| 1 | // Copyright 2018 Developers of the Rand project. |
| 2 | // Copyright 2013-2017 The Rust Project Developers. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 7 | // option. This file may not be copied, modified, or distributed |
| 8 | // except according to those terms. |
| 9 | |
| 10 | //! Distribution trait and associates |
| 11 | |
| 12 | use crate::Rng; |
| 13 | use core::iter; |
| 14 | #[cfg (feature = "alloc" )] |
| 15 | use alloc::string::String; |
| 16 | |
| 17 | /// Types (distributions) that can be used to create a random instance of `T`. |
| 18 | /// |
| 19 | /// It is possible to sample from a distribution through both the |
| 20 | /// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and |
| 21 | /// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which |
| 22 | /// produces an iterator that samples from the distribution. |
| 23 | /// |
| 24 | /// All implementations are expected to be immutable; this has the significant |
| 25 | /// advantage of not needing to consider thread safety, and for most |
| 26 | /// distributions efficient state-less sampling algorithms are available. |
| 27 | /// |
| 28 | /// Implementations are typically expected to be portable with reproducible |
| 29 | /// results when used with a PRNG with fixed seed; see the |
| 30 | /// [portability chapter](https://rust-random.github.io/book/portability.html) |
| 31 | /// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize` |
| 32 | /// type requires different sampling on 32-bit and 64-bit machines. |
| 33 | /// |
| 34 | /// [`sample_iter`]: Distribution::sample_iter |
| 35 | pub trait Distribution<T> { |
| 36 | /// Generate a random value of `T`, using `rng` as the source of randomness. |
| 37 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; |
| 38 | |
| 39 | /// Create an iterator that generates random values of `T`, using `rng` as |
| 40 | /// the source of randomness. |
| 41 | /// |
| 42 | /// Note that this function takes `self` by value. This works since |
| 43 | /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`, |
| 44 | /// however borrowing is not automatic hence `distr.sample_iter(...)` may |
| 45 | /// need to be replaced with `(&distr).sample_iter(...)` to borrow or |
| 46 | /// `(&*distr).sample_iter(...)` to reborrow an existing reference. |
| 47 | /// |
| 48 | /// # Example |
| 49 | /// |
| 50 | /// ``` |
| 51 | /// use rand::thread_rng; |
| 52 | /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; |
| 53 | /// |
| 54 | /// let mut rng = thread_rng(); |
| 55 | /// |
| 56 | /// // Vec of 16 x f32: |
| 57 | /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect(); |
| 58 | /// |
| 59 | /// // String: |
| 60 | /// let s: String = Alphanumeric |
| 61 | /// .sample_iter(&mut rng) |
| 62 | /// .take(7) |
| 63 | /// .map(char::from) |
| 64 | /// .collect(); |
| 65 | /// |
| 66 | /// // Dice-rolling: |
| 67 | /// let die_range = Uniform::new_inclusive(1, 6); |
| 68 | /// let mut roll_die = die_range.sample_iter(&mut rng); |
| 69 | /// while roll_die.next().unwrap() != 6 { |
| 70 | /// println!("Not a 6; rolling again!" ); |
| 71 | /// } |
| 72 | /// ``` |
| 73 | fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> |
| 74 | where |
| 75 | R: Rng, |
| 76 | Self: Sized, |
| 77 | { |
| 78 | DistIter { |
| 79 | distr: self, |
| 80 | rng, |
| 81 | phantom: ::core::marker::PhantomData, |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | /// Create a distribution of values of 'S' by mapping the output of `Self` |
| 86 | /// through the closure `F` |
| 87 | /// |
| 88 | /// # Example |
| 89 | /// |
| 90 | /// ``` |
| 91 | /// use rand::thread_rng; |
| 92 | /// use rand::distributions::{Distribution, Uniform}; |
| 93 | /// |
| 94 | /// let mut rng = thread_rng(); |
| 95 | /// |
| 96 | /// let die = Uniform::new_inclusive(1, 6); |
| 97 | /// let even_number = die.map(|num| num % 2 == 0); |
| 98 | /// while !even_number.sample(&mut rng) { |
| 99 | /// println!("Still odd; rolling again!" ); |
| 100 | /// } |
| 101 | /// ``` |
| 102 | fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S> |
| 103 | where |
| 104 | F: Fn(T) -> S, |
| 105 | Self: Sized, |
| 106 | { |
| 107 | DistMap { |
| 108 | distr: self, |
| 109 | func, |
| 110 | phantom: ::core::marker::PhantomData, |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { |
| 116 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { |
| 117 | (*self).sample(rng) |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | /// An iterator that generates random values of `T` with distribution `D`, |
| 122 | /// using `R` as the source of randomness. |
| 123 | /// |
| 124 | /// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. |
| 125 | /// See its documentation for more. |
| 126 | /// |
| 127 | /// [`sample_iter`]: Distribution::sample_iter |
| 128 | #[derive (Debug)] |
| 129 | pub struct DistIter<D, R, T> { |
| 130 | distr: D, |
| 131 | rng: R, |
| 132 | phantom: ::core::marker::PhantomData<T>, |
| 133 | } |
| 134 | |
| 135 | impl<D, R, T> Iterator for DistIter<D, R, T> |
| 136 | where |
| 137 | D: Distribution<T>, |
| 138 | R: Rng, |
| 139 | { |
| 140 | type Item = T; |
| 141 | |
| 142 | #[inline (always)] |
| 143 | fn next(&mut self) -> Option<T> { |
| 144 | // Here, self.rng may be a reference, but we must take &mut anyway. |
| 145 | // Even if sample could take an R: Rng by value, we would need to do this |
| 146 | // since Rng is not copyable and we cannot enforce that this is "reborrowable". |
| 147 | Some(self.distr.sample(&mut self.rng)) |
| 148 | } |
| 149 | |
| 150 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 151 | (usize::max_value(), None) |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | impl<D, R, T> iter::FusedIterator for DistIter<D, R, T> |
| 156 | where |
| 157 | D: Distribution<T>, |
| 158 | R: Rng, |
| 159 | { |
| 160 | } |
| 161 | |
| 162 | #[cfg (features = "nightly" )] |
| 163 | impl<D, R, T> iter::TrustedLen for DistIter<D, R, T> |
| 164 | where |
| 165 | D: Distribution<T>, |
| 166 | R: Rng, |
| 167 | { |
| 168 | } |
| 169 | |
| 170 | /// A distribution of values of type `S` derived from the distribution `D` |
| 171 | /// by mapping its output of type `T` through the closure `F`. |
| 172 | /// |
| 173 | /// This `struct` is created by the [`Distribution::map`] method. |
| 174 | /// See its documentation for more. |
| 175 | #[derive (Debug)] |
| 176 | pub struct DistMap<D, F, T, S> { |
| 177 | distr: D, |
| 178 | func: F, |
| 179 | phantom: ::core::marker::PhantomData<fn(T) -> S>, |
| 180 | } |
| 181 | |
| 182 | impl<D, F, T, S> Distribution<S> for DistMap<D, F, T, S> |
| 183 | where |
| 184 | D: Distribution<T>, |
| 185 | F: Fn(T) -> S, |
| 186 | { |
| 187 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> S { |
| 188 | (self.func)(self.distr.sample(rng)) |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | /// `String` sampler |
| 193 | /// |
| 194 | /// Sampling a `String` of random characters is not quite the same as collecting |
| 195 | /// a sequence of chars. This trait contains some helpers. |
| 196 | #[cfg (feature = "alloc" )] |
| 197 | pub trait DistString { |
| 198 | /// Append `len` random chars to `string` |
| 199 | fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize); |
| 200 | |
| 201 | /// Generate a `String` of `len` random chars |
| 202 | #[inline ] |
| 203 | fn sample_string<R: Rng + ?Sized>(&self, rng: &mut R, len: usize) -> String { |
| 204 | let mut s: String = String::new(); |
| 205 | self.append_string(rng, &mut s, len); |
| 206 | s |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | #[cfg (test)] |
| 211 | mod tests { |
| 212 | use crate::distributions::{Distribution, Uniform}; |
| 213 | use crate::Rng; |
| 214 | |
| 215 | #[test ] |
| 216 | fn test_distributions_iter() { |
| 217 | use crate::distributions::Open01; |
| 218 | let mut rng = crate::test::rng(210); |
| 219 | let distr = Open01; |
| 220 | let mut iter = Distribution::<f32>::sample_iter(distr, &mut rng); |
| 221 | let mut sum: f32 = 0.; |
| 222 | for _ in 0..100 { |
| 223 | sum += iter.next().unwrap(); |
| 224 | } |
| 225 | assert!(0. < sum && sum < 100.); |
| 226 | } |
| 227 | |
| 228 | #[test ] |
| 229 | fn test_distributions_map() { |
| 230 | let dist = Uniform::new_inclusive(0, 5).map(|val| val + 15); |
| 231 | |
| 232 | let mut rng = crate::test::rng(212); |
| 233 | let val = dist.sample(&mut rng); |
| 234 | assert!((15..=20).contains(&val)); |
| 235 | } |
| 236 | |
| 237 | #[test ] |
| 238 | fn test_make_an_iter() { |
| 239 | fn ten_dice_rolls_other_than_five<R: Rng>( |
| 240 | rng: &mut R, |
| 241 | ) -> impl Iterator<Item = i32> + '_ { |
| 242 | Uniform::new_inclusive(1, 6) |
| 243 | .sample_iter(rng) |
| 244 | .filter(|x| *x != 5) |
| 245 | .take(10) |
| 246 | } |
| 247 | |
| 248 | let mut rng = crate::test::rng(211); |
| 249 | let mut count = 0; |
| 250 | for val in ten_dice_rolls_other_than_five(&mut rng) { |
| 251 | assert!((1..=6).contains(&val) && val != 5); |
| 252 | count += 1; |
| 253 | } |
| 254 | assert_eq!(count, 10); |
| 255 | } |
| 256 | |
| 257 | #[test ] |
| 258 | #[cfg (feature = "alloc" )] |
| 259 | fn test_dist_string() { |
| 260 | use core::str; |
| 261 | use crate::distributions::{Alphanumeric, DistString, Standard}; |
| 262 | let mut rng = crate::test::rng(213); |
| 263 | |
| 264 | let s1 = Alphanumeric.sample_string(&mut rng, 20); |
| 265 | assert_eq!(s1.len(), 20); |
| 266 | assert_eq!(str::from_utf8(s1.as_bytes()), Ok(s1.as_str())); |
| 267 | |
| 268 | let s2 = Standard.sample_string(&mut rng, 20); |
| 269 | assert_eq!(s2.chars().count(), 20); |
| 270 | assert_eq!(str::from_utf8(s2.as_bytes()), Ok(s2.as_str())); |
| 271 | } |
| 272 | } |
| 273 | |