1 | use crate::counters::Counter; |
2 | use crate::file_header::{write_file_header, FILE_MAGIC_EVENT_STREAM, FILE_MAGIC_TOP_LEVEL}; |
3 | use crate::raw_event::RawEvent; |
4 | use crate::serialization::{PageTag, SerializationSink, SerializationSinkBuilder}; |
5 | use crate::stringtable::{SerializableString, StringId, StringTableBuilder}; |
6 | use crate::{event_id::EventId, file_header::FILE_EXTENSION}; |
7 | use std::error::Error; |
8 | use std::fs; |
9 | use std::path::Path; |
10 | use std::sync::Arc; |
11 | |
12 | pub struct Profiler { |
13 | event_sink: Arc<SerializationSink>, |
14 | string_table: StringTableBuilder, |
15 | counter: Counter, |
16 | } |
17 | |
18 | impl Profiler { |
19 | pub fn new<P: AsRef<Path>>(path_stem: P) -> Result<Profiler, Box<dyn Error + Send + Sync>> { |
20 | Self::with_counter( |
21 | path_stem, |
22 | Counter::WallTime(crate::counters::WallTime::new()), |
23 | ) |
24 | } |
25 | |
26 | pub fn with_counter<P: AsRef<Path>>( |
27 | path_stem: P, |
28 | counter: Counter, |
29 | ) -> Result<Profiler, Box<dyn Error + Send + Sync>> { |
30 | let path = path_stem.as_ref().with_extension(FILE_EXTENSION); |
31 | |
32 | fs::create_dir_all(path.parent().unwrap())?; |
33 | let mut file = fs::File::create(path)?; |
34 | |
35 | // The first thing in the file must be the top-level file header. |
36 | write_file_header(&mut file, FILE_MAGIC_TOP_LEVEL)?; |
37 | |
38 | let sink_builder = SerializationSinkBuilder::new_from_file(file)?; |
39 | let event_sink = Arc::new(sink_builder.new_sink(PageTag::Events)); |
40 | |
41 | // The first thing in every stream we generate must be the stream header. |
42 | write_file_header(&mut event_sink.as_std_write(), FILE_MAGIC_EVENT_STREAM)?; |
43 | |
44 | let string_table = StringTableBuilder::new( |
45 | Arc::new(sink_builder.new_sink(PageTag::StringData)), |
46 | Arc::new(sink_builder.new_sink(PageTag::StringIndex)), |
47 | )?; |
48 | |
49 | let profiler = Profiler { |
50 | event_sink, |
51 | string_table, |
52 | counter, |
53 | }; |
54 | |
55 | let mut args = String::new(); |
56 | for arg in std::env::args() { |
57 | args.push_str(&arg.escape_default().to_string()); |
58 | args.push(' ' ); |
59 | } |
60 | |
61 | profiler.string_table.alloc_metadata(&*format!( |
62 | r#" {{ "start_time": {}, "process_id": {}, "cmd": " {}", "counter": {} }}"# , |
63 | std::time::SystemTime::now() |
64 | .duration_since(std::time::UNIX_EPOCH) |
65 | .unwrap() |
66 | .as_nanos(), |
67 | std::process::id(), |
68 | args, |
69 | profiler.counter.describe_as_json(), |
70 | )); |
71 | |
72 | Ok(profiler) |
73 | } |
74 | |
75 | #[inline (always)] |
76 | pub fn map_virtual_to_concrete_string(&self, virtual_id: StringId, concrete_id: StringId) { |
77 | self.string_table |
78 | .map_virtual_to_concrete_string(virtual_id, concrete_id); |
79 | } |
80 | |
81 | #[inline (always)] |
82 | pub fn bulk_map_virtual_to_single_concrete_string<I>( |
83 | &self, |
84 | virtual_ids: I, |
85 | concrete_id: StringId, |
86 | ) where |
87 | I: Iterator<Item = StringId> + ExactSizeIterator, |
88 | { |
89 | self.string_table |
90 | .bulk_map_virtual_to_single_concrete_string(virtual_ids, concrete_id); |
91 | } |
92 | |
93 | #[inline (always)] |
94 | pub fn alloc_string<STR: SerializableString + ?Sized>(&self, s: &STR) -> StringId { |
95 | self.string_table.alloc(s) |
96 | } |
97 | |
98 | /// Records an event with the given parameters. The event time is computed |
99 | /// automatically. |
100 | pub fn record_instant_event(&self, event_kind: StringId, event_id: EventId, thread_id: u32) { |
101 | let raw_event = |
102 | RawEvent::new_instant(event_kind, event_id, thread_id, self.counter.since_start()); |
103 | |
104 | self.record_raw_event(&raw_event); |
105 | } |
106 | |
107 | /// Records an event with the given parameters. The event time is computed |
108 | /// automatically. |
109 | pub fn record_integer_event( |
110 | &self, |
111 | event_kind: StringId, |
112 | event_id: EventId, |
113 | thread_id: u32, |
114 | value: u64, |
115 | ) { |
116 | let raw_event = RawEvent::new_integer(event_kind, event_id, thread_id, value); |
117 | self.record_raw_event(&raw_event); |
118 | } |
119 | |
120 | /// Creates a "start" event and returns a `TimingGuard` that will create |
121 | /// the corresponding "end" event when it is dropped. |
122 | #[inline ] |
123 | pub fn start_recording_interval_event<'a>( |
124 | &'a self, |
125 | event_kind: StringId, |
126 | event_id: EventId, |
127 | thread_id: u32, |
128 | ) -> TimingGuard<'a> { |
129 | TimingGuard { |
130 | profiler: self, |
131 | event_id, |
132 | event_kind, |
133 | thread_id, |
134 | start_count: self.counter.since_start(), |
135 | } |
136 | } |
137 | |
138 | /// Creates a "start" event and returns a `DetachedTiming`. |
139 | /// To create the corresponding "event" event, you must call |
140 | /// `finish_recording_internal_event` with the returned |
141 | /// `DetachedTiming`. |
142 | /// Since `DetachedTiming` does not capture the lifetime of `&self`, |
143 | /// this method can sometimes be more convenient than |
144 | /// `start_recording_interval_event` - e.g. it can be stored |
145 | /// in a struct without the need to add a lifetime parameter. |
146 | #[inline ] |
147 | pub fn start_recording_interval_event_detached( |
148 | &self, |
149 | event_kind: StringId, |
150 | event_id: EventId, |
151 | thread_id: u32, |
152 | ) -> DetachedTiming { |
153 | DetachedTiming { |
154 | event_id, |
155 | event_kind, |
156 | thread_id, |
157 | start_count: self.counter.since_start(), |
158 | } |
159 | } |
160 | |
161 | /// Creates the corresponding "end" event for |
162 | /// the "start" event represented by `timing`. You |
163 | /// must have obtained `timing` from the same `Profiler` |
164 | pub fn finish_recording_interval_event(&self, timing: DetachedTiming) { |
165 | drop(TimingGuard { |
166 | profiler: self, |
167 | event_id: timing.event_id, |
168 | event_kind: timing.event_kind, |
169 | thread_id: timing.thread_id, |
170 | start_count: timing.start_count, |
171 | }); |
172 | } |
173 | |
174 | fn record_raw_event(&self, raw_event: &RawEvent) { |
175 | self.event_sink |
176 | .write_atomic(std::mem::size_of::<RawEvent>(), |bytes| { |
177 | raw_event.serialize(bytes); |
178 | }); |
179 | } |
180 | } |
181 | |
182 | /// Created by `Profiler::start_recording_interval_event_detached`. |
183 | /// Must be passed to `finish_recording_interval_event` to record an |
184 | /// "end" event. |
185 | #[must_use ] |
186 | pub struct DetachedTiming { |
187 | event_id: EventId, |
188 | event_kind: StringId, |
189 | thread_id: u32, |
190 | start_count: u64, |
191 | } |
192 | |
193 | /// When dropped, this `TimingGuard` will record an "end" event in the |
194 | /// `Profiler` it was created by. |
195 | #[must_use ] |
196 | pub struct TimingGuard<'a> { |
197 | profiler: &'a Profiler, |
198 | event_id: EventId, |
199 | event_kind: StringId, |
200 | thread_id: u32, |
201 | start_count: u64, |
202 | } |
203 | |
204 | impl<'a> Drop for TimingGuard<'a> { |
205 | #[inline ] |
206 | fn drop(&mut self) { |
207 | let raw_event: RawEvent = RawEvent::new_interval( |
208 | self.event_kind, |
209 | self.event_id, |
210 | self.thread_id, |
211 | self.start_count, |
212 | self.profiler.counter.since_start(), |
213 | ); |
214 | |
215 | self.profiler.record_raw_event(&raw_event); |
216 | } |
217 | } |
218 | |
219 | impl<'a> TimingGuard<'a> { |
220 | /// This method set a new `event_id` right before actually recording the |
221 | /// event. |
222 | #[inline ] |
223 | pub fn finish_with_override_event_id(mut self, event_id: EventId) { |
224 | self.event_id = event_id; |
225 | // Let's be explicit about it: Dropping the guard will record the event. |
226 | drop(self) |
227 | } |
228 | } |
229 | |
230 | // Make sure that `Profiler` can be used in a multithreaded context |
231 | fn _assert_bounds() { |
232 | assert_bounds_inner(&Profiler::new(path_stem:"" )); |
233 | fn assert_bounds_inner<S: Sized + Send + Sync + 'static>(_: &S) {} |
234 | } |
235 | |