| 1 | // Copyright 2018 Developers of the Rand project. |
| 2 | // Copyright 2013-2017 The Rust Project Developers. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 7 | // option. This file may not be copied, modified, or distributed |
| 8 | // except according to those terms. |
| 9 | |
| 10 | //! [`Rng`] trait |
| 11 | |
| 12 | use rand_core::{Error, RngCore}; |
| 13 | use crate::distributions::uniform::{SampleRange, SampleUniform}; |
| 14 | use crate::distributions::{self, Distribution, Standard}; |
| 15 | use core::num::Wrapping; |
| 16 | use core::{mem, slice}; |
| 17 | |
| 18 | /// An automatically-implemented extension trait on [`RngCore`] providing high-level |
| 19 | /// generic methods for sampling values and other convenience methods. |
| 20 | /// |
| 21 | /// This is the primary trait to use when generating random values. |
| 22 | /// |
| 23 | /// # Generic usage |
| 24 | /// |
| 25 | /// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some |
| 26 | /// things are worth noting here: |
| 27 | /// |
| 28 | /// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no |
| 29 | /// difference whether we use `R: Rng` or `R: RngCore`. |
| 30 | /// - The `+ ?Sized` un-bounding allows functions to be called directly on |
| 31 | /// type-erased references; i.e. `foo(r)` where `r: &mut dyn RngCore`. Without |
| 32 | /// this it would be necessary to write `foo(&mut r)`. |
| 33 | /// |
| 34 | /// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some |
| 35 | /// trade-offs. It allows the argument to be consumed directly without a `&mut` |
| 36 | /// (which is how `from_rng(thread_rng())` works); also it still works directly |
| 37 | /// on references (including type-erased references). Unfortunately within the |
| 38 | /// function `foo` it is not known whether `rng` is a reference type or not, |
| 39 | /// hence many uses of `rng` require an extra reference, either explicitly |
| 40 | /// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the |
| 41 | /// optimiser can remove redundant references later. |
| 42 | /// |
| 43 | /// Example: |
| 44 | /// |
| 45 | /// ``` |
| 46 | /// # use rand::thread_rng; |
| 47 | /// use rand::Rng; |
| 48 | /// |
| 49 | /// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { |
| 50 | /// rng.gen() |
| 51 | /// } |
| 52 | /// |
| 53 | /// # let v = foo(&mut thread_rng()); |
| 54 | /// ``` |
| 55 | pub trait Rng: RngCore { |
| 56 | /// Return a random value supporting the [`Standard`] distribution. |
| 57 | /// |
| 58 | /// # Example |
| 59 | /// |
| 60 | /// ``` |
| 61 | /// use rand::{thread_rng, Rng}; |
| 62 | /// |
| 63 | /// let mut rng = thread_rng(); |
| 64 | /// let x: u32 = rng.gen(); |
| 65 | /// println!("{}" , x); |
| 66 | /// println!("{:?}" , rng.gen::<(f64, bool)>()); |
| 67 | /// ``` |
| 68 | /// |
| 69 | /// # Arrays and tuples |
| 70 | /// |
| 71 | /// The `rng.gen()` method is able to generate arrays (up to 32 elements) |
| 72 | /// and tuples (up to 12 elements), so long as all element types can be |
| 73 | /// generated. |
| 74 | /// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support |
| 75 | /// arrays larger than 32 elements. |
| 76 | /// |
| 77 | /// For arrays of integers, especially for those with small element types |
| 78 | /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`]. |
| 79 | /// |
| 80 | /// ``` |
| 81 | /// use rand::{thread_rng, Rng}; |
| 82 | /// |
| 83 | /// let mut rng = thread_rng(); |
| 84 | /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support |
| 85 | /// |
| 86 | /// let arr1: [f32; 32] = rng.gen(); // array construction |
| 87 | /// let mut arr2 = [0u8; 128]; |
| 88 | /// rng.fill(&mut arr2); // array fill |
| 89 | /// ``` |
| 90 | /// |
| 91 | /// [`Standard`]: distributions::Standard |
| 92 | #[inline ] |
| 93 | fn gen<T>(&mut self) -> T |
| 94 | where Standard: Distribution<T> { |
| 95 | Standard.sample(self) |
| 96 | } |
| 97 | |
| 98 | /// Generate a random value in the given range. |
| 99 | /// |
| 100 | /// This function is optimised for the case that only a single sample is |
| 101 | /// made from the given range. See also the [`Uniform`] distribution |
| 102 | /// type which may be faster if sampling from the same range repeatedly. |
| 103 | /// |
| 104 | /// Only `gen_range(low..high)` and `gen_range(low..=high)` are supported. |
| 105 | /// |
| 106 | /// # Panics |
| 107 | /// |
| 108 | /// Panics if the range is empty. |
| 109 | /// |
| 110 | /// # Example |
| 111 | /// |
| 112 | /// ``` |
| 113 | /// use rand::{thread_rng, Rng}; |
| 114 | /// |
| 115 | /// let mut rng = thread_rng(); |
| 116 | /// |
| 117 | /// // Exclusive range |
| 118 | /// let n: u32 = rng.gen_range(0..10); |
| 119 | /// println!("{}" , n); |
| 120 | /// let m: f64 = rng.gen_range(-40.0..1.3e5); |
| 121 | /// println!("{}" , m); |
| 122 | /// |
| 123 | /// // Inclusive range |
| 124 | /// let n: u32 = rng.gen_range(0..=10); |
| 125 | /// println!("{}" , n); |
| 126 | /// ``` |
| 127 | /// |
| 128 | /// [`Uniform`]: distributions::uniform::Uniform |
| 129 | fn gen_range<T, R>(&mut self, range: R) -> T |
| 130 | where |
| 131 | T: SampleUniform, |
| 132 | R: SampleRange<T> |
| 133 | { |
| 134 | assert!(!range.is_empty(), "cannot sample empty range" ); |
| 135 | range.sample_single(self) |
| 136 | } |
| 137 | |
| 138 | /// Sample a new value, using the given distribution. |
| 139 | /// |
| 140 | /// ### Example |
| 141 | /// |
| 142 | /// ``` |
| 143 | /// use rand::{thread_rng, Rng}; |
| 144 | /// use rand::distributions::Uniform; |
| 145 | /// |
| 146 | /// let mut rng = thread_rng(); |
| 147 | /// let x = rng.sample(Uniform::new(10u32, 15)); |
| 148 | /// // Type annotation requires two types, the type and distribution; the |
| 149 | /// // distribution can be inferred. |
| 150 | /// let y = rng.sample::<u16, _>(Uniform::new(10, 15)); |
| 151 | /// ``` |
| 152 | fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { |
| 153 | distr.sample(self) |
| 154 | } |
| 155 | |
| 156 | /// Create an iterator that generates values using the given distribution. |
| 157 | /// |
| 158 | /// Note that this function takes its arguments by value. This works since |
| 159 | /// `(&mut R): Rng where R: Rng` and |
| 160 | /// `(&D): Distribution where D: Distribution`, |
| 161 | /// however borrowing is not automatic hence `rng.sample_iter(...)` may |
| 162 | /// need to be replaced with `(&mut rng).sample_iter(...)`. |
| 163 | /// |
| 164 | /// # Example |
| 165 | /// |
| 166 | /// ``` |
| 167 | /// use rand::{thread_rng, Rng}; |
| 168 | /// use rand::distributions::{Alphanumeric, Uniform, Standard}; |
| 169 | /// |
| 170 | /// let mut rng = thread_rng(); |
| 171 | /// |
| 172 | /// // Vec of 16 x f32: |
| 173 | /// let v: Vec<f32> = (&mut rng).sample_iter(Standard).take(16).collect(); |
| 174 | /// |
| 175 | /// // String: |
| 176 | /// let s: String = (&mut rng).sample_iter(Alphanumeric) |
| 177 | /// .take(7) |
| 178 | /// .map(char::from) |
| 179 | /// .collect(); |
| 180 | /// |
| 181 | /// // Combined values |
| 182 | /// println!("{:?}" , (&mut rng).sample_iter(Standard).take(5) |
| 183 | /// .collect::<Vec<(f64, bool)>>()); |
| 184 | /// |
| 185 | /// // Dice-rolling: |
| 186 | /// let die_range = Uniform::new_inclusive(1, 6); |
| 187 | /// let mut roll_die = (&mut rng).sample_iter(die_range); |
| 188 | /// while roll_die.next().unwrap() != 6 { |
| 189 | /// println!("Not a 6; rolling again!" ); |
| 190 | /// } |
| 191 | /// ``` |
| 192 | fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T> |
| 193 | where |
| 194 | D: Distribution<T>, |
| 195 | Self: Sized, |
| 196 | { |
| 197 | distr.sample_iter(self) |
| 198 | } |
| 199 | |
| 200 | /// Fill any type implementing [`Fill`] with random data |
| 201 | /// |
| 202 | /// The distribution is expected to be uniform with portable results, but |
| 203 | /// this cannot be guaranteed for third-party implementations. |
| 204 | /// |
| 205 | /// This is identical to [`try_fill`] except that it panics on error. |
| 206 | /// |
| 207 | /// # Example |
| 208 | /// |
| 209 | /// ``` |
| 210 | /// use rand::{thread_rng, Rng}; |
| 211 | /// |
| 212 | /// let mut arr = [0i8; 20]; |
| 213 | /// thread_rng().fill(&mut arr[..]); |
| 214 | /// ``` |
| 215 | /// |
| 216 | /// [`fill_bytes`]: RngCore::fill_bytes |
| 217 | /// [`try_fill`]: Rng::try_fill |
| 218 | fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T) { |
| 219 | dest.try_fill(self).unwrap_or_else(|_| panic!("Rng::fill failed" )) |
| 220 | } |
| 221 | |
| 222 | /// Fill any type implementing [`Fill`] with random data |
| 223 | /// |
| 224 | /// The distribution is expected to be uniform with portable results, but |
| 225 | /// this cannot be guaranteed for third-party implementations. |
| 226 | /// |
| 227 | /// This is identical to [`fill`] except that it forwards errors. |
| 228 | /// |
| 229 | /// # Example |
| 230 | /// |
| 231 | /// ``` |
| 232 | /// # use rand::Error; |
| 233 | /// use rand::{thread_rng, Rng}; |
| 234 | /// |
| 235 | /// # fn try_inner() -> Result<(), Error> { |
| 236 | /// let mut arr = [0u64; 4]; |
| 237 | /// thread_rng().try_fill(&mut arr[..])?; |
| 238 | /// # Ok(()) |
| 239 | /// # } |
| 240 | /// |
| 241 | /// # try_inner().unwrap() |
| 242 | /// ``` |
| 243 | /// |
| 244 | /// [`try_fill_bytes`]: RngCore::try_fill_bytes |
| 245 | /// [`fill`]: Rng::fill |
| 246 | fn try_fill<T: Fill + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> { |
| 247 | dest.try_fill(self) |
| 248 | } |
| 249 | |
| 250 | /// Return a bool with a probability `p` of being true. |
| 251 | /// |
| 252 | /// See also the [`Bernoulli`] distribution, which may be faster if |
| 253 | /// sampling from the same probability repeatedly. |
| 254 | /// |
| 255 | /// # Example |
| 256 | /// |
| 257 | /// ``` |
| 258 | /// use rand::{thread_rng, Rng}; |
| 259 | /// |
| 260 | /// let mut rng = thread_rng(); |
| 261 | /// println!("{}" , rng.gen_bool(1.0 / 3.0)); |
| 262 | /// ``` |
| 263 | /// |
| 264 | /// # Panics |
| 265 | /// |
| 266 | /// If `p < 0` or `p > 1`. |
| 267 | /// |
| 268 | /// [`Bernoulli`]: distributions::Bernoulli |
| 269 | #[inline ] |
| 270 | fn gen_bool(&mut self, p: f64) -> bool { |
| 271 | let d = distributions::Bernoulli::new(p).unwrap(); |
| 272 | self.sample(d) |
| 273 | } |
| 274 | |
| 275 | /// Return a bool with a probability of `numerator/denominator` of being |
| 276 | /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of |
| 277 | /// returning true. If `numerator == denominator`, then the returned value |
| 278 | /// is guaranteed to be `true`. If `numerator == 0`, then the returned |
| 279 | /// value is guaranteed to be `false`. |
| 280 | /// |
| 281 | /// See also the [`Bernoulli`] distribution, which may be faster if |
| 282 | /// sampling from the same `numerator` and `denominator` repeatedly. |
| 283 | /// |
| 284 | /// # Panics |
| 285 | /// |
| 286 | /// If `denominator == 0` or `numerator > denominator`. |
| 287 | /// |
| 288 | /// # Example |
| 289 | /// |
| 290 | /// ``` |
| 291 | /// use rand::{thread_rng, Rng}; |
| 292 | /// |
| 293 | /// let mut rng = thread_rng(); |
| 294 | /// println!("{}" , rng.gen_ratio(2, 3)); |
| 295 | /// ``` |
| 296 | /// |
| 297 | /// [`Bernoulli`]: distributions::Bernoulli |
| 298 | #[inline ] |
| 299 | fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool { |
| 300 | let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap(); |
| 301 | self.sample(d) |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | impl<R: RngCore + ?Sized> Rng for R {} |
| 306 | |
| 307 | /// Types which may be filled with random data |
| 308 | /// |
| 309 | /// This trait allows arrays to be efficiently filled with random data. |
| 310 | /// |
| 311 | /// Implementations are expected to be portable across machines unless |
| 312 | /// clearly documented otherwise (see the |
| 313 | /// [Chapter on Portability](https://rust-random.github.io/book/portability.html)). |
| 314 | pub trait Fill { |
| 315 | /// Fill self with random data |
| 316 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error>; |
| 317 | } |
| 318 | |
| 319 | macro_rules! impl_fill_each { |
| 320 | () => {}; |
| 321 | ($t:ty) => { |
| 322 | impl Fill for [$t] { |
| 323 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
| 324 | for elt in self.iter_mut() { |
| 325 | *elt = rng.gen(); |
| 326 | } |
| 327 | Ok(()) |
| 328 | } |
| 329 | } |
| 330 | }; |
| 331 | ($t:ty, $($tt:ty,)*) => { |
| 332 | impl_fill_each!($t); |
| 333 | impl_fill_each!($($tt,)*); |
| 334 | }; |
| 335 | } |
| 336 | |
| 337 | impl_fill_each!(bool, char, f32, f64,); |
| 338 | |
| 339 | impl Fill for [u8] { |
| 340 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
| 341 | rng.try_fill_bytes(self) |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | macro_rules! impl_fill { |
| 346 | () => {}; |
| 347 | ($t:ty) => { |
| 348 | impl Fill for [$t] { |
| 349 | #[inline(never)] // in micro benchmarks, this improves performance |
| 350 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
| 351 | if self.len() > 0 { |
| 352 | rng.try_fill_bytes(unsafe { |
| 353 | slice::from_raw_parts_mut(self.as_mut_ptr() |
| 354 | as *mut u8, |
| 355 | self.len() * mem::size_of::<$t>() |
| 356 | ) |
| 357 | })?; |
| 358 | for x in self { |
| 359 | *x = x.to_le(); |
| 360 | } |
| 361 | } |
| 362 | Ok(()) |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | impl Fill for [Wrapping<$t>] { |
| 367 | #[inline(never)] |
| 368 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
| 369 | if self.len() > 0 { |
| 370 | rng.try_fill_bytes(unsafe { |
| 371 | slice::from_raw_parts_mut(self.as_mut_ptr() |
| 372 | as *mut u8, |
| 373 | self.len() * mem::size_of::<$t>() |
| 374 | ) |
| 375 | })?; |
| 376 | for x in self { |
| 377 | *x = Wrapping(x.0.to_le()); |
| 378 | } |
| 379 | } |
| 380 | Ok(()) |
| 381 | } |
| 382 | } |
| 383 | }; |
| 384 | ($t:ty, $($tt:ty,)*) => { |
| 385 | impl_fill!($t); |
| 386 | // TODO: this could replace above impl once Rust #32463 is fixed |
| 387 | // impl_fill!(Wrapping<$t>); |
| 388 | impl_fill!($($tt,)*); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | impl_fill!(u16, u32, u64, usize, u128,); |
| 393 | impl_fill!(i8, i16, i32, i64, isize, i128,); |
| 394 | |
| 395 | #[cfg_attr (doc_cfg, doc(cfg(feature = "min_const_gen" )))] |
| 396 | #[cfg (feature = "min_const_gen" )] |
| 397 | impl<T, const N: usize> Fill for [T; N] |
| 398 | where [T]: Fill |
| 399 | { |
| 400 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
| 401 | self[..].try_fill(rng) |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | #[cfg (not(feature = "min_const_gen" ))] |
| 406 | macro_rules! impl_fill_arrays { |
| 407 | ($n:expr,) => {}; |
| 408 | ($n:expr, $N:ident) => { |
| 409 | impl<T> Fill for [T; $n] where [T]: Fill { |
| 410 | fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> { |
| 411 | self[..].try_fill(rng) |
| 412 | } |
| 413 | } |
| 414 | }; |
| 415 | ($n:expr, $N:ident, $($NN:ident,)*) => { |
| 416 | impl_fill_arrays!($n, $N); |
| 417 | impl_fill_arrays!($n - 1, $($NN,)*); |
| 418 | }; |
| 419 | (!div $n:expr,) => {}; |
| 420 | (!div $n:expr, $N:ident, $($NN:ident,)*) => { |
| 421 | impl_fill_arrays!($n, $N); |
| 422 | impl_fill_arrays!(!div $n / 2, $($NN,)*); |
| 423 | }; |
| 424 | } |
| 425 | #[cfg (not(feature = "min_const_gen" ))] |
| 426 | #[rustfmt::skip] |
| 427 | impl_fill_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,); |
| 428 | #[cfg (not(feature = "min_const_gen" ))] |
| 429 | impl_fill_arrays!(!div 4096, N,N,N,N,N,N,N,); |
| 430 | |
| 431 | #[cfg (test)] |
| 432 | mod test { |
| 433 | use super::*; |
| 434 | use crate::test::rng; |
| 435 | use crate::rngs::mock::StepRng; |
| 436 | #[cfg (feature = "alloc" )] use alloc::boxed::Box; |
| 437 | |
| 438 | #[test ] |
| 439 | fn test_fill_bytes_default() { |
| 440 | let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); |
| 441 | |
| 442 | // check every remainder mod 8, both in small and big vectors. |
| 443 | let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87]; |
| 444 | for &n in lengths.iter() { |
| 445 | let mut buffer = [0u8; 87]; |
| 446 | let v = &mut buffer[0..n]; |
| 447 | r.fill_bytes(v); |
| 448 | |
| 449 | // use this to get nicer error messages. |
| 450 | for (i, &byte) in v.iter().enumerate() { |
| 451 | if byte == 0 { |
| 452 | panic!("byte {} of {} is zero" , i, n) |
| 453 | } |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | #[test ] |
| 459 | fn test_fill() { |
| 460 | let x = 9041086907909331047; // a random u64 |
| 461 | let mut rng = StepRng::new(x, 0); |
| 462 | |
| 463 | // Convert to byte sequence and back to u64; byte-swap twice if BE. |
| 464 | let mut array = [0u64; 2]; |
| 465 | rng.fill(&mut array[..]); |
| 466 | assert_eq!(array, [x, x]); |
| 467 | assert_eq!(rng.next_u64(), x); |
| 468 | |
| 469 | // Convert to bytes then u32 in LE order |
| 470 | let mut array = [0u32; 2]; |
| 471 | rng.fill(&mut array[..]); |
| 472 | assert_eq!(array, [x as u32, (x >> 32) as u32]); |
| 473 | assert_eq!(rng.next_u32(), x as u32); |
| 474 | |
| 475 | // Check equivalence using wrapped arrays |
| 476 | let mut warray = [Wrapping(0u32); 2]; |
| 477 | rng.fill(&mut warray[..]); |
| 478 | assert_eq!(array[0], warray[0].0); |
| 479 | assert_eq!(array[1], warray[1].0); |
| 480 | |
| 481 | // Check equivalence for generated floats |
| 482 | let mut array = [0f32; 2]; |
| 483 | rng.fill(&mut array); |
| 484 | let gen: [f32; 2] = rng.gen(); |
| 485 | assert_eq!(array, gen); |
| 486 | } |
| 487 | |
| 488 | #[test ] |
| 489 | fn test_fill_empty() { |
| 490 | let mut array = [0u32; 0]; |
| 491 | let mut rng = StepRng::new(0, 1); |
| 492 | rng.fill(&mut array); |
| 493 | rng.fill(&mut array[..]); |
| 494 | } |
| 495 | |
| 496 | #[test ] |
| 497 | fn test_gen_range_int() { |
| 498 | let mut r = rng(101); |
| 499 | for _ in 0..1000 { |
| 500 | let a = r.gen_range(-4711..17); |
| 501 | assert!((-4711..17).contains(&a)); |
| 502 | let a: i8 = r.gen_range(-3..42); |
| 503 | assert!((-3..42).contains(&a)); |
| 504 | let a: u16 = r.gen_range(10..99); |
| 505 | assert!((10..99).contains(&a)); |
| 506 | let a: i32 = r.gen_range(-100..2000); |
| 507 | assert!((-100..2000).contains(&a)); |
| 508 | let a: u32 = r.gen_range(12..=24); |
| 509 | assert!((12..=24).contains(&a)); |
| 510 | |
| 511 | assert_eq!(r.gen_range(0u32..1), 0u32); |
| 512 | assert_eq!(r.gen_range(-12i64..-11), -12i64); |
| 513 | assert_eq!(r.gen_range(3_000_000..3_000_001), 3_000_000); |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | #[test ] |
| 518 | fn test_gen_range_float() { |
| 519 | let mut r = rng(101); |
| 520 | for _ in 0..1000 { |
| 521 | let a = r.gen_range(-4.5..1.7); |
| 522 | assert!((-4.5..1.7).contains(&a)); |
| 523 | let a = r.gen_range(-1.1..=-0.3); |
| 524 | assert!((-1.1..=-0.3).contains(&a)); |
| 525 | |
| 526 | assert_eq!(r.gen_range(0.0f32..=0.0), 0.); |
| 527 | assert_eq!(r.gen_range(-11.0..=-11.0), -11.); |
| 528 | assert_eq!(r.gen_range(3_000_000.0..=3_000_000.0), 3_000_000.); |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | #[test ] |
| 533 | #[should_panic ] |
| 534 | fn test_gen_range_panic_int() { |
| 535 | #![allow (clippy::reversed_empty_ranges)] |
| 536 | let mut r = rng(102); |
| 537 | r.gen_range(5..-2); |
| 538 | } |
| 539 | |
| 540 | #[test ] |
| 541 | #[should_panic ] |
| 542 | fn test_gen_range_panic_usize() { |
| 543 | #![allow (clippy::reversed_empty_ranges)] |
| 544 | let mut r = rng(103); |
| 545 | r.gen_range(5..2); |
| 546 | } |
| 547 | |
| 548 | #[test ] |
| 549 | fn test_gen_bool() { |
| 550 | #![allow (clippy::bool_assert_comparison)] |
| 551 | |
| 552 | let mut r = rng(105); |
| 553 | for _ in 0..5 { |
| 554 | assert_eq!(r.gen_bool(0.0), false); |
| 555 | assert_eq!(r.gen_bool(1.0), true); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | #[test ] |
| 560 | fn test_rng_trait_object() { |
| 561 | use crate::distributions::{Distribution, Standard}; |
| 562 | let mut rng = rng(109); |
| 563 | let mut r = &mut rng as &mut dyn RngCore; |
| 564 | r.next_u32(); |
| 565 | r.gen::<i32>(); |
| 566 | assert_eq!(r.gen_range(0..1), 0); |
| 567 | let _c: u8 = Standard.sample(&mut r); |
| 568 | } |
| 569 | |
| 570 | #[test ] |
| 571 | #[cfg (feature = "alloc" )] |
| 572 | fn test_rng_boxed_trait() { |
| 573 | use crate::distributions::{Distribution, Standard}; |
| 574 | let rng = rng(110); |
| 575 | let mut r = Box::new(rng) as Box<dyn RngCore>; |
| 576 | r.next_u32(); |
| 577 | r.gen::<i32>(); |
| 578 | assert_eq!(r.gen_range(0..1), 0); |
| 579 | let _c: u8 = Standard.sample(&mut r); |
| 580 | } |
| 581 | |
| 582 | #[test ] |
| 583 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 584 | fn test_gen_ratio_average() { |
| 585 | const NUM: u32 = 3; |
| 586 | const DENOM: u32 = 10; |
| 587 | const N: u32 = 100_000; |
| 588 | |
| 589 | let mut sum: u32 = 0; |
| 590 | let mut rng = rng(111); |
| 591 | for _ in 0..N { |
| 592 | if rng.gen_ratio(NUM, DENOM) { |
| 593 | sum += 1; |
| 594 | } |
| 595 | } |
| 596 | // Have Binomial(N, NUM/DENOM) distribution |
| 597 | let expected = (NUM * N) / DENOM; // exact integer |
| 598 | assert!(((sum - expected) as i32).abs() < 500); |
| 599 | } |
| 600 | } |
| 601 | |