1//! A "mutex" which only supports `try_lock`
2//!
3//! As a futures library the eventual call to an event loop should be the only
4//! thing that ever blocks, so this is assisted with a fast user-space
5//! implementation of a lock that can only have a `try_lock` operation.
6
7use core::cell::UnsafeCell;
8use core::ops::{Deref, DerefMut};
9use core::sync::atomic::AtomicBool;
10use core::sync::atomic::Ordering::SeqCst;
11
12/// A "mutex" around a value, similar to `std::sync::Mutex<T>`.
13///
14/// This lock only supports the `try_lock` operation, however, and does not
15/// implement poisoning.
16#[derive(Debug)]
17pub(crate) struct Lock<T> {
18 locked: AtomicBool,
19 data: UnsafeCell<T>,
20}
21
22/// Sentinel representing an acquired lock through which the data can be
23/// accessed.
24pub(crate) struct TryLock<'a, T> {
25 __ptr: &'a Lock<T>,
26}
27
28// The `Lock` structure is basically just a `Mutex<T>`, and these two impls are
29// intended to mirror the standard library's corresponding impls for `Mutex<T>`.
30//
31// If a `T` is sendable across threads, so is the lock, and `T` must be sendable
32// across threads to be `Sync` because it allows mutable access from multiple
33// threads.
34unsafe impl<T: Send> Send for Lock<T> {}
35unsafe impl<T: Send> Sync for Lock<T> {}
36
37impl<T> Lock<T> {
38 /// Creates a new lock around the given value.
39 pub(crate) fn new(t: T) -> Self {
40 Self { locked: AtomicBool::new(false), data: UnsafeCell::new(t) }
41 }
42
43 /// Attempts to acquire this lock, returning whether the lock was acquired or
44 /// not.
45 ///
46 /// If `Some` is returned then the data this lock protects can be accessed
47 /// through the sentinel. This sentinel allows both mutable and immutable
48 /// access.
49 ///
50 /// If `None` is returned then the lock is already locked, either elsewhere
51 /// on this thread or on another thread.
52 pub(crate) fn try_lock(&self) -> Option<TryLock<'_, T>> {
53 if !self.locked.swap(val:true, order:SeqCst) {
54 Some(TryLock { __ptr: self })
55 } else {
56 None
57 }
58 }
59}
60
61impl<T> Deref for TryLock<'_, T> {
62 type Target = T;
63 fn deref(&self) -> &T {
64 // The existence of `TryLock` represents that we own the lock, so we
65 // can safely access the data here.
66 unsafe { &*self.__ptr.data.get() }
67 }
68}
69
70impl<T> DerefMut for TryLock<'_, T> {
71 fn deref_mut(&mut self) -> &mut T {
72 // The existence of `TryLock` represents that we own the lock, so we
73 // can safely access the data here.
74 //
75 // Additionally, we're the *only* `TryLock` in existence so mutable
76 // access should be ok.
77 unsafe { &mut *self.__ptr.data.get() }
78 }
79}
80
81impl<T> Drop for TryLock<'_, T> {
82 fn drop(&mut self) {
83 self.__ptr.locked.store(val:false, order:SeqCst);
84 }
85}
86
87#[cfg(test)]
88mod tests {
89 use super::Lock;
90
91 #[test]
92 fn smoke() {
93 let a = Lock::new(1);
94 let mut a1 = a.try_lock().unwrap();
95 assert!(a.try_lock().is_none());
96 assert_eq!(*a1, 1);
97 *a1 = 2;
98 drop(a1);
99 assert_eq!(*a.try_lock().unwrap(), 2);
100 assert_eq!(*a.try_lock().unwrap(), 2);
101 }
102}
103