| 1 | //! This crate implements a structure that can be used as a generic array type.
|
| 2 | //! Core Rust array types `[T; N]` can't be used generically with
|
| 3 | //! respect to `N`, so for example this:
|
| 4 | //!
|
| 5 | //! ```rust{compile_fail}
|
| 6 | //! struct Foo<T, N> {
|
| 7 | //! data: [T; N]
|
| 8 | //! }
|
| 9 | //! ```
|
| 10 | //!
|
| 11 | //! won't work.
|
| 12 | //!
|
| 13 | //! **generic-array** exports a `GenericArray<T,N>` type, which lets
|
| 14 | //! the above be implemented as:
|
| 15 | //!
|
| 16 | //! ```rust
|
| 17 | //! use generic_array::{ArrayLength, GenericArray};
|
| 18 | //!
|
| 19 | //! struct Foo<T, N: ArrayLength<T>> {
|
| 20 | //! data: GenericArray<T,N>
|
| 21 | //! }
|
| 22 | //! ```
|
| 23 | //!
|
| 24 | //! The `ArrayLength<T>` trait is implemented by default for
|
| 25 | //! [unsigned integer types](../typenum/uint/index.html) from
|
| 26 | //! [typenum](../typenum/index.html):
|
| 27 | //!
|
| 28 | //! ```rust
|
| 29 | //! # use generic_array::{ArrayLength, GenericArray};
|
| 30 | //! use generic_array::typenum::U5;
|
| 31 | //!
|
| 32 | //! struct Foo<N: ArrayLength<i32>> {
|
| 33 | //! data: GenericArray<i32, N>
|
| 34 | //! }
|
| 35 | //!
|
| 36 | //! # fn main() {
|
| 37 | //! let foo = Foo::<U5>{data: GenericArray::default()};
|
| 38 | //! # }
|
| 39 | //! ```
|
| 40 | //!
|
| 41 | //! For example, `GenericArray<T, U5>` would work almost like `[T; 5]`:
|
| 42 | //!
|
| 43 | //! ```rust
|
| 44 | //! # use generic_array::{ArrayLength, GenericArray};
|
| 45 | //! use generic_array::typenum::U5;
|
| 46 | //!
|
| 47 | //! struct Foo<T, N: ArrayLength<T>> {
|
| 48 | //! data: GenericArray<T, N>
|
| 49 | //! }
|
| 50 | //!
|
| 51 | //! # fn main() {
|
| 52 | //! let foo = Foo::<i32, U5>{data: GenericArray::default()};
|
| 53 | //! # }
|
| 54 | //! ```
|
| 55 | //!
|
| 56 | //! For ease of use, an `arr!` macro is provided - example below:
|
| 57 | //!
|
| 58 | //! ```
|
| 59 | //! # #[macro_use ]
|
| 60 | //! # extern crate generic_array;
|
| 61 | //! # extern crate typenum;
|
| 62 | //! # fn main() {
|
| 63 | //! let array = arr![u32; 1, 2, 3];
|
| 64 | //! assert_eq!(array[2], 3);
|
| 65 | //! # }
|
| 66 | //! ```
|
| 67 |
|
| 68 | #![deny (missing_docs)]
|
| 69 | #![deny (meta_variable_misuse)]
|
| 70 | #![no_std ]
|
| 71 | #![cfg_attr (docsrs, feature(doc_auto_cfg))]
|
| 72 |
|
| 73 | #[cfg (feature = "serde" )]
|
| 74 | extern crate serde;
|
| 75 |
|
| 76 | #[cfg (feature = "zeroize" )]
|
| 77 | extern crate zeroize;
|
| 78 |
|
| 79 | #[cfg (test)]
|
| 80 | extern crate bincode;
|
| 81 |
|
| 82 | pub extern crate typenum;
|
| 83 |
|
| 84 | mod hex;
|
| 85 | mod impls;
|
| 86 |
|
| 87 | #[cfg (feature = "serde" )]
|
| 88 | mod impl_serde;
|
| 89 |
|
| 90 | #[cfg (feature = "zeroize" )]
|
| 91 | mod impl_zeroize;
|
| 92 |
|
| 93 | use core::iter::FromIterator;
|
| 94 | use core::marker::PhantomData;
|
| 95 | use core::mem::{MaybeUninit, ManuallyDrop};
|
| 96 | use core::ops::{Deref, DerefMut};
|
| 97 | use core::{mem, ptr, slice};
|
| 98 | use typenum::bit::{B0, B1};
|
| 99 | use typenum::uint::{UInt, UTerm, Unsigned};
|
| 100 |
|
| 101 | #[cfg_attr (test, macro_use)]
|
| 102 | pub mod arr;
|
| 103 | pub mod functional;
|
| 104 | pub mod iter;
|
| 105 | pub mod sequence;
|
| 106 |
|
| 107 | use self::functional::*;
|
| 108 | pub use self::iter::GenericArrayIter;
|
| 109 | use self::sequence::*;
|
| 110 |
|
| 111 | /// Trait making `GenericArray` work, marking types to be used as length of an array
|
| 112 | pub unsafe trait ArrayLength<T>: Unsigned {
|
| 113 | /// Associated type representing the array type for the number
|
| 114 | type ArrayType;
|
| 115 | }
|
| 116 |
|
| 117 | unsafe impl<T> ArrayLength<T> for UTerm {
|
| 118 | #[doc (hidden)]
|
| 119 | type ArrayType = [T; 0];
|
| 120 | }
|
| 121 |
|
| 122 | /// Internal type used to generate a struct of appropriate size
|
| 123 | #[allow (dead_code)]
|
| 124 | #[repr (C)]
|
| 125 | #[doc (hidden)]
|
| 126 | pub struct GenericArrayImplEven<T, U> {
|
| 127 | parent1: U,
|
| 128 | parent2: U,
|
| 129 | _marker: PhantomData<T>,
|
| 130 | }
|
| 131 |
|
| 132 | impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
|
| 133 | fn clone(&self) -> GenericArrayImplEven<T, U> {
|
| 134 | GenericArrayImplEven {
|
| 135 | parent1: self.parent1.clone(),
|
| 136 | parent2: self.parent2.clone(),
|
| 137 | _marker: PhantomData,
|
| 138 | }
|
| 139 | }
|
| 140 | }
|
| 141 |
|
| 142 | impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}
|
| 143 |
|
| 144 | /// Internal type used to generate a struct of appropriate size
|
| 145 | #[allow (dead_code)]
|
| 146 | #[repr (C)]
|
| 147 | #[doc (hidden)]
|
| 148 | pub struct GenericArrayImplOdd<T, U> {
|
| 149 | parent1: U,
|
| 150 | parent2: U,
|
| 151 | data: T,
|
| 152 | }
|
| 153 |
|
| 154 | impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
|
| 155 | fn clone(&self) -> GenericArrayImplOdd<T, U> {
|
| 156 | GenericArrayImplOdd {
|
| 157 | parent1: self.parent1.clone(),
|
| 158 | parent2: self.parent2.clone(),
|
| 159 | data: self.data.clone(),
|
| 160 | }
|
| 161 | }
|
| 162 | }
|
| 163 |
|
| 164 | impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}
|
| 165 |
|
| 166 | unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B0> {
|
| 167 | #[doc (hidden)]
|
| 168 | type ArrayType = GenericArrayImplEven<T, N::ArrayType>;
|
| 169 | }
|
| 170 |
|
| 171 | unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B1> {
|
| 172 | #[doc (hidden)]
|
| 173 | type ArrayType = GenericArrayImplOdd<T, N::ArrayType>;
|
| 174 | }
|
| 175 |
|
| 176 | /// Struct representing a generic array - `GenericArray<T, N>` works like [T; N]
|
| 177 | #[allow (dead_code)]
|
| 178 | #[repr (transparent)]
|
| 179 | pub struct GenericArray<T, U: ArrayLength<T>> {
|
| 180 | data: U::ArrayType,
|
| 181 | }
|
| 182 |
|
| 183 | unsafe impl<T: Send, N: ArrayLength<T>> Send for GenericArray<T, N> {}
|
| 184 | unsafe impl<T: Sync, N: ArrayLength<T>> Sync for GenericArray<T, N> {}
|
| 185 |
|
| 186 | impl<T, N> Deref for GenericArray<T, N>
|
| 187 | where
|
| 188 | N: ArrayLength<T>,
|
| 189 | {
|
| 190 | type Target = [T];
|
| 191 |
|
| 192 | #[inline (always)]
|
| 193 | fn deref(&self) -> &[T] {
|
| 194 | unsafe { slice::from_raw_parts(self as *const Self as *const T, N::USIZE) }
|
| 195 | }
|
| 196 | }
|
| 197 |
|
| 198 | impl<T, N> DerefMut for GenericArray<T, N>
|
| 199 | where
|
| 200 | N: ArrayLength<T>,
|
| 201 | {
|
| 202 | #[inline (always)]
|
| 203 | fn deref_mut(&mut self) -> &mut [T] {
|
| 204 | unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::USIZE) }
|
| 205 | }
|
| 206 | }
|
| 207 |
|
| 208 | /// Creates an array one element at a time using a mutable iterator
|
| 209 | /// you can write to with `ptr::write`.
|
| 210 | ///
|
| 211 | /// Increment the position while iterating to mark off created elements,
|
| 212 | /// which will be dropped if `into_inner` is not called.
|
| 213 | #[doc (hidden)]
|
| 214 | pub struct ArrayBuilder<T, N: ArrayLength<T>> {
|
| 215 | array: MaybeUninit<GenericArray<T, N>>,
|
| 216 | position: usize,
|
| 217 | }
|
| 218 |
|
| 219 | impl<T, N: ArrayLength<T>> ArrayBuilder<T, N> {
|
| 220 | #[doc (hidden)]
|
| 221 | #[inline ]
|
| 222 | pub unsafe fn new() -> ArrayBuilder<T, N> {
|
| 223 | ArrayBuilder {
|
| 224 | array: MaybeUninit::uninit(),
|
| 225 | position: 0,
|
| 226 | }
|
| 227 | }
|
| 228 |
|
| 229 | /// Creates a mutable iterator for writing to the array using `ptr::write`.
|
| 230 | ///
|
| 231 | /// Increment the position value given as a mutable reference as you iterate
|
| 232 | /// to mark how many elements have been created.
|
| 233 | #[doc (hidden)]
|
| 234 | #[inline ]
|
| 235 | pub unsafe fn iter_position(&mut self) -> (slice::IterMut<T>, &mut usize) {
|
| 236 | ((&mut *self.array.as_mut_ptr()).iter_mut(), &mut self.position)
|
| 237 | }
|
| 238 |
|
| 239 | /// When done writing (assuming all elements have been written to),
|
| 240 | /// get the inner array.
|
| 241 | #[doc (hidden)]
|
| 242 | #[inline ]
|
| 243 | pub unsafe fn into_inner(self) -> GenericArray<T, N> {
|
| 244 | let array = ptr::read(&self.array);
|
| 245 |
|
| 246 | mem::forget(self);
|
| 247 |
|
| 248 | array.assume_init()
|
| 249 | }
|
| 250 | }
|
| 251 |
|
| 252 | impl<T, N: ArrayLength<T>> Drop for ArrayBuilder<T, N> {
|
| 253 | fn drop(&mut self) {
|
| 254 | if mem::needs_drop::<T>() {
|
| 255 | unsafe {
|
| 256 | for value: &mut T in &mut (&mut *self.array.as_mut_ptr())[..self.position] {
|
| 257 | ptr::drop_in_place(to_drop:value);
|
| 258 | }
|
| 259 | }
|
| 260 | }
|
| 261 | }
|
| 262 | }
|
| 263 |
|
| 264 | /// Consumes an array.
|
| 265 | ///
|
| 266 | /// Increment the position while iterating and any leftover elements
|
| 267 | /// will be dropped if position does not go to N
|
| 268 | #[doc (hidden)]
|
| 269 | pub struct ArrayConsumer<T, N: ArrayLength<T>> {
|
| 270 | array: ManuallyDrop<GenericArray<T, N>>,
|
| 271 | position: usize,
|
| 272 | }
|
| 273 |
|
| 274 | impl<T, N: ArrayLength<T>> ArrayConsumer<T, N> {
|
| 275 | #[doc (hidden)]
|
| 276 | #[inline ]
|
| 277 | pub unsafe fn new(array: GenericArray<T, N>) -> ArrayConsumer<T, N> {
|
| 278 | ArrayConsumer {
|
| 279 | array: ManuallyDrop::new(array),
|
| 280 | position: 0,
|
| 281 | }
|
| 282 | }
|
| 283 |
|
| 284 | /// Creates an iterator and mutable reference to the internal position
|
| 285 | /// to keep track of consumed elements.
|
| 286 | ///
|
| 287 | /// Increment the position as you iterate to mark off consumed elements
|
| 288 | #[doc (hidden)]
|
| 289 | #[inline ]
|
| 290 | pub unsafe fn iter_position(&mut self) -> (slice::Iter<T>, &mut usize) {
|
| 291 | (self.array.iter(), &mut self.position)
|
| 292 | }
|
| 293 | }
|
| 294 |
|
| 295 | impl<T, N: ArrayLength<T>> Drop for ArrayConsumer<T, N> {
|
| 296 | fn drop(&mut self) {
|
| 297 | if mem::needs_drop::<T>() {
|
| 298 | for value: &mut T in &mut self.array[self.position..N::USIZE] {
|
| 299 | unsafe {
|
| 300 | ptr::drop_in_place(to_drop:value);
|
| 301 | }
|
| 302 | }
|
| 303 | }
|
| 304 | }
|
| 305 | }
|
| 306 |
|
| 307 | impl<'a, T: 'a, N> IntoIterator for &'a GenericArray<T, N>
|
| 308 | where
|
| 309 | N: ArrayLength<T>,
|
| 310 | {
|
| 311 | type IntoIter = slice::Iter<'a, T>;
|
| 312 | type Item = &'a T;
|
| 313 |
|
| 314 | fn into_iter(self: &'a GenericArray<T, N>) -> Self::IntoIter {
|
| 315 | self.as_slice().iter()
|
| 316 | }
|
| 317 | }
|
| 318 |
|
| 319 | impl<'a, T: 'a, N> IntoIterator for &'a mut GenericArray<T, N>
|
| 320 | where
|
| 321 | N: ArrayLength<T>,
|
| 322 | {
|
| 323 | type IntoIter = slice::IterMut<'a, T>;
|
| 324 | type Item = &'a mut T;
|
| 325 |
|
| 326 | fn into_iter(self: &'a mut GenericArray<T, N>) -> Self::IntoIter {
|
| 327 | self.as_mut_slice().iter_mut()
|
| 328 | }
|
| 329 | }
|
| 330 |
|
| 331 | impl<T, N> FromIterator<T> for GenericArray<T, N>
|
| 332 | where
|
| 333 | N: ArrayLength<T>,
|
| 334 | {
|
| 335 | fn from_iter<I>(iter: I) -> GenericArray<T, N>
|
| 336 | where
|
| 337 | I: IntoIterator<Item = T>,
|
| 338 | {
|
| 339 | unsafe {
|
| 340 | let mut destination = ArrayBuilder::new();
|
| 341 |
|
| 342 | {
|
| 343 | let (destination_iter, position) = destination.iter_position();
|
| 344 |
|
| 345 | iter.into_iter()
|
| 346 | .zip(destination_iter)
|
| 347 | .for_each(|(src, dst)| {
|
| 348 | ptr::write(dst, src);
|
| 349 |
|
| 350 | *position += 1;
|
| 351 | });
|
| 352 | }
|
| 353 |
|
| 354 | if destination.position < N::USIZE {
|
| 355 | from_iter_length_fail(destination.position, N::USIZE);
|
| 356 | }
|
| 357 |
|
| 358 | destination.into_inner()
|
| 359 | }
|
| 360 | }
|
| 361 | }
|
| 362 |
|
| 363 | #[inline (never)]
|
| 364 | #[cold ]
|
| 365 | fn from_iter_length_fail(length: usize, expected: usize) -> ! {
|
| 366 | panic!(
|
| 367 | "GenericArray::from_iter received {} elements but expected {}" ,
|
| 368 | length, expected
|
| 369 | );
|
| 370 | }
|
| 371 |
|
| 372 | unsafe impl<T, N> GenericSequence<T> for GenericArray<T, N>
|
| 373 | where
|
| 374 | N: ArrayLength<T>,
|
| 375 | Self: IntoIterator<Item = T>,
|
| 376 | {
|
| 377 | type Length = N;
|
| 378 | type Sequence = Self;
|
| 379 |
|
| 380 | fn generate<F>(mut f: F) -> GenericArray<T, N>
|
| 381 | where
|
| 382 | F: FnMut(usize) -> T,
|
| 383 | {
|
| 384 | unsafe {
|
| 385 | let mut destination = ArrayBuilder::new();
|
| 386 |
|
| 387 | {
|
| 388 | let (destination_iter, position) = destination.iter_position();
|
| 389 |
|
| 390 | destination_iter.enumerate().for_each(|(i, dst)| {
|
| 391 | ptr::write(dst, f(i));
|
| 392 |
|
| 393 | *position += 1;
|
| 394 | });
|
| 395 | }
|
| 396 |
|
| 397 | destination.into_inner()
|
| 398 | }
|
| 399 | }
|
| 400 |
|
| 401 | #[doc (hidden)]
|
| 402 | fn inverted_zip<B, U, F>(
|
| 403 | self,
|
| 404 | lhs: GenericArray<B, Self::Length>,
|
| 405 | mut f: F,
|
| 406 | ) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
|
| 407 | where
|
| 408 | GenericArray<B, Self::Length>:
|
| 409 | GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
|
| 410 | Self: MappedGenericSequence<T, U>,
|
| 411 | Self::Length: ArrayLength<B> + ArrayLength<U>,
|
| 412 | F: FnMut(B, Self::Item) -> U,
|
| 413 | {
|
| 414 | unsafe {
|
| 415 | let mut left = ArrayConsumer::new(lhs);
|
| 416 | let mut right = ArrayConsumer::new(self);
|
| 417 |
|
| 418 | let (left_array_iter, left_position) = left.iter_position();
|
| 419 | let (right_array_iter, right_position) = right.iter_position();
|
| 420 |
|
| 421 | FromIterator::from_iter(left_array_iter.zip(right_array_iter).map(|(l, r)| {
|
| 422 | let left_value = ptr::read(l);
|
| 423 | let right_value = ptr::read(r);
|
| 424 |
|
| 425 | *left_position += 1;
|
| 426 | *right_position += 1;
|
| 427 |
|
| 428 | f(left_value, right_value)
|
| 429 | }))
|
| 430 | }
|
| 431 | }
|
| 432 |
|
| 433 | #[doc (hidden)]
|
| 434 | fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
|
| 435 | where
|
| 436 | Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
|
| 437 | Self: MappedGenericSequence<T, U>,
|
| 438 | Self::Length: ArrayLength<B> + ArrayLength<U>,
|
| 439 | F: FnMut(Lhs::Item, Self::Item) -> U,
|
| 440 | {
|
| 441 | unsafe {
|
| 442 | let mut right = ArrayConsumer::new(self);
|
| 443 |
|
| 444 | let (right_array_iter, right_position) = right.iter_position();
|
| 445 |
|
| 446 | FromIterator::from_iter(
|
| 447 | lhs.into_iter()
|
| 448 | .zip(right_array_iter)
|
| 449 | .map(|(left_value, r)| {
|
| 450 | let right_value = ptr::read(r);
|
| 451 |
|
| 452 | *right_position += 1;
|
| 453 |
|
| 454 | f(left_value, right_value)
|
| 455 | }),
|
| 456 | )
|
| 457 | }
|
| 458 | }
|
| 459 | }
|
| 460 |
|
| 461 | unsafe impl<T, U, N> MappedGenericSequence<T, U> for GenericArray<T, N>
|
| 462 | where
|
| 463 | N: ArrayLength<T> + ArrayLength<U>,
|
| 464 | GenericArray<U, N>: GenericSequence<U, Length = N>,
|
| 465 | {
|
| 466 | type Mapped = GenericArray<U, N>;
|
| 467 | }
|
| 468 |
|
| 469 | unsafe impl<T, N> FunctionalSequence<T> for GenericArray<T, N>
|
| 470 | where
|
| 471 | N: ArrayLength<T>,
|
| 472 | Self: GenericSequence<T, Item = T, Length = N>,
|
| 473 | {
|
| 474 | fn map<U, F>(self, mut f: F) -> MappedSequence<Self, T, U>
|
| 475 | where
|
| 476 | Self::Length: ArrayLength<U>,
|
| 477 | Self: MappedGenericSequence<T, U>,
|
| 478 | F: FnMut(T) -> U,
|
| 479 | {
|
| 480 | unsafe {
|
| 481 | let mut source = ArrayConsumer::new(self);
|
| 482 |
|
| 483 | let (array_iter, position) = source.iter_position();
|
| 484 |
|
| 485 | FromIterator::from_iter(array_iter.map(|src| {
|
| 486 | let value = ptr::read(src);
|
| 487 |
|
| 488 | *position += 1;
|
| 489 |
|
| 490 | f(value)
|
| 491 | }))
|
| 492 | }
|
| 493 | }
|
| 494 |
|
| 495 | #[inline ]
|
| 496 | fn zip<B, Rhs, U, F>(self, rhs: Rhs, f: F) -> MappedSequence<Self, T, U>
|
| 497 | where
|
| 498 | Self: MappedGenericSequence<T, U>,
|
| 499 | Rhs: MappedGenericSequence<B, U, Mapped = MappedSequence<Self, T, U>>,
|
| 500 | Self::Length: ArrayLength<B> + ArrayLength<U>,
|
| 501 | Rhs: GenericSequence<B, Length = Self::Length>,
|
| 502 | F: FnMut(T, Rhs::Item) -> U,
|
| 503 | {
|
| 504 | rhs.inverted_zip(self, f)
|
| 505 | }
|
| 506 |
|
| 507 | fn fold<U, F>(self, init: U, mut f: F) -> U
|
| 508 | where
|
| 509 | F: FnMut(U, T) -> U,
|
| 510 | {
|
| 511 | unsafe {
|
| 512 | let mut source = ArrayConsumer::new(self);
|
| 513 |
|
| 514 | let (array_iter, position) = source.iter_position();
|
| 515 |
|
| 516 | array_iter.fold(init, |acc, src| {
|
| 517 | let value = ptr::read(src);
|
| 518 |
|
| 519 | *position += 1;
|
| 520 |
|
| 521 | f(acc, value)
|
| 522 | })
|
| 523 | }
|
| 524 | }
|
| 525 | }
|
| 526 |
|
| 527 | impl<T, N> GenericArray<T, N>
|
| 528 | where
|
| 529 | N: ArrayLength<T>,
|
| 530 | {
|
| 531 | /// Extracts a slice containing the entire array.
|
| 532 | #[inline ]
|
| 533 | pub fn as_slice(&self) -> &[T] {
|
| 534 | self.deref()
|
| 535 | }
|
| 536 |
|
| 537 | /// Extracts a mutable slice containing the entire array.
|
| 538 | #[inline ]
|
| 539 | pub fn as_mut_slice(&mut self) -> &mut [T] {
|
| 540 | self.deref_mut()
|
| 541 | }
|
| 542 |
|
| 543 | /// Converts slice to a generic array reference with inferred length;
|
| 544 | ///
|
| 545 | /// # Panics
|
| 546 | ///
|
| 547 | /// Panics if the slice is not equal to the length of the array.
|
| 548 | #[inline ]
|
| 549 | pub fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
|
| 550 | slice.into()
|
| 551 | }
|
| 552 |
|
| 553 | /// Converts mutable slice to a mutable generic array reference
|
| 554 | ///
|
| 555 | /// # Panics
|
| 556 | ///
|
| 557 | /// Panics if the slice is not equal to the length of the array.
|
| 558 | #[inline ]
|
| 559 | pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
|
| 560 | slice.into()
|
| 561 | }
|
| 562 | }
|
| 563 |
|
| 564 | impl<'a, T, N: ArrayLength<T>> From<&'a [T]> for &'a GenericArray<T, N> {
|
| 565 | /// Converts slice to a generic array reference with inferred length;
|
| 566 | ///
|
| 567 | /// # Panics
|
| 568 | ///
|
| 569 | /// Panics if the slice is not equal to the length of the array.
|
| 570 | #[inline ]
|
| 571 | fn from(slice: &[T]) -> &GenericArray<T, N> {
|
| 572 | assert_eq!(slice.len(), N::USIZE);
|
| 573 |
|
| 574 | unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
|
| 575 | }
|
| 576 | }
|
| 577 |
|
| 578 | impl<'a, T, N: ArrayLength<T>> From<&'a mut [T]> for &'a mut GenericArray<T, N> {
|
| 579 | /// Converts mutable slice to a mutable generic array reference
|
| 580 | ///
|
| 581 | /// # Panics
|
| 582 | ///
|
| 583 | /// Panics if the slice is not equal to the length of the array.
|
| 584 | #[inline ]
|
| 585 | fn from(slice: &mut [T]) -> &mut GenericArray<T, N> {
|
| 586 | assert_eq!(slice.len(), N::USIZE);
|
| 587 |
|
| 588 | unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
|
| 589 | }
|
| 590 | }
|
| 591 |
|
| 592 | impl<T: Clone, N> GenericArray<T, N>
|
| 593 | where
|
| 594 | N: ArrayLength<T>,
|
| 595 | {
|
| 596 | /// Construct a `GenericArray` from a slice by cloning its content
|
| 597 | ///
|
| 598 | /// # Panics
|
| 599 | ///
|
| 600 | /// Panics if the slice is not equal to the length of the array.
|
| 601 | #[inline ]
|
| 602 | pub fn clone_from_slice(list: &[T]) -> GenericArray<T, N> {
|
| 603 | Self::from_exact_iter(list.iter().cloned())
|
| 604 | .expect(msg:"Slice must be the same length as the array" )
|
| 605 | }
|
| 606 | }
|
| 607 |
|
| 608 | impl<T, N> GenericArray<T, N>
|
| 609 | where
|
| 610 | N: ArrayLength<T>,
|
| 611 | {
|
| 612 | /// Creates a new `GenericArray` instance from an iterator with a specific size.
|
| 613 | ///
|
| 614 | /// Returns `None` if the size is not equal to the number of elements in the `GenericArray`.
|
| 615 | pub fn from_exact_iter<I>(iter: I) -> Option<Self>
|
| 616 | where
|
| 617 | I: IntoIterator<Item = T>,
|
| 618 | {
|
| 619 | let mut iter = iter.into_iter();
|
| 620 |
|
| 621 | unsafe {
|
| 622 | let mut destination = ArrayBuilder::new();
|
| 623 |
|
| 624 | {
|
| 625 | let (destination_iter, position) = destination.iter_position();
|
| 626 |
|
| 627 | destination_iter.zip(&mut iter).for_each(|(dst, src)| {
|
| 628 | ptr::write(dst, src);
|
| 629 |
|
| 630 | *position += 1;
|
| 631 | });
|
| 632 |
|
| 633 | // The iterator produced fewer than `N` elements.
|
| 634 | if *position != N::USIZE {
|
| 635 | return None;
|
| 636 | }
|
| 637 |
|
| 638 | // The iterator produced more than `N` elements.
|
| 639 | if iter.next().is_some() {
|
| 640 | return None;
|
| 641 | }
|
| 642 | }
|
| 643 |
|
| 644 | Some(destination.into_inner())
|
| 645 | }
|
| 646 | }
|
| 647 | }
|
| 648 |
|
| 649 | /// A reimplementation of the `transmute` function, avoiding problems
|
| 650 | /// when the compiler can't prove equal sizes.
|
| 651 | #[inline ]
|
| 652 | #[doc (hidden)]
|
| 653 | pub unsafe fn transmute<A, B>(a: A) -> B {
|
| 654 | let a: ManuallyDrop = ManuallyDrop::new(a);
|
| 655 | ::core::ptr::read(&*a as *const A as *const B)
|
| 656 | }
|
| 657 |
|
| 658 | #[cfg (test)]
|
| 659 | mod test {
|
| 660 | // Compile with:
|
| 661 | // cargo rustc --lib --profile test --release --
|
| 662 | // -C target-cpu=native -C opt-level=3 --emit asm
|
| 663 | // and view the assembly to make sure test_assembly generates
|
| 664 | // SIMD instructions instead of a naive loop.
|
| 665 |
|
| 666 | #[inline (never)]
|
| 667 | pub fn black_box<T>(val: T) -> T {
|
| 668 | use core::{mem, ptr};
|
| 669 |
|
| 670 | let ret = unsafe { ptr::read_volatile(&val) };
|
| 671 | mem::forget(val);
|
| 672 | ret
|
| 673 | }
|
| 674 |
|
| 675 | #[test ]
|
| 676 | fn test_assembly() {
|
| 677 | use crate::functional::*;
|
| 678 |
|
| 679 | let a = black_box(arr![i32; 1, 3, 5, 7]);
|
| 680 | let b = black_box(arr![i32; 2, 4, 6, 8]);
|
| 681 |
|
| 682 | let c = (&a).zip(b, |l, r| l + r);
|
| 683 |
|
| 684 | let d = a.fold(0, |a, x| a + x);
|
| 685 |
|
| 686 | assert_eq!(c, arr![i32; 3, 7, 11, 15]);
|
| 687 |
|
| 688 | assert_eq!(d, 16);
|
| 689 | }
|
| 690 | }
|
| 691 | |