| 1 | // Copyright 2018 Developers of the Rand project. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 6 | // option. This file may not be copied, modified, or distributed |
| 7 | // except according to those terms. |
| 8 | |
| 9 | //! The Bernoulli distribution. |
| 10 | |
| 11 | use crate::distributions::Distribution; |
| 12 | use crate::Rng; |
| 13 | use core::{fmt, u64}; |
| 14 | |
| 15 | #[cfg (feature = "serde1" )] |
| 16 | use serde::{Serialize, Deserialize}; |
| 17 | /// The Bernoulli distribution. |
| 18 | /// |
| 19 | /// This is a special case of the Binomial distribution where `n = 1`. |
| 20 | /// |
| 21 | /// # Example |
| 22 | /// |
| 23 | /// ```rust |
| 24 | /// use rand::distributions::{Bernoulli, Distribution}; |
| 25 | /// |
| 26 | /// let d = Bernoulli::new(0.3).unwrap(); |
| 27 | /// let v = d.sample(&mut rand::thread_rng()); |
| 28 | /// println!("{} is from a Bernoulli distribution" , v); |
| 29 | /// ``` |
| 30 | /// |
| 31 | /// # Precision |
| 32 | /// |
| 33 | /// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`), |
| 34 | /// so only probabilities that are multiples of 2<sup>-64</sup> can be |
| 35 | /// represented. |
| 36 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 37 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
| 38 | pub struct Bernoulli { |
| 39 | /// Probability of success, relative to the maximal integer. |
| 40 | p_int: u64, |
| 41 | } |
| 42 | |
| 43 | // To sample from the Bernoulli distribution we use a method that compares a |
| 44 | // random `u64` value `v < (p * 2^64)`. |
| 45 | // |
| 46 | // If `p == 1.0`, the integer `v` to compare against can not represented as a |
| 47 | // `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64). |
| 48 | // Note that value of `p < 1.0` can never result in `u64::MAX`, because an |
| 49 | // `f64` only has 53 bits of precision, and the next largest value of `p` will |
| 50 | // result in `2^64 - 2048`. |
| 51 | // |
| 52 | // Also there is a 100% theoretical concern: if someone consistently wants to |
| 53 | // generate `true` using the Bernoulli distribution (i.e. by using a probability |
| 54 | // of `1.0`), just using `u64::MAX` is not enough. On average it would return |
| 55 | // false once every 2^64 iterations. Some people apparently care about this |
| 56 | // case. |
| 57 | // |
| 58 | // That is why we special-case `u64::MAX` to always return `true`, without using |
| 59 | // the RNG, and pay the performance price for all uses that *are* reasonable. |
| 60 | // Luckily, if `new()` and `sample` are close, the compiler can optimize out the |
| 61 | // extra check. |
| 62 | const ALWAYS_TRUE: u64 = u64::MAX; |
| 63 | |
| 64 | // This is just `2.0.powi(64)`, but written this way because it is not available |
| 65 | // in `no_std` mode. |
| 66 | const SCALE: f64 = 2.0 * (1u64 << 63) as f64; |
| 67 | |
| 68 | /// Error type returned from `Bernoulli::new`. |
| 69 | #[derive (Clone, Copy, Debug, PartialEq, Eq)] |
| 70 | pub enum BernoulliError { |
| 71 | /// `p < 0` or `p > 1`. |
| 72 | InvalidProbability, |
| 73 | } |
| 74 | |
| 75 | impl fmt::Display for BernoulliError { |
| 76 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 77 | f.write_str(data:match self { |
| 78 | BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution" , |
| 79 | }) |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | #[cfg (feature = "std" )] |
| 84 | impl ::std::error::Error for BernoulliError {} |
| 85 | |
| 86 | impl Bernoulli { |
| 87 | /// Construct a new `Bernoulli` with the given probability of success `p`. |
| 88 | /// |
| 89 | /// # Precision |
| 90 | /// |
| 91 | /// For `p = 1.0`, the resulting distribution will always generate true. |
| 92 | /// For `p = 0.0`, the resulting distribution will always generate false. |
| 93 | /// |
| 94 | /// This method is accurate for any input `p` in the range `[0, 1]` which is |
| 95 | /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of |
| 96 | /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.) |
| 97 | #[inline ] |
| 98 | pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> { |
| 99 | if !(0.0..1.0).contains(&p) { |
| 100 | if p == 1.0 { |
| 101 | return Ok(Bernoulli { p_int: ALWAYS_TRUE }); |
| 102 | } |
| 103 | return Err(BernoulliError::InvalidProbability); |
| 104 | } |
| 105 | Ok(Bernoulli { |
| 106 | p_int: (p * SCALE) as u64, |
| 107 | }) |
| 108 | } |
| 109 | |
| 110 | /// Construct a new `Bernoulli` with the probability of success of |
| 111 | /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return |
| 112 | /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`. |
| 113 | /// |
| 114 | /// return `true`. If `numerator == 0` it will always return `false`. |
| 115 | /// For `numerator > denominator` and `denominator == 0`, this returns an |
| 116 | /// error. Otherwise, for `numerator == denominator`, samples are always |
| 117 | /// true; for `numerator == 0` samples are always false. |
| 118 | #[inline ] |
| 119 | pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> { |
| 120 | if numerator > denominator || denominator == 0 { |
| 121 | return Err(BernoulliError::InvalidProbability); |
| 122 | } |
| 123 | if numerator == denominator { |
| 124 | return Ok(Bernoulli { p_int: ALWAYS_TRUE }); |
| 125 | } |
| 126 | let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64; |
| 127 | Ok(Bernoulli { p_int }) |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | impl Distribution<bool> for Bernoulli { |
| 132 | #[inline ] |
| 133 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { |
| 134 | // Make sure to always return true for p = 1.0. |
| 135 | if self.p_int == ALWAYS_TRUE { |
| 136 | return true; |
| 137 | } |
| 138 | let v: u64 = rng.gen(); |
| 139 | v < self.p_int |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | #[cfg (test)] |
| 144 | mod test { |
| 145 | use super::Bernoulli; |
| 146 | use crate::distributions::Distribution; |
| 147 | use crate::Rng; |
| 148 | |
| 149 | #[test ] |
| 150 | #[cfg (feature="serde1" )] |
| 151 | fn test_serializing_deserializing_bernoulli() { |
| 152 | let coin_flip = Bernoulli::new(0.5).unwrap(); |
| 153 | let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap(); |
| 154 | |
| 155 | assert_eq!(coin_flip.p_int, de_coin_flip.p_int); |
| 156 | } |
| 157 | |
| 158 | #[test ] |
| 159 | fn test_trivial() { |
| 160 | // We prefer to be explicit here. |
| 161 | #![allow (clippy::bool_assert_comparison)] |
| 162 | |
| 163 | let mut r = crate::test::rng(1); |
| 164 | let always_false = Bernoulli::new(0.0).unwrap(); |
| 165 | let always_true = Bernoulli::new(1.0).unwrap(); |
| 166 | for _ in 0..5 { |
| 167 | assert_eq!(r.sample::<bool, _>(&always_false), false); |
| 168 | assert_eq!(r.sample::<bool, _>(&always_true), true); |
| 169 | assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false); |
| 170 | assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | #[test ] |
| 175 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 176 | fn test_average() { |
| 177 | const P: f64 = 0.3; |
| 178 | const NUM: u32 = 3; |
| 179 | const DENOM: u32 = 10; |
| 180 | let d1 = Bernoulli::new(P).unwrap(); |
| 181 | let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap(); |
| 182 | const N: u32 = 100_000; |
| 183 | |
| 184 | let mut sum1: u32 = 0; |
| 185 | let mut sum2: u32 = 0; |
| 186 | let mut rng = crate::test::rng(2); |
| 187 | for _ in 0..N { |
| 188 | if d1.sample(&mut rng) { |
| 189 | sum1 += 1; |
| 190 | } |
| 191 | if d2.sample(&mut rng) { |
| 192 | sum2 += 1; |
| 193 | } |
| 194 | } |
| 195 | let avg1 = (sum1 as f64) / (N as f64); |
| 196 | assert!((avg1 - P).abs() < 5e-3); |
| 197 | |
| 198 | let avg2 = (sum2 as f64) / (N as f64); |
| 199 | assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3); |
| 200 | } |
| 201 | |
| 202 | #[test ] |
| 203 | fn value_stability() { |
| 204 | let mut rng = crate::test::rng(3); |
| 205 | let distr = Bernoulli::new(0.4532).unwrap(); |
| 206 | let mut buf = [false; 10]; |
| 207 | for x in &mut buf { |
| 208 | *x = rng.sample(&distr); |
| 209 | } |
| 210 | assert_eq!(buf, [ |
| 211 | true, false, false, true, false, false, true, true, true, true |
| 212 | ]); |
| 213 | } |
| 214 | |
| 215 | #[test ] |
| 216 | fn bernoulli_distributions_can_be_compared() { |
| 217 | assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0)); |
| 218 | } |
| 219 | } |
| 220 | |