1255 | }, |
1256 | StrSearcherImpl::TwoWay(ref mut searcher) => { |
1257 | let is_long = searcher.memory == usize::MAX; |
1258 | // write out `true` and `false`, like `next_match` |
1259 | if is_long { |
1260 | searcher.next_back::<MatchOnly>( |
1261 | self.haystack.as_bytes(), |
1262 | self.needle.as_bytes(), |
1263 | true, |
1264 | ) |
1265 | } else { |
1266 | searcher.next_back::<MatchOnly>( |
1267 | self.haystack.as_bytes(), |
1268 | self.needle.as_bytes(), |
1269 | false, |
1270 | ) |
1271 | } |
1272 | } |
1273 | } |
1274 | } |
1275 | } |
1276 | |
1277 | /// The internal state of the two-way substring search algorithm. |
1278 | #[derive(Clone, Debug)] |
1279 | struct TwoWaySearcher { |
1280 | // constants |
1281 | /// critical factorization index |
1282 | crit_pos: usize, |
1283 | /// critical factorization index for reversed needle |
1284 | crit_pos_back: usize, |
1285 | period: usize, |
1286 | /// `byteset` is an extension (not part of the two way algorithm); |
1287 | /// it's a 64-bit "fingerprint" where each set bit `j` corresponds |
1288 | /// to a (byte & 63) == j present in the needle. |
1289 | byteset: u64, |
1290 | |
1291 | // variables |
1292 | position: usize, |
1293 | end: usize, |
1294 | /// index into needle before which we have already matched |
1295 | memory: usize, |
1296 | /// index into needle after which we have already matched |
1297 | memory_back: usize, |
1298 | } |
1299 | |
1300 | /* |
1301 | This is the Two-Way search algorithm, which was introduced in the paper: |
1302 | Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675. |
1303 | |
1304 | Here's some background information. |
1305 | |
1306 | A *word* is a string of symbols. The *length* of a word should be a familiar |
1307 | notion, and here we denote it for any word x by |x|. |
1308 | (We also allow for the possibility of the *empty word*, a word of length zero). |
1309 | |
1310 | If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a |
1311 | *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p]. |
1312 | For example, both 1 and 2 are periods for the string "aa". As another example, |
1313 | the only period of the string "abcd" is 4. |
1314 | |
1315 | We denote by period(x) the *smallest* period of x (provided that x is non-empty). |
1316 | This is always well-defined since every non-empty word x has at least one period, |
1317 | |x|. We sometimes call this *the period* of x. |
1318 | |
1319 | If u, v and x are words such that x = uv, where uv is the concatenation of u and |
1320 | v, then we say that (u, v) is a *factorization* of x. |
1321 | |
1322 | Let (u, v) be a factorization for a word x. Then if w is a non-empty word such |
1323 | that both of the following hold |
1324 | |
1325 | - either w is a suffix of u or u is a suffix of w |
1326 | - either w is a prefix of v or v is a prefix of w |
1327 | |
1328 | then w is said to be a *repetition* for the factorization (u, v). |
1329 | |
1330 | Just to unpack this, there are four possibilities here. Let w = "abc". Then we |
1331 | might have: |
1332 | |
1333 | - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde") |
1334 | - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab") |
1335 | - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi") |
1336 | - u is a suffix of w and v is a prefix of w. ex: ("bc", "a") |
1337 | |
1338 | Note that the word vu is a repetition for any factorization (u,v) of x = uv, |
1339 | so every factorization has at least one repetition. |
1340 | |
1341 | If x is a string and (u, v) is a factorization for x, then a *local period* for |
1342 | (u, v) is an integer r such that there is some word w such that |w| = r and w is |
1343 | a repetition for (u, v). |
1344 | |
1345 | We denote by local_period(u, v) the smallest local period of (u, v). We sometimes |
1346 | call this *the local period* of (u, v). Provided that x = uv is non-empty, this |
1347 | is well-defined (because each non-empty word has at least one factorization, as |
1348 | noted above). |
1349 | |
1350 | It can be proven that the following is an equivalent definition of a local period |
1351 | for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for |
1352 | all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are |
1353 | defined. (i.e., i > 0 and i + r < |x|). |
1354 | |
1355 | Using the above reformulation, it is easy to prove that |
1356 | |
1357 | 1 <= local_period(u, v) <= period(uv) |
1358 | |
1359 | A factorization (u, v) of x such that local_period(u,v) = period(x) is called a |
1360 | *critical factorization*. |
1361 | |
1362 | The algorithm hinges on the following theorem, which is stated without proof: |
1363 | |
1364 | **Critical Factorization Theorem** Any word x has at least one critical |
1365 | factorization (u, v) such that |u| < period(x). |
1366 | |
1367 | The purpose of maximal_suffix is to find such a critical factorization. |
1368 | |
1369 | If the period is short, compute another factorization x = u' v' to use |
1370 | for reverse search, chosen instead so that |v'| < period(x). |
1371 | |
1372 | */ |
1373 | impl TwoWaySearcher { |
1374 | fn new(needle: &[u8], end: usize) -> TwoWaySearcher { |
1375 | let (crit_pos_false, period_false) = TwoWaySearcher::maximal_suffix(needle, false); |
1376 | let (crit_pos_true, period_true) = TwoWaySearcher::maximal_suffix(needle, true); |
1377 | |
1378 | let (crit_pos, period) = if crit_pos_false > crit_pos_true { |
1379 | (crit_pos_false, period_false) |
1380 | } else { |
1381 | (crit_pos_true, period_true) |
1382 | }; |
1383 | |
1384 | // A particularly readable explanation of what's going on here can be found |
1385 | // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically |
1386 | // see the code for "Algorithm CP" on p. 323. |
1387 | // |
1388 | // What's going on is we have some critical factorization (u, v) of the |
1389 | // needle, and we want to determine whether u is a suffix of |
1390 | // &v[..period]. If it is, we use "Algorithm CP1". Otherwise we use |
1391 | // "Algorithm CP2", which is optimized for when the period of the needle |
1392 | // is large. |
1393 | if needle[..crit_pos] == needle[period..period + crit_pos] { |
1394 | // short period case -- the period is exact |
1395 | // compute a separate critical factorization for the reversed needle |
1396 | // x = u' v' where |v'| < period(x). |
1397 | // |
1398 | // This is sped up by the period being known already. |
1399 | // Note that a case like x = "acba" may be factored exactly forwards |
1400 | // (crit_pos = 1, period = 3) while being factored with approximate |
1401 | // period in reverse (crit_pos = 2, period = 2). We use the given |
1402 | // reverse factorization but keep the exact period. |
1403 | let crit_pos_back = needle.len() |
1404 | - cmp::max( |
1405 | TwoWaySearcher::reverse_maximal_suffix(needle, period, false), |
1406 | TwoWaySearcher::reverse_maximal_suffix(needle, period, true), |
1407 | ); |
1408 | |
1409 | TwoWaySearcher { |
1410 | crit_pos, |
1411 | crit_pos_back, |
1412 | period, |
1413 | byteset: Self::byteset_create(&needle[..period]), |
1414 | |
1415 | position: 0, |
1416 | end, |
1417 | memory: 0, |
1418 | memory_back: needle.len(), |
1419 | } |
1420 | } else { |
1421 | // long period case -- we have an approximation to the actual period, |
1422 | // and don't use memorization. |
1423 | // |
1424 | // Approximate the period by lower bound max(|u|, |v|) + 1. |
1425 | // The critical factorization is efficient to use for both forward and |
1426 | // reverse search. |
1427 | |
1428 | TwoWaySearcher { |
1429 | crit_pos, |
1430 | crit_pos_back: crit_pos, |
1431 | period: cmp::max(crit_pos, needle.len() - crit_pos) + 1, |
1432 | byteset: Self::byteset_create(needle), |
1433 | |
1434 | position: 0, |
1435 | end, |
1436 | memory: usize::MAX, // Dummy value to signify that the period is long |
1437 | memory_back: usize::MAX, |
1438 | } |
1439 | } |
1440 | } |
1441 | |
1442 | #[inline] |
1443 | fn byteset_create(bytes: &[u8]) -> u64 { |
1444 | bytes.iter().fold(0, |a, &b| (1 << (b & 0x3f)) | a) |
1445 | } |
1446 | |
1447 | #[inline] |
1448 | fn byteset_contains(&self, byte: u8) -> bool { |
1449 | (self.byteset >> ((byte & 0x3f) as usize)) & 1 != 0 |
1450 | } |
1451 | |
1452 | // One of the main ideas of Two-Way is that we factorize the needle into |
1453 | // two halves, (u, v), and begin trying to find v in the haystack by scanning |
1454 | // left to right. If v matches, we try to match u by scanning right to left. |
1455 | // How far we can jump when we encounter a mismatch is all based on the fact |
1456 | // that (u, v) is a critical factorization for the needle. |
1457 | #[inline] |
1458 | fn next<S>(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> S::Output |
1459 | where |
1460 | S: TwoWayStrategy, |
1461 | { |
1462 | // `next()` uses `self.position` as its cursor |
1463 | let old_pos = self.position; |
1464 | let needle_last = needle.len() - 1; |
1465 | 'search: loop { |
1466 | // Check that we have room to search in |
1467 | // position + needle_last can not overflow if we assume slices |
1468 | // are bounded by isize's range. |
1469 | let tail_byte = match haystack.get(self.position + needle_last) { |
1470 | Some(&b) => b, |
1471 | None => { |
1472 | self.position = haystack.len(); |
1473 | return S::rejecting(old_pos, self.position); |
1474 | } |
1475 | }; |
1476 | |
1477 | if S::use_early_reject() && old_pos != self.position { |
1478 | return S::rejecting(old_pos, self.position); |
1479 | } |
1480 | |
1481 | // Quickly skip by large portions unrelated to our substring |
1482 | if !self.byteset_contains(tail_byte) { |
1483 | self.position += needle.len(); |
1484 | if !long_period { |
1485 | self.memory = 0; |
1486 | } |
1487 | continue 'search; |
1488 | } |
1489 | |
1490 | // See if the right part of the needle matches |
1491 | let start = |
1492 | if long_period { self.crit_pos } else { cmp::max(self.crit_pos, self.memory) }; |
1493 | for i in start..needle.len() { |
1494 | if needle[i] != haystack[self.position + i] { |
1495 | self.position += i - self.crit_pos + 1; |
1496 | if !long_period { |
1497 | self.memory = 0; |
1498 | } |
1499 | continue 'search; |
1500 | } |
1501 | } |
1502 | |
1503 | // See if the left part of the needle matches |
1504 | let start = if long_period { 0 } else { self.memory }; |
1505 | for i in (start..self.crit_pos).rev() { |
1506 | if needle[i] != haystack[self.position + i] { |
1507 | self.position += self.period; |
1508 | if !long_period { |
1509 | self.memory = needle.len() - self.period; |
1510 | } |
1511 | continue 'search; |
1512 | } |
1513 | } |
1514 | |
1515 | // We have found a match! |
1516 | let match_pos = self.position; |
1517 | |
1518 | // Note: add self.period instead of needle.len() to have overlapping matches |
1519 | self.position += needle.len(); |
1520 | if !long_period { |
1521 | self.memory = 0; // set to needle.len() - self.period for overlapping matches |
1522 | } |
1523 | |
1524 | return S::matching(match_pos, match_pos + needle.len()); |
1525 | } |
1526 | } |
1527 | |
1528 | // Follows the ideas in `next()`. |
1529 | // |
1530 | // The definitions are symmetrical, with period(x) = period(reverse(x)) |
1531 | // and local_period(u, v) = local_period(reverse(v), reverse(u)), so if (u, v) |
1532 | // is a critical factorization, so is (reverse(v), reverse(u)). |
1533 | // |
1534 | // For the reverse case we have computed a critical factorization x = u' v' |
1535 | // (field `crit_pos_back`). We need |u| < period(x) for the forward case and |
1536 | // thus |v'| < period(x) for the reverse. |
1537 | // |
1538 | // To search in reverse through the haystack, we search forward through |
1539 | // a reversed haystack with a reversed needle, matching first u' and then v'. |
1540 | #[inline] |
1541 | fn next_back<S>(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> S::Output |
1542 | where |
1543 | S: TwoWayStrategy, |
1544 | { |
1545 | // `next_back()` uses `self.end` as its cursor -- so that `next()` and `next_back()` |
1546 | // are independent. |
1547 | let old_end = self.end; |
1548 | 'search: loop { |
1549 | // Check that we have room to search in |
1550 | // end - needle.len() will wrap around when there is no more room, |
1551 | // but due to slice length limits it can never wrap all the way back |
1552 | // into the length of haystack. |
1553 | let front_byte = match haystack.get(self.end.wrapping_sub(needle.len())) { |
1554 | Some(&b) => b, |
1555 | None => { |
1556 | self.end = 0; |
1557 | return S::rejecting(0, old_end); |
1558 | } |
1559 | }; |
1560 | |
1561 | if S::use_early_reject() && old_end != self.end { |
1562 | return S::rejecting(self.end, old_end); |
1563 | } |
1564 | |
1565 | // Quickly skip by large portions unrelated to our substring |
1566 | if !self.byteset_contains(front_byte) { |
1567 | self.end -= needle.len(); |
1568 | if !long_period { |
1569 | self.memory_back = needle.len(); |
1570 | } |
1571 | continue 'search; |
1572 | } |
1573 | |
1574 | // See if the left part of the needle matches |
1575 | let crit = if long_period { |
1576 | self.crit_pos_back |
1577 | } else { |
1578 | cmp::min(self.crit_pos_back, self.memory_back) |
1579 | }; |
1580 | for i in (0..crit).rev() { |
1581 | if needle[i] != haystack[self.end - needle.len() + i] { |
1582 | self.end -= self.crit_pos_back - i; |
1583 | if !long_period { |
1584 | self.memory_back = needle.len(); |
1585 | } |
1586 | continue 'search; |
1587 | } |
1588 | } |
1589 | |
1590 | // See if the right part of the needle matches |
1591 | let needle_end = if long_period { needle.len() } else { self.memory_back }; |
1592 | for i in self.crit_pos_back..needle_end { |
1593 | if needle[i] != haystack[self.end - needle.len() + i] { |
1594 | self.end -= self.period; |
1595 | if !long_period { |
1596 | self.memory_back = self.period; |
1597 | } |
1598 | continue 'search; |
1599 | } |
1600 | } |
1601 | |
1602 | // We have found a match! |
1603 | let match_pos = self.end - needle.len(); |
1604 | // Note: sub self.period instead of needle.len() to have overlapping matches |
1605 | self.end -= needle.len(); |
1606 | if !long_period { |
1607 | self.memory_back = needle.len(); |
1608 | } |
1609 | |
1610 | return S::matching(match_pos, match_pos + needle.len()); |
1611 | } |
1612 | } |
1613 | |
1614 | // Compute the maximal suffix of `arr`. |
1615 | // |
1616 | // The maximal suffix is a possible critical factorization (u, v) of `arr`. |
1617 | // |
1618 | // Returns (`i`, `p`) where `i` is the starting index of v and `p` is the |
1619 | // period of v. |
1620 | // |
1621 | // `order_greater` determines if lexical order is `<` or `>`. Both |
1622 | // orders must be computed -- the ordering with the largest `i` gives |
1623 | // a critical factorization. |
1624 | // |
1625 | // For long period cases, the resulting period is not exact (it is too short). |
1626 | #[inline] |
1627 | fn maximal_suffix(arr: &[u8], order_greater: bool) -> (usize, usize) { |
1628 | let mut left = 0; // Corresponds to i in the paper |
1629 | let mut right = 1; // Corresponds to j in the paper |
1630 | let mut offset = 0; // Corresponds to k in the paper, but starting at 0 |
1631 | // to match 0-based indexing. |
1632 | let mut period = 1; // Corresponds to p in the paper |
1633 | |
1634 | while let Some(&a) = arr.get(right + offset) { |
1635 | // `left` will be inbounds when `right` is. |
1636 | let b = arr[left + offset]; |
1637 | if (a < b && !order_greater) || (a > b && order_greater) { |
1638 | // Suffix is smaller, period is entire prefix so far. |
1639 | right += offset + 1; |
1640 | offset = 0; |
1641 | period = right - left; |
1642 | } else if a == b { |
1643 | // Advance through repetition of the current period. |
1644 | if offset + 1 == period { |
1645 | right += offset + 1; |
1646 | offset = 0; |
1647 | } else { |
1648 | offset += 1; |
1649 | } |
1650 | } else { |
1651 | // Suffix is larger, start over from current location. |
1652 | left = right; |
1653 | right += 1; |
1654 | offset = 0; |
1655 | period = 1; |
1656 | } |
1657 | } |
1658 | (left, period) |
1659 | } |
1660 | |
1661 | // Compute the maximal suffix of the reverse of `arr`. |
1662 | // |
1663 | // The maximal suffix is a possible critical factorization (u', v') of `arr`. |
1664 | // |
1665 | // Returns `i` where `i` is the starting index of v', from the back; |
1666 | // returns immediately when a period of `known_period` is reached. |
1667 | // |
1668 | // `order_greater` determines if lexical order is `<` or `>`. Both |
1669 | // orders must be computed -- the ordering with the largest `i` gives |
1670 | // a critical factorization. |
1671 | // |
1672 | // For long period cases, the resulting period is not exact (it is too short). |
1673 | fn reverse_maximal_suffix(arr: &[u8], known_period: usize, order_greater: bool) -> usize { |
1674 | let mut left = 0; // Corresponds to i in the paper |
1675 | let mut right = 1; // Corresponds to j in the paper |
1676 | let mut offset = 0; // Corresponds to k in the paper, but starting at 0 |
1677 | // to match 0-based indexing. |
1678 | let mut period = 1; // Corresponds to p in the paper |
1679 | let n = arr.len(); |
1680 | |
1681 | while right + offset < n { |
1682 | let a = arr[n - (1 + right + offset)]; |
1683 | let b = arr[n - (1 + left + offset)]; |
1684 | if (a < b && !order_greater) || (a > b && order_greater) { |
1685 | // Suffix is smaller, period is entire prefix so far. |
1686 | right += offset + 1; |
1687 | offset = 0; |
1688 | period = right - left; |
1689 | } else if a == b { |
1690 | // Advance through repetition of the current period. |
1691 | if offset + 1 == period { |
1692 | right += offset + 1; |
1693 | offset = 0; |
1694 | } else { |
1695 | offset += 1; |
1696 | } |
1697 | } else { |
1698 | // Suffix is larger, start over from current location. |
1699 | left = right; |
1700 | right += 1; |
1701 | offset = 0; |
1702 | period = 1; |
1703 | } |
1704 | if period == known_period { |
1705 | break; |
1706 | } |
1707 | } |
1708 | debug_assert!(period <= known_period); |
1709 | left |
1710 | } |
1711 | } |
1712 | |
1713 | // TwoWayStrategy allows the algorithm to either skip non-matches as quickly |
1714 | // as possible, or to work in a mode where it emits Rejects relatively quickly. |
1715 | trait TwoWayStrategy { |
1716 | type Output; |
1717 | fn use_early_reject() -> bool; |
1718 | fn rejecting(a: usize, b: usize) -> Self::Output; |
1719 | fn matching(a: usize, b: usize) -> Self::Output; |
1720 | } |
1721 | |
1722 | /// Skip to match intervals as quickly as possible |
1723 | enum MatchOnly {} |
1724 | |
1725 | impl TwoWayStrategy for MatchOnly { |
1726 | type Output = Option<(usize, usize)>; |
1727 | |
1728 | #[inline] |
1729 | fn use_early_reject() -> bool { |
1730 | false |
1731 | } |
1732 | #[inline] |
1733 | fn rejecting(_a: usize, _b: usize) -> Self::Output { |
1734 | None |
1735 | } |
1736 | #[inline] |
1737 | fn matching(a: usize, b: usize) -> Self::Output { |
1738 | Some((a, b)) |
1739 | } |
1740 | } |
1741 | |
1742 | /// Emit Rejects regularly |
1743 | enum RejectAndMatch {} |
1744 | |
1745 | impl TwoWayStrategy for RejectAndMatch { |
1746 | type Output = SearchStep; |
1747 | |
1748 | #[inline] |
1749 | fn use_early_reject() -> bool { |
1750 | true |
1751 | } |
1752 | #[inline] |
1753 | fn rejecting(a: usize, b: usize) -> Self::Output { |
1754 | SearchStep::Reject(a, b) |
1755 | } |
1756 | #[inline] |
1757 | fn matching(a: usize, b: usize) -> Self::Output { |
1758 | SearchStep::Match(a, b) |
1759 | } |
1760 | } |
1761 | |
1762 | /// SIMD search for short needles based on |
1763 | /// Wojciech Muła's "SIMD-friendly algorithms for substring searching"[0] |
1764 | /// |
1765 | /// It skips ahead by the vector width on each iteration (rather than the needle length as two-way |
1766 | /// does) by probing the first and last byte of the needle for the whole vector width |
1767 | /// and only doing full needle comparisons when the vectorized probe indicated potential matches. |
1768 | /// |
1769 | /// Since the x86_64 baseline only offers SSE2 we only use u8x16 here. |
1770 | /// If we ever ship std with for x86-64-v3 or adapt this for other platforms then wider vectors |
1771 | /// should be evaluated. |
1772 | /// |
1773 | /// For haystacks smaller than vector-size + needle length it falls back to |
1774 | /// a naive O(n*m) search so this implementation should not be called on larger needles. |
1775 | /// |
1776 | /// [0]: http://0x80.pl/articles/simd-strfind.html#sse-avx2 |
1777 | #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))] |
1778 | #[inline] |
1779 | fn simd_contains(needle: &str, haystack: &str) -> Option<bool> { |
1780 | let needle = needle.as_bytes(); |
1781 | let haystack = haystack.as_bytes(); |
1782 | |
1783 | debug_assert!(needle.len() > 1); |
1784 | |
1785 | use crate::ops::BitAnd; |
1786 | use crate::simd::cmp::SimdPartialEq; |
1787 | use crate::simd::{mask8x16 as Mask, u8x16 as Block}; |
1788 | |
1789 | let first_probe = needle[0]; |
1790 | let last_byte_offset = needle.len() - 1; |
1791 | |
1792 | // the offset used for the 2nd vector |
1793 | let second_probe_offset = if needle.len() == 2 { |
1794 | // never bail out on len=2 needles because the probes will fully cover them and have |
1795 | // no degenerate cases. |
1796 | 1 |
1797 | } else { |
1798 | // try a few bytes in case first and last byte of the needle are the same |
1799 | let Some(second_probe_offset) = |
1800 | (needle.len().saturating_sub(4)..needle.len()).rfind(|&idx| needle[idx] != first_probe) |
1801 | else { |
1802 | // fall back to other search methods if we can't find any different bytes |
1803 | // since we could otherwise hit some degenerate cases |
1804 | return None; |
1805 | }; |
1806 | second_probe_offset |
1807 | }; |
1808 | |
1809 | // do a naive search if the haystack is too small to fit |
1810 | if haystack.len() < Block::LEN + last_byte_offset { |
1811 | return Some(haystack.windows(needle.len()).any(|c| c == needle)); |
1812 | } |
1813 | |
1814 | let first_probe: Block = Block::splat(first_probe); |
1815 | let second_probe: Block = Block::splat(needle[second_probe_offset]); |
1816 | // first byte are already checked by the outer loop. to verify a match only the |
1817 | // remainder has to be compared. |
1818 | let trimmed_needle = &needle[1..]; |
1819 | |
1820 | // this #[cold] is load-bearing, benchmark before removing it... |
1821 | let check_mask = #[cold] |
1822 | |idx, mask: u16, skip: bool| -> bool { |
1823 | if skip { |
1824 | return false; |
1825 | } |
1826 | |
1827 | // and so is this. optimizations are weird. |
1828 | let mut mask = mask; |
1829 | |
1830 | while mask != 0 { |
1831 | let trailing = mask.trailing_zeros(); |
1832 | let offset = idx + trailing as usize + 1; |
1833 | // SAFETY: mask is between 0 and 15 trailing zeroes, we skip one additional byte that was already compared |
1834 | // and then take trimmed_needle.len() bytes. This is within the bounds defined by the outer loop |
1835 | unsafe { |
1836 | let sub = haystack.get_unchecked(offset..).get_unchecked(..trimmed_needle.len()); |
1837 | if small_slice_eq(sub, trimmed_needle) { |
1838 | return true; |
1839 | } |
1840 | } |
1841 | mask &= !(1 << trailing); |
1842 | } |
1843 | false |
1844 | }; |
1845 | |
1846 | let test_chunk = |idx| -> u16 { |
1847 | // SAFETY: this requires at least LANES bytes being readable at idx |
1848 | // that is ensured by the loop ranges (see comments below) |
1849 | let a: Block = unsafe { haystack.as_ptr().add(idx).cast::<Block>().read_unaligned() }; |
1850 | // SAFETY: this requires LANES + block_offset bytes being readable at idx |
1851 | let b: Block = unsafe { |
1852 | haystack.as_ptr().add(idx).add(second_probe_offset).cast::<Block>().read_unaligned() |
1853 | }; |
1854 | let eq_first: Mask = a.simd_eq(first_probe); |
1855 | let eq_last: Mask = b.simd_eq(second_probe); |
1856 | let both = eq_first.bitand(eq_last); |
1857 | let mask = both.to_bitmask() as u16; |
1858 | |
1859 | mask |
1860 | }; |
1861 | |
1862 | let mut i = 0; |
1863 | let mut result = false; |
1864 | // The loop condition must ensure that there's enough headroom to read LANE bytes, |
1865 | // and not only at the current index but also at the index shifted by block_offset |
1866 | const UNROLL: usize = 4; |
1867 | while i + last_byte_offset + UNROLL * Block::LEN < haystack.len() && !result { |
1868 | let mut masks = [0u16; UNROLL]; |
1869 | for j in 0..UNROLL { |
1870 | masks[j] = test_chunk(i + j * Block::LEN); |
1871 | } |
1872 | for j in 0..UNROLL { |
1873 | let mask = masks[j]; |
1874 | if mask != 0 { |
1875 | result |= check_mask(i + j * Block::LEN, mask, result); |
1876 | } |
1877 | } |
1878 | i += UNROLL * Block::LEN; |
1879 | } |
1880 | while i + last_byte_offset + Block::LEN < haystack.len() && !result { |
1881 | let mask = test_chunk(i); |
1882 | if mask != 0 { |
1883 | result |= check_mask(i, mask, result); |
1884 | } |
1885 | i += Block::LEN; |
1886 | } |
1887 | |
1888 | // Process the tail that didn't fit into LANES-sized steps. |
1889 | // This simply repeats the same procedure but as right-aligned chunk instead |
1890 | // of a left-aligned one. The last byte must be exactly flush with the string end so |
1891 | // we don't miss a single byte or read out of bounds. |
1892 | let i = haystack.len() - last_byte_offset - Block::LEN; |
1893 | let mask = test_chunk(i); |
1894 | if mask != 0 { |
1895 | result |= check_mask(i, mask, result); |
1896 | } |
1897 | |
1898 | Some(result) |
1899 | } |
1900 | |
1901 | /// Compares short slices for equality. |
1902 | /// |
1903 | /// It avoids a call to libc's memcmp which is faster on long slices |
1904 | /// due to SIMD optimizations but it incurs a function call overhead. |
1905 | /// |
1906 | /// # Safety |
1907 | /// |
1908 | /// Both slices must have the same length. |
1909 | #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))] // only called on x86 |
1910 | #[inline] |
1911 | unsafe fn small_slice_eq(x: &[u8], y: &[u8]) -> bool { |
1912 | debug_assert_eq!(x.len(), y.len()); |
1913 | // This function is adapted from |
1914 | // https://github.com/BurntSushi/memchr/blob/8037d11b4357b0f07be2bb66dc2659d9cf28ad32/src/memmem/util.rs#L32 |
1915 | |
1916 | // If we don't have enough bytes to do 4-byte at a time loads, then |
1917 | // fall back to the naive slow version. |
1918 | // |
1919 | // Potential alternative: We could do a copy_nonoverlapping combined with a mask instead |
1920 | // of a loop. Benchmark it. |
1921 | if x.len() < 4 { |
1922 | for (&b1, &b2) in x.iter().zip(y) { |
1923 | if b1 != b2 { |
1924 | return false; |
1925 | } |
1926 | } |
1927 | return true; |
1928 | } |
1929 | // When we have 4 or more bytes to compare, then proceed in chunks of 4 at |
1930 | // a time using unaligned loads. |
1931 | // |
1932 | // Also, why do 4 byte loads instead of, say, 8 byte loads? The reason is |
1933 | // that this particular version of memcmp is likely to be called with tiny |
1934 | // needles. That means that if we do 8 byte loads, then a higher proportion |
1935 | // of memcmp calls will use the slower variant above. With that said, this |
1936 | // is a hypothesis and is only loosely supported by benchmarks. There's |
1937 | // likely some improvement that could be made here. The main thing here |
1938 | // though is to optimize for latency, not throughput. |
1939 | |
1940 | // SAFETY: Via the conditional above, we know that both `px` and `py` |
1941 | // have the same length, so `px < pxend` implies that `py < pyend`. |
1942 | // Thus, dereferencing both `px` and `py` in the loop below is safe. |
1943 | // |
1944 | // Moreover, we set `pxend` and `pyend` to be 4 bytes before the actual |
1945 | // end of `px` and `py`. Thus, the final dereference outside of the |
1946 | // loop is guaranteed to be valid. (The final comparison will overlap with |
1947 | // the last comparison done in the loop for lengths that aren't multiples |
1948 | // of four.) |
1949 | // |
1950 | // Finally, we needn't worry about alignment here, since we do unaligned |
1951 | // loads. |
1952 | unsafe { |
1953 | let (mut px, mut py) = (x.as_ptr(), y.as_ptr()); |
1954 | let (pxend, pyend) = (px.add(x.len() - 4), py.add(y.len() - 4)); |
1955 | while px < pxend { |
1956 | let vx = (px as *const u32).read_unaligned(); |
1957 | let vy = (py as *const u32).read_unaligned(); |
1958 | if vx != vy { |
1959 | return false; |
1960 | } |
1961 | px = px.add(4); |
1962 | py = py.add(4); |
1963 | } |
1964 | let vx = (pxend as *const u32).read_unaligned(); |
1965 | let vy = (pyend as *const u32).read_unaligned(); |
1966 | vx == vy |
1967 | } |
1968 | } |
1969 |
Definitions
- Pattern
- Searcher
- into_searcher
- is_contained_in
- is_prefix_of
- is_suffix_of
- strip_prefix_of
- strip_suffix_of
- as_utf8_pattern
- Utf8Pattern
- StringPattern
- CharPattern
- SearchStep
- Match
- Reject
- Done
- Searcher
- haystack
- next
- next_match
- next_reject
- ReverseSearcher
- next_back
- next_match_back
- next_reject_back
- DoubleEndedSearcher
- CharSearcher
- haystack
- finger
- finger_back
- needle
- utf8_size
- utf8_encoded
- utf8_size
- haystack
- next
- next_match
- next_back
- next_match_back
- Searcher
- into_searcher
- is_contained_in
- is_prefix_of
- strip_prefix_of
- is_suffix_of
- strip_suffix_of
- as_utf8_pattern
- MultiCharEq
- matches
- matches
- matches
- matches
- matches
- MultiCharEqPattern
- MultiCharEqSearcher
- char_eq
- haystack
- char_indices
- Searcher
- into_searcher
- haystack
- next
- next_back
- pattern_methods
- searcher_methods
- CharArraySearcher
- CharArrayRefSearcher
- CharSliceSearcher
- CharPredicateSearcher
- fmt
- Searcher
- into_searcher
- is_prefix_of
- is_contained_in
- strip_prefix_of
- is_suffix_of
- strip_suffix_of
- as_utf8_pattern
- StrSearcher
- haystack
- needle
- searcher
- StrSearcherImpl
- Empty
- TwoWay
- EmptyNeedle
- position
- end
- is_match_fw
- is_match_bw
- is_finished
- new
- haystack
- next
- next_match
- next_back
- next_match_back
- TwoWaySearcher
- crit_pos
- crit_pos_back
- period
- byteset
- position
- end
- memory
- memory_back
- new
- byteset_create
- byteset_contains
- next
- next_back
- maximal_suffix
- reverse_maximal_suffix
- TwoWayStrategy
- Output
- use_early_reject
- rejecting
- matching
- MatchOnly
- Output
- use_early_reject
- rejecting
- matching
- RejectAndMatch
- Output
- use_early_reject
- rejecting
- matching
- simd_contains
Learn Rust with the experts
Find out more