| 1 | use core::{f32, f64}; |
| 2 | |
| 3 | use super::scalbn; |
| 4 | |
| 5 | const ZEROINFNAN: i32 = 0x7ff - 0x3ff - 52 - 1; |
| 6 | |
| 7 | struct Num { |
| 8 | m: u64, |
| 9 | e: i32, |
| 10 | sign: i32, |
| 11 | } |
| 12 | |
| 13 | fn normalize(x: f64) -> Num { |
| 14 | let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63 |
| 15 | |
| 16 | let mut ix: u64 = x.to_bits(); |
| 17 | let mut e: i32 = (ix >> 52) as i32; |
| 18 | let sign: i32 = e & 0x800; |
| 19 | e &= 0x7ff; |
| 20 | if e == 0 { |
| 21 | ix = (x * x1p63).to_bits(); |
| 22 | e = (ix >> 52) as i32 & 0x7ff; |
| 23 | e = if e != 0 { e - 63 } else { 0x800 }; |
| 24 | } |
| 25 | ix &= (1 << 52) - 1; |
| 26 | ix |= 1 << 52; |
| 27 | ix <<= 1; |
| 28 | e -= 0x3ff + 52 + 1; |
| 29 | Num { m: ix, e, sign } |
| 30 | } |
| 31 | |
| 32 | #[inline ] |
| 33 | fn mul(x: u64, y: u64) -> (u64, u64) { |
| 34 | let t: u128 = (x as u128).wrapping_mul(y as u128); |
| 35 | ((t >> 64) as u64, t as u64) |
| 36 | } |
| 37 | |
| 38 | /// Floating multiply add (f64) |
| 39 | /// |
| 40 | /// Computes `(x*y)+z`, rounded as one ternary operation: |
| 41 | /// Computes the value (as if) to infinite precision and rounds once to the result format, |
| 42 | /// according to the rounding mode characterized by the value of FLT_ROUNDS. |
| 43 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 44 | pub fn fma(x: f64, y: f64, z: f64) -> f64 { |
| 45 | let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63 |
| 46 | let x0_ffffff8p_63 = f64::from_bits(0x3bfffffff0000000); // 0x0.ffffff8p-63 |
| 47 | |
| 48 | /* normalize so top 10bits and last bit are 0 */ |
| 49 | let nx = normalize(x); |
| 50 | let ny = normalize(y); |
| 51 | let nz = normalize(z); |
| 52 | |
| 53 | if nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN { |
| 54 | return x * y + z; |
| 55 | } |
| 56 | if nz.e >= ZEROINFNAN { |
| 57 | if nz.e > ZEROINFNAN { |
| 58 | /* z==0 */ |
| 59 | return x * y + z; |
| 60 | } |
| 61 | return z; |
| 62 | } |
| 63 | |
| 64 | /* mul: r = x*y */ |
| 65 | let zhi: u64; |
| 66 | let zlo: u64; |
| 67 | let (mut rhi, mut rlo) = mul(nx.m, ny.m); |
| 68 | /* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */ |
| 69 | |
| 70 | /* align exponents */ |
| 71 | let mut e: i32 = nx.e + ny.e; |
| 72 | let mut d: i32 = nz.e - e; |
| 73 | /* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */ |
| 74 | if d > 0 { |
| 75 | if d < 64 { |
| 76 | zlo = nz.m << d; |
| 77 | zhi = nz.m >> (64 - d); |
| 78 | } else { |
| 79 | zlo = 0; |
| 80 | zhi = nz.m; |
| 81 | e = nz.e - 64; |
| 82 | d -= 64; |
| 83 | if d == 0 { |
| 84 | } else if d < 64 { |
| 85 | rlo = rhi << (64 - d) | rlo >> d | ((rlo << (64 - d)) != 0) as u64; |
| 86 | rhi = rhi >> d; |
| 87 | } else { |
| 88 | rlo = 1; |
| 89 | rhi = 0; |
| 90 | } |
| 91 | } |
| 92 | } else { |
| 93 | zhi = 0; |
| 94 | d = -d; |
| 95 | if d == 0 { |
| 96 | zlo = nz.m; |
| 97 | } else if d < 64 { |
| 98 | zlo = nz.m >> d | ((nz.m << (64 - d)) != 0) as u64; |
| 99 | } else { |
| 100 | zlo = 1; |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | /* add */ |
| 105 | let mut sign: i32 = nx.sign ^ ny.sign; |
| 106 | let samesign: bool = (sign ^ nz.sign) == 0; |
| 107 | let mut nonzero: i32 = 1; |
| 108 | if samesign { |
| 109 | /* r += z */ |
| 110 | rlo = rlo.wrapping_add(zlo); |
| 111 | rhi += zhi + (rlo < zlo) as u64; |
| 112 | } else { |
| 113 | /* r -= z */ |
| 114 | let (res, borrow) = rlo.overflowing_sub(zlo); |
| 115 | rlo = res; |
| 116 | rhi = rhi.wrapping_sub(zhi.wrapping_add(borrow as u64)); |
| 117 | if (rhi >> 63) != 0 { |
| 118 | rlo = (rlo as i64).wrapping_neg() as u64; |
| 119 | rhi = (rhi as i64).wrapping_neg() as u64 - (rlo != 0) as u64; |
| 120 | sign = (sign == 0) as i32; |
| 121 | } |
| 122 | nonzero = (rhi != 0) as i32; |
| 123 | } |
| 124 | |
| 125 | /* set rhi to top 63bit of the result (last bit is sticky) */ |
| 126 | if nonzero != 0 { |
| 127 | e += 64; |
| 128 | d = rhi.leading_zeros() as i32 - 1; |
| 129 | /* note: d > 0 */ |
| 130 | rhi = rhi << d | rlo >> (64 - d) | ((rlo << d) != 0) as u64; |
| 131 | } else if rlo != 0 { |
| 132 | d = rlo.leading_zeros() as i32 - 1; |
| 133 | if d < 0 { |
| 134 | rhi = rlo >> 1 | (rlo & 1); |
| 135 | } else { |
| 136 | rhi = rlo << d; |
| 137 | } |
| 138 | } else { |
| 139 | /* exact +-0 */ |
| 140 | return x * y + z; |
| 141 | } |
| 142 | e -= d; |
| 143 | |
| 144 | /* convert to double */ |
| 145 | let mut i: i64 = rhi as i64; /* i is in [1<<62,(1<<63)-1] */ |
| 146 | if sign != 0 { |
| 147 | i = -i; |
| 148 | } |
| 149 | let mut r: f64 = i as f64; /* |r| is in [0x1p62,0x1p63] */ |
| 150 | |
| 151 | if e < -1022 - 62 { |
| 152 | /* result is subnormal before rounding */ |
| 153 | if e == -1022 - 63 { |
| 154 | let mut c: f64 = x1p63; |
| 155 | if sign != 0 { |
| 156 | c = -c; |
| 157 | } |
| 158 | if r == c { |
| 159 | /* min normal after rounding, underflow depends |
| 160 | on arch behaviour which can be imitated by |
| 161 | a double to float conversion */ |
| 162 | let fltmin: f32 = (x0_ffffff8p_63 * f32::MIN_POSITIVE as f64 * r) as f32; |
| 163 | return f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * fltmin as f64; |
| 164 | } |
| 165 | /* one bit is lost when scaled, add another top bit to |
| 166 | only round once at conversion if it is inexact */ |
| 167 | if (rhi << 53) != 0 { |
| 168 | i = (rhi >> 1 | (rhi & 1) | 1 << 62) as i64; |
| 169 | if sign != 0 { |
| 170 | i = -i; |
| 171 | } |
| 172 | r = i as f64; |
| 173 | r = 2. * r - c; /* remove top bit */ |
| 174 | |
| 175 | /* raise underflow portably, such that it |
| 176 | cannot be optimized away */ |
| 177 | { |
| 178 | let tiny: f64 = f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * r; |
| 179 | r += (tiny * tiny) * (r - r); |
| 180 | } |
| 181 | } |
| 182 | } else { |
| 183 | /* only round once when scaled */ |
| 184 | d = 10; |
| 185 | i = ((rhi >> d | ((rhi << (64 - d)) != 0) as u64) << d) as i64; |
| 186 | if sign != 0 { |
| 187 | i = -i; |
| 188 | } |
| 189 | r = i as f64; |
| 190 | } |
| 191 | } |
| 192 | scalbn(r, e) |
| 193 | } |
| 194 | |
| 195 | #[cfg (test)] |
| 196 | mod tests { |
| 197 | use super::*; |
| 198 | #[test ] |
| 199 | fn fma_segfault() { |
| 200 | // These two inputs cause fma to segfault on release due to overflow: |
| 201 | assert_eq!( |
| 202 | fma( |
| 203 | -0.0000000000000002220446049250313, |
| 204 | -0.0000000000000002220446049250313, |
| 205 | -0.0000000000000002220446049250313 |
| 206 | ), |
| 207 | -0.00000000000000022204460492503126, |
| 208 | ); |
| 209 | |
| 210 | let result = fma(-0.992, -0.992, -0.992); |
| 211 | //force rounding to storage format on x87 to prevent superious errors. |
| 212 | #[cfg (all(target_arch = "x86" , not(target_feature = "sse2" )))] |
| 213 | let result = force_eval!(result); |
| 214 | assert_eq!(result, -0.007936000000000007,); |
| 215 | } |
| 216 | |
| 217 | #[test ] |
| 218 | fn fma_sbb() { |
| 219 | assert_eq!(fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN), -3991680619069439e277); |
| 220 | } |
| 221 | |
| 222 | #[test ] |
| 223 | fn fma_underflow() { |
| 224 | assert_eq!(fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320), 0.0,); |
| 225 | } |
| 226 | } |
| 227 | |