| 1 | use crate::arch::all::{ |
| 2 | packedpair::{HeuristicFrequencyRank, Pair}, |
| 3 | rabinkarp, twoway, |
| 4 | }; |
| 5 | |
| 6 | #[cfg (target_arch = "aarch64" )] |
| 7 | use crate::arch::aarch64::neon::packedpair as neon; |
| 8 | #[cfg (all(target_arch = "wasm32" , target_feature = "simd128" ))] |
| 9 | use crate::arch::wasm32::simd128::packedpair as simd128; |
| 10 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 11 | use crate::arch::x86_64::{ |
| 12 | avx2::packedpair as avx2, sse2::packedpair as sse2, |
| 13 | }; |
| 14 | |
| 15 | /// A "meta" substring searcher. |
| 16 | /// |
| 17 | /// To a first approximation, this chooses what it believes to be the "best" |
| 18 | /// substring search implemnetation based on the needle at construction time. |
| 19 | /// Then, every call to `find` will execute that particular implementation. To |
| 20 | /// a second approximation, multiple substring search algorithms may be used, |
| 21 | /// depending on the haystack. For example, for supremely short haystacks, |
| 22 | /// Rabin-Karp is typically used. |
| 23 | /// |
| 24 | /// See the documentation on `Prefilter` for an explanation of the dispatching |
| 25 | /// mechanism. The quick summary is that an enum has too much overhead and |
| 26 | /// we can't use dynamic dispatch via traits because we need to work in a |
| 27 | /// core-only environment. (Dynamic dispatch works in core-only, but you |
| 28 | /// need `&dyn Trait` and we really need a `Box<dyn Trait>` here. The latter |
| 29 | /// requires `alloc`.) So instead, we use a union and an appropriately paired |
| 30 | /// free function to read from the correct field on the union and execute the |
| 31 | /// chosen substring search implementation. |
| 32 | #[derive (Clone)] |
| 33 | pub(crate) struct Searcher { |
| 34 | call: SearcherKindFn, |
| 35 | kind: SearcherKind, |
| 36 | rabinkarp: rabinkarp::Finder, |
| 37 | } |
| 38 | |
| 39 | impl Searcher { |
| 40 | /// Creates a new "meta" substring searcher that attempts to choose the |
| 41 | /// best algorithm based on the needle, heuristics and what the current |
| 42 | /// target supports. |
| 43 | #[inline ] |
| 44 | pub(crate) fn new<R: HeuristicFrequencyRank>( |
| 45 | prefilter: PrefilterConfig, |
| 46 | ranker: R, |
| 47 | needle: &[u8], |
| 48 | ) -> Searcher { |
| 49 | let rabinkarp = rabinkarp::Finder::new(needle); |
| 50 | if needle.len() <= 1 { |
| 51 | return if needle.is_empty() { |
| 52 | trace!("building empty substring searcher" ); |
| 53 | Searcher { |
| 54 | call: searcher_kind_empty, |
| 55 | kind: SearcherKind { empty: () }, |
| 56 | rabinkarp, |
| 57 | } |
| 58 | } else { |
| 59 | trace!("building one-byte substring searcher" ); |
| 60 | debug_assert_eq!(1, needle.len()); |
| 61 | Searcher { |
| 62 | call: searcher_kind_one_byte, |
| 63 | kind: SearcherKind { one_byte: needle[0] }, |
| 64 | rabinkarp, |
| 65 | } |
| 66 | }; |
| 67 | } |
| 68 | let pair = match Pair::with_ranker(needle, &ranker) { |
| 69 | Some(pair) => pair, |
| 70 | None => return Searcher::twoway(needle, rabinkarp, None), |
| 71 | }; |
| 72 | debug_assert_ne!( |
| 73 | pair.index1(), |
| 74 | pair.index2(), |
| 75 | "pair offsets should not be equivalent" |
| 76 | ); |
| 77 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 78 | { |
| 79 | if let Some(pp) = avx2::Finder::with_pair(needle, pair) { |
| 80 | if do_packed_search(needle) { |
| 81 | trace!("building x86_64 AVX2 substring searcher" ); |
| 82 | let kind = SearcherKind { avx2: pp }; |
| 83 | Searcher { call: searcher_kind_avx2, kind, rabinkarp } |
| 84 | } else if prefilter.is_none() { |
| 85 | Searcher::twoway(needle, rabinkarp, None) |
| 86 | } else { |
| 87 | let prestrat = Prefilter::avx2(pp, needle); |
| 88 | Searcher::twoway(needle, rabinkarp, Some(prestrat)) |
| 89 | } |
| 90 | } else if let Some(pp) = sse2::Finder::with_pair(needle, pair) { |
| 91 | if do_packed_search(needle) { |
| 92 | trace!("building x86_64 SSE2 substring searcher" ); |
| 93 | let kind = SearcherKind { sse2: pp }; |
| 94 | Searcher { call: searcher_kind_sse2, kind, rabinkarp } |
| 95 | } else if prefilter.is_none() { |
| 96 | Searcher::twoway(needle, rabinkarp, None) |
| 97 | } else { |
| 98 | let prestrat = Prefilter::sse2(pp, needle); |
| 99 | Searcher::twoway(needle, rabinkarp, Some(prestrat)) |
| 100 | } |
| 101 | } else if prefilter.is_none() { |
| 102 | Searcher::twoway(needle, rabinkarp, None) |
| 103 | } else { |
| 104 | // We're pretty unlikely to get to this point, but it is |
| 105 | // possible to be running on x86_64 without SSE2. Namely, it's |
| 106 | // really up to the OS whether it wants to support vector |
| 107 | // registers or not. |
| 108 | let prestrat = Prefilter::fallback(ranker, pair, needle); |
| 109 | Searcher::twoway(needle, rabinkarp, prestrat) |
| 110 | } |
| 111 | } |
| 112 | #[cfg (all(target_arch = "wasm32" , target_feature = "simd128" ))] |
| 113 | { |
| 114 | if let Some(pp) = simd128::Finder::with_pair(needle, pair) { |
| 115 | if do_packed_search(needle) { |
| 116 | trace!("building wasm32 simd128 substring searcher" ); |
| 117 | let kind = SearcherKind { simd128: pp }; |
| 118 | Searcher { call: searcher_kind_simd128, kind, rabinkarp } |
| 119 | } else if prefilter.is_none() { |
| 120 | Searcher::twoway(needle, rabinkarp, None) |
| 121 | } else { |
| 122 | let prestrat = Prefilter::simd128(pp, needle); |
| 123 | Searcher::twoway(needle, rabinkarp, Some(prestrat)) |
| 124 | } |
| 125 | } else if prefilter.is_none() { |
| 126 | Searcher::twoway(needle, rabinkarp, None) |
| 127 | } else { |
| 128 | let prestrat = Prefilter::fallback(ranker, pair, needle); |
| 129 | Searcher::twoway(needle, rabinkarp, prestrat) |
| 130 | } |
| 131 | } |
| 132 | #[cfg (target_arch = "aarch64" )] |
| 133 | { |
| 134 | if let Some(pp) = neon::Finder::with_pair(needle, pair) { |
| 135 | if do_packed_search(needle) { |
| 136 | trace!("building aarch64 neon substring searcher" ); |
| 137 | let kind = SearcherKind { neon: pp }; |
| 138 | Searcher { call: searcher_kind_neon, kind, rabinkarp } |
| 139 | } else if prefilter.is_none() { |
| 140 | Searcher::twoway(needle, rabinkarp, None) |
| 141 | } else { |
| 142 | let prestrat = Prefilter::neon(pp, needle); |
| 143 | Searcher::twoway(needle, rabinkarp, Some(prestrat)) |
| 144 | } |
| 145 | } else if prefilter.is_none() { |
| 146 | Searcher::twoway(needle, rabinkarp, None) |
| 147 | } else { |
| 148 | let prestrat = Prefilter::fallback(ranker, pair, needle); |
| 149 | Searcher::twoway(needle, rabinkarp, prestrat) |
| 150 | } |
| 151 | } |
| 152 | #[cfg (not(any( |
| 153 | all(target_arch = "x86_64" , target_feature = "sse2" ), |
| 154 | all(target_arch = "wasm32" , target_feature = "simd128" ), |
| 155 | target_arch = "aarch64" |
| 156 | )))] |
| 157 | { |
| 158 | if prefilter.is_none() { |
| 159 | Searcher::twoway(needle, rabinkarp, None) |
| 160 | } else { |
| 161 | let prestrat = Prefilter::fallback(ranker, pair, needle); |
| 162 | Searcher::twoway(needle, rabinkarp, prestrat) |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | /// Creates a new searcher that always uses the Two-Way algorithm. This is |
| 168 | /// typically used when vector algorithms are unavailable or inappropriate. |
| 169 | /// (For example, when the needle is "too long.") |
| 170 | /// |
| 171 | /// If a prefilter is given, then the searcher returned will be accelerated |
| 172 | /// by the prefilter. |
| 173 | #[inline ] |
| 174 | fn twoway( |
| 175 | needle: &[u8], |
| 176 | rabinkarp: rabinkarp::Finder, |
| 177 | prestrat: Option<Prefilter>, |
| 178 | ) -> Searcher { |
| 179 | let finder = twoway::Finder::new(needle); |
| 180 | match prestrat { |
| 181 | None => { |
| 182 | trace!("building scalar two-way substring searcher" ); |
| 183 | let kind = SearcherKind { two_way: finder }; |
| 184 | Searcher { call: searcher_kind_two_way, kind, rabinkarp } |
| 185 | } |
| 186 | Some(prestrat) => { |
| 187 | trace!( |
| 188 | "building scalar two-way \ |
| 189 | substring searcher with a prefilter" |
| 190 | ); |
| 191 | let two_way_with_prefilter = |
| 192 | TwoWayWithPrefilter { finder, prestrat }; |
| 193 | let kind = SearcherKind { two_way_with_prefilter }; |
| 194 | Searcher { |
| 195 | call: searcher_kind_two_way_with_prefilter, |
| 196 | kind, |
| 197 | rabinkarp, |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | /// Searches the given haystack for the given needle. The needle given |
| 204 | /// should be the same as the needle that this finder was initialized |
| 205 | /// with. |
| 206 | /// |
| 207 | /// Inlining this can lead to big wins for latency, and #[inline] doesn't |
| 208 | /// seem to be enough in some cases. |
| 209 | #[inline (always)] |
| 210 | pub(crate) fn find( |
| 211 | &self, |
| 212 | prestate: &mut PrefilterState, |
| 213 | haystack: &[u8], |
| 214 | needle: &[u8], |
| 215 | ) -> Option<usize> { |
| 216 | if haystack.len() < needle.len() { |
| 217 | None |
| 218 | } else { |
| 219 | // SAFETY: By construction, we've ensured that the function |
| 220 | // in `self.call` is properly paired with the union used in |
| 221 | // `self.kind`. |
| 222 | unsafe { (self.call)(self, prestate, haystack, needle) } |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | impl core::fmt::Debug for Searcher { |
| 228 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 229 | f&mut DebugStruct<'_, '_>.debug_struct("Searcher" ) |
| 230 | .field("call" , &"<searcher function>" ) |
| 231 | .field("kind" , &"<searcher kind union>" ) |
| 232 | .field(name:"rabinkarp" , &self.rabinkarp) |
| 233 | .finish() |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | /// A union indicating one of several possible substring search implementations |
| 238 | /// that are in active use. |
| 239 | /// |
| 240 | /// This union should only be read by one of the functions prefixed with |
| 241 | /// `searcher_kind_`. Namely, the correct function is meant to be paired with |
| 242 | /// the union by the caller, such that the function always reads from the |
| 243 | /// designated union field. |
| 244 | #[derive (Clone, Copy)] |
| 245 | union SearcherKind { |
| 246 | empty: (), |
| 247 | one_byte: u8, |
| 248 | two_way: twoway::Finder, |
| 249 | two_way_with_prefilter: TwoWayWithPrefilter, |
| 250 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 251 | sse2: crate::arch::x86_64::sse2::packedpair::Finder, |
| 252 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 253 | avx2: crate::arch::x86_64::avx2::packedpair::Finder, |
| 254 | #[cfg (all(target_arch = "wasm32" , target_feature = "simd128" ))] |
| 255 | simd128: crate::arch::wasm32::simd128::packedpair::Finder, |
| 256 | #[cfg (target_arch = "aarch64" )] |
| 257 | neon: crate::arch::aarch64::neon::packedpair::Finder, |
| 258 | } |
| 259 | |
| 260 | /// A two-way substring searcher with a prefilter. |
| 261 | #[derive (Copy, Clone, Debug)] |
| 262 | struct TwoWayWithPrefilter { |
| 263 | finder: twoway::Finder, |
| 264 | prestrat: Prefilter, |
| 265 | } |
| 266 | |
| 267 | /// The type of a substring search function. |
| 268 | /// |
| 269 | /// # Safety |
| 270 | /// |
| 271 | /// When using a function of this type, callers must ensure that the correct |
| 272 | /// function is paired with the value populated in `SearcherKind` union. |
| 273 | type SearcherKindFn = unsafe fn( |
| 274 | searcher: &Searcher, |
| 275 | prestate: &mut PrefilterState, |
| 276 | haystack: &[u8], |
| 277 | needle: &[u8], |
| 278 | ) -> Option<usize>; |
| 279 | |
| 280 | /// Reads from the `empty` field of `SearcherKind` to handle the case of |
| 281 | /// searching for the empty needle. Works on all platforms. |
| 282 | /// |
| 283 | /// # Safety |
| 284 | /// |
| 285 | /// Callers must ensure that the `searcher.kind.empty` union field is set. |
| 286 | unsafe fn searcher_kind_empty( |
| 287 | _searcher: &Searcher, |
| 288 | _prestate: &mut PrefilterState, |
| 289 | _haystack: &[u8], |
| 290 | _needle: &[u8], |
| 291 | ) -> Option<usize> { |
| 292 | Some(0) |
| 293 | } |
| 294 | |
| 295 | /// Reads from the `one_byte` field of `SearcherKind` to handle the case of |
| 296 | /// searching for a single byte needle. Works on all platforms. |
| 297 | /// |
| 298 | /// # Safety |
| 299 | /// |
| 300 | /// Callers must ensure that the `searcher.kind.one_byte` union field is set. |
| 301 | unsafe fn searcher_kind_one_byte( |
| 302 | searcher: &Searcher, |
| 303 | _prestate: &mut PrefilterState, |
| 304 | haystack: &[u8], |
| 305 | _needle: &[u8], |
| 306 | ) -> Option<usize> { |
| 307 | let needle: u8 = searcher.kind.one_byte; |
| 308 | crate::memchr(needle, haystack) |
| 309 | } |
| 310 | |
| 311 | /// Reads from the `two_way` field of `SearcherKind` to handle the case of |
| 312 | /// searching for an arbitrary needle without prefilter acceleration. Works on |
| 313 | /// all platforms. |
| 314 | /// |
| 315 | /// # Safety |
| 316 | /// |
| 317 | /// Callers must ensure that the `searcher.kind.two_way` union field is set. |
| 318 | unsafe fn searcher_kind_two_way( |
| 319 | searcher: &Searcher, |
| 320 | _prestate: &mut PrefilterState, |
| 321 | haystack: &[u8], |
| 322 | needle: &[u8], |
| 323 | ) -> Option<usize> { |
| 324 | if rabinkarp::is_fast(haystack, needle) { |
| 325 | searcher.rabinkarp.find(haystack, needle) |
| 326 | } else { |
| 327 | searcher.kind.two_way.find(haystack, needle) |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /// Reads from the `two_way_with_prefilter` field of `SearcherKind` to handle |
| 332 | /// the case of searching for an arbitrary needle with prefilter acceleration. |
| 333 | /// Works on all platforms. |
| 334 | /// |
| 335 | /// # Safety |
| 336 | /// |
| 337 | /// Callers must ensure that the `searcher.kind.two_way_with_prefilter` union |
| 338 | /// field is set. |
| 339 | unsafe fn searcher_kind_two_way_with_prefilter( |
| 340 | searcher: &Searcher, |
| 341 | prestate: &mut PrefilterState, |
| 342 | haystack: &[u8], |
| 343 | needle: &[u8], |
| 344 | ) -> Option<usize> { |
| 345 | if rabinkarp::is_fast(haystack, needle) { |
| 346 | searcher.rabinkarp.find(haystack, needle) |
| 347 | } else { |
| 348 | let TwoWayWithPrefilter { ref finder: &Finder, ref prestrat: &Prefilter } = |
| 349 | searcher.kind.two_way_with_prefilter; |
| 350 | let pre: Pre<'_> = Pre { prestate, prestrat }; |
| 351 | finder.find_with_prefilter(pre:Some(pre), haystack, needle) |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | /// Reads from the `sse2` field of `SearcherKind` to execute the x86_64 SSE2 |
| 356 | /// vectorized substring search implementation. |
| 357 | /// |
| 358 | /// # Safety |
| 359 | /// |
| 360 | /// Callers must ensure that the `searcher.kind.sse2` union field is set. |
| 361 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 362 | unsafe fn searcher_kind_sse2( |
| 363 | searcher: &Searcher, |
| 364 | _prestate: &mut PrefilterState, |
| 365 | haystack: &[u8], |
| 366 | needle: &[u8], |
| 367 | ) -> Option<usize> { |
| 368 | let finder: &Finder = &searcher.kind.sse2; |
| 369 | if haystack.len() < finder.min_haystack_len() { |
| 370 | searcher.rabinkarp.find(haystack, needle) |
| 371 | } else { |
| 372 | finder.find(haystack, needle) |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | /// Reads from the `avx2` field of `SearcherKind` to execute the x86_64 AVX2 |
| 377 | /// vectorized substring search implementation. |
| 378 | /// |
| 379 | /// # Safety |
| 380 | /// |
| 381 | /// Callers must ensure that the `searcher.kind.avx2` union field is set. |
| 382 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 383 | unsafe fn searcher_kind_avx2( |
| 384 | searcher: &Searcher, |
| 385 | _prestate: &mut PrefilterState, |
| 386 | haystack: &[u8], |
| 387 | needle: &[u8], |
| 388 | ) -> Option<usize> { |
| 389 | let finder: &Finder = &searcher.kind.avx2; |
| 390 | if haystack.len() < finder.min_haystack_len() { |
| 391 | searcher.rabinkarp.find(haystack, needle) |
| 392 | } else { |
| 393 | finder.find(haystack, needle) |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | /// Reads from the `simd128` field of `SearcherKind` to execute the wasm32 |
| 398 | /// simd128 vectorized substring search implementation. |
| 399 | /// |
| 400 | /// # Safety |
| 401 | /// |
| 402 | /// Callers must ensure that the `searcher.kind.simd128` union field is set. |
| 403 | #[cfg (all(target_arch = "wasm32" , target_feature = "simd128" ))] |
| 404 | unsafe fn searcher_kind_simd128( |
| 405 | searcher: &Searcher, |
| 406 | _prestate: &mut PrefilterState, |
| 407 | haystack: &[u8], |
| 408 | needle: &[u8], |
| 409 | ) -> Option<usize> { |
| 410 | let finder = &searcher.kind.simd128; |
| 411 | if haystack.len() < finder.min_haystack_len() { |
| 412 | searcher.rabinkarp.find(haystack, needle) |
| 413 | } else { |
| 414 | finder.find(haystack, needle) |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | /// Reads from the `neon` field of `SearcherKind` to execute the aarch64 neon |
| 419 | /// vectorized substring search implementation. |
| 420 | /// |
| 421 | /// # Safety |
| 422 | /// |
| 423 | /// Callers must ensure that the `searcher.kind.neon` union field is set. |
| 424 | #[cfg (target_arch = "aarch64" )] |
| 425 | unsafe fn searcher_kind_neon( |
| 426 | searcher: &Searcher, |
| 427 | _prestate: &mut PrefilterState, |
| 428 | haystack: &[u8], |
| 429 | needle: &[u8], |
| 430 | ) -> Option<usize> { |
| 431 | let finder = &searcher.kind.neon; |
| 432 | if haystack.len() < finder.min_haystack_len() { |
| 433 | searcher.rabinkarp.find(haystack, needle) |
| 434 | } else { |
| 435 | finder.find(haystack, needle) |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | /// A reverse substring searcher. |
| 440 | #[derive (Clone, Debug)] |
| 441 | pub(crate) struct SearcherRev { |
| 442 | kind: SearcherRevKind, |
| 443 | rabinkarp: rabinkarp::FinderRev, |
| 444 | } |
| 445 | |
| 446 | /// The kind of the reverse searcher. |
| 447 | /// |
| 448 | /// For the reverse case, we don't do any SIMD acceleration or prefilters. |
| 449 | /// There is no specific technical reason why we don't, but rather don't do it |
| 450 | /// because it's not clear it's worth the extra code to do so. If you have a |
| 451 | /// use case for it, please file an issue. |
| 452 | /// |
| 453 | /// We also don't do the union trick as we do with the forward case and |
| 454 | /// prefilters. Basically for the same reason we don't have prefilters or |
| 455 | /// vector algorithms for reverse searching: it's not clear it's worth doing. |
| 456 | /// Please file an issue if you have a compelling use case for fast reverse |
| 457 | /// substring search. |
| 458 | #[derive (Clone, Debug)] |
| 459 | enum SearcherRevKind { |
| 460 | Empty, |
| 461 | OneByte { needle: u8 }, |
| 462 | TwoWay { finder: twoway::FinderRev }, |
| 463 | } |
| 464 | |
| 465 | impl SearcherRev { |
| 466 | /// Creates a new searcher for finding occurrences of the given needle in |
| 467 | /// reverse. That is, it reports the last (instead of the first) occurrence |
| 468 | /// of a needle in a haystack. |
| 469 | #[inline ] |
| 470 | pub(crate) fn new(needle: &[u8]) -> SearcherRev { |
| 471 | let kind = if needle.len() <= 1 { |
| 472 | if needle.is_empty() { |
| 473 | trace!("building empty reverse substring searcher" ); |
| 474 | SearcherRevKind::Empty |
| 475 | } else { |
| 476 | trace!("building one-byte reverse substring searcher" ); |
| 477 | debug_assert_eq!(1, needle.len()); |
| 478 | SearcherRevKind::OneByte { needle: needle[0] } |
| 479 | } |
| 480 | } else { |
| 481 | trace!("building scalar two-way reverse substring searcher" ); |
| 482 | let finder = twoway::FinderRev::new(needle); |
| 483 | SearcherRevKind::TwoWay { finder } |
| 484 | }; |
| 485 | let rabinkarp = rabinkarp::FinderRev::new(needle); |
| 486 | SearcherRev { kind, rabinkarp } |
| 487 | } |
| 488 | |
| 489 | /// Searches the given haystack for the last occurrence of the given |
| 490 | /// needle. The needle given should be the same as the needle that this |
| 491 | /// finder was initialized with. |
| 492 | #[inline ] |
| 493 | pub(crate) fn rfind( |
| 494 | &self, |
| 495 | haystack: &[u8], |
| 496 | needle: &[u8], |
| 497 | ) -> Option<usize> { |
| 498 | if haystack.len() < needle.len() { |
| 499 | return None; |
| 500 | } |
| 501 | match self.kind { |
| 502 | SearcherRevKind::Empty => Some(haystack.len()), |
| 503 | SearcherRevKind::OneByte { needle } => { |
| 504 | crate::memrchr(needle, haystack) |
| 505 | } |
| 506 | SearcherRevKind::TwoWay { ref finder } => { |
| 507 | if rabinkarp::is_fast(haystack, needle) { |
| 508 | self.rabinkarp.rfind(haystack, needle) |
| 509 | } else { |
| 510 | finder.rfind(haystack, needle) |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | /// Prefilter controls whether heuristics are used to accelerate searching. |
| 518 | /// |
| 519 | /// A prefilter refers to the idea of detecting candidate matches very quickly, |
| 520 | /// and then confirming whether those candidates are full matches. This |
| 521 | /// idea can be quite effective since it's often the case that looking for |
| 522 | /// candidates can be a lot faster than running a complete substring search |
| 523 | /// over the entire input. Namely, looking for candidates can be done with |
| 524 | /// extremely fast vectorized code. |
| 525 | /// |
| 526 | /// The downside of a prefilter is that it assumes false positives (which are |
| 527 | /// candidates generated by a prefilter that aren't matches) are somewhat rare |
| 528 | /// relative to the frequency of full matches. That is, if a lot of false |
| 529 | /// positives are generated, then it's possible for search time to be worse |
| 530 | /// than if the prefilter wasn't enabled in the first place. |
| 531 | /// |
| 532 | /// Another downside of a prefilter is that it can result in highly variable |
| 533 | /// performance, where some cases are extraordinarily fast and others aren't. |
| 534 | /// Typically, variable performance isn't a problem, but it may be for your use |
| 535 | /// case. |
| 536 | /// |
| 537 | /// The use of prefilters in this implementation does use a heuristic to detect |
| 538 | /// when a prefilter might not be carrying its weight, and will dynamically |
| 539 | /// disable its use. Nevertheless, this configuration option gives callers |
| 540 | /// the ability to disable prefilters if you have knowledge that they won't be |
| 541 | /// useful. |
| 542 | #[derive (Clone, Copy, Debug)] |
| 543 | #[non_exhaustive ] |
| 544 | pub enum PrefilterConfig { |
| 545 | /// Never used a prefilter in substring search. |
| 546 | None, |
| 547 | /// Automatically detect whether a heuristic prefilter should be used. If |
| 548 | /// it is used, then heuristics will be used to dynamically disable the |
| 549 | /// prefilter if it is believed to not be carrying its weight. |
| 550 | Auto, |
| 551 | } |
| 552 | |
| 553 | impl Default for PrefilterConfig { |
| 554 | fn default() -> PrefilterConfig { |
| 555 | PrefilterConfig::Auto |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | impl PrefilterConfig { |
| 560 | /// Returns true when this prefilter is set to the `None` variant. |
| 561 | fn is_none(&self) -> bool { |
| 562 | matches!(*self, PrefilterConfig::None) |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | /// The implementation of a prefilter. |
| 567 | /// |
| 568 | /// This type encapsulates dispatch to one of several possible choices for a |
| 569 | /// prefilter. Generally speaking, all prefilters have the same approximate |
| 570 | /// algorithm: they choose a couple of bytes from the needle that are believed |
| 571 | /// to be rare, use a fast vector algorithm to look for those bytes and return |
| 572 | /// positions as candidates for some substring search algorithm (currently only |
| 573 | /// Two-Way) to confirm as a match or not. |
| 574 | /// |
| 575 | /// The differences between the algorithms are actually at the vector |
| 576 | /// implementation level. Namely, we need different routines based on both |
| 577 | /// which target architecture we're on and what CPU features are supported. |
| 578 | /// |
| 579 | /// The straight-forwardly obvious approach here is to use an enum, and make |
| 580 | /// `Prefilter::find` do case analysis to determine which algorithm was |
| 581 | /// selected and invoke it. However, I've observed that this leads to poor |
| 582 | /// codegen in some cases, especially in latency sensitive benchmarks. That is, |
| 583 | /// this approach comes with overhead that I wasn't able to eliminate. |
| 584 | /// |
| 585 | /// The second obvious approach is to use dynamic dispatch with traits. Doing |
| 586 | /// that in this context where `Prefilter` owns the selection generally |
| 587 | /// requires heap allocation, and this code is designed to run in core-only |
| 588 | /// environments. |
| 589 | /// |
| 590 | /// So we settle on using a union (that's `PrefilterKind`) and a function |
| 591 | /// pointer (that's `PrefilterKindFn`). We select the right function pointer |
| 592 | /// based on which field in the union we set, and that function in turn |
| 593 | /// knows which field of the union to access. The downside of this approach |
| 594 | /// is that it forces us to think about safety, but the upside is that |
| 595 | /// there are some nice latency improvements to benchmarks. (Especially the |
| 596 | /// `memmem/sliceslice/short` benchmark.) |
| 597 | /// |
| 598 | /// In cases where we've selected a vector algorithm and the haystack given |
| 599 | /// is too short, we fallback to the scalar version of `memchr` on the |
| 600 | /// `rarest_byte`. (The scalar version of `memchr` is still better than a naive |
| 601 | /// byte-at-a-time loop because it will read in `usize`-sized chunks at a |
| 602 | /// time.) |
| 603 | #[derive (Clone, Copy)] |
| 604 | struct Prefilter { |
| 605 | call: PrefilterKindFn, |
| 606 | kind: PrefilterKind, |
| 607 | rarest_byte: u8, |
| 608 | rarest_offset: u8, |
| 609 | } |
| 610 | |
| 611 | impl Prefilter { |
| 612 | /// Return a "fallback" prefilter, but only if it is believed to be |
| 613 | /// effective. |
| 614 | #[inline ] |
| 615 | fn fallback<R: HeuristicFrequencyRank>( |
| 616 | ranker: R, |
| 617 | pair: Pair, |
| 618 | needle: &[u8], |
| 619 | ) -> Option<Prefilter> { |
| 620 | /// The maximum frequency rank permitted for the fallback prefilter. |
| 621 | /// If the rarest byte in the needle has a frequency rank above this |
| 622 | /// value, then no prefilter is used if the fallback prefilter would |
| 623 | /// otherwise be selected. |
| 624 | const MAX_FALLBACK_RANK: u8 = 250; |
| 625 | |
| 626 | trace!("building fallback prefilter" ); |
| 627 | let rarest_offset = pair.index1(); |
| 628 | let rarest_byte = needle[usize::from(rarest_offset)]; |
| 629 | let rarest_rank = ranker.rank(rarest_byte); |
| 630 | if rarest_rank > MAX_FALLBACK_RANK { |
| 631 | None |
| 632 | } else { |
| 633 | let finder = crate::arch::all::packedpair::Finder::with_pair( |
| 634 | needle, |
| 635 | pair.clone(), |
| 636 | )?; |
| 637 | let call = prefilter_kind_fallback; |
| 638 | let kind = PrefilterKind { fallback: finder }; |
| 639 | Some(Prefilter { call, kind, rarest_byte, rarest_offset }) |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | /// Return a prefilter using a x86_64 SSE2 vector algorithm. |
| 644 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 645 | #[inline ] |
| 646 | fn sse2(finder: sse2::Finder, needle: &[u8]) -> Prefilter { |
| 647 | trace!("building x86_64 SSE2 prefilter" ); |
| 648 | let rarest_offset = finder.pair().index1(); |
| 649 | let rarest_byte = needle[usize::from(rarest_offset)]; |
| 650 | Prefilter { |
| 651 | call: prefilter_kind_sse2, |
| 652 | kind: PrefilterKind { sse2: finder }, |
| 653 | rarest_byte, |
| 654 | rarest_offset, |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | /// Return a prefilter using a x86_64 AVX2 vector algorithm. |
| 659 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 660 | #[inline ] |
| 661 | fn avx2(finder: avx2::Finder, needle: &[u8]) -> Prefilter { |
| 662 | trace!("building x86_64 AVX2 prefilter" ); |
| 663 | let rarest_offset = finder.pair().index1(); |
| 664 | let rarest_byte = needle[usize::from(rarest_offset)]; |
| 665 | Prefilter { |
| 666 | call: prefilter_kind_avx2, |
| 667 | kind: PrefilterKind { avx2: finder }, |
| 668 | rarest_byte, |
| 669 | rarest_offset, |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | /// Return a prefilter using a wasm32 simd128 vector algorithm. |
| 674 | #[cfg (all(target_arch = "wasm32" , target_feature = "simd128" ))] |
| 675 | #[inline ] |
| 676 | fn simd128(finder: simd128::Finder, needle: &[u8]) -> Prefilter { |
| 677 | trace!("building wasm32 simd128 prefilter" ); |
| 678 | let rarest_offset = finder.pair().index1(); |
| 679 | let rarest_byte = needle[usize::from(rarest_offset)]; |
| 680 | Prefilter { |
| 681 | call: prefilter_kind_simd128, |
| 682 | kind: PrefilterKind { simd128: finder }, |
| 683 | rarest_byte, |
| 684 | rarest_offset, |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | /// Return a prefilter using a aarch64 neon vector algorithm. |
| 689 | #[cfg (target_arch = "aarch64" )] |
| 690 | #[inline ] |
| 691 | fn neon(finder: neon::Finder, needle: &[u8]) -> Prefilter { |
| 692 | trace!("building aarch64 neon prefilter" ); |
| 693 | let rarest_offset = finder.pair().index1(); |
| 694 | let rarest_byte = needle[usize::from(rarest_offset)]; |
| 695 | Prefilter { |
| 696 | call: prefilter_kind_neon, |
| 697 | kind: PrefilterKind { neon: finder }, |
| 698 | rarest_byte, |
| 699 | rarest_offset, |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | /// Return a *candidate* position for a match. |
| 704 | /// |
| 705 | /// When this returns an offset, it implies that a match could begin at |
| 706 | /// that offset, but it may not. That is, it is possible for a false |
| 707 | /// positive to be returned. |
| 708 | /// |
| 709 | /// When `None` is returned, then it is guaranteed that there are no |
| 710 | /// matches for the needle in the given haystack. That is, it is impossible |
| 711 | /// for a false negative to be returned. |
| 712 | /// |
| 713 | /// The purpose of this routine is to look for candidate matching positions |
| 714 | /// as quickly as possible before running a (likely) slower confirmation |
| 715 | /// step. |
| 716 | #[inline ] |
| 717 | fn find(&self, haystack: &[u8]) -> Option<usize> { |
| 718 | // SAFETY: By construction, we've ensured that the function in |
| 719 | // `self.call` is properly paired with the union used in `self.kind`. |
| 720 | unsafe { (self.call)(self, haystack) } |
| 721 | } |
| 722 | |
| 723 | /// A "simple" prefilter that just looks for the occurrence of the rarest |
| 724 | /// byte from the needle. This is generally only used for very small |
| 725 | /// haystacks. |
| 726 | #[inline ] |
| 727 | fn find_simple(&self, haystack: &[u8]) -> Option<usize> { |
| 728 | // We don't use crate::memchr here because the haystack should be small |
| 729 | // enough that memchr won't be able to use vector routines anyway. So |
| 730 | // we just skip straight to the fallback implementation which is likely |
| 731 | // faster. (A byte-at-a-time loop is only used when the haystack is |
| 732 | // smaller than `size_of::<usize>()`.) |
| 733 | crate::arch::all::memchr::One::new(self.rarest_byte) |
| 734 | .find(haystack) |
| 735 | .map(|i| i.saturating_sub(usize::from(self.rarest_offset))) |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | impl core::fmt::Debug for Prefilter { |
| 740 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 741 | f&mut DebugStruct<'_, '_>.debug_struct("Prefilter" ) |
| 742 | .field("call" , &"<prefilter function>" ) |
| 743 | .field("kind" , &"<prefilter kind union>" ) |
| 744 | .field("rarest_byte" , &self.rarest_byte) |
| 745 | .field(name:"rarest_offset" , &self.rarest_offset) |
| 746 | .finish() |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | /// A union indicating one of several possible prefilters that are in active |
| 751 | /// use. |
| 752 | /// |
| 753 | /// This union should only be read by one of the functions prefixed with |
| 754 | /// `prefilter_kind_`. Namely, the correct function is meant to be paired with |
| 755 | /// the union by the caller, such that the function always reads from the |
| 756 | /// designated union field. |
| 757 | #[derive (Clone, Copy)] |
| 758 | union PrefilterKind { |
| 759 | fallback: crate::arch::all::packedpair::Finder, |
| 760 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 761 | sse2: crate::arch::x86_64::sse2::packedpair::Finder, |
| 762 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 763 | avx2: crate::arch::x86_64::avx2::packedpair::Finder, |
| 764 | #[cfg (all(target_arch = "wasm32" , target_feature = "simd128" ))] |
| 765 | simd128: crate::arch::wasm32::simd128::packedpair::Finder, |
| 766 | #[cfg (target_arch = "aarch64" )] |
| 767 | neon: crate::arch::aarch64::neon::packedpair::Finder, |
| 768 | } |
| 769 | |
| 770 | /// The type of a prefilter function. |
| 771 | /// |
| 772 | /// # Safety |
| 773 | /// |
| 774 | /// When using a function of this type, callers must ensure that the correct |
| 775 | /// function is paired with the value populated in `PrefilterKind` union. |
| 776 | type PrefilterKindFn = |
| 777 | unsafe fn(strat: &Prefilter, haystack: &[u8]) -> Option<usize>; |
| 778 | |
| 779 | /// Reads from the `fallback` field of `PrefilterKind` to execute the fallback |
| 780 | /// prefilter. Works on all platforms. |
| 781 | /// |
| 782 | /// # Safety |
| 783 | /// |
| 784 | /// Callers must ensure that the `strat.kind.fallback` union field is set. |
| 785 | unsafe fn prefilter_kind_fallback( |
| 786 | strat: &Prefilter, |
| 787 | haystack: &[u8], |
| 788 | ) -> Option<usize> { |
| 789 | strat.kind.fallback.find_prefilter(haystack) |
| 790 | } |
| 791 | |
| 792 | /// Reads from the `sse2` field of `PrefilterKind` to execute the x86_64 SSE2 |
| 793 | /// prefilter. |
| 794 | /// |
| 795 | /// # Safety |
| 796 | /// |
| 797 | /// Callers must ensure that the `strat.kind.sse2` union field is set. |
| 798 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 799 | unsafe fn prefilter_kind_sse2( |
| 800 | strat: &Prefilter, |
| 801 | haystack: &[u8], |
| 802 | ) -> Option<usize> { |
| 803 | let finder: &Finder = &strat.kind.sse2; |
| 804 | if haystack.len() < finder.min_haystack_len() { |
| 805 | strat.find_simple(haystack) |
| 806 | } else { |
| 807 | finder.find_prefilter(haystack) |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | /// Reads from the `avx2` field of `PrefilterKind` to execute the x86_64 AVX2 |
| 812 | /// prefilter. |
| 813 | /// |
| 814 | /// # Safety |
| 815 | /// |
| 816 | /// Callers must ensure that the `strat.kind.avx2` union field is set. |
| 817 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 818 | unsafe fn prefilter_kind_avx2( |
| 819 | strat: &Prefilter, |
| 820 | haystack: &[u8], |
| 821 | ) -> Option<usize> { |
| 822 | let finder: &Finder = &strat.kind.avx2; |
| 823 | if haystack.len() < finder.min_haystack_len() { |
| 824 | strat.find_simple(haystack) |
| 825 | } else { |
| 826 | finder.find_prefilter(haystack) |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | /// Reads from the `simd128` field of `PrefilterKind` to execute the wasm32 |
| 831 | /// simd128 prefilter. |
| 832 | /// |
| 833 | /// # Safety |
| 834 | /// |
| 835 | /// Callers must ensure that the `strat.kind.simd128` union field is set. |
| 836 | #[cfg (all(target_arch = "wasm32" , target_feature = "simd128" ))] |
| 837 | unsafe fn prefilter_kind_simd128( |
| 838 | strat: &Prefilter, |
| 839 | haystack: &[u8], |
| 840 | ) -> Option<usize> { |
| 841 | let finder = &strat.kind.simd128; |
| 842 | if haystack.len() < finder.min_haystack_len() { |
| 843 | strat.find_simple(haystack) |
| 844 | } else { |
| 845 | finder.find_prefilter(haystack) |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | /// Reads from the `neon` field of `PrefilterKind` to execute the aarch64 neon |
| 850 | /// prefilter. |
| 851 | /// |
| 852 | /// # Safety |
| 853 | /// |
| 854 | /// Callers must ensure that the `strat.kind.neon` union field is set. |
| 855 | #[cfg (target_arch = "aarch64" )] |
| 856 | unsafe fn prefilter_kind_neon( |
| 857 | strat: &Prefilter, |
| 858 | haystack: &[u8], |
| 859 | ) -> Option<usize> { |
| 860 | let finder = &strat.kind.neon; |
| 861 | if haystack.len() < finder.min_haystack_len() { |
| 862 | strat.find_simple(haystack) |
| 863 | } else { |
| 864 | finder.find_prefilter(haystack) |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | /// PrefilterState tracks state associated with the effectiveness of a |
| 869 | /// prefilter. It is used to track how many bytes, on average, are skipped by |
| 870 | /// the prefilter. If this average dips below a certain threshold over time, |
| 871 | /// then the state renders the prefilter inert and stops using it. |
| 872 | /// |
| 873 | /// A prefilter state should be created for each search. (Where creating an |
| 874 | /// iterator is treated as a single search.) A prefilter state should only be |
| 875 | /// created from a `Freqy`. e.g., An inert `Freqy` will produce an inert |
| 876 | /// `PrefilterState`. |
| 877 | #[derive (Clone, Copy, Debug)] |
| 878 | pub(crate) struct PrefilterState { |
| 879 | /// The number of skips that has been executed. This is always 1 greater |
| 880 | /// than the actual number of skips. The special sentinel value of 0 |
| 881 | /// indicates that the prefilter is inert. This is useful to avoid |
| 882 | /// additional checks to determine whether the prefilter is still |
| 883 | /// "effective." Once a prefilter becomes inert, it should no longer be |
| 884 | /// used (according to our heuristics). |
| 885 | skips: u32, |
| 886 | /// The total number of bytes that have been skipped. |
| 887 | skipped: u32, |
| 888 | } |
| 889 | |
| 890 | impl PrefilterState { |
| 891 | /// The minimum number of skip attempts to try before considering whether |
| 892 | /// a prefilter is effective or not. |
| 893 | const MIN_SKIPS: u32 = 50; |
| 894 | |
| 895 | /// The minimum amount of bytes that skipping must average. |
| 896 | /// |
| 897 | /// This value was chosen based on varying it and checking |
| 898 | /// the microbenchmarks. In particular, this can impact the |
| 899 | /// pathological/repeated-{huge,small} benchmarks quite a bit if it's set |
| 900 | /// too low. |
| 901 | const MIN_SKIP_BYTES: u32 = 8; |
| 902 | |
| 903 | /// Create a fresh prefilter state. |
| 904 | #[inline ] |
| 905 | pub(crate) fn new() -> PrefilterState { |
| 906 | PrefilterState { skips: 1, skipped: 0 } |
| 907 | } |
| 908 | |
| 909 | /// Update this state with the number of bytes skipped on the last |
| 910 | /// invocation of the prefilter. |
| 911 | #[inline ] |
| 912 | fn update(&mut self, skipped: usize) { |
| 913 | self.skips = self.skips.saturating_add(1); |
| 914 | // We need to do this dance since it's technically possible for |
| 915 | // `skipped` to overflow a `u32`. (And we use a `u32` to reduce the |
| 916 | // size of a prefilter state.) |
| 917 | self.skipped = match u32::try_from(skipped) { |
| 918 | Err(_) => core::u32::MAX, |
| 919 | Ok(skipped) => self.skipped.saturating_add(skipped), |
| 920 | }; |
| 921 | } |
| 922 | |
| 923 | /// Return true if and only if this state indicates that a prefilter is |
| 924 | /// still effective. |
| 925 | #[inline ] |
| 926 | fn is_effective(&mut self) -> bool { |
| 927 | if self.is_inert() { |
| 928 | return false; |
| 929 | } |
| 930 | if self.skips() < PrefilterState::MIN_SKIPS { |
| 931 | return true; |
| 932 | } |
| 933 | if self.skipped >= PrefilterState::MIN_SKIP_BYTES * self.skips() { |
| 934 | return true; |
| 935 | } |
| 936 | |
| 937 | // We're inert. |
| 938 | self.skips = 0; |
| 939 | false |
| 940 | } |
| 941 | |
| 942 | /// Returns true if the prefilter this state represents should no longer |
| 943 | /// be used. |
| 944 | #[inline ] |
| 945 | fn is_inert(&self) -> bool { |
| 946 | self.skips == 0 |
| 947 | } |
| 948 | |
| 949 | /// Returns the total number of times the prefilter has been used. |
| 950 | #[inline ] |
| 951 | fn skips(&self) -> u32 { |
| 952 | // Remember, `0` is a sentinel value indicating inertness, so we |
| 953 | // always need to subtract `1` to get our actual number of skips. |
| 954 | self.skips.saturating_sub(1) |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | /// A combination of prefilter effectiveness state and the prefilter itself. |
| 959 | #[derive (Debug)] |
| 960 | pub(crate) struct Pre<'a> { |
| 961 | /// State that tracks the effectiveness of a prefilter. |
| 962 | prestate: &'a mut PrefilterState, |
| 963 | /// The actual prefilter. |
| 964 | prestrat: &'a Prefilter, |
| 965 | } |
| 966 | |
| 967 | impl<'a> Pre<'a> { |
| 968 | /// Call this prefilter on the given haystack with the given needle. |
| 969 | #[inline ] |
| 970 | pub(crate) fn find(&mut self, haystack: &[u8]) -> Option<usize> { |
| 971 | let result: Option = self.prestrat.find(haystack); |
| 972 | self.prestate.update(skipped:result.unwrap_or(default:haystack.len())); |
| 973 | result |
| 974 | } |
| 975 | |
| 976 | /// Return true if and only if this prefilter should be used. |
| 977 | #[inline ] |
| 978 | pub(crate) fn is_effective(&mut self) -> bool { |
| 979 | self.prestate.is_effective() |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | /// Returns true if the needle has the right characteristics for a vector |
| 984 | /// algorithm to handle the entirety of substring search. |
| 985 | /// |
| 986 | /// Vector algorithms can be used for prefilters for other substring search |
| 987 | /// algorithms (like Two-Way), but they can also be used for substring search |
| 988 | /// on their own. When used for substring search, vector algorithms will |
| 989 | /// quickly identify candidate match positions (just like in the prefilter |
| 990 | /// case), but instead of returning the candidate position they will try to |
| 991 | /// confirm the match themselves. Confirmation happens via `memcmp`. This |
| 992 | /// works well for short needles, but can break down when many false candidate |
| 993 | /// positions are generated for large needles. Thus, we only permit vector |
| 994 | /// algorithms to own substring search when the needle is of a certain length. |
| 995 | #[inline ] |
| 996 | fn do_packed_search(needle: &[u8]) -> bool { |
| 997 | /// The minimum length of a needle required for this algorithm. The minimum |
| 998 | /// is 2 since a length of 1 should just use memchr and a length of 0 isn't |
| 999 | /// a case handled by this searcher. |
| 1000 | const MIN_LEN: usize = 2; |
| 1001 | |
| 1002 | /// The maximum length of a needle required for this algorithm. |
| 1003 | /// |
| 1004 | /// In reality, there is no hard max here. The code below can handle any |
| 1005 | /// length needle. (Perhaps that suggests there are missing optimizations.) |
| 1006 | /// Instead, this is a heuristic and a bound guaranteeing our linear time |
| 1007 | /// complexity. |
| 1008 | /// |
| 1009 | /// It is a heuristic because when a candidate match is found, memcmp is |
| 1010 | /// run. For very large needles with lots of false positives, memcmp can |
| 1011 | /// make the code run quite slow. |
| 1012 | /// |
| 1013 | /// It is a bound because the worst case behavior with memcmp is |
| 1014 | /// multiplicative in the size of the needle and haystack, and we want |
| 1015 | /// to keep that additive. This bound ensures we still meet that bound |
| 1016 | /// theoretically, since it's just a constant. We aren't acting in bad |
| 1017 | /// faith here, memcmp on tiny needles is so fast that even in pathological |
| 1018 | /// cases (see pathological vector benchmarks), this is still just as fast |
| 1019 | /// or faster in practice. |
| 1020 | /// |
| 1021 | /// This specific number was chosen by tweaking a bit and running |
| 1022 | /// benchmarks. The rare-medium-needle, for example, gets about 5% faster |
| 1023 | /// by using this algorithm instead of a prefilter-accelerated Two-Way. |
| 1024 | /// There's also a theoretical desire to keep this number reasonably |
| 1025 | /// low, to mitigate the impact of pathological cases. I did try 64, and |
| 1026 | /// some benchmarks got a little better, and others (particularly the |
| 1027 | /// pathological ones), got a lot worse. So... 32 it is? |
| 1028 | const MAX_LEN: usize = 32; |
| 1029 | MIN_LEN <= needle.len() && needle.len() <= MAX_LEN |
| 1030 | } |
| 1031 | |