| 1 | /*! |
| 2 | Generic crate-internal routines for the `memchr` family of functions. |
| 3 | */ |
| 4 | |
| 5 | // What follows is a vector algorithm generic over the specific vector |
| 6 | // type to detect the position of one, two or three needles in a haystack. |
| 7 | // From what I know, this is a "classic" algorithm, although I don't |
| 8 | // believe it has been published in any peer reviewed journal. I believe |
| 9 | // it can be found in places like glibc and Go's standard library. It |
| 10 | // appears to be well known and is elaborated on in more detail here: |
| 11 | // https://gms.tf/stdfind-and-memchr-optimizations.html |
| 12 | // |
| 13 | // While the routine below is fairly long and perhaps intimidating, the basic |
| 14 | // idea is actually very simple and can be expressed straight-forwardly in |
| 15 | // pseudo code. The psuedo code below is written for 128 bit vectors, but the |
| 16 | // actual code below works for anything that implements the Vector trait. |
| 17 | // |
| 18 | // needle = (n1 << 15) | (n1 << 14) | ... | (n1 << 1) | n1 |
| 19 | // // Note: shift amount is in bytes |
| 20 | // |
| 21 | // while i <= haystack.len() - 16: |
| 22 | // // A 16 byte vector. Each byte in chunk corresponds to a byte in |
| 23 | // // the haystack. |
| 24 | // chunk = haystack[i:i+16] |
| 25 | // // Compare bytes in needle with bytes in chunk. The result is a 16 |
| 26 | // // byte chunk where each byte is 0xFF if the corresponding bytes |
| 27 | // // in needle and chunk were equal, or 0x00 otherwise. |
| 28 | // eqs = cmpeq(needle, chunk) |
| 29 | // // Return a 32 bit integer where the most significant 16 bits |
| 30 | // // are always 0 and the lower 16 bits correspond to whether the |
| 31 | // // most significant bit in the correspond byte in `eqs` is set. |
| 32 | // // In other words, `mask as u16` has bit i set if and only if |
| 33 | // // needle[i] == chunk[i]. |
| 34 | // mask = movemask(eqs) |
| 35 | // |
| 36 | // // Mask is 0 if there is no match, and non-zero otherwise. |
| 37 | // if mask != 0: |
| 38 | // // trailing_zeros tells us the position of the least significant |
| 39 | // // bit that is set. |
| 40 | // return i + trailing_zeros(mask) |
| 41 | // |
| 42 | // // haystack length may not be a multiple of 16, so search the rest. |
| 43 | // while i < haystack.len(): |
| 44 | // if haystack[i] == n1: |
| 45 | // return i |
| 46 | // |
| 47 | // // No match found. |
| 48 | // return NULL |
| 49 | // |
| 50 | // In fact, we could loosely translate the above code to Rust line-for-line |
| 51 | // and it would be a pretty fast algorithm. But, we pull out all the stops |
| 52 | // to go as fast as possible: |
| 53 | // |
| 54 | // 1. We use aligned loads. That is, we do some finagling to make sure our |
| 55 | // primary loop not only proceeds in increments of 16 bytes, but that |
| 56 | // the address of haystack's pointer that we dereference is aligned to |
| 57 | // 16 bytes. 16 is a magic number here because it is the size of SSE2 |
| 58 | // 128-bit vector. (For the AVX2 algorithm, 32 is the magic number.) |
| 59 | // Therefore, to get aligned loads, our pointer's address must be evenly |
| 60 | // divisible by 16. |
| 61 | // 2. Our primary loop proceeds 64 bytes at a time instead of 16. It's |
| 62 | // kind of like loop unrolling, but we combine the equality comparisons |
| 63 | // using a vector OR such that we only need to extract a single mask to |
| 64 | // determine whether a match exists or not. If so, then we do some |
| 65 | // book-keeping to determine the precise location but otherwise mush on. |
| 66 | // 3. We use our "chunk" comparison routine in as many places as possible, |
| 67 | // even if it means using unaligned loads. In particular, if haystack |
| 68 | // starts with an unaligned address, then we do an unaligned load to |
| 69 | // search the first 16 bytes. We then start our primary loop at the |
| 70 | // smallest subsequent aligned address, which will actually overlap with |
| 71 | // previously searched bytes. But we're OK with that. We do a similar |
| 72 | // dance at the end of our primary loop. Finally, to avoid a |
| 73 | // byte-at-a-time loop at the end, we do a final 16 byte unaligned load |
| 74 | // that may overlap with a previous load. This is OK because it converts |
| 75 | // a loop into a small number of very fast vector instructions. The overlap |
| 76 | // is OK because we know the place where the overlap occurs does not |
| 77 | // contain a match. |
| 78 | // |
| 79 | // And that's pretty all there is to it. Note that since the below is |
| 80 | // generic and since it's meant to be inlined into routines with a |
| 81 | // `#[target_feature(enable = "...")]` annotation, we must mark all routines as |
| 82 | // both unsafe and `#[inline(always)]`. |
| 83 | // |
| 84 | // The fact that the code below is generic does somewhat inhibit us. For |
| 85 | // example, I've noticed that introducing an unlineable `#[cold]` function to |
| 86 | // handle the match case in the loop generates tighter assembly, but there is |
| 87 | // no way to do this in the generic code below because the generic code doesn't |
| 88 | // know what `target_feature` annotation to apply to the unlineable function. |
| 89 | // We could make such functions part of the `Vector` trait, but we instead live |
| 90 | // with the slightly sub-optimal codegen for now since it doesn't seem to have |
| 91 | // a noticeable perf difference. |
| 92 | |
| 93 | use crate::{ |
| 94 | ext::Pointer, |
| 95 | vector::{MoveMask, Vector}, |
| 96 | }; |
| 97 | |
| 98 | /// Finds all occurrences of a single byte in a haystack. |
| 99 | #[derive (Clone, Copy, Debug)] |
| 100 | pub(crate) struct One<V> { |
| 101 | s1: u8, |
| 102 | v1: V, |
| 103 | } |
| 104 | |
| 105 | impl<V: Vector> One<V> { |
| 106 | /// The number of bytes we examine per each iteration of our search loop. |
| 107 | const LOOP_SIZE: usize = 4 * V::BYTES; |
| 108 | |
| 109 | /// Create a new searcher that finds occurrences of the byte given. |
| 110 | #[inline (always)] |
| 111 | pub(crate) unsafe fn new(needle: u8) -> One<V> { |
| 112 | One { s1: needle, v1: V::splat(needle) } |
| 113 | } |
| 114 | |
| 115 | /// Returns the needle given to `One::new`. |
| 116 | #[inline (always)] |
| 117 | pub(crate) fn needle1(&self) -> u8 { |
| 118 | self.s1 |
| 119 | } |
| 120 | |
| 121 | /// Return a pointer to the first occurrence of the needle in the given |
| 122 | /// haystack. If no such occurrence exists, then `None` is returned. |
| 123 | /// |
| 124 | /// When a match is found, the pointer returned is guaranteed to be |
| 125 | /// `>= start` and `< end`. |
| 126 | /// |
| 127 | /// # Safety |
| 128 | /// |
| 129 | /// * It must be the case that `start < end` and that the distance between |
| 130 | /// them is at least equal to `V::BYTES`. That is, it must always be valid |
| 131 | /// to do at least an unaligned load of `V` at `start`. |
| 132 | /// * Both `start` and `end` must be valid for reads. |
| 133 | /// * Both `start` and `end` must point to an initialized value. |
| 134 | /// * Both `start` and `end` must point to the same allocated object and |
| 135 | /// must either be in bounds or at most one byte past the end of the |
| 136 | /// allocated object. |
| 137 | /// * Both `start` and `end` must be _derived from_ a pointer to the same |
| 138 | /// object. |
| 139 | /// * The distance between `start` and `end` must not overflow `isize`. |
| 140 | /// * The distance being in bounds must not rely on "wrapping around" the |
| 141 | /// address space. |
| 142 | #[inline (always)] |
| 143 | pub(crate) unsafe fn find_raw( |
| 144 | &self, |
| 145 | start: *const u8, |
| 146 | end: *const u8, |
| 147 | ) -> Option<*const u8> { |
| 148 | // If we want to support vectors bigger than 256 bits, we probably |
| 149 | // need to move up to using a u64 for the masks used below. Currently |
| 150 | // they are 32 bits, which means we're SOL for vectors that need masks |
| 151 | // bigger than 32 bits. Overall unclear until there's a use case. |
| 152 | debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes" ); |
| 153 | |
| 154 | let topos = V::Mask::first_offset; |
| 155 | let len = end.distance(start); |
| 156 | debug_assert!( |
| 157 | len >= V::BYTES, |
| 158 | "haystack has length {}, but must be at least {}" , |
| 159 | len, |
| 160 | V::BYTES |
| 161 | ); |
| 162 | |
| 163 | // Search a possibly unaligned chunk at `start`. This covers any part |
| 164 | // of the haystack prior to where aligned loads can start. |
| 165 | if let Some(cur) = self.search_chunk(start, topos) { |
| 166 | return Some(cur); |
| 167 | } |
| 168 | // Set `cur` to the first V-aligned pointer greater than `start`. |
| 169 | let mut cur = start.add(V::BYTES - (start.as_usize() & V::ALIGN)); |
| 170 | debug_assert!(cur > start && end.sub(V::BYTES) >= start); |
| 171 | if len >= Self::LOOP_SIZE { |
| 172 | while cur <= end.sub(Self::LOOP_SIZE) { |
| 173 | debug_assert_eq!(0, cur.as_usize() % V::BYTES); |
| 174 | |
| 175 | let a = V::load_aligned(cur); |
| 176 | let b = V::load_aligned(cur.add(1 * V::BYTES)); |
| 177 | let c = V::load_aligned(cur.add(2 * V::BYTES)); |
| 178 | let d = V::load_aligned(cur.add(3 * V::BYTES)); |
| 179 | let eqa = self.v1.cmpeq(a); |
| 180 | let eqb = self.v1.cmpeq(b); |
| 181 | let eqc = self.v1.cmpeq(c); |
| 182 | let eqd = self.v1.cmpeq(d); |
| 183 | let or1 = eqa.or(eqb); |
| 184 | let or2 = eqc.or(eqd); |
| 185 | let or3 = or1.or(or2); |
| 186 | if or3.movemask_will_have_non_zero() { |
| 187 | let mask = eqa.movemask(); |
| 188 | if mask.has_non_zero() { |
| 189 | return Some(cur.add(topos(mask))); |
| 190 | } |
| 191 | |
| 192 | let mask = eqb.movemask(); |
| 193 | if mask.has_non_zero() { |
| 194 | return Some(cur.add(1 * V::BYTES).add(topos(mask))); |
| 195 | } |
| 196 | |
| 197 | let mask = eqc.movemask(); |
| 198 | if mask.has_non_zero() { |
| 199 | return Some(cur.add(2 * V::BYTES).add(topos(mask))); |
| 200 | } |
| 201 | |
| 202 | let mask = eqd.movemask(); |
| 203 | debug_assert!(mask.has_non_zero()); |
| 204 | return Some(cur.add(3 * V::BYTES).add(topos(mask))); |
| 205 | } |
| 206 | cur = cur.add(Self::LOOP_SIZE); |
| 207 | } |
| 208 | } |
| 209 | // Handle any leftovers after the aligned loop above. We use unaligned |
| 210 | // loads here, but I believe we are guaranteed that they are aligned |
| 211 | // since `cur` is aligned. |
| 212 | while cur <= end.sub(V::BYTES) { |
| 213 | debug_assert!(end.distance(cur) >= V::BYTES); |
| 214 | if let Some(cur) = self.search_chunk(cur, topos) { |
| 215 | return Some(cur); |
| 216 | } |
| 217 | cur = cur.add(V::BYTES); |
| 218 | } |
| 219 | // Finally handle any remaining bytes less than the size of V. In this |
| 220 | // case, our pointer may indeed be unaligned and the load may overlap |
| 221 | // with the previous one. But that's okay since we know the previous |
| 222 | // load didn't lead to a match (otherwise we wouldn't be here). |
| 223 | if cur < end { |
| 224 | debug_assert!(end.distance(cur) < V::BYTES); |
| 225 | cur = cur.sub(V::BYTES - end.distance(cur)); |
| 226 | debug_assert_eq!(end.distance(cur), V::BYTES); |
| 227 | return self.search_chunk(cur, topos); |
| 228 | } |
| 229 | None |
| 230 | } |
| 231 | |
| 232 | /// Return a pointer to the last occurrence of the needle in the given |
| 233 | /// haystack. If no such occurrence exists, then `None` is returned. |
| 234 | /// |
| 235 | /// When a match is found, the pointer returned is guaranteed to be |
| 236 | /// `>= start` and `< end`. |
| 237 | /// |
| 238 | /// # Safety |
| 239 | /// |
| 240 | /// * It must be the case that `start < end` and that the distance between |
| 241 | /// them is at least equal to `V::BYTES`. That is, it must always be valid |
| 242 | /// to do at least an unaligned load of `V` at `start`. |
| 243 | /// * Both `start` and `end` must be valid for reads. |
| 244 | /// * Both `start` and `end` must point to an initialized value. |
| 245 | /// * Both `start` and `end` must point to the same allocated object and |
| 246 | /// must either be in bounds or at most one byte past the end of the |
| 247 | /// allocated object. |
| 248 | /// * Both `start` and `end` must be _derived from_ a pointer to the same |
| 249 | /// object. |
| 250 | /// * The distance between `start` and `end` must not overflow `isize`. |
| 251 | /// * The distance being in bounds must not rely on "wrapping around" the |
| 252 | /// address space. |
| 253 | #[inline (always)] |
| 254 | pub(crate) unsafe fn rfind_raw( |
| 255 | &self, |
| 256 | start: *const u8, |
| 257 | end: *const u8, |
| 258 | ) -> Option<*const u8> { |
| 259 | // If we want to support vectors bigger than 256 bits, we probably |
| 260 | // need to move up to using a u64 for the masks used below. Currently |
| 261 | // they are 32 bits, which means we're SOL for vectors that need masks |
| 262 | // bigger than 32 bits. Overall unclear until there's a use case. |
| 263 | debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes" ); |
| 264 | |
| 265 | let topos = V::Mask::last_offset; |
| 266 | let len = end.distance(start); |
| 267 | debug_assert!( |
| 268 | len >= V::BYTES, |
| 269 | "haystack has length {}, but must be at least {}" , |
| 270 | len, |
| 271 | V::BYTES |
| 272 | ); |
| 273 | |
| 274 | if let Some(cur) = self.search_chunk(end.sub(V::BYTES), topos) { |
| 275 | return Some(cur); |
| 276 | } |
| 277 | let mut cur = end.sub(end.as_usize() & V::ALIGN); |
| 278 | debug_assert!(start <= cur && cur <= end); |
| 279 | if len >= Self::LOOP_SIZE { |
| 280 | while cur >= start.add(Self::LOOP_SIZE) { |
| 281 | debug_assert_eq!(0, cur.as_usize() % V::BYTES); |
| 282 | |
| 283 | cur = cur.sub(Self::LOOP_SIZE); |
| 284 | let a = V::load_aligned(cur); |
| 285 | let b = V::load_aligned(cur.add(1 * V::BYTES)); |
| 286 | let c = V::load_aligned(cur.add(2 * V::BYTES)); |
| 287 | let d = V::load_aligned(cur.add(3 * V::BYTES)); |
| 288 | let eqa = self.v1.cmpeq(a); |
| 289 | let eqb = self.v1.cmpeq(b); |
| 290 | let eqc = self.v1.cmpeq(c); |
| 291 | let eqd = self.v1.cmpeq(d); |
| 292 | let or1 = eqa.or(eqb); |
| 293 | let or2 = eqc.or(eqd); |
| 294 | let or3 = or1.or(or2); |
| 295 | if or3.movemask_will_have_non_zero() { |
| 296 | let mask = eqd.movemask(); |
| 297 | if mask.has_non_zero() { |
| 298 | return Some(cur.add(3 * V::BYTES).add(topos(mask))); |
| 299 | } |
| 300 | |
| 301 | let mask = eqc.movemask(); |
| 302 | if mask.has_non_zero() { |
| 303 | return Some(cur.add(2 * V::BYTES).add(topos(mask))); |
| 304 | } |
| 305 | |
| 306 | let mask = eqb.movemask(); |
| 307 | if mask.has_non_zero() { |
| 308 | return Some(cur.add(1 * V::BYTES).add(topos(mask))); |
| 309 | } |
| 310 | |
| 311 | let mask = eqa.movemask(); |
| 312 | debug_assert!(mask.has_non_zero()); |
| 313 | return Some(cur.add(topos(mask))); |
| 314 | } |
| 315 | } |
| 316 | } |
| 317 | while cur >= start.add(V::BYTES) { |
| 318 | debug_assert!(cur.distance(start) >= V::BYTES); |
| 319 | cur = cur.sub(V::BYTES); |
| 320 | if let Some(cur) = self.search_chunk(cur, topos) { |
| 321 | return Some(cur); |
| 322 | } |
| 323 | } |
| 324 | if cur > start { |
| 325 | debug_assert!(cur.distance(start) < V::BYTES); |
| 326 | return self.search_chunk(start, topos); |
| 327 | } |
| 328 | None |
| 329 | } |
| 330 | |
| 331 | /// Return a count of all matching bytes in the given haystack. |
| 332 | /// |
| 333 | /// # Safety |
| 334 | /// |
| 335 | /// * It must be the case that `start < end` and that the distance between |
| 336 | /// them is at least equal to `V::BYTES`. That is, it must always be valid |
| 337 | /// to do at least an unaligned load of `V` at `start`. |
| 338 | /// * Both `start` and `end` must be valid for reads. |
| 339 | /// * Both `start` and `end` must point to an initialized value. |
| 340 | /// * Both `start` and `end` must point to the same allocated object and |
| 341 | /// must either be in bounds or at most one byte past the end of the |
| 342 | /// allocated object. |
| 343 | /// * Both `start` and `end` must be _derived from_ a pointer to the same |
| 344 | /// object. |
| 345 | /// * The distance between `start` and `end` must not overflow `isize`. |
| 346 | /// * The distance being in bounds must not rely on "wrapping around" the |
| 347 | /// address space. |
| 348 | #[inline (always)] |
| 349 | pub(crate) unsafe fn count_raw( |
| 350 | &self, |
| 351 | start: *const u8, |
| 352 | end: *const u8, |
| 353 | ) -> usize { |
| 354 | debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes" ); |
| 355 | |
| 356 | let confirm = |b| b == self.needle1(); |
| 357 | let len = end.distance(start); |
| 358 | debug_assert!( |
| 359 | len >= V::BYTES, |
| 360 | "haystack has length {}, but must be at least {}" , |
| 361 | len, |
| 362 | V::BYTES |
| 363 | ); |
| 364 | |
| 365 | // Set `cur` to the first V-aligned pointer greater than `start`. |
| 366 | let mut cur = start.add(V::BYTES - (start.as_usize() & V::ALIGN)); |
| 367 | // Count any matching bytes before we start our aligned loop. |
| 368 | let mut count = count_byte_by_byte(start, cur, confirm); |
| 369 | debug_assert!(cur > start && end.sub(V::BYTES) >= start); |
| 370 | if len >= Self::LOOP_SIZE { |
| 371 | while cur <= end.sub(Self::LOOP_SIZE) { |
| 372 | debug_assert_eq!(0, cur.as_usize() % V::BYTES); |
| 373 | |
| 374 | let a = V::load_aligned(cur); |
| 375 | let b = V::load_aligned(cur.add(1 * V::BYTES)); |
| 376 | let c = V::load_aligned(cur.add(2 * V::BYTES)); |
| 377 | let d = V::load_aligned(cur.add(3 * V::BYTES)); |
| 378 | let eqa = self.v1.cmpeq(a); |
| 379 | let eqb = self.v1.cmpeq(b); |
| 380 | let eqc = self.v1.cmpeq(c); |
| 381 | let eqd = self.v1.cmpeq(d); |
| 382 | count += eqa.movemask().count_ones(); |
| 383 | count += eqb.movemask().count_ones(); |
| 384 | count += eqc.movemask().count_ones(); |
| 385 | count += eqd.movemask().count_ones(); |
| 386 | cur = cur.add(Self::LOOP_SIZE); |
| 387 | } |
| 388 | } |
| 389 | // Handle any leftovers after the aligned loop above. We use unaligned |
| 390 | // loads here, but I believe we are guaranteed that they are aligned |
| 391 | // since `cur` is aligned. |
| 392 | while cur <= end.sub(V::BYTES) { |
| 393 | debug_assert!(end.distance(cur) >= V::BYTES); |
| 394 | let chunk = V::load_unaligned(cur); |
| 395 | count += self.v1.cmpeq(chunk).movemask().count_ones(); |
| 396 | cur = cur.add(V::BYTES); |
| 397 | } |
| 398 | // And finally count any leftovers that weren't caught above. |
| 399 | count += count_byte_by_byte(cur, end, confirm); |
| 400 | count |
| 401 | } |
| 402 | |
| 403 | /// Search `V::BYTES` starting at `cur` via an unaligned load. |
| 404 | /// |
| 405 | /// `mask_to_offset` should be a function that converts a `movemask` to |
| 406 | /// an offset such that `cur.add(offset)` corresponds to a pointer to the |
| 407 | /// match location if one is found. Generally it is expected to use either |
| 408 | /// `mask_to_first_offset` or `mask_to_last_offset`, depending on whether |
| 409 | /// one is implementing a forward or reverse search, respectively. |
| 410 | /// |
| 411 | /// # Safety |
| 412 | /// |
| 413 | /// `cur` must be a valid pointer and it must be valid to do an unaligned |
| 414 | /// load of size `V::BYTES` at `cur`. |
| 415 | #[inline (always)] |
| 416 | unsafe fn search_chunk( |
| 417 | &self, |
| 418 | cur: *const u8, |
| 419 | mask_to_offset: impl Fn(V::Mask) -> usize, |
| 420 | ) -> Option<*const u8> { |
| 421 | let chunk = V::load_unaligned(cur); |
| 422 | let mask = self.v1.cmpeq(chunk).movemask(); |
| 423 | if mask.has_non_zero() { |
| 424 | Some(cur.add(mask_to_offset(mask))) |
| 425 | } else { |
| 426 | None |
| 427 | } |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | /// Finds all occurrences of two bytes in a haystack. |
| 432 | /// |
| 433 | /// That is, this reports matches of one of two possible bytes. For example, |
| 434 | /// searching for `a` or `b` in `afoobar` would report matches at offsets `0`, |
| 435 | /// `4` and `5`. |
| 436 | #[derive (Clone, Copy, Debug)] |
| 437 | pub(crate) struct Two<V> { |
| 438 | s1: u8, |
| 439 | s2: u8, |
| 440 | v1: V, |
| 441 | v2: V, |
| 442 | } |
| 443 | |
| 444 | impl<V: Vector> Two<V> { |
| 445 | /// The number of bytes we examine per each iteration of our search loop. |
| 446 | const LOOP_SIZE: usize = 2 * V::BYTES; |
| 447 | |
| 448 | /// Create a new searcher that finds occurrences of the byte given. |
| 449 | #[inline (always)] |
| 450 | pub(crate) unsafe fn new(needle1: u8, needle2: u8) -> Two<V> { |
| 451 | Two { |
| 452 | s1: needle1, |
| 453 | s2: needle2, |
| 454 | v1: V::splat(needle1), |
| 455 | v2: V::splat(needle2), |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | /// Returns the first needle given to `Two::new`. |
| 460 | #[inline (always)] |
| 461 | pub(crate) fn needle1(&self) -> u8 { |
| 462 | self.s1 |
| 463 | } |
| 464 | |
| 465 | /// Returns the second needle given to `Two::new`. |
| 466 | #[inline (always)] |
| 467 | pub(crate) fn needle2(&self) -> u8 { |
| 468 | self.s2 |
| 469 | } |
| 470 | |
| 471 | /// Return a pointer to the first occurrence of one of the needles in the |
| 472 | /// given haystack. If no such occurrence exists, then `None` is returned. |
| 473 | /// |
| 474 | /// When a match is found, the pointer returned is guaranteed to be |
| 475 | /// `>= start` and `< end`. |
| 476 | /// |
| 477 | /// # Safety |
| 478 | /// |
| 479 | /// * It must be the case that `start < end` and that the distance between |
| 480 | /// them is at least equal to `V::BYTES`. That is, it must always be valid |
| 481 | /// to do at least an unaligned load of `V` at `start`. |
| 482 | /// * Both `start` and `end` must be valid for reads. |
| 483 | /// * Both `start` and `end` must point to an initialized value. |
| 484 | /// * Both `start` and `end` must point to the same allocated object and |
| 485 | /// must either be in bounds or at most one byte past the end of the |
| 486 | /// allocated object. |
| 487 | /// * Both `start` and `end` must be _derived from_ a pointer to the same |
| 488 | /// object. |
| 489 | /// * The distance between `start` and `end` must not overflow `isize`. |
| 490 | /// * The distance being in bounds must not rely on "wrapping around" the |
| 491 | /// address space. |
| 492 | #[inline (always)] |
| 493 | pub(crate) unsafe fn find_raw( |
| 494 | &self, |
| 495 | start: *const u8, |
| 496 | end: *const u8, |
| 497 | ) -> Option<*const u8> { |
| 498 | // If we want to support vectors bigger than 256 bits, we probably |
| 499 | // need to move up to using a u64 for the masks used below. Currently |
| 500 | // they are 32 bits, which means we're SOL for vectors that need masks |
| 501 | // bigger than 32 bits. Overall unclear until there's a use case. |
| 502 | debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes" ); |
| 503 | |
| 504 | let topos = V::Mask::first_offset; |
| 505 | let len = end.distance(start); |
| 506 | debug_assert!( |
| 507 | len >= V::BYTES, |
| 508 | "haystack has length {}, but must be at least {}" , |
| 509 | len, |
| 510 | V::BYTES |
| 511 | ); |
| 512 | |
| 513 | // Search a possibly unaligned chunk at `start`. This covers any part |
| 514 | // of the haystack prior to where aligned loads can start. |
| 515 | if let Some(cur) = self.search_chunk(start, topos) { |
| 516 | return Some(cur); |
| 517 | } |
| 518 | // Set `cur` to the first V-aligned pointer greater than `start`. |
| 519 | let mut cur = start.add(V::BYTES - (start.as_usize() & V::ALIGN)); |
| 520 | debug_assert!(cur > start && end.sub(V::BYTES) >= start); |
| 521 | if len >= Self::LOOP_SIZE { |
| 522 | while cur <= end.sub(Self::LOOP_SIZE) { |
| 523 | debug_assert_eq!(0, cur.as_usize() % V::BYTES); |
| 524 | |
| 525 | let a = V::load_aligned(cur); |
| 526 | let b = V::load_aligned(cur.add(V::BYTES)); |
| 527 | let eqa1 = self.v1.cmpeq(a); |
| 528 | let eqb1 = self.v1.cmpeq(b); |
| 529 | let eqa2 = self.v2.cmpeq(a); |
| 530 | let eqb2 = self.v2.cmpeq(b); |
| 531 | let or1 = eqa1.or(eqb1); |
| 532 | let or2 = eqa2.or(eqb2); |
| 533 | let or3 = or1.or(or2); |
| 534 | if or3.movemask_will_have_non_zero() { |
| 535 | let mask = eqa1.movemask().or(eqa2.movemask()); |
| 536 | if mask.has_non_zero() { |
| 537 | return Some(cur.add(topos(mask))); |
| 538 | } |
| 539 | |
| 540 | let mask = eqb1.movemask().or(eqb2.movemask()); |
| 541 | debug_assert!(mask.has_non_zero()); |
| 542 | return Some(cur.add(V::BYTES).add(topos(mask))); |
| 543 | } |
| 544 | cur = cur.add(Self::LOOP_SIZE); |
| 545 | } |
| 546 | } |
| 547 | // Handle any leftovers after the aligned loop above. We use unaligned |
| 548 | // loads here, but I believe we are guaranteed that they are aligned |
| 549 | // since `cur` is aligned. |
| 550 | while cur <= end.sub(V::BYTES) { |
| 551 | debug_assert!(end.distance(cur) >= V::BYTES); |
| 552 | if let Some(cur) = self.search_chunk(cur, topos) { |
| 553 | return Some(cur); |
| 554 | } |
| 555 | cur = cur.add(V::BYTES); |
| 556 | } |
| 557 | // Finally handle any remaining bytes less than the size of V. In this |
| 558 | // case, our pointer may indeed be unaligned and the load may overlap |
| 559 | // with the previous one. But that's okay since we know the previous |
| 560 | // load didn't lead to a match (otherwise we wouldn't be here). |
| 561 | if cur < end { |
| 562 | debug_assert!(end.distance(cur) < V::BYTES); |
| 563 | cur = cur.sub(V::BYTES - end.distance(cur)); |
| 564 | debug_assert_eq!(end.distance(cur), V::BYTES); |
| 565 | return self.search_chunk(cur, topos); |
| 566 | } |
| 567 | None |
| 568 | } |
| 569 | |
| 570 | /// Return a pointer to the last occurrence of the needle in the given |
| 571 | /// haystack. If no such occurrence exists, then `None` is returned. |
| 572 | /// |
| 573 | /// When a match is found, the pointer returned is guaranteed to be |
| 574 | /// `>= start` and `< end`. |
| 575 | /// |
| 576 | /// # Safety |
| 577 | /// |
| 578 | /// * It must be the case that `start < end` and that the distance between |
| 579 | /// them is at least equal to `V::BYTES`. That is, it must always be valid |
| 580 | /// to do at least an unaligned load of `V` at `start`. |
| 581 | /// * Both `start` and `end` must be valid for reads. |
| 582 | /// * Both `start` and `end` must point to an initialized value. |
| 583 | /// * Both `start` and `end` must point to the same allocated object and |
| 584 | /// must either be in bounds or at most one byte past the end of the |
| 585 | /// allocated object. |
| 586 | /// * Both `start` and `end` must be _derived from_ a pointer to the same |
| 587 | /// object. |
| 588 | /// * The distance between `start` and `end` must not overflow `isize`. |
| 589 | /// * The distance being in bounds must not rely on "wrapping around" the |
| 590 | /// address space. |
| 591 | #[inline (always)] |
| 592 | pub(crate) unsafe fn rfind_raw( |
| 593 | &self, |
| 594 | start: *const u8, |
| 595 | end: *const u8, |
| 596 | ) -> Option<*const u8> { |
| 597 | // If we want to support vectors bigger than 256 bits, we probably |
| 598 | // need to move up to using a u64 for the masks used below. Currently |
| 599 | // they are 32 bits, which means we're SOL for vectors that need masks |
| 600 | // bigger than 32 bits. Overall unclear until there's a use case. |
| 601 | debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes" ); |
| 602 | |
| 603 | let topos = V::Mask::last_offset; |
| 604 | let len = end.distance(start); |
| 605 | debug_assert!( |
| 606 | len >= V::BYTES, |
| 607 | "haystack has length {}, but must be at least {}" , |
| 608 | len, |
| 609 | V::BYTES |
| 610 | ); |
| 611 | |
| 612 | if let Some(cur) = self.search_chunk(end.sub(V::BYTES), topos) { |
| 613 | return Some(cur); |
| 614 | } |
| 615 | let mut cur = end.sub(end.as_usize() & V::ALIGN); |
| 616 | debug_assert!(start <= cur && cur <= end); |
| 617 | if len >= Self::LOOP_SIZE { |
| 618 | while cur >= start.add(Self::LOOP_SIZE) { |
| 619 | debug_assert_eq!(0, cur.as_usize() % V::BYTES); |
| 620 | |
| 621 | cur = cur.sub(Self::LOOP_SIZE); |
| 622 | let a = V::load_aligned(cur); |
| 623 | let b = V::load_aligned(cur.add(V::BYTES)); |
| 624 | let eqa1 = self.v1.cmpeq(a); |
| 625 | let eqb1 = self.v1.cmpeq(b); |
| 626 | let eqa2 = self.v2.cmpeq(a); |
| 627 | let eqb2 = self.v2.cmpeq(b); |
| 628 | let or1 = eqa1.or(eqb1); |
| 629 | let or2 = eqa2.or(eqb2); |
| 630 | let or3 = or1.or(or2); |
| 631 | if or3.movemask_will_have_non_zero() { |
| 632 | let mask = eqb1.movemask().or(eqb2.movemask()); |
| 633 | if mask.has_non_zero() { |
| 634 | return Some(cur.add(V::BYTES).add(topos(mask))); |
| 635 | } |
| 636 | |
| 637 | let mask = eqa1.movemask().or(eqa2.movemask()); |
| 638 | debug_assert!(mask.has_non_zero()); |
| 639 | return Some(cur.add(topos(mask))); |
| 640 | } |
| 641 | } |
| 642 | } |
| 643 | while cur >= start.add(V::BYTES) { |
| 644 | debug_assert!(cur.distance(start) >= V::BYTES); |
| 645 | cur = cur.sub(V::BYTES); |
| 646 | if let Some(cur) = self.search_chunk(cur, topos) { |
| 647 | return Some(cur); |
| 648 | } |
| 649 | } |
| 650 | if cur > start { |
| 651 | debug_assert!(cur.distance(start) < V::BYTES); |
| 652 | return self.search_chunk(start, topos); |
| 653 | } |
| 654 | None |
| 655 | } |
| 656 | |
| 657 | /// Search `V::BYTES` starting at `cur` via an unaligned load. |
| 658 | /// |
| 659 | /// `mask_to_offset` should be a function that converts a `movemask` to |
| 660 | /// an offset such that `cur.add(offset)` corresponds to a pointer to the |
| 661 | /// match location if one is found. Generally it is expected to use either |
| 662 | /// `mask_to_first_offset` or `mask_to_last_offset`, depending on whether |
| 663 | /// one is implementing a forward or reverse search, respectively. |
| 664 | /// |
| 665 | /// # Safety |
| 666 | /// |
| 667 | /// `cur` must be a valid pointer and it must be valid to do an unaligned |
| 668 | /// load of size `V::BYTES` at `cur`. |
| 669 | #[inline (always)] |
| 670 | unsafe fn search_chunk( |
| 671 | &self, |
| 672 | cur: *const u8, |
| 673 | mask_to_offset: impl Fn(V::Mask) -> usize, |
| 674 | ) -> Option<*const u8> { |
| 675 | let chunk = V::load_unaligned(cur); |
| 676 | let eq1 = self.v1.cmpeq(chunk); |
| 677 | let eq2 = self.v2.cmpeq(chunk); |
| 678 | let mask = eq1.or(eq2).movemask(); |
| 679 | if mask.has_non_zero() { |
| 680 | let mask1 = eq1.movemask(); |
| 681 | let mask2 = eq2.movemask(); |
| 682 | Some(cur.add(mask_to_offset(mask1.or(mask2)))) |
| 683 | } else { |
| 684 | None |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | /// Finds all occurrences of two bytes in a haystack. |
| 690 | /// |
| 691 | /// That is, this reports matches of one of two possible bytes. For example, |
| 692 | /// searching for `a` or `b` in `afoobar` would report matches at offsets `0`, |
| 693 | /// `4` and `5`. |
| 694 | #[derive (Clone, Copy, Debug)] |
| 695 | pub(crate) struct Three<V> { |
| 696 | s1: u8, |
| 697 | s2: u8, |
| 698 | s3: u8, |
| 699 | v1: V, |
| 700 | v2: V, |
| 701 | v3: V, |
| 702 | } |
| 703 | |
| 704 | impl<V: Vector> Three<V> { |
| 705 | /// The number of bytes we examine per each iteration of our search loop. |
| 706 | const LOOP_SIZE: usize = 2 * V::BYTES; |
| 707 | |
| 708 | /// Create a new searcher that finds occurrences of the byte given. |
| 709 | #[inline (always)] |
| 710 | pub(crate) unsafe fn new( |
| 711 | needle1: u8, |
| 712 | needle2: u8, |
| 713 | needle3: u8, |
| 714 | ) -> Three<V> { |
| 715 | Three { |
| 716 | s1: needle1, |
| 717 | s2: needle2, |
| 718 | s3: needle3, |
| 719 | v1: V::splat(needle1), |
| 720 | v2: V::splat(needle2), |
| 721 | v3: V::splat(needle3), |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | /// Returns the first needle given to `Three::new`. |
| 726 | #[inline (always)] |
| 727 | pub(crate) fn needle1(&self) -> u8 { |
| 728 | self.s1 |
| 729 | } |
| 730 | |
| 731 | /// Returns the second needle given to `Three::new`. |
| 732 | #[inline (always)] |
| 733 | pub(crate) fn needle2(&self) -> u8 { |
| 734 | self.s2 |
| 735 | } |
| 736 | |
| 737 | /// Returns the third needle given to `Three::new`. |
| 738 | #[inline (always)] |
| 739 | pub(crate) fn needle3(&self) -> u8 { |
| 740 | self.s3 |
| 741 | } |
| 742 | |
| 743 | /// Return a pointer to the first occurrence of one of the needles in the |
| 744 | /// given haystack. If no such occurrence exists, then `None` is returned. |
| 745 | /// |
| 746 | /// When a match is found, the pointer returned is guaranteed to be |
| 747 | /// `>= start` and `< end`. |
| 748 | /// |
| 749 | /// # Safety |
| 750 | /// |
| 751 | /// * It must be the case that `start < end` and that the distance between |
| 752 | /// them is at least equal to `V::BYTES`. That is, it must always be valid |
| 753 | /// to do at least an unaligned load of `V` at `start`. |
| 754 | /// * Both `start` and `end` must be valid for reads. |
| 755 | /// * Both `start` and `end` must point to an initialized value. |
| 756 | /// * Both `start` and `end` must point to the same allocated object and |
| 757 | /// must either be in bounds or at most one byte past the end of the |
| 758 | /// allocated object. |
| 759 | /// * Both `start` and `end` must be _derived from_ a pointer to the same |
| 760 | /// object. |
| 761 | /// * The distance between `start` and `end` must not overflow `isize`. |
| 762 | /// * The distance being in bounds must not rely on "wrapping around" the |
| 763 | /// address space. |
| 764 | #[inline (always)] |
| 765 | pub(crate) unsafe fn find_raw( |
| 766 | &self, |
| 767 | start: *const u8, |
| 768 | end: *const u8, |
| 769 | ) -> Option<*const u8> { |
| 770 | // If we want to support vectors bigger than 256 bits, we probably |
| 771 | // need to move up to using a u64 for the masks used below. Currently |
| 772 | // they are 32 bits, which means we're SOL for vectors that need masks |
| 773 | // bigger than 32 bits. Overall unclear until there's a use case. |
| 774 | debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes" ); |
| 775 | |
| 776 | let topos = V::Mask::first_offset; |
| 777 | let len = end.distance(start); |
| 778 | debug_assert!( |
| 779 | len >= V::BYTES, |
| 780 | "haystack has length {}, but must be at least {}" , |
| 781 | len, |
| 782 | V::BYTES |
| 783 | ); |
| 784 | |
| 785 | // Search a possibly unaligned chunk at `start`. This covers any part |
| 786 | // of the haystack prior to where aligned loads can start. |
| 787 | if let Some(cur) = self.search_chunk(start, topos) { |
| 788 | return Some(cur); |
| 789 | } |
| 790 | // Set `cur` to the first V-aligned pointer greater than `start`. |
| 791 | let mut cur = start.add(V::BYTES - (start.as_usize() & V::ALIGN)); |
| 792 | debug_assert!(cur > start && end.sub(V::BYTES) >= start); |
| 793 | if len >= Self::LOOP_SIZE { |
| 794 | while cur <= end.sub(Self::LOOP_SIZE) { |
| 795 | debug_assert_eq!(0, cur.as_usize() % V::BYTES); |
| 796 | |
| 797 | let a = V::load_aligned(cur); |
| 798 | let b = V::load_aligned(cur.add(V::BYTES)); |
| 799 | let eqa1 = self.v1.cmpeq(a); |
| 800 | let eqb1 = self.v1.cmpeq(b); |
| 801 | let eqa2 = self.v2.cmpeq(a); |
| 802 | let eqb2 = self.v2.cmpeq(b); |
| 803 | let eqa3 = self.v3.cmpeq(a); |
| 804 | let eqb3 = self.v3.cmpeq(b); |
| 805 | let or1 = eqa1.or(eqb1); |
| 806 | let or2 = eqa2.or(eqb2); |
| 807 | let or3 = eqa3.or(eqb3); |
| 808 | let or4 = or1.or(or2); |
| 809 | let or5 = or3.or(or4); |
| 810 | if or5.movemask_will_have_non_zero() { |
| 811 | let mask = eqa1 |
| 812 | .movemask() |
| 813 | .or(eqa2.movemask()) |
| 814 | .or(eqa3.movemask()); |
| 815 | if mask.has_non_zero() { |
| 816 | return Some(cur.add(topos(mask))); |
| 817 | } |
| 818 | |
| 819 | let mask = eqb1 |
| 820 | .movemask() |
| 821 | .or(eqb2.movemask()) |
| 822 | .or(eqb3.movemask()); |
| 823 | debug_assert!(mask.has_non_zero()); |
| 824 | return Some(cur.add(V::BYTES).add(topos(mask))); |
| 825 | } |
| 826 | cur = cur.add(Self::LOOP_SIZE); |
| 827 | } |
| 828 | } |
| 829 | // Handle any leftovers after the aligned loop above. We use unaligned |
| 830 | // loads here, but I believe we are guaranteed that they are aligned |
| 831 | // since `cur` is aligned. |
| 832 | while cur <= end.sub(V::BYTES) { |
| 833 | debug_assert!(end.distance(cur) >= V::BYTES); |
| 834 | if let Some(cur) = self.search_chunk(cur, topos) { |
| 835 | return Some(cur); |
| 836 | } |
| 837 | cur = cur.add(V::BYTES); |
| 838 | } |
| 839 | // Finally handle any remaining bytes less than the size of V. In this |
| 840 | // case, our pointer may indeed be unaligned and the load may overlap |
| 841 | // with the previous one. But that's okay since we know the previous |
| 842 | // load didn't lead to a match (otherwise we wouldn't be here). |
| 843 | if cur < end { |
| 844 | debug_assert!(end.distance(cur) < V::BYTES); |
| 845 | cur = cur.sub(V::BYTES - end.distance(cur)); |
| 846 | debug_assert_eq!(end.distance(cur), V::BYTES); |
| 847 | return self.search_chunk(cur, topos); |
| 848 | } |
| 849 | None |
| 850 | } |
| 851 | |
| 852 | /// Return a pointer to the last occurrence of the needle in the given |
| 853 | /// haystack. If no such occurrence exists, then `None` is returned. |
| 854 | /// |
| 855 | /// When a match is found, the pointer returned is guaranteed to be |
| 856 | /// `>= start` and `< end`. |
| 857 | /// |
| 858 | /// # Safety |
| 859 | /// |
| 860 | /// * It must be the case that `start < end` and that the distance between |
| 861 | /// them is at least equal to `V::BYTES`. That is, it must always be valid |
| 862 | /// to do at least an unaligned load of `V` at `start`. |
| 863 | /// * Both `start` and `end` must be valid for reads. |
| 864 | /// * Both `start` and `end` must point to an initialized value. |
| 865 | /// * Both `start` and `end` must point to the same allocated object and |
| 866 | /// must either be in bounds or at most one byte past the end of the |
| 867 | /// allocated object. |
| 868 | /// * Both `start` and `end` must be _derived from_ a pointer to the same |
| 869 | /// object. |
| 870 | /// * The distance between `start` and `end` must not overflow `isize`. |
| 871 | /// * The distance being in bounds must not rely on "wrapping around" the |
| 872 | /// address space. |
| 873 | #[inline (always)] |
| 874 | pub(crate) unsafe fn rfind_raw( |
| 875 | &self, |
| 876 | start: *const u8, |
| 877 | end: *const u8, |
| 878 | ) -> Option<*const u8> { |
| 879 | // If we want to support vectors bigger than 256 bits, we probably |
| 880 | // need to move up to using a u64 for the masks used below. Currently |
| 881 | // they are 32 bits, which means we're SOL for vectors that need masks |
| 882 | // bigger than 32 bits. Overall unclear until there's a use case. |
| 883 | debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes" ); |
| 884 | |
| 885 | let topos = V::Mask::last_offset; |
| 886 | let len = end.distance(start); |
| 887 | debug_assert!( |
| 888 | len >= V::BYTES, |
| 889 | "haystack has length {}, but must be at least {}" , |
| 890 | len, |
| 891 | V::BYTES |
| 892 | ); |
| 893 | |
| 894 | if let Some(cur) = self.search_chunk(end.sub(V::BYTES), topos) { |
| 895 | return Some(cur); |
| 896 | } |
| 897 | let mut cur = end.sub(end.as_usize() & V::ALIGN); |
| 898 | debug_assert!(start <= cur && cur <= end); |
| 899 | if len >= Self::LOOP_SIZE { |
| 900 | while cur >= start.add(Self::LOOP_SIZE) { |
| 901 | debug_assert_eq!(0, cur.as_usize() % V::BYTES); |
| 902 | |
| 903 | cur = cur.sub(Self::LOOP_SIZE); |
| 904 | let a = V::load_aligned(cur); |
| 905 | let b = V::load_aligned(cur.add(V::BYTES)); |
| 906 | let eqa1 = self.v1.cmpeq(a); |
| 907 | let eqb1 = self.v1.cmpeq(b); |
| 908 | let eqa2 = self.v2.cmpeq(a); |
| 909 | let eqb2 = self.v2.cmpeq(b); |
| 910 | let eqa3 = self.v3.cmpeq(a); |
| 911 | let eqb3 = self.v3.cmpeq(b); |
| 912 | let or1 = eqa1.or(eqb1); |
| 913 | let or2 = eqa2.or(eqb2); |
| 914 | let or3 = eqa3.or(eqb3); |
| 915 | let or4 = or1.or(or2); |
| 916 | let or5 = or3.or(or4); |
| 917 | if or5.movemask_will_have_non_zero() { |
| 918 | let mask = eqb1 |
| 919 | .movemask() |
| 920 | .or(eqb2.movemask()) |
| 921 | .or(eqb3.movemask()); |
| 922 | if mask.has_non_zero() { |
| 923 | return Some(cur.add(V::BYTES).add(topos(mask))); |
| 924 | } |
| 925 | |
| 926 | let mask = eqa1 |
| 927 | .movemask() |
| 928 | .or(eqa2.movemask()) |
| 929 | .or(eqa3.movemask()); |
| 930 | debug_assert!(mask.has_non_zero()); |
| 931 | return Some(cur.add(topos(mask))); |
| 932 | } |
| 933 | } |
| 934 | } |
| 935 | while cur >= start.add(V::BYTES) { |
| 936 | debug_assert!(cur.distance(start) >= V::BYTES); |
| 937 | cur = cur.sub(V::BYTES); |
| 938 | if let Some(cur) = self.search_chunk(cur, topos) { |
| 939 | return Some(cur); |
| 940 | } |
| 941 | } |
| 942 | if cur > start { |
| 943 | debug_assert!(cur.distance(start) < V::BYTES); |
| 944 | return self.search_chunk(start, topos); |
| 945 | } |
| 946 | None |
| 947 | } |
| 948 | |
| 949 | /// Search `V::BYTES` starting at `cur` via an unaligned load. |
| 950 | /// |
| 951 | /// `mask_to_offset` should be a function that converts a `movemask` to |
| 952 | /// an offset such that `cur.add(offset)` corresponds to a pointer to the |
| 953 | /// match location if one is found. Generally it is expected to use either |
| 954 | /// `mask_to_first_offset` or `mask_to_last_offset`, depending on whether |
| 955 | /// one is implementing a forward or reverse search, respectively. |
| 956 | /// |
| 957 | /// # Safety |
| 958 | /// |
| 959 | /// `cur` must be a valid pointer and it must be valid to do an unaligned |
| 960 | /// load of size `V::BYTES` at `cur`. |
| 961 | #[inline (always)] |
| 962 | unsafe fn search_chunk( |
| 963 | &self, |
| 964 | cur: *const u8, |
| 965 | mask_to_offset: impl Fn(V::Mask) -> usize, |
| 966 | ) -> Option<*const u8> { |
| 967 | let chunk = V::load_unaligned(cur); |
| 968 | let eq1 = self.v1.cmpeq(chunk); |
| 969 | let eq2 = self.v2.cmpeq(chunk); |
| 970 | let eq3 = self.v3.cmpeq(chunk); |
| 971 | let mask = eq1.or(eq2).or(eq3).movemask(); |
| 972 | if mask.has_non_zero() { |
| 973 | let mask1 = eq1.movemask(); |
| 974 | let mask2 = eq2.movemask(); |
| 975 | let mask3 = eq3.movemask(); |
| 976 | Some(cur.add(mask_to_offset(mask1.or(mask2).or(mask3)))) |
| 977 | } else { |
| 978 | None |
| 979 | } |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | /// An iterator over all occurrences of a set of bytes in a haystack. |
| 984 | /// |
| 985 | /// This iterator implements the routines necessary to provide a |
| 986 | /// `DoubleEndedIterator` impl, which means it can also be used to find |
| 987 | /// occurrences in reverse order. |
| 988 | /// |
| 989 | /// The lifetime parameters are as follows: |
| 990 | /// |
| 991 | /// * `'h` refers to the lifetime of the haystack being searched. |
| 992 | /// |
| 993 | /// This type is intended to be used to implement all iterators for the |
| 994 | /// `memchr` family of functions. It handles a tiny bit of marginally tricky |
| 995 | /// raw pointer math, but otherwise expects the caller to provide `find_raw` |
| 996 | /// and `rfind_raw` routines for each call of `next` and `next_back`, |
| 997 | /// respectively. |
| 998 | #[derive (Clone, Debug)] |
| 999 | pub(crate) struct Iter<'h> { |
| 1000 | /// The original starting point into the haystack. We use this to convert |
| 1001 | /// pointers to offsets. |
| 1002 | original_start: *const u8, |
| 1003 | /// The current starting point into the haystack. That is, where the next |
| 1004 | /// search will begin. |
| 1005 | start: *const u8, |
| 1006 | /// The current ending point into the haystack. That is, where the next |
| 1007 | /// reverse search will begin. |
| 1008 | end: *const u8, |
| 1009 | /// A marker for tracking the lifetime of the start/cur_start/cur_end |
| 1010 | /// pointers above, which all point into the haystack. |
| 1011 | haystack: core::marker::PhantomData<&'h [u8]>, |
| 1012 | } |
| 1013 | |
| 1014 | // SAFETY: Iter contains no shared references to anything that performs any |
| 1015 | // interior mutations. Also, the lifetime guarantees that Iter will not outlive |
| 1016 | // the haystack. |
| 1017 | unsafe impl<'h> Send for Iter<'h> {} |
| 1018 | |
| 1019 | // SAFETY: Iter perform no interior mutations, therefore no explicit |
| 1020 | // synchronization is necessary. Also, the lifetime guarantees that Iter will |
| 1021 | // not outlive the haystack. |
| 1022 | unsafe impl<'h> Sync for Iter<'h> {} |
| 1023 | |
| 1024 | impl<'h> Iter<'h> { |
| 1025 | /// Create a new generic memchr iterator. |
| 1026 | #[inline (always)] |
| 1027 | pub(crate) fn new(haystack: &'h [u8]) -> Iter<'h> { |
| 1028 | Iter { |
| 1029 | original_start: haystack.as_ptr(), |
| 1030 | start: haystack.as_ptr(), |
| 1031 | end: haystack.as_ptr().wrapping_add(haystack.len()), |
| 1032 | haystack: core::marker::PhantomData, |
| 1033 | } |
| 1034 | } |
| 1035 | |
| 1036 | /// Returns the next occurrence in the forward direction. |
| 1037 | /// |
| 1038 | /// # Safety |
| 1039 | /// |
| 1040 | /// Callers must ensure that if a pointer is returned from the closure |
| 1041 | /// provided, then it must be greater than or equal to the start pointer |
| 1042 | /// and less than the end pointer. |
| 1043 | #[inline (always)] |
| 1044 | pub(crate) unsafe fn next( |
| 1045 | &mut self, |
| 1046 | mut find_raw: impl FnMut(*const u8, *const u8) -> Option<*const u8>, |
| 1047 | ) -> Option<usize> { |
| 1048 | // SAFETY: Pointers are derived directly from the same &[u8] haystack. |
| 1049 | // We only ever modify start/end corresponding to a matching offset |
| 1050 | // found between start and end. Thus all changes to start/end maintain |
| 1051 | // our safety requirements. |
| 1052 | // |
| 1053 | // The only other assumption we rely on is that the pointer returned |
| 1054 | // by `find_raw` satisfies `self.start <= found < self.end`, and that |
| 1055 | // safety contract is forwarded to the caller. |
| 1056 | let found = find_raw(self.start, self.end)?; |
| 1057 | let result = found.distance(self.original_start); |
| 1058 | self.start = found.add(1); |
| 1059 | Some(result) |
| 1060 | } |
| 1061 | |
| 1062 | /// Returns the number of remaining elements in this iterator. |
| 1063 | #[inline (always)] |
| 1064 | pub(crate) fn count( |
| 1065 | self, |
| 1066 | mut count_raw: impl FnMut(*const u8, *const u8) -> usize, |
| 1067 | ) -> usize { |
| 1068 | // SAFETY: Pointers are derived directly from the same &[u8] haystack. |
| 1069 | // We only ever modify start/end corresponding to a matching offset |
| 1070 | // found between start and end. Thus all changes to start/end maintain |
| 1071 | // our safety requirements. |
| 1072 | count_raw(self.start, self.end) |
| 1073 | } |
| 1074 | |
| 1075 | /// Returns the next occurrence in reverse. |
| 1076 | /// |
| 1077 | /// # Safety |
| 1078 | /// |
| 1079 | /// Callers must ensure that if a pointer is returned from the closure |
| 1080 | /// provided, then it must be greater than or equal to the start pointer |
| 1081 | /// and less than the end pointer. |
| 1082 | #[inline (always)] |
| 1083 | pub(crate) unsafe fn next_back( |
| 1084 | &mut self, |
| 1085 | mut rfind_raw: impl FnMut(*const u8, *const u8) -> Option<*const u8>, |
| 1086 | ) -> Option<usize> { |
| 1087 | // SAFETY: Pointers are derived directly from the same &[u8] haystack. |
| 1088 | // We only ever modify start/end corresponding to a matching offset |
| 1089 | // found between start and end. Thus all changes to start/end maintain |
| 1090 | // our safety requirements. |
| 1091 | // |
| 1092 | // The only other assumption we rely on is that the pointer returned |
| 1093 | // by `rfind_raw` satisfies `self.start <= found < self.end`, and that |
| 1094 | // safety contract is forwarded to the caller. |
| 1095 | let found = rfind_raw(self.start, self.end)?; |
| 1096 | let result = found.distance(self.original_start); |
| 1097 | self.end = found; |
| 1098 | Some(result) |
| 1099 | } |
| 1100 | |
| 1101 | /// Provides an implementation of `Iterator::size_hint`. |
| 1102 | #[inline (always)] |
| 1103 | pub(crate) fn size_hint(&self) -> (usize, Option<usize>) { |
| 1104 | (0, Some(self.end.as_usize().saturating_sub(self.start.as_usize()))) |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | /// Search a slice using a function that operates on raw pointers. |
| 1109 | /// |
| 1110 | /// Given a function to search a contiguous sequence of memory for the location |
| 1111 | /// of a non-empty set of bytes, this will execute that search on a slice of |
| 1112 | /// bytes. The pointer returned by the given function will be converted to an |
| 1113 | /// offset relative to the starting point of the given slice. That is, if a |
| 1114 | /// match is found, the offset returned by this routine is guaranteed to be a |
| 1115 | /// valid index into `haystack`. |
| 1116 | /// |
| 1117 | /// Callers may use this for a forward or reverse search. |
| 1118 | /// |
| 1119 | /// # Safety |
| 1120 | /// |
| 1121 | /// Callers must ensure that if a pointer is returned by `find_raw`, then the |
| 1122 | /// pointer must be greater than or equal to the starting pointer and less than |
| 1123 | /// the end pointer. |
| 1124 | #[inline (always)] |
| 1125 | pub(crate) unsafe fn search_slice_with_raw( |
| 1126 | haystack: &[u8], |
| 1127 | mut find_raw: impl FnMut(*const u8, *const u8) -> Option<*const u8>, |
| 1128 | ) -> Option<usize> { |
| 1129 | // SAFETY: We rely on `find_raw` to return a correct and valid pointer, but |
| 1130 | // otherwise, `start` and `end` are valid due to the guarantees provided by |
| 1131 | // a &[u8]. |
| 1132 | let start: *const u8 = haystack.as_ptr(); |
| 1133 | let end: *const u8 = start.add(count:haystack.len()); |
| 1134 | let found: *const u8 = find_raw(start, end)?; |
| 1135 | Some(found.distance(origin:start)) |
| 1136 | } |
| 1137 | |
| 1138 | /// Performs a forward byte-at-a-time loop until either `ptr >= end_ptr` or |
| 1139 | /// until `confirm(*ptr)` returns `true`. If the former occurs, then `None` is |
| 1140 | /// returned. If the latter occurs, then the pointer at which `confirm` returns |
| 1141 | /// `true` is returned. |
| 1142 | /// |
| 1143 | /// # Safety |
| 1144 | /// |
| 1145 | /// Callers must provide valid pointers and they must satisfy `start_ptr <= |
| 1146 | /// ptr` and `ptr <= end_ptr`. |
| 1147 | #[inline (always)] |
| 1148 | pub(crate) unsafe fn fwd_byte_by_byte<F: Fn(u8) -> bool>( |
| 1149 | start: *const u8, |
| 1150 | end: *const u8, |
| 1151 | confirm: F, |
| 1152 | ) -> Option<*const u8> { |
| 1153 | debug_assert!(start <= end); |
| 1154 | let mut ptr: *const u8 = start; |
| 1155 | while ptr < end { |
| 1156 | if confirm(*ptr) { |
| 1157 | return Some(ptr); |
| 1158 | } |
| 1159 | ptr = ptr.offset(count:1); |
| 1160 | } |
| 1161 | None |
| 1162 | } |
| 1163 | |
| 1164 | /// Performs a reverse byte-at-a-time loop until either `ptr < start_ptr` or |
| 1165 | /// until `confirm(*ptr)` returns `true`. If the former occurs, then `None` is |
| 1166 | /// returned. If the latter occurs, then the pointer at which `confirm` returns |
| 1167 | /// `true` is returned. |
| 1168 | /// |
| 1169 | /// # Safety |
| 1170 | /// |
| 1171 | /// Callers must provide valid pointers and they must satisfy `start_ptr <= |
| 1172 | /// ptr` and `ptr <= end_ptr`. |
| 1173 | #[inline (always)] |
| 1174 | pub(crate) unsafe fn rev_byte_by_byte<F: Fn(u8) -> bool>( |
| 1175 | start: *const u8, |
| 1176 | end: *const u8, |
| 1177 | confirm: F, |
| 1178 | ) -> Option<*const u8> { |
| 1179 | debug_assert!(start <= end); |
| 1180 | |
| 1181 | let mut ptr: *const u8 = end; |
| 1182 | while ptr > start { |
| 1183 | ptr = ptr.offset(count:-1); |
| 1184 | if confirm(*ptr) { |
| 1185 | return Some(ptr); |
| 1186 | } |
| 1187 | } |
| 1188 | None |
| 1189 | } |
| 1190 | |
| 1191 | /// Performs a forward byte-at-a-time loop until `ptr >= end_ptr` and returns |
| 1192 | /// the number of times `confirm(*ptr)` returns `true`. |
| 1193 | /// |
| 1194 | /// # Safety |
| 1195 | /// |
| 1196 | /// Callers must provide valid pointers and they must satisfy `start_ptr <= |
| 1197 | /// ptr` and `ptr <= end_ptr`. |
| 1198 | #[inline (always)] |
| 1199 | pub(crate) unsafe fn count_byte_by_byte<F: Fn(u8) -> bool>( |
| 1200 | start: *const u8, |
| 1201 | end: *const u8, |
| 1202 | confirm: F, |
| 1203 | ) -> usize { |
| 1204 | debug_assert!(start <= end); |
| 1205 | let mut ptr: *const u8 = start; |
| 1206 | let mut count: usize = 0; |
| 1207 | while ptr < end { |
| 1208 | if confirm(*ptr) { |
| 1209 | count += 1; |
| 1210 | } |
| 1211 | ptr = ptr.offset(count:1); |
| 1212 | } |
| 1213 | count |
| 1214 | } |
| 1215 | |