| 1 | //! Streams |
| 2 | //! |
| 3 | //! This module contains a number of functions for working with `Stream`s, |
| 4 | //! including the `StreamExt` trait which adds methods to `Stream` types. |
| 5 | |
| 6 | use crate::future::{assert_future, Either}; |
| 7 | use crate::stream::assert_stream; |
| 8 | #[cfg (feature = "alloc" )] |
| 9 | use alloc::boxed::Box; |
| 10 | #[cfg (feature = "alloc" )] |
| 11 | use alloc::vec::Vec; |
| 12 | use core::pin::Pin; |
| 13 | #[cfg (feature = "sink" )] |
| 14 | use futures_core::stream::TryStream; |
| 15 | #[cfg (feature = "alloc" )] |
| 16 | use futures_core::stream::{BoxStream, LocalBoxStream}; |
| 17 | use futures_core::{ |
| 18 | future::Future, |
| 19 | stream::{FusedStream, Stream}, |
| 20 | task::{Context, Poll}, |
| 21 | }; |
| 22 | #[cfg (feature = "sink" )] |
| 23 | use futures_sink::Sink; |
| 24 | |
| 25 | use crate::fns::{inspect_fn, InspectFn}; |
| 26 | |
| 27 | mod chain; |
| 28 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 29 | pub use self::chain::Chain; |
| 30 | |
| 31 | mod collect; |
| 32 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 33 | pub use self::collect::Collect; |
| 34 | |
| 35 | mod unzip; |
| 36 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 37 | pub use self::unzip::Unzip; |
| 38 | |
| 39 | mod concat; |
| 40 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 41 | pub use self::concat::Concat; |
| 42 | |
| 43 | mod count; |
| 44 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 45 | pub use self::count::Count; |
| 46 | |
| 47 | mod cycle; |
| 48 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 49 | pub use self::cycle::Cycle; |
| 50 | |
| 51 | mod enumerate; |
| 52 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 53 | pub use self::enumerate::Enumerate; |
| 54 | |
| 55 | mod filter; |
| 56 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 57 | pub use self::filter::Filter; |
| 58 | |
| 59 | mod filter_map; |
| 60 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 61 | pub use self::filter_map::FilterMap; |
| 62 | |
| 63 | mod flatten; |
| 64 | |
| 65 | delegate_all!( |
| 66 | /// Stream for the [`flatten`](StreamExt::flatten) method. |
| 67 | Flatten<St>( |
| 68 | flatten::Flatten<St, St::Item> |
| 69 | ): Debug + Sink + Stream + FusedStream + AccessInner[St, (.)] + New[|x: St| flatten::Flatten::new(x)] |
| 70 | where St: Stream |
| 71 | ); |
| 72 | |
| 73 | mod fold; |
| 74 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 75 | pub use self::fold::Fold; |
| 76 | |
| 77 | mod any; |
| 78 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 79 | pub use self::any::Any; |
| 80 | |
| 81 | mod all; |
| 82 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 83 | pub use self::all::All; |
| 84 | |
| 85 | #[cfg (feature = "sink" )] |
| 86 | mod forward; |
| 87 | |
| 88 | #[cfg (feature = "sink" )] |
| 89 | delegate_all!( |
| 90 | /// Future for the [`forward`](super::StreamExt::forward) method. |
| 91 | #[cfg_attr (docsrs, doc(cfg(feature = "sink" )))] |
| 92 | Forward<St, Si>( |
| 93 | forward::Forward<St, Si, St::Ok> |
| 94 | ): Debug + Future + FusedFuture + New[|x: St, y: Si| forward::Forward::new(x, y)] |
| 95 | where St: TryStream |
| 96 | ); |
| 97 | |
| 98 | mod for_each; |
| 99 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 100 | pub use self::for_each::ForEach; |
| 101 | |
| 102 | mod fuse; |
| 103 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 104 | pub use self::fuse::Fuse; |
| 105 | |
| 106 | mod into_future; |
| 107 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 108 | pub use self::into_future::StreamFuture; |
| 109 | |
| 110 | delegate_all!( |
| 111 | /// Stream for the [`inspect`](StreamExt::inspect) method. |
| 112 | Inspect<St, F>( |
| 113 | map::Map<St, InspectFn<F>> |
| 114 | ): Debug + Sink + Stream + FusedStream + AccessInner[St, (.)] + New[|x: St, f: F| map::Map::new(x, inspect_fn(f))] |
| 115 | ); |
| 116 | |
| 117 | mod map; |
| 118 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 119 | pub use self::map::Map; |
| 120 | |
| 121 | delegate_all!( |
| 122 | /// Stream for the [`flat_map`](StreamExt::flat_map) method. |
| 123 | FlatMap<St, U, F>( |
| 124 | flatten::Flatten<Map<St, F>, U> |
| 125 | ): Debug + Sink + Stream + FusedStream + AccessInner[St, (. .)] + New[|x: St, f: F| flatten::Flatten::new(Map::new(x, f))] |
| 126 | ); |
| 127 | |
| 128 | mod next; |
| 129 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 130 | pub use self::next::Next; |
| 131 | |
| 132 | mod select_next_some; |
| 133 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 134 | pub use self::select_next_some::SelectNextSome; |
| 135 | |
| 136 | mod peek; |
| 137 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 138 | pub use self::peek::{NextIf, NextIfEq, Peek, PeekMut, Peekable}; |
| 139 | |
| 140 | mod skip; |
| 141 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 142 | pub use self::skip::Skip; |
| 143 | |
| 144 | mod skip_while; |
| 145 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 146 | pub use self::skip_while::SkipWhile; |
| 147 | |
| 148 | mod take; |
| 149 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 150 | pub use self::take::Take; |
| 151 | |
| 152 | mod take_while; |
| 153 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 154 | pub use self::take_while::TakeWhile; |
| 155 | |
| 156 | mod take_until; |
| 157 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 158 | pub use self::take_until::TakeUntil; |
| 159 | |
| 160 | mod then; |
| 161 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 162 | pub use self::then::Then; |
| 163 | |
| 164 | mod zip; |
| 165 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 166 | pub use self::zip::Zip; |
| 167 | |
| 168 | #[cfg (feature = "alloc" )] |
| 169 | mod chunks; |
| 170 | #[cfg (feature = "alloc" )] |
| 171 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 172 | pub use self::chunks::Chunks; |
| 173 | |
| 174 | #[cfg (feature = "alloc" )] |
| 175 | mod ready_chunks; |
| 176 | #[cfg (feature = "alloc" )] |
| 177 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 178 | pub use self::ready_chunks::ReadyChunks; |
| 179 | |
| 180 | mod scan; |
| 181 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 182 | pub use self::scan::Scan; |
| 183 | |
| 184 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 185 | #[cfg (feature = "alloc" )] |
| 186 | mod buffer_unordered; |
| 187 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 188 | #[cfg (feature = "alloc" )] |
| 189 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 190 | pub use self::buffer_unordered::BufferUnordered; |
| 191 | |
| 192 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 193 | #[cfg (feature = "alloc" )] |
| 194 | mod buffered; |
| 195 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 196 | #[cfg (feature = "alloc" )] |
| 197 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 198 | pub use self::buffered::Buffered; |
| 199 | |
| 200 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 201 | #[cfg (feature = "alloc" )] |
| 202 | pub(crate) mod flatten_unordered; |
| 203 | |
| 204 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 205 | #[cfg (feature = "alloc" )] |
| 206 | #[allow (unreachable_pub)] |
| 207 | pub use self::flatten_unordered::FlattenUnordered; |
| 208 | |
| 209 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 210 | #[cfg (feature = "alloc" )] |
| 211 | delegate_all!( |
| 212 | /// Stream for the [`flat_map_unordered`](StreamExt::flat_map_unordered) method. |
| 213 | FlatMapUnordered<St, U, F>( |
| 214 | FlattenUnordered<Map<St, F>> |
| 215 | ): Debug + Sink + Stream + FusedStream + AccessInner[St, (. .)] + New[|x: St, limit: Option<usize>, f: F| FlattenUnordered::new(Map::new(x, f), limit)] |
| 216 | where St: Stream, U: Stream, U: Unpin, F: FnMut(St::Item) -> U |
| 217 | ); |
| 218 | |
| 219 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 220 | #[cfg (feature = "alloc" )] |
| 221 | mod for_each_concurrent; |
| 222 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 223 | #[cfg (feature = "alloc" )] |
| 224 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 225 | pub use self::for_each_concurrent::ForEachConcurrent; |
| 226 | |
| 227 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 228 | #[cfg (feature = "sink" )] |
| 229 | #[cfg_attr (docsrs, doc(cfg(feature = "sink" )))] |
| 230 | #[cfg (feature = "alloc" )] |
| 231 | mod split; |
| 232 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 233 | #[cfg (feature = "sink" )] |
| 234 | #[cfg_attr (docsrs, doc(cfg(feature = "sink" )))] |
| 235 | #[cfg (feature = "alloc" )] |
| 236 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 237 | pub use self::split::{ReuniteError, SplitSink, SplitStream}; |
| 238 | |
| 239 | #[cfg (feature = "std" )] |
| 240 | mod catch_unwind; |
| 241 | #[cfg (feature = "std" )] |
| 242 | #[allow (unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 |
| 243 | pub use self::catch_unwind::CatchUnwind; |
| 244 | |
| 245 | impl<T: ?Sized> StreamExt for T where T: Stream {} |
| 246 | |
| 247 | /// An extension trait for `Stream`s that provides a variety of convenient |
| 248 | /// combinator functions. |
| 249 | pub trait StreamExt: Stream { |
| 250 | /// Creates a future that resolves to the next item in the stream. |
| 251 | /// |
| 252 | /// Note that because `next` doesn't take ownership over the stream, |
| 253 | /// the [`Stream`] type must be [`Unpin`]. If you want to use `next` with a |
| 254 | /// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can |
| 255 | /// be done by boxing the stream using [`Box::pin`] or |
| 256 | /// pinning it to the stack using the `pin_mut!` macro from the `pin_utils` |
| 257 | /// crate. |
| 258 | /// |
| 259 | /// # Examples |
| 260 | /// |
| 261 | /// ``` |
| 262 | /// # futures::executor::block_on(async { |
| 263 | /// use futures::stream::{self, StreamExt}; |
| 264 | /// |
| 265 | /// let mut stream = stream::iter(1..=3); |
| 266 | /// |
| 267 | /// assert_eq!(stream.next().await, Some(1)); |
| 268 | /// assert_eq!(stream.next().await, Some(2)); |
| 269 | /// assert_eq!(stream.next().await, Some(3)); |
| 270 | /// assert_eq!(stream.next().await, None); |
| 271 | /// # }); |
| 272 | /// ``` |
| 273 | fn next(&mut self) -> Next<'_, Self> |
| 274 | where |
| 275 | Self: Unpin, |
| 276 | { |
| 277 | assert_future::<Option<Self::Item>, _>(Next::new(self)) |
| 278 | } |
| 279 | |
| 280 | /// Converts this stream into a future of `(next_item, tail_of_stream)`. |
| 281 | /// If the stream terminates, then the next item is [`None`]. |
| 282 | /// |
| 283 | /// The returned future can be used to compose streams and futures together |
| 284 | /// by placing everything into the "world of futures". |
| 285 | /// |
| 286 | /// Note that because `into_future` moves the stream, the [`Stream`] type |
| 287 | /// must be [`Unpin`]. If you want to use `into_future` with a |
| 288 | /// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can |
| 289 | /// be done by boxing the stream using [`Box::pin`] or |
| 290 | /// pinning it to the stack using the `pin_mut!` macro from the `pin_utils` |
| 291 | /// crate. |
| 292 | /// |
| 293 | /// # Examples |
| 294 | /// |
| 295 | /// ``` |
| 296 | /// # futures::executor::block_on(async { |
| 297 | /// use futures::stream::{self, StreamExt}; |
| 298 | /// |
| 299 | /// let stream = stream::iter(1..=3); |
| 300 | /// |
| 301 | /// let (item, stream) = stream.into_future().await; |
| 302 | /// assert_eq!(Some(1), item); |
| 303 | /// |
| 304 | /// let (item, stream) = stream.into_future().await; |
| 305 | /// assert_eq!(Some(2), item); |
| 306 | /// # }); |
| 307 | /// ``` |
| 308 | fn into_future(self) -> StreamFuture<Self> |
| 309 | where |
| 310 | Self: Sized + Unpin, |
| 311 | { |
| 312 | assert_future::<(Option<Self::Item>, Self), _>(StreamFuture::new(self)) |
| 313 | } |
| 314 | |
| 315 | /// Maps this stream's items to a different type, returning a new stream of |
| 316 | /// the resulting type. |
| 317 | /// |
| 318 | /// The provided closure is executed over all elements of this stream as |
| 319 | /// they are made available. It is executed inline with calls to |
| 320 | /// [`poll_next`](Stream::poll_next). |
| 321 | /// |
| 322 | /// Note that this function consumes the stream passed into it and returns a |
| 323 | /// wrapped version of it, similar to the existing `map` methods in the |
| 324 | /// standard library. |
| 325 | /// |
| 326 | /// See [`StreamExt::then`](Self::then) if you want to use a closure that |
| 327 | /// returns a future instead of a value. |
| 328 | /// |
| 329 | /// # Examples |
| 330 | /// |
| 331 | /// ``` |
| 332 | /// # futures::executor::block_on(async { |
| 333 | /// use futures::stream::{self, StreamExt}; |
| 334 | /// |
| 335 | /// let stream = stream::iter(1..=3); |
| 336 | /// let stream = stream.map(|x| x + 3); |
| 337 | /// |
| 338 | /// assert_eq!(vec![4, 5, 6], stream.collect::<Vec<_>>().await); |
| 339 | /// # }); |
| 340 | /// ``` |
| 341 | fn map<T, F>(self, f: F) -> Map<Self, F> |
| 342 | where |
| 343 | F: FnMut(Self::Item) -> T, |
| 344 | Self: Sized, |
| 345 | { |
| 346 | assert_stream::<T, _>(Map::new(self, f)) |
| 347 | } |
| 348 | |
| 349 | /// Creates a stream which gives the current iteration count as well as |
| 350 | /// the next value. |
| 351 | /// |
| 352 | /// The stream returned yields pairs `(i, val)`, where `i` is the |
| 353 | /// current index of iteration and `val` is the value returned by the |
| 354 | /// stream. |
| 355 | /// |
| 356 | /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a |
| 357 | /// different sized integer, the [`zip`](StreamExt::zip) function provides similar |
| 358 | /// functionality. |
| 359 | /// |
| 360 | /// # Overflow Behavior |
| 361 | /// |
| 362 | /// The method does no guarding against overflows, so enumerating more than |
| 363 | /// [`usize::MAX`] elements either produces the wrong result or panics. If |
| 364 | /// debug assertions are enabled, a panic is guaranteed. |
| 365 | /// |
| 366 | /// # Panics |
| 367 | /// |
| 368 | /// The returned stream might panic if the to-be-returned index would |
| 369 | /// overflow a [`usize`]. |
| 370 | /// |
| 371 | /// # Examples |
| 372 | /// |
| 373 | /// ``` |
| 374 | /// # futures::executor::block_on(async { |
| 375 | /// use futures::stream::{self, StreamExt}; |
| 376 | /// |
| 377 | /// let stream = stream::iter(vec!['a' , 'b' , 'c' ]); |
| 378 | /// |
| 379 | /// let mut stream = stream.enumerate(); |
| 380 | /// |
| 381 | /// assert_eq!(stream.next().await, Some((0, 'a' ))); |
| 382 | /// assert_eq!(stream.next().await, Some((1, 'b' ))); |
| 383 | /// assert_eq!(stream.next().await, Some((2, 'c' ))); |
| 384 | /// assert_eq!(stream.next().await, None); |
| 385 | /// # }); |
| 386 | /// ``` |
| 387 | fn enumerate(self) -> Enumerate<Self> |
| 388 | where |
| 389 | Self: Sized, |
| 390 | { |
| 391 | assert_stream::<(usize, Self::Item), _>(Enumerate::new(self)) |
| 392 | } |
| 393 | |
| 394 | /// Filters the values produced by this stream according to the provided |
| 395 | /// asynchronous predicate. |
| 396 | /// |
| 397 | /// As values of this stream are made available, the provided predicate `f` |
| 398 | /// will be run against them. If the predicate returns a `Future` which |
| 399 | /// resolves to `true`, then the stream will yield the value, but if the |
| 400 | /// predicate returns a `Future` which resolves to `false`, then the value |
| 401 | /// will be discarded and the next value will be produced. |
| 402 | /// |
| 403 | /// Note that this function consumes the stream passed into it and returns a |
| 404 | /// wrapped version of it, similar to the existing `filter` methods in the |
| 405 | /// standard library. |
| 406 | /// |
| 407 | /// # Examples |
| 408 | /// |
| 409 | /// ``` |
| 410 | /// # futures::executor::block_on(async { |
| 411 | /// use futures::future; |
| 412 | /// use futures::stream::{self, StreamExt}; |
| 413 | /// |
| 414 | /// let stream = stream::iter(1..=10); |
| 415 | /// let events = stream.filter(|x| future::ready(x % 2 == 0)); |
| 416 | /// |
| 417 | /// assert_eq!(vec![2, 4, 6, 8, 10], events.collect::<Vec<_>>().await); |
| 418 | /// # }); |
| 419 | /// ``` |
| 420 | fn filter<Fut, F>(self, f: F) -> Filter<Self, Fut, F> |
| 421 | where |
| 422 | F: FnMut(&Self::Item) -> Fut, |
| 423 | Fut: Future<Output = bool>, |
| 424 | Self: Sized, |
| 425 | { |
| 426 | assert_stream::<Self::Item, _>(Filter::new(self, f)) |
| 427 | } |
| 428 | |
| 429 | /// Filters the values produced by this stream while simultaneously mapping |
| 430 | /// them to a different type according to the provided asynchronous closure. |
| 431 | /// |
| 432 | /// As values of this stream are made available, the provided function will |
| 433 | /// be run on them. If the future returned by the predicate `f` resolves to |
| 434 | /// [`Some(item)`](Some) then the stream will yield the value `item`, but if |
| 435 | /// it resolves to [`None`] then the next value will be produced. |
| 436 | /// |
| 437 | /// Note that this function consumes the stream passed into it and returns a |
| 438 | /// wrapped version of it, similar to the existing `filter_map` methods in |
| 439 | /// the standard library. |
| 440 | /// |
| 441 | /// # Examples |
| 442 | /// ``` |
| 443 | /// # futures::executor::block_on(async { |
| 444 | /// use futures::stream::{self, StreamExt}; |
| 445 | /// |
| 446 | /// let stream = stream::iter(1..=10); |
| 447 | /// let events = stream.filter_map(|x| async move { |
| 448 | /// if x % 2 == 0 { Some(x + 1) } else { None } |
| 449 | /// }); |
| 450 | /// |
| 451 | /// assert_eq!(vec![3, 5, 7, 9, 11], events.collect::<Vec<_>>().await); |
| 452 | /// # }); |
| 453 | /// ``` |
| 454 | fn filter_map<Fut, T, F>(self, f: F) -> FilterMap<Self, Fut, F> |
| 455 | where |
| 456 | F: FnMut(Self::Item) -> Fut, |
| 457 | Fut: Future<Output = Option<T>>, |
| 458 | Self: Sized, |
| 459 | { |
| 460 | assert_stream::<T, _>(FilterMap::new(self, f)) |
| 461 | } |
| 462 | |
| 463 | /// Computes from this stream's items new items of a different type using |
| 464 | /// an asynchronous closure. |
| 465 | /// |
| 466 | /// The provided closure `f` will be called with an `Item` once a value is |
| 467 | /// ready, it returns a future which will then be run to completion |
| 468 | /// to produce the next value on this stream. |
| 469 | /// |
| 470 | /// Note that this function consumes the stream passed into it and returns a |
| 471 | /// wrapped version of it. |
| 472 | /// |
| 473 | /// See [`StreamExt::map`](Self::map) if you want to use a closure that |
| 474 | /// returns a value instead of a future. |
| 475 | /// |
| 476 | /// # Examples |
| 477 | /// |
| 478 | /// ``` |
| 479 | /// # futures::executor::block_on(async { |
| 480 | /// use futures::stream::{self, StreamExt}; |
| 481 | /// |
| 482 | /// let stream = stream::iter(1..=3); |
| 483 | /// let stream = stream.then(|x| async move { x + 3 }); |
| 484 | /// |
| 485 | /// assert_eq!(vec![4, 5, 6], stream.collect::<Vec<_>>().await); |
| 486 | /// # }); |
| 487 | /// ``` |
| 488 | fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F> |
| 489 | where |
| 490 | F: FnMut(Self::Item) -> Fut, |
| 491 | Fut: Future, |
| 492 | Self: Sized, |
| 493 | { |
| 494 | assert_stream::<Fut::Output, _>(Then::new(self, f)) |
| 495 | } |
| 496 | |
| 497 | /// Transforms a stream into a collection, returning a |
| 498 | /// future representing the result of that computation. |
| 499 | /// |
| 500 | /// The returned future will be resolved when the stream terminates. |
| 501 | /// |
| 502 | /// # Examples |
| 503 | /// |
| 504 | /// ``` |
| 505 | /// # futures::executor::block_on(async { |
| 506 | /// use futures::channel::mpsc; |
| 507 | /// use futures::stream::StreamExt; |
| 508 | /// use std::thread; |
| 509 | /// |
| 510 | /// let (tx, rx) = mpsc::unbounded(); |
| 511 | /// |
| 512 | /// thread::spawn(move || { |
| 513 | /// for i in 1..=5 { |
| 514 | /// tx.unbounded_send(i).unwrap(); |
| 515 | /// } |
| 516 | /// }); |
| 517 | /// |
| 518 | /// let output = rx.collect::<Vec<i32>>().await; |
| 519 | /// assert_eq!(output, vec![1, 2, 3, 4, 5]); |
| 520 | /// # }); |
| 521 | /// ``` |
| 522 | fn collect<C: Default + Extend<Self::Item>>(self) -> Collect<Self, C> |
| 523 | where |
| 524 | Self: Sized, |
| 525 | { |
| 526 | assert_future::<C, _>(Collect::new(self)) |
| 527 | } |
| 528 | |
| 529 | /// Converts a stream of pairs into a future, which |
| 530 | /// resolves to pair of containers. |
| 531 | /// |
| 532 | /// `unzip()` produces a future, which resolves to two |
| 533 | /// collections: one from the left elements of the pairs, |
| 534 | /// and one from the right elements. |
| 535 | /// |
| 536 | /// The returned future will be resolved when the stream terminates. |
| 537 | /// |
| 538 | /// # Examples |
| 539 | /// |
| 540 | /// ``` |
| 541 | /// # futures::executor::block_on(async { |
| 542 | /// use futures::channel::mpsc; |
| 543 | /// use futures::stream::StreamExt; |
| 544 | /// use std::thread; |
| 545 | /// |
| 546 | /// let (tx, rx) = mpsc::unbounded(); |
| 547 | /// |
| 548 | /// thread::spawn(move || { |
| 549 | /// tx.unbounded_send((1, 2)).unwrap(); |
| 550 | /// tx.unbounded_send((3, 4)).unwrap(); |
| 551 | /// tx.unbounded_send((5, 6)).unwrap(); |
| 552 | /// }); |
| 553 | /// |
| 554 | /// let (o1, o2): (Vec<_>, Vec<_>) = rx.unzip().await; |
| 555 | /// assert_eq!(o1, vec![1, 3, 5]); |
| 556 | /// assert_eq!(o2, vec![2, 4, 6]); |
| 557 | /// # }); |
| 558 | /// ``` |
| 559 | fn unzip<A, B, FromA, FromB>(self) -> Unzip<Self, FromA, FromB> |
| 560 | where |
| 561 | FromA: Default + Extend<A>, |
| 562 | FromB: Default + Extend<B>, |
| 563 | Self: Sized + Stream<Item = (A, B)>, |
| 564 | { |
| 565 | assert_future::<(FromA, FromB), _>(Unzip::new(self)) |
| 566 | } |
| 567 | |
| 568 | /// Concatenate all items of a stream into a single extendable |
| 569 | /// destination, returning a future representing the end result. |
| 570 | /// |
| 571 | /// This combinator will extend the first item with the contents |
| 572 | /// of all the subsequent results of the stream. If the stream is |
| 573 | /// empty, the default value will be returned. |
| 574 | /// |
| 575 | /// Works with all collections that implement the |
| 576 | /// [`Extend`](std::iter::Extend) trait. |
| 577 | /// |
| 578 | /// # Examples |
| 579 | /// |
| 580 | /// ``` |
| 581 | /// # futures::executor::block_on(async { |
| 582 | /// use futures::channel::mpsc; |
| 583 | /// use futures::stream::StreamExt; |
| 584 | /// use std::thread; |
| 585 | /// |
| 586 | /// let (tx, rx) = mpsc::unbounded(); |
| 587 | /// |
| 588 | /// thread::spawn(move || { |
| 589 | /// for i in (0..3).rev() { |
| 590 | /// let n = i * 3; |
| 591 | /// tx.unbounded_send(vec![n + 1, n + 2, n + 3]).unwrap(); |
| 592 | /// } |
| 593 | /// }); |
| 594 | /// |
| 595 | /// let result = rx.concat().await; |
| 596 | /// |
| 597 | /// assert_eq!(result, vec![7, 8, 9, 4, 5, 6, 1, 2, 3]); |
| 598 | /// # }); |
| 599 | /// ``` |
| 600 | fn concat(self) -> Concat<Self> |
| 601 | where |
| 602 | Self: Sized, |
| 603 | Self::Item: Extend<<<Self as Stream>::Item as IntoIterator>::Item> + IntoIterator + Default, |
| 604 | { |
| 605 | assert_future::<Self::Item, _>(Concat::new(self)) |
| 606 | } |
| 607 | |
| 608 | /// Drives the stream to completion, counting the number of items. |
| 609 | /// |
| 610 | /// # Overflow Behavior |
| 611 | /// |
| 612 | /// The method does no guarding against overflows, so counting elements of a |
| 613 | /// stream with more than [`usize::MAX`] elements either produces the wrong |
| 614 | /// result or panics. If debug assertions are enabled, a panic is guaranteed. |
| 615 | /// |
| 616 | /// # Panics |
| 617 | /// |
| 618 | /// This function might panic if the iterator has more than [`usize::MAX`] |
| 619 | /// elements. |
| 620 | /// |
| 621 | /// # Examples |
| 622 | /// |
| 623 | /// ``` |
| 624 | /// # futures::executor::block_on(async { |
| 625 | /// use futures::stream::{self, StreamExt}; |
| 626 | /// |
| 627 | /// let stream = stream::iter(1..=10); |
| 628 | /// let count = stream.count().await; |
| 629 | /// |
| 630 | /// assert_eq!(count, 10); |
| 631 | /// # }); |
| 632 | /// ``` |
| 633 | fn count(self) -> Count<Self> |
| 634 | where |
| 635 | Self: Sized, |
| 636 | { |
| 637 | assert_future::<usize, _>(Count::new(self)) |
| 638 | } |
| 639 | |
| 640 | /// Repeats a stream endlessly. |
| 641 | /// |
| 642 | /// The stream never terminates. Note that you likely want to avoid |
| 643 | /// usage of `collect` or such on the returned stream as it will exhaust |
| 644 | /// available memory as it tries to just fill up all RAM. |
| 645 | /// |
| 646 | /// # Examples |
| 647 | /// |
| 648 | /// ``` |
| 649 | /// # futures::executor::block_on(async { |
| 650 | /// use futures::stream::{self, StreamExt}; |
| 651 | /// let a = [1, 2, 3]; |
| 652 | /// let mut s = stream::iter(a.iter()).cycle(); |
| 653 | /// |
| 654 | /// assert_eq!(s.next().await, Some(&1)); |
| 655 | /// assert_eq!(s.next().await, Some(&2)); |
| 656 | /// assert_eq!(s.next().await, Some(&3)); |
| 657 | /// assert_eq!(s.next().await, Some(&1)); |
| 658 | /// assert_eq!(s.next().await, Some(&2)); |
| 659 | /// assert_eq!(s.next().await, Some(&3)); |
| 660 | /// assert_eq!(s.next().await, Some(&1)); |
| 661 | /// # }); |
| 662 | /// ``` |
| 663 | fn cycle(self) -> Cycle<Self> |
| 664 | where |
| 665 | Self: Sized + Clone, |
| 666 | { |
| 667 | assert_stream::<Self::Item, _>(Cycle::new(self)) |
| 668 | } |
| 669 | |
| 670 | /// Execute an accumulating asynchronous computation over a stream, |
| 671 | /// collecting all the values into one final result. |
| 672 | /// |
| 673 | /// This combinator will accumulate all values returned by this stream |
| 674 | /// according to the closure provided. The initial state is also provided to |
| 675 | /// this method and then is returned again by each execution of the closure. |
| 676 | /// Once the entire stream has been exhausted the returned future will |
| 677 | /// resolve to this value. |
| 678 | /// |
| 679 | /// # Examples |
| 680 | /// |
| 681 | /// ``` |
| 682 | /// # futures::executor::block_on(async { |
| 683 | /// use futures::stream::{self, StreamExt}; |
| 684 | /// |
| 685 | /// let number_stream = stream::iter(0..6); |
| 686 | /// let sum = number_stream.fold(0, |acc, x| async move { acc + x }); |
| 687 | /// assert_eq!(sum.await, 15); |
| 688 | /// # }); |
| 689 | /// ``` |
| 690 | fn fold<T, Fut, F>(self, init: T, f: F) -> Fold<Self, Fut, T, F> |
| 691 | where |
| 692 | F: FnMut(T, Self::Item) -> Fut, |
| 693 | Fut: Future<Output = T>, |
| 694 | Self: Sized, |
| 695 | { |
| 696 | assert_future::<T, _>(Fold::new(self, f, init)) |
| 697 | } |
| 698 | |
| 699 | /// Execute predicate over asynchronous stream, and return `true` if any element in stream satisfied a predicate. |
| 700 | /// |
| 701 | /// # Examples |
| 702 | /// |
| 703 | /// ``` |
| 704 | /// # futures::executor::block_on(async { |
| 705 | /// use futures::stream::{self, StreamExt}; |
| 706 | /// |
| 707 | /// let number_stream = stream::iter(0..10); |
| 708 | /// let contain_three = number_stream.any(|i| async move { i == 3 }); |
| 709 | /// assert_eq!(contain_three.await, true); |
| 710 | /// # }); |
| 711 | /// ``` |
| 712 | fn any<Fut, F>(self, f: F) -> Any<Self, Fut, F> |
| 713 | where |
| 714 | F: FnMut(Self::Item) -> Fut, |
| 715 | Fut: Future<Output = bool>, |
| 716 | Self: Sized, |
| 717 | { |
| 718 | assert_future::<bool, _>(Any::new(self, f)) |
| 719 | } |
| 720 | |
| 721 | /// Execute predicate over asynchronous stream, and return `true` if all element in stream satisfied a predicate. |
| 722 | /// |
| 723 | /// # Examples |
| 724 | /// |
| 725 | /// ``` |
| 726 | /// # futures::executor::block_on(async { |
| 727 | /// use futures::stream::{self, StreamExt}; |
| 728 | /// |
| 729 | /// let number_stream = stream::iter(0..10); |
| 730 | /// let less_then_twenty = number_stream.all(|i| async move { i < 20 }); |
| 731 | /// assert_eq!(less_then_twenty.await, true); |
| 732 | /// # }); |
| 733 | /// ``` |
| 734 | fn all<Fut, F>(self, f: F) -> All<Self, Fut, F> |
| 735 | where |
| 736 | F: FnMut(Self::Item) -> Fut, |
| 737 | Fut: Future<Output = bool>, |
| 738 | Self: Sized, |
| 739 | { |
| 740 | assert_future::<bool, _>(All::new(self, f)) |
| 741 | } |
| 742 | |
| 743 | /// Flattens a stream of streams into just one continuous stream. |
| 744 | /// |
| 745 | /// # Examples |
| 746 | /// |
| 747 | /// ``` |
| 748 | /// # futures::executor::block_on(async { |
| 749 | /// use futures::channel::mpsc; |
| 750 | /// use futures::stream::StreamExt; |
| 751 | /// use std::thread; |
| 752 | /// |
| 753 | /// let (tx1, rx1) = mpsc::unbounded(); |
| 754 | /// let (tx2, rx2) = mpsc::unbounded(); |
| 755 | /// let (tx3, rx3) = mpsc::unbounded(); |
| 756 | /// |
| 757 | /// thread::spawn(move || { |
| 758 | /// tx1.unbounded_send(1).unwrap(); |
| 759 | /// tx1.unbounded_send(2).unwrap(); |
| 760 | /// }); |
| 761 | /// thread::spawn(move || { |
| 762 | /// tx2.unbounded_send(3).unwrap(); |
| 763 | /// tx2.unbounded_send(4).unwrap(); |
| 764 | /// }); |
| 765 | /// thread::spawn(move || { |
| 766 | /// tx3.unbounded_send(rx1).unwrap(); |
| 767 | /// tx3.unbounded_send(rx2).unwrap(); |
| 768 | /// }); |
| 769 | /// |
| 770 | /// let output = rx3.flatten().collect::<Vec<i32>>().await; |
| 771 | /// assert_eq!(output, vec![1, 2, 3, 4]); |
| 772 | /// # }); |
| 773 | /// ``` |
| 774 | fn flatten(self) -> Flatten<Self> |
| 775 | where |
| 776 | Self::Item: Stream, |
| 777 | Self: Sized, |
| 778 | { |
| 779 | assert_stream::<<Self::Item as Stream>::Item, _>(Flatten::new(self)) |
| 780 | } |
| 781 | |
| 782 | /// Flattens a stream of streams into just one continuous stream. Polls |
| 783 | /// inner streams produced by the base stream concurrently. |
| 784 | /// |
| 785 | /// The only argument is an optional limit on the number of concurrently |
| 786 | /// polled streams. If this limit is not `None`, no more than `limit` streams |
| 787 | /// will be polled at the same time. The `limit` argument is of type |
| 788 | /// `Into<Option<usize>>`, and so can be provided as either `None`, |
| 789 | /// `Some(10)`, or just `10`. Note: a limit of zero is interpreted as |
| 790 | /// no limit at all, and will have the same result as passing in `None`. |
| 791 | /// |
| 792 | /// # Examples |
| 793 | /// |
| 794 | /// ``` |
| 795 | /// # futures::executor::block_on(async { |
| 796 | /// use futures::channel::mpsc; |
| 797 | /// use futures::stream::StreamExt; |
| 798 | /// use std::thread; |
| 799 | /// |
| 800 | /// let (tx1, rx1) = mpsc::unbounded(); |
| 801 | /// let (tx2, rx2) = mpsc::unbounded(); |
| 802 | /// let (tx3, rx3) = mpsc::unbounded(); |
| 803 | /// |
| 804 | /// thread::spawn(move || { |
| 805 | /// tx1.unbounded_send(1).unwrap(); |
| 806 | /// tx1.unbounded_send(2).unwrap(); |
| 807 | /// }); |
| 808 | /// thread::spawn(move || { |
| 809 | /// tx2.unbounded_send(3).unwrap(); |
| 810 | /// tx2.unbounded_send(4).unwrap(); |
| 811 | /// }); |
| 812 | /// thread::spawn(move || { |
| 813 | /// tx3.unbounded_send(rx1).unwrap(); |
| 814 | /// tx3.unbounded_send(rx2).unwrap(); |
| 815 | /// }); |
| 816 | /// |
| 817 | /// let mut output = rx3.flatten_unordered(None).collect::<Vec<i32>>().await; |
| 818 | /// output.sort(); |
| 819 | /// |
| 820 | /// assert_eq!(output, vec![1, 2, 3, 4]); |
| 821 | /// # }); |
| 822 | /// ``` |
| 823 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 824 | #[cfg (feature = "alloc" )] |
| 825 | fn flatten_unordered(self, limit: impl Into<Option<usize>>) -> FlattenUnordered<Self> |
| 826 | where |
| 827 | Self::Item: Stream + Unpin, |
| 828 | Self: Sized, |
| 829 | { |
| 830 | assert_stream::<<Self::Item as Stream>::Item, _>(FlattenUnordered::new(self, limit.into())) |
| 831 | } |
| 832 | |
| 833 | /// Maps a stream like [`StreamExt::map`] but flattens nested `Stream`s. |
| 834 | /// |
| 835 | /// [`StreamExt::map`] is very useful, but if it produces a `Stream` instead, |
| 836 | /// you would have to chain combinators like `.map(f).flatten()` while this |
| 837 | /// combinator provides ability to write `.flat_map(f)` instead of chaining. |
| 838 | /// |
| 839 | /// The provided closure which produces inner streams is executed over all elements |
| 840 | /// of stream as last inner stream is terminated and next stream item is available. |
| 841 | /// |
| 842 | /// Note that this function consumes the stream passed into it and returns a |
| 843 | /// wrapped version of it, similar to the existing `flat_map` methods in the |
| 844 | /// standard library. |
| 845 | /// |
| 846 | /// # Examples |
| 847 | /// |
| 848 | /// ``` |
| 849 | /// # futures::executor::block_on(async { |
| 850 | /// use futures::stream::{self, StreamExt}; |
| 851 | /// |
| 852 | /// let stream = stream::iter(1..=3); |
| 853 | /// let stream = stream.flat_map(|x| stream::iter(vec![x + 3; x])); |
| 854 | /// |
| 855 | /// assert_eq!(vec![4, 5, 5, 6, 6, 6], stream.collect::<Vec<_>>().await); |
| 856 | /// # }); |
| 857 | /// ``` |
| 858 | fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F> |
| 859 | where |
| 860 | F: FnMut(Self::Item) -> U, |
| 861 | U: Stream, |
| 862 | Self: Sized, |
| 863 | { |
| 864 | assert_stream::<U::Item, _>(FlatMap::new(self, f)) |
| 865 | } |
| 866 | |
| 867 | /// Maps a stream like [`StreamExt::map`] but flattens nested `Stream`s |
| 868 | /// and polls them concurrently, yielding items in any order, as they made |
| 869 | /// available. |
| 870 | /// |
| 871 | /// [`StreamExt::map`] is very useful, but if it produces `Stream`s |
| 872 | /// instead, and you need to poll all of them concurrently, you would |
| 873 | /// have to use something like `for_each_concurrent` and merge values |
| 874 | /// by hand. This combinator provides ability to collect all values |
| 875 | /// from concurrently polled streams into one stream. |
| 876 | /// |
| 877 | /// The first argument is an optional limit on the number of concurrently |
| 878 | /// polled streams. If this limit is not `None`, no more than `limit` streams |
| 879 | /// will be polled at the same time. The `limit` argument is of type |
| 880 | /// `Into<Option<usize>>`, and so can be provided as either `None`, |
| 881 | /// `Some(10)`, or just `10`. Note: a limit of zero is interpreted as |
| 882 | /// no limit at all, and will have the same result as passing in `None`. |
| 883 | /// |
| 884 | /// The provided closure which produces inner streams is executed over |
| 885 | /// all elements of stream as next stream item is available and limit |
| 886 | /// of concurrently processed streams isn't exceeded. |
| 887 | /// |
| 888 | /// Note that this function consumes the stream passed into it and |
| 889 | /// returns a wrapped version of it. |
| 890 | /// |
| 891 | /// # Examples |
| 892 | /// |
| 893 | /// ``` |
| 894 | /// # futures::executor::block_on(async { |
| 895 | /// use futures::stream::{self, StreamExt}; |
| 896 | /// |
| 897 | /// let stream = stream::iter(1..5); |
| 898 | /// let stream = stream.flat_map_unordered(1, |x| stream::iter(vec![x; x])); |
| 899 | /// let mut values = stream.collect::<Vec<_>>().await; |
| 900 | /// values.sort(); |
| 901 | /// |
| 902 | /// assert_eq!(vec![1usize, 2, 2, 3, 3, 3, 4, 4, 4, 4], values); |
| 903 | /// # }); |
| 904 | /// ``` |
| 905 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 906 | #[cfg (feature = "alloc" )] |
| 907 | fn flat_map_unordered<U, F>( |
| 908 | self, |
| 909 | limit: impl Into<Option<usize>>, |
| 910 | f: F, |
| 911 | ) -> FlatMapUnordered<Self, U, F> |
| 912 | where |
| 913 | U: Stream + Unpin, |
| 914 | F: FnMut(Self::Item) -> U, |
| 915 | Self: Sized, |
| 916 | { |
| 917 | assert_stream::<U::Item, _>(FlatMapUnordered::new(self, limit.into(), f)) |
| 918 | } |
| 919 | |
| 920 | /// Combinator similar to [`StreamExt::fold`] that holds internal state |
| 921 | /// and produces a new stream. |
| 922 | /// |
| 923 | /// Accepts initial state and closure which will be applied to each element |
| 924 | /// of the stream until provided closure returns `None`. Once `None` is |
| 925 | /// returned, stream will be terminated. |
| 926 | /// |
| 927 | /// # Examples |
| 928 | /// |
| 929 | /// ``` |
| 930 | /// # futures::executor::block_on(async { |
| 931 | /// use futures::future; |
| 932 | /// use futures::stream::{self, StreamExt}; |
| 933 | /// |
| 934 | /// let stream = stream::iter(1..=10); |
| 935 | /// |
| 936 | /// let stream = stream.scan(0, |state, x| { |
| 937 | /// *state += x; |
| 938 | /// future::ready(if *state < 10 { Some(x) } else { None }) |
| 939 | /// }); |
| 940 | /// |
| 941 | /// assert_eq!(vec![1, 2, 3], stream.collect::<Vec<_>>().await); |
| 942 | /// # }); |
| 943 | /// ``` |
| 944 | fn scan<S, B, Fut, F>(self, initial_state: S, f: F) -> Scan<Self, S, Fut, F> |
| 945 | where |
| 946 | F: FnMut(&mut S, Self::Item) -> Fut, |
| 947 | Fut: Future<Output = Option<B>>, |
| 948 | Self: Sized, |
| 949 | { |
| 950 | assert_stream::<B, _>(Scan::new(self, initial_state, f)) |
| 951 | } |
| 952 | |
| 953 | /// Skip elements on this stream while the provided asynchronous predicate |
| 954 | /// resolves to `true`. |
| 955 | /// |
| 956 | /// This function, like `Iterator::skip_while`, will skip elements on the |
| 957 | /// stream until the predicate `f` resolves to `false`. Once one element |
| 958 | /// returns `false`, all future elements will be returned from the underlying |
| 959 | /// stream. |
| 960 | /// |
| 961 | /// # Examples |
| 962 | /// |
| 963 | /// ``` |
| 964 | /// # futures::executor::block_on(async { |
| 965 | /// use futures::future; |
| 966 | /// use futures::stream::{self, StreamExt}; |
| 967 | /// |
| 968 | /// let stream = stream::iter(1..=10); |
| 969 | /// |
| 970 | /// let stream = stream.skip_while(|x| future::ready(*x <= 5)); |
| 971 | /// |
| 972 | /// assert_eq!(vec![6, 7, 8, 9, 10], stream.collect::<Vec<_>>().await); |
| 973 | /// # }); |
| 974 | /// ``` |
| 975 | fn skip_while<Fut, F>(self, f: F) -> SkipWhile<Self, Fut, F> |
| 976 | where |
| 977 | F: FnMut(&Self::Item) -> Fut, |
| 978 | Fut: Future<Output = bool>, |
| 979 | Self: Sized, |
| 980 | { |
| 981 | assert_stream::<Self::Item, _>(SkipWhile::new(self, f)) |
| 982 | } |
| 983 | |
| 984 | /// Take elements from this stream while the provided asynchronous predicate |
| 985 | /// resolves to `true`. |
| 986 | /// |
| 987 | /// This function, like `Iterator::take_while`, will take elements from the |
| 988 | /// stream until the predicate `f` resolves to `false`. Once one element |
| 989 | /// returns `false`, it will always return that the stream is done. |
| 990 | /// |
| 991 | /// # Examples |
| 992 | /// |
| 993 | /// ``` |
| 994 | /// # futures::executor::block_on(async { |
| 995 | /// use futures::future; |
| 996 | /// use futures::stream::{self, StreamExt}; |
| 997 | /// |
| 998 | /// let stream = stream::iter(1..=10); |
| 999 | /// |
| 1000 | /// let stream = stream.take_while(|x| future::ready(*x <= 5)); |
| 1001 | /// |
| 1002 | /// assert_eq!(vec![1, 2, 3, 4, 5], stream.collect::<Vec<_>>().await); |
| 1003 | /// # }); |
| 1004 | /// ``` |
| 1005 | fn take_while<Fut, F>(self, f: F) -> TakeWhile<Self, Fut, F> |
| 1006 | where |
| 1007 | F: FnMut(&Self::Item) -> Fut, |
| 1008 | Fut: Future<Output = bool>, |
| 1009 | Self: Sized, |
| 1010 | { |
| 1011 | assert_stream::<Self::Item, _>(TakeWhile::new(self, f)) |
| 1012 | } |
| 1013 | |
| 1014 | /// Take elements from this stream until the provided future resolves. |
| 1015 | /// |
| 1016 | /// This function will take elements from the stream until the provided |
| 1017 | /// stopping future `fut` resolves. Once the `fut` future becomes ready, |
| 1018 | /// this stream combinator will always return that the stream is done. |
| 1019 | /// |
| 1020 | /// The stopping future may return any type. Once the stream is stopped |
| 1021 | /// the result of the stopping future may be accessed with `TakeUntil::take_result()`. |
| 1022 | /// The stream may also be resumed with `TakeUntil::take_future()`. |
| 1023 | /// See the documentation of [`TakeUntil`] for more information. |
| 1024 | /// |
| 1025 | /// # Examples |
| 1026 | /// |
| 1027 | /// ``` |
| 1028 | /// # futures::executor::block_on(async { |
| 1029 | /// use futures::future; |
| 1030 | /// use futures::stream::{self, StreamExt}; |
| 1031 | /// use futures::task::Poll; |
| 1032 | /// |
| 1033 | /// let stream = stream::iter(1..=10); |
| 1034 | /// |
| 1035 | /// let mut i = 0; |
| 1036 | /// let stop_fut = future::poll_fn(|_cx| { |
| 1037 | /// i += 1; |
| 1038 | /// if i <= 5 { |
| 1039 | /// Poll::Pending |
| 1040 | /// } else { |
| 1041 | /// Poll::Ready(()) |
| 1042 | /// } |
| 1043 | /// }); |
| 1044 | /// |
| 1045 | /// let stream = stream.take_until(stop_fut); |
| 1046 | /// |
| 1047 | /// assert_eq!(vec![1, 2, 3, 4, 5], stream.collect::<Vec<_>>().await); |
| 1048 | /// # }); |
| 1049 | /// ``` |
| 1050 | fn take_until<Fut>(self, fut: Fut) -> TakeUntil<Self, Fut> |
| 1051 | where |
| 1052 | Fut: Future, |
| 1053 | Self: Sized, |
| 1054 | { |
| 1055 | assert_stream::<Self::Item, _>(TakeUntil::new(self, fut)) |
| 1056 | } |
| 1057 | |
| 1058 | /// Runs this stream to completion, executing the provided asynchronous |
| 1059 | /// closure for each element on the stream. |
| 1060 | /// |
| 1061 | /// The closure provided will be called for each item this stream produces, |
| 1062 | /// yielding a future. That future will then be executed to completion |
| 1063 | /// before moving on to the next item. |
| 1064 | /// |
| 1065 | /// The returned value is a `Future` where the `Output` type is `()`; it is |
| 1066 | /// executed entirely for its side effects. |
| 1067 | /// |
| 1068 | /// To process each item in the stream and produce another stream instead |
| 1069 | /// of a single future, use `then` instead. |
| 1070 | /// |
| 1071 | /// # Examples |
| 1072 | /// |
| 1073 | /// ``` |
| 1074 | /// # futures::executor::block_on(async { |
| 1075 | /// use futures::future; |
| 1076 | /// use futures::stream::{self, StreamExt}; |
| 1077 | /// |
| 1078 | /// let mut x = 0; |
| 1079 | /// |
| 1080 | /// { |
| 1081 | /// let fut = stream::repeat(1).take(3).for_each(|item| { |
| 1082 | /// x += item; |
| 1083 | /// future::ready(()) |
| 1084 | /// }); |
| 1085 | /// fut.await; |
| 1086 | /// } |
| 1087 | /// |
| 1088 | /// assert_eq!(x, 3); |
| 1089 | /// # }); |
| 1090 | /// ``` |
| 1091 | fn for_each<Fut, F>(self, f: F) -> ForEach<Self, Fut, F> |
| 1092 | where |
| 1093 | F: FnMut(Self::Item) -> Fut, |
| 1094 | Fut: Future<Output = ()>, |
| 1095 | Self: Sized, |
| 1096 | { |
| 1097 | assert_future::<(), _>(ForEach::new(self, f)) |
| 1098 | } |
| 1099 | |
| 1100 | /// Runs this stream to completion, executing the provided asynchronous |
| 1101 | /// closure for each element on the stream concurrently as elements become |
| 1102 | /// available. |
| 1103 | /// |
| 1104 | /// This is similar to [`StreamExt::for_each`], but the futures |
| 1105 | /// produced by the closure are run concurrently (but not in parallel-- |
| 1106 | /// this combinator does not introduce any threads). |
| 1107 | /// |
| 1108 | /// The closure provided will be called for each item this stream produces, |
| 1109 | /// yielding a future. That future will then be executed to completion |
| 1110 | /// concurrently with the other futures produced by the closure. |
| 1111 | /// |
| 1112 | /// The first argument is an optional limit on the number of concurrent |
| 1113 | /// futures. If this limit is not `None`, no more than `limit` futures |
| 1114 | /// will be run concurrently. The `limit` argument is of type |
| 1115 | /// `Into<Option<usize>>`, and so can be provided as either `None`, |
| 1116 | /// `Some(10)`, or just `10`. Note: a limit of zero is interpreted as |
| 1117 | /// no limit at all, and will have the same result as passing in `None`. |
| 1118 | /// |
| 1119 | /// This method is only available when the `std` or `alloc` feature of this |
| 1120 | /// library is activated, and it is activated by default. |
| 1121 | /// |
| 1122 | /// # Examples |
| 1123 | /// |
| 1124 | /// ``` |
| 1125 | /// # futures::executor::block_on(async { |
| 1126 | /// use futures::channel::oneshot; |
| 1127 | /// use futures::stream::{self, StreamExt}; |
| 1128 | /// |
| 1129 | /// let (tx1, rx1) = oneshot::channel(); |
| 1130 | /// let (tx2, rx2) = oneshot::channel(); |
| 1131 | /// let (tx3, rx3) = oneshot::channel(); |
| 1132 | /// |
| 1133 | /// let fut = stream::iter(vec![rx1, rx2, rx3]).for_each_concurrent( |
| 1134 | /// /* limit */ 2, |
| 1135 | /// |rx| async move { |
| 1136 | /// rx.await.unwrap(); |
| 1137 | /// } |
| 1138 | /// ); |
| 1139 | /// tx1.send(()).unwrap(); |
| 1140 | /// tx2.send(()).unwrap(); |
| 1141 | /// tx3.send(()).unwrap(); |
| 1142 | /// fut.await; |
| 1143 | /// # }) |
| 1144 | /// ``` |
| 1145 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 1146 | #[cfg (feature = "alloc" )] |
| 1147 | fn for_each_concurrent<Fut, F>( |
| 1148 | self, |
| 1149 | limit: impl Into<Option<usize>>, |
| 1150 | f: F, |
| 1151 | ) -> ForEachConcurrent<Self, Fut, F> |
| 1152 | where |
| 1153 | F: FnMut(Self::Item) -> Fut, |
| 1154 | Fut: Future<Output = ()>, |
| 1155 | Self: Sized, |
| 1156 | { |
| 1157 | assert_future::<(), _>(ForEachConcurrent::new(self, limit.into(), f)) |
| 1158 | } |
| 1159 | |
| 1160 | /// Creates a new stream of at most `n` items of the underlying stream. |
| 1161 | /// |
| 1162 | /// Once `n` items have been yielded from this stream then it will always |
| 1163 | /// return that the stream is done. |
| 1164 | /// |
| 1165 | /// # Examples |
| 1166 | /// |
| 1167 | /// ``` |
| 1168 | /// # futures::executor::block_on(async { |
| 1169 | /// use futures::stream::{self, StreamExt}; |
| 1170 | /// |
| 1171 | /// let stream = stream::iter(1..=10).take(3); |
| 1172 | /// |
| 1173 | /// assert_eq!(vec![1, 2, 3], stream.collect::<Vec<_>>().await); |
| 1174 | /// # }); |
| 1175 | /// ``` |
| 1176 | fn take(self, n: usize) -> Take<Self> |
| 1177 | where |
| 1178 | Self: Sized, |
| 1179 | { |
| 1180 | assert_stream::<Self::Item, _>(Take::new(self, n)) |
| 1181 | } |
| 1182 | |
| 1183 | /// Creates a new stream which skips `n` items of the underlying stream. |
| 1184 | /// |
| 1185 | /// Once `n` items have been skipped from this stream then it will always |
| 1186 | /// return the remaining items on this stream. |
| 1187 | /// |
| 1188 | /// # Examples |
| 1189 | /// |
| 1190 | /// ``` |
| 1191 | /// # futures::executor::block_on(async { |
| 1192 | /// use futures::stream::{self, StreamExt}; |
| 1193 | /// |
| 1194 | /// let stream = stream::iter(1..=10).skip(5); |
| 1195 | /// |
| 1196 | /// assert_eq!(vec![6, 7, 8, 9, 10], stream.collect::<Vec<_>>().await); |
| 1197 | /// # }); |
| 1198 | /// ``` |
| 1199 | fn skip(self, n: usize) -> Skip<Self> |
| 1200 | where |
| 1201 | Self: Sized, |
| 1202 | { |
| 1203 | assert_stream::<Self::Item, _>(Skip::new(self, n)) |
| 1204 | } |
| 1205 | |
| 1206 | /// Fuse a stream such that [`poll_next`](Stream::poll_next) will never |
| 1207 | /// again be called once it has finished. This method can be used to turn |
| 1208 | /// any `Stream` into a `FusedStream`. |
| 1209 | /// |
| 1210 | /// Normally, once a stream has returned [`None`] from |
| 1211 | /// [`poll_next`](Stream::poll_next) any further calls could exhibit bad |
| 1212 | /// behavior such as block forever, panic, never return, etc. If it is known |
| 1213 | /// that [`poll_next`](Stream::poll_next) may be called after stream |
| 1214 | /// has already finished, then this method can be used to ensure that it has |
| 1215 | /// defined semantics. |
| 1216 | /// |
| 1217 | /// The [`poll_next`](Stream::poll_next) method of a `fuse`d stream |
| 1218 | /// is guaranteed to return [`None`] after the underlying stream has |
| 1219 | /// finished. |
| 1220 | /// |
| 1221 | /// # Examples |
| 1222 | /// |
| 1223 | /// ``` |
| 1224 | /// use futures::executor::block_on_stream; |
| 1225 | /// use futures::stream::{self, StreamExt}; |
| 1226 | /// use futures::task::Poll; |
| 1227 | /// |
| 1228 | /// let mut x = 0; |
| 1229 | /// let stream = stream::poll_fn(|_| { |
| 1230 | /// x += 1; |
| 1231 | /// match x { |
| 1232 | /// 0..=2 => Poll::Ready(Some(x)), |
| 1233 | /// 3 => Poll::Ready(None), |
| 1234 | /// _ => panic!("should not happen" ) |
| 1235 | /// } |
| 1236 | /// }).fuse(); |
| 1237 | /// |
| 1238 | /// let mut iter = block_on_stream(stream); |
| 1239 | /// assert_eq!(Some(1), iter.next()); |
| 1240 | /// assert_eq!(Some(2), iter.next()); |
| 1241 | /// assert_eq!(None, iter.next()); |
| 1242 | /// assert_eq!(None, iter.next()); |
| 1243 | /// // ... |
| 1244 | /// ``` |
| 1245 | fn fuse(self) -> Fuse<Self> |
| 1246 | where |
| 1247 | Self: Sized, |
| 1248 | { |
| 1249 | assert_stream::<Self::Item, _>(Fuse::new(self)) |
| 1250 | } |
| 1251 | |
| 1252 | /// Borrows a stream, rather than consuming it. |
| 1253 | /// |
| 1254 | /// This is useful to allow applying stream adaptors while still retaining |
| 1255 | /// ownership of the original stream. |
| 1256 | /// |
| 1257 | /// # Examples |
| 1258 | /// |
| 1259 | /// ``` |
| 1260 | /// # futures::executor::block_on(async { |
| 1261 | /// use futures::stream::{self, StreamExt}; |
| 1262 | /// |
| 1263 | /// let mut stream = stream::iter(1..5); |
| 1264 | /// |
| 1265 | /// let sum = stream.by_ref() |
| 1266 | /// .take(2) |
| 1267 | /// .fold(0, |a, b| async move { a + b }) |
| 1268 | /// .await; |
| 1269 | /// assert_eq!(sum, 3); |
| 1270 | /// |
| 1271 | /// // You can use the stream again |
| 1272 | /// let sum = stream.take(2) |
| 1273 | /// .fold(0, |a, b| async move { a + b }) |
| 1274 | /// .await; |
| 1275 | /// assert_eq!(sum, 7); |
| 1276 | /// # }); |
| 1277 | /// ``` |
| 1278 | fn by_ref(&mut self) -> &mut Self { |
| 1279 | self |
| 1280 | } |
| 1281 | |
| 1282 | /// Catches unwinding panics while polling the stream. |
| 1283 | /// |
| 1284 | /// Caught panic (if any) will be the last element of the resulting stream. |
| 1285 | /// |
| 1286 | /// In general, panics within a stream can propagate all the way out to the |
| 1287 | /// task level. This combinator makes it possible to halt unwinding within |
| 1288 | /// the stream itself. It's most commonly used within task executors. This |
| 1289 | /// method should not be used for error handling. |
| 1290 | /// |
| 1291 | /// Note that this method requires the `UnwindSafe` bound from the standard |
| 1292 | /// library. This isn't always applied automatically, and the standard |
| 1293 | /// library provides an `AssertUnwindSafe` wrapper type to apply it |
| 1294 | /// after-the fact. To assist using this method, the [`Stream`] trait is |
| 1295 | /// also implemented for `AssertUnwindSafe<St>` where `St` implements |
| 1296 | /// [`Stream`]. |
| 1297 | /// |
| 1298 | /// This method is only available when the `std` feature of this |
| 1299 | /// library is activated, and it is activated by default. |
| 1300 | /// |
| 1301 | /// # Examples |
| 1302 | /// |
| 1303 | /// ``` |
| 1304 | /// # futures::executor::block_on(async { |
| 1305 | /// use futures::stream::{self, StreamExt}; |
| 1306 | /// |
| 1307 | /// let stream = stream::iter(vec![Some(10), None, Some(11)]); |
| 1308 | /// // Panic on second element |
| 1309 | /// let stream_panicking = stream.map(|o| o.unwrap()); |
| 1310 | /// // Collect all the results |
| 1311 | /// let stream = stream_panicking.catch_unwind(); |
| 1312 | /// |
| 1313 | /// let results: Vec<Result<i32, _>> = stream.collect().await; |
| 1314 | /// match results[0] { |
| 1315 | /// Ok(10) => {} |
| 1316 | /// _ => panic!("unexpected result!" ), |
| 1317 | /// } |
| 1318 | /// assert!(results[1].is_err()); |
| 1319 | /// assert_eq!(results.len(), 2); |
| 1320 | /// # }); |
| 1321 | /// ``` |
| 1322 | #[cfg (feature = "std" )] |
| 1323 | fn catch_unwind(self) -> CatchUnwind<Self> |
| 1324 | where |
| 1325 | Self: Sized + std::panic::UnwindSafe, |
| 1326 | { |
| 1327 | assert_stream(CatchUnwind::new(self)) |
| 1328 | } |
| 1329 | |
| 1330 | /// Wrap the stream in a Box, pinning it. |
| 1331 | /// |
| 1332 | /// This method is only available when the `std` or `alloc` feature of this |
| 1333 | /// library is activated, and it is activated by default. |
| 1334 | #[cfg (feature = "alloc" )] |
| 1335 | fn boxed<'a>(self) -> BoxStream<'a, Self::Item> |
| 1336 | where |
| 1337 | Self: Sized + Send + 'a, |
| 1338 | { |
| 1339 | assert_stream::<Self::Item, _>(Box::pin(self)) |
| 1340 | } |
| 1341 | |
| 1342 | /// Wrap the stream in a Box, pinning it. |
| 1343 | /// |
| 1344 | /// Similar to `boxed`, but without the `Send` requirement. |
| 1345 | /// |
| 1346 | /// This method is only available when the `std` or `alloc` feature of this |
| 1347 | /// library is activated, and it is activated by default. |
| 1348 | #[cfg (feature = "alloc" )] |
| 1349 | fn boxed_local<'a>(self) -> LocalBoxStream<'a, Self::Item> |
| 1350 | where |
| 1351 | Self: Sized + 'a, |
| 1352 | { |
| 1353 | assert_stream::<Self::Item, _>(Box::pin(self)) |
| 1354 | } |
| 1355 | |
| 1356 | /// An adaptor for creating a buffered list of pending futures. |
| 1357 | /// |
| 1358 | /// If this stream's item can be converted into a future, then this adaptor |
| 1359 | /// will buffer up to at most `n` futures and then return the outputs in the |
| 1360 | /// same order as the underlying stream. No more than `n` futures will be |
| 1361 | /// buffered at any point in time, and less than `n` may also be buffered |
| 1362 | /// depending on the state of each future. |
| 1363 | /// |
| 1364 | /// The returned stream will be a stream of each future's output. |
| 1365 | /// |
| 1366 | /// This method is only available when the `std` or `alloc` feature of this |
| 1367 | /// library is activated, and it is activated by default. |
| 1368 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 1369 | #[cfg (feature = "alloc" )] |
| 1370 | fn buffered(self, n: usize) -> Buffered<Self> |
| 1371 | where |
| 1372 | Self::Item: Future, |
| 1373 | Self: Sized, |
| 1374 | { |
| 1375 | assert_stream::<<Self::Item as Future>::Output, _>(Buffered::new(self, n)) |
| 1376 | } |
| 1377 | |
| 1378 | /// An adaptor for creating a buffered list of pending futures (unordered). |
| 1379 | /// |
| 1380 | /// If this stream's item can be converted into a future, then this adaptor |
| 1381 | /// will buffer up to `n` futures and then return the outputs in the order |
| 1382 | /// in which they complete. No more than `n` futures will be buffered at |
| 1383 | /// any point in time, and less than `n` may also be buffered depending on |
| 1384 | /// the state of each future. |
| 1385 | /// |
| 1386 | /// The returned stream will be a stream of each future's output. |
| 1387 | /// |
| 1388 | /// This method is only available when the `std` or `alloc` feature of this |
| 1389 | /// library is activated, and it is activated by default. |
| 1390 | /// |
| 1391 | /// # Examples |
| 1392 | /// |
| 1393 | /// ``` |
| 1394 | /// # futures::executor::block_on(async { |
| 1395 | /// use futures::channel::oneshot; |
| 1396 | /// use futures::stream::{self, StreamExt}; |
| 1397 | /// |
| 1398 | /// let (send_one, recv_one) = oneshot::channel(); |
| 1399 | /// let (send_two, recv_two) = oneshot::channel(); |
| 1400 | /// |
| 1401 | /// let stream_of_futures = stream::iter(vec![recv_one, recv_two]); |
| 1402 | /// let mut buffered = stream_of_futures.buffer_unordered(10); |
| 1403 | /// |
| 1404 | /// send_two.send(2i32)?; |
| 1405 | /// assert_eq!(buffered.next().await, Some(Ok(2i32))); |
| 1406 | /// |
| 1407 | /// send_one.send(1i32)?; |
| 1408 | /// assert_eq!(buffered.next().await, Some(Ok(1i32))); |
| 1409 | /// |
| 1410 | /// assert_eq!(buffered.next().await, None); |
| 1411 | /// # Ok::<(), i32>(()) }).unwrap(); |
| 1412 | /// ``` |
| 1413 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 1414 | #[cfg (feature = "alloc" )] |
| 1415 | fn buffer_unordered(self, n: usize) -> BufferUnordered<Self> |
| 1416 | where |
| 1417 | Self::Item: Future, |
| 1418 | Self: Sized, |
| 1419 | { |
| 1420 | assert_stream::<<Self::Item as Future>::Output, _>(BufferUnordered::new(self, n)) |
| 1421 | } |
| 1422 | |
| 1423 | /// An adapter for zipping two streams together. |
| 1424 | /// |
| 1425 | /// The zipped stream waits for both streams to produce an item, and then |
| 1426 | /// returns that pair. If either stream ends then the zipped stream will |
| 1427 | /// also end. |
| 1428 | /// |
| 1429 | /// # Examples |
| 1430 | /// |
| 1431 | /// ``` |
| 1432 | /// # futures::executor::block_on(async { |
| 1433 | /// use futures::stream::{self, StreamExt}; |
| 1434 | /// |
| 1435 | /// let stream1 = stream::iter(1..=3); |
| 1436 | /// let stream2 = stream::iter(5..=10); |
| 1437 | /// |
| 1438 | /// let vec = stream1.zip(stream2) |
| 1439 | /// .collect::<Vec<_>>() |
| 1440 | /// .await; |
| 1441 | /// assert_eq!(vec![(1, 5), (2, 6), (3, 7)], vec); |
| 1442 | /// # }); |
| 1443 | /// ``` |
| 1444 | /// |
| 1445 | fn zip<St>(self, other: St) -> Zip<Self, St> |
| 1446 | where |
| 1447 | St: Stream, |
| 1448 | Self: Sized, |
| 1449 | { |
| 1450 | assert_stream::<(Self::Item, St::Item), _>(Zip::new(self, other)) |
| 1451 | } |
| 1452 | |
| 1453 | /// Adapter for chaining two streams. |
| 1454 | /// |
| 1455 | /// The resulting stream emits elements from the first stream, and when |
| 1456 | /// first stream reaches the end, emits the elements from the second stream. |
| 1457 | /// |
| 1458 | /// ``` |
| 1459 | /// # futures::executor::block_on(async { |
| 1460 | /// use futures::stream::{self, StreamExt}; |
| 1461 | /// |
| 1462 | /// let stream1 = stream::iter(vec![Ok(10), Err(false)]); |
| 1463 | /// let stream2 = stream::iter(vec![Err(true), Ok(20)]); |
| 1464 | /// |
| 1465 | /// let stream = stream1.chain(stream2); |
| 1466 | /// |
| 1467 | /// let result: Vec<_> = stream.collect().await; |
| 1468 | /// assert_eq!(result, vec![ |
| 1469 | /// Ok(10), |
| 1470 | /// Err(false), |
| 1471 | /// Err(true), |
| 1472 | /// Ok(20), |
| 1473 | /// ]); |
| 1474 | /// # }); |
| 1475 | /// ``` |
| 1476 | fn chain<St>(self, other: St) -> Chain<Self, St> |
| 1477 | where |
| 1478 | St: Stream<Item = Self::Item>, |
| 1479 | Self: Sized, |
| 1480 | { |
| 1481 | assert_stream::<Self::Item, _>(Chain::new(self, other)) |
| 1482 | } |
| 1483 | |
| 1484 | /// Creates a new stream which exposes a `peek` method. |
| 1485 | /// |
| 1486 | /// Calling `peek` returns a reference to the next item in the stream. |
| 1487 | fn peekable(self) -> Peekable<Self> |
| 1488 | where |
| 1489 | Self: Sized, |
| 1490 | { |
| 1491 | assert_stream::<Self::Item, _>(Peekable::new(self)) |
| 1492 | } |
| 1493 | |
| 1494 | /// An adaptor for chunking up items of the stream inside a vector. |
| 1495 | /// |
| 1496 | /// This combinator will attempt to pull items from this stream and buffer |
| 1497 | /// them into a local vector. At most `capacity` items will get buffered |
| 1498 | /// before they're yielded from the returned stream. |
| 1499 | /// |
| 1500 | /// Note that the vectors returned from this iterator may not always have |
| 1501 | /// `capacity` elements. If the underlying stream ended and only a partial |
| 1502 | /// vector was created, it'll be returned. Additionally if an error happens |
| 1503 | /// from the underlying stream then the currently buffered items will be |
| 1504 | /// yielded. |
| 1505 | /// |
| 1506 | /// This method is only available when the `std` or `alloc` feature of this |
| 1507 | /// library is activated, and it is activated by default. |
| 1508 | /// |
| 1509 | /// # Panics |
| 1510 | /// |
| 1511 | /// This method will panic if `capacity` is zero. |
| 1512 | #[cfg (feature = "alloc" )] |
| 1513 | fn chunks(self, capacity: usize) -> Chunks<Self> |
| 1514 | where |
| 1515 | Self: Sized, |
| 1516 | { |
| 1517 | assert_stream::<Vec<Self::Item>, _>(Chunks::new(self, capacity)) |
| 1518 | } |
| 1519 | |
| 1520 | /// An adaptor for chunking up ready items of the stream inside a vector. |
| 1521 | /// |
| 1522 | /// This combinator will attempt to pull ready items from this stream and |
| 1523 | /// buffer them into a local vector. At most `capacity` items will get |
| 1524 | /// buffered before they're yielded from the returned stream. If underlying |
| 1525 | /// stream returns `Poll::Pending`, and collected chunk is not empty, it will |
| 1526 | /// be immediately returned. |
| 1527 | /// |
| 1528 | /// If the underlying stream ended and only a partial vector was created, |
| 1529 | /// it will be returned. |
| 1530 | /// |
| 1531 | /// This method is only available when the `std` or `alloc` feature of this |
| 1532 | /// library is activated, and it is activated by default. |
| 1533 | /// |
| 1534 | /// # Panics |
| 1535 | /// |
| 1536 | /// This method will panic if `capacity` is zero. |
| 1537 | #[cfg (feature = "alloc" )] |
| 1538 | fn ready_chunks(self, capacity: usize) -> ReadyChunks<Self> |
| 1539 | where |
| 1540 | Self: Sized, |
| 1541 | { |
| 1542 | assert_stream::<Vec<Self::Item>, _>(ReadyChunks::new(self, capacity)) |
| 1543 | } |
| 1544 | |
| 1545 | /// A future that completes after the given stream has been fully processed |
| 1546 | /// into the sink and the sink has been flushed and closed. |
| 1547 | /// |
| 1548 | /// This future will drive the stream to keep producing items until it is |
| 1549 | /// exhausted, sending each item to the sink. It will complete once the |
| 1550 | /// stream is exhausted, the sink has received and flushed all items, and |
| 1551 | /// the sink is closed. Note that neither the original stream nor provided |
| 1552 | /// sink will be output by this future. Pass the sink by `Pin<&mut S>` |
| 1553 | /// (for example, via `forward(&mut sink)` inside an `async` fn/block) in |
| 1554 | /// order to preserve access to the `Sink`. If the stream produces an error, |
| 1555 | /// that error will be returned by this future without flushing/closing the sink. |
| 1556 | #[cfg (feature = "sink" )] |
| 1557 | #[cfg_attr (docsrs, doc(cfg(feature = "sink" )))] |
| 1558 | fn forward<S>(self, sink: S) -> Forward<Self, S> |
| 1559 | where |
| 1560 | S: Sink<Self::Ok, Error = Self::Error>, |
| 1561 | Self: TryStream + Sized, |
| 1562 | // Self: TryStream + Sized + Stream<Item = Result<<Self as TryStream>::Ok, <Self as TryStream>::Error>>, |
| 1563 | { |
| 1564 | // TODO: type mismatch resolving `<Self as futures_core::Stream>::Item == std::result::Result<<Self as futures_core::TryStream>::Ok, <Self as futures_core::TryStream>::Error>` |
| 1565 | // assert_future::<Result<(), Self::Error>, _>(Forward::new(self, sink)) |
| 1566 | Forward::new(self, sink) |
| 1567 | } |
| 1568 | |
| 1569 | /// Splits this `Stream + Sink` object into separate `Sink` and `Stream` |
| 1570 | /// objects. |
| 1571 | /// |
| 1572 | /// This can be useful when you want to split ownership between tasks, or |
| 1573 | /// allow direct interaction between the two objects (e.g. via |
| 1574 | /// `Sink::send_all`). |
| 1575 | /// |
| 1576 | /// This method is only available when the `std` or `alloc` feature of this |
| 1577 | /// library is activated, and it is activated by default. |
| 1578 | #[cfg (feature = "sink" )] |
| 1579 | #[cfg_attr (docsrs, doc(cfg(feature = "sink" )))] |
| 1580 | #[cfg_attr (target_os = "none" , cfg(target_has_atomic = "ptr" ))] |
| 1581 | #[cfg (feature = "alloc" )] |
| 1582 | fn split<Item>(self) -> (SplitSink<Self, Item>, SplitStream<Self>) |
| 1583 | where |
| 1584 | Self: Sink<Item> + Sized, |
| 1585 | { |
| 1586 | let (sink, stream) = split::split(self); |
| 1587 | ( |
| 1588 | crate::sink::assert_sink::<Item, Self::Error, _>(sink), |
| 1589 | assert_stream::<Self::Item, _>(stream), |
| 1590 | ) |
| 1591 | } |
| 1592 | |
| 1593 | /// Do something with each item of this stream, afterwards passing it on. |
| 1594 | /// |
| 1595 | /// This is similar to the `Iterator::inspect` method in the standard |
| 1596 | /// library where it allows easily inspecting each value as it passes |
| 1597 | /// through the stream, for example to debug what's going on. |
| 1598 | fn inspect<F>(self, f: F) -> Inspect<Self, F> |
| 1599 | where |
| 1600 | F: FnMut(&Self::Item), |
| 1601 | Self: Sized, |
| 1602 | { |
| 1603 | assert_stream::<Self::Item, _>(Inspect::new(self, f)) |
| 1604 | } |
| 1605 | |
| 1606 | /// Wrap this stream in an `Either` stream, making it the left-hand variant |
| 1607 | /// of that `Either`. |
| 1608 | /// |
| 1609 | /// This can be used in combination with the `right_stream` method to write `if` |
| 1610 | /// statements that evaluate to different streams in different branches. |
| 1611 | fn left_stream<B>(self) -> Either<Self, B> |
| 1612 | where |
| 1613 | B: Stream<Item = Self::Item>, |
| 1614 | Self: Sized, |
| 1615 | { |
| 1616 | assert_stream::<Self::Item, _>(Either::Left(self)) |
| 1617 | } |
| 1618 | |
| 1619 | /// Wrap this stream in an `Either` stream, making it the right-hand variant |
| 1620 | /// of that `Either`. |
| 1621 | /// |
| 1622 | /// This can be used in combination with the `left_stream` method to write `if` |
| 1623 | /// statements that evaluate to different streams in different branches. |
| 1624 | fn right_stream<B>(self) -> Either<B, Self> |
| 1625 | where |
| 1626 | B: Stream<Item = Self::Item>, |
| 1627 | Self: Sized, |
| 1628 | { |
| 1629 | assert_stream::<Self::Item, _>(Either::Right(self)) |
| 1630 | } |
| 1631 | |
| 1632 | /// A convenience method for calling [`Stream::poll_next`] on [`Unpin`] |
| 1633 | /// stream types. |
| 1634 | fn poll_next_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> |
| 1635 | where |
| 1636 | Self: Unpin, |
| 1637 | { |
| 1638 | Pin::new(self).poll_next(cx) |
| 1639 | } |
| 1640 | |
| 1641 | /// Returns a [`Future`] that resolves when the next item in this stream is |
| 1642 | /// ready. |
| 1643 | /// |
| 1644 | /// This is similar to the [`next`][StreamExt::next] method, but it won't |
| 1645 | /// resolve to [`None`] if used on an empty [`Stream`]. Instead, the |
| 1646 | /// returned future type will return `true` from |
| 1647 | /// [`FusedFuture::is_terminated`][] when the [`Stream`] is empty, allowing |
| 1648 | /// [`select_next_some`][StreamExt::select_next_some] to be easily used with |
| 1649 | /// the [`select!`] macro. |
| 1650 | /// |
| 1651 | /// If the future is polled after this [`Stream`] is empty it will panic. |
| 1652 | /// Using the future with a [`FusedFuture`][]-aware primitive like the |
| 1653 | /// [`select!`] macro will prevent this. |
| 1654 | /// |
| 1655 | /// [`FusedFuture`]: futures_core::future::FusedFuture |
| 1656 | /// [`FusedFuture::is_terminated`]: futures_core::future::FusedFuture::is_terminated |
| 1657 | /// |
| 1658 | /// # Examples |
| 1659 | /// |
| 1660 | /// ``` |
| 1661 | /// # futures::executor::block_on(async { |
| 1662 | /// use futures::{future, select}; |
| 1663 | /// use futures::stream::{StreamExt, FuturesUnordered}; |
| 1664 | /// |
| 1665 | /// let mut fut = future::ready(1); |
| 1666 | /// let mut async_tasks = FuturesUnordered::new(); |
| 1667 | /// let mut total = 0; |
| 1668 | /// loop { |
| 1669 | /// select! { |
| 1670 | /// num = fut => { |
| 1671 | /// // First, the `ready` future completes. |
| 1672 | /// total += num; |
| 1673 | /// // Then we spawn a new task onto `async_tasks`, |
| 1674 | /// async_tasks.push(async { 5 }); |
| 1675 | /// }, |
| 1676 | /// // On the next iteration of the loop, the task we spawned |
| 1677 | /// // completes. |
| 1678 | /// num = async_tasks.select_next_some() => { |
| 1679 | /// total += num; |
| 1680 | /// } |
| 1681 | /// // Finally, both the `ready` future and `async_tasks` have |
| 1682 | /// // finished, so we enter the `complete` branch. |
| 1683 | /// complete => break, |
| 1684 | /// } |
| 1685 | /// } |
| 1686 | /// assert_eq!(total, 6); |
| 1687 | /// # }); |
| 1688 | /// ``` |
| 1689 | /// |
| 1690 | /// [`select!`]: crate::select |
| 1691 | fn select_next_some(&mut self) -> SelectNextSome<'_, Self> |
| 1692 | where |
| 1693 | Self: Unpin + FusedStream, |
| 1694 | { |
| 1695 | assert_future::<Self::Item, _>(SelectNextSome::new(self)) |
| 1696 | } |
| 1697 | } |
| 1698 | |