| 1 | // Copyright 2018-2020 Developers of the Rand project. |
| 2 | // Copyright 2017 The Rust Project Developers. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 5 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 6 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 7 | // option. This file may not be copied, modified, or distributed |
| 8 | // except according to those terms. |
| 9 | |
| 10 | //! A distribution uniformly sampling numbers within a given range. |
| 11 | //! |
| 12 | //! [`Uniform`] is the standard distribution to sample uniformly from a range; |
| 13 | //! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a |
| 14 | //! standard die. [`Rng::gen_range`] supports any type supported by |
| 15 | //! [`Uniform`]. |
| 16 | //! |
| 17 | //! This distribution is provided with support for several primitive types |
| 18 | //! (all integer and floating-point types) as well as [`std::time::Duration`], |
| 19 | //! and supports extension to user-defined types via a type-specific *back-end* |
| 20 | //! implementation. |
| 21 | //! |
| 22 | //! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the |
| 23 | //! back-ends supporting sampling from primitive integer and floating-point |
| 24 | //! ranges as well as from [`std::time::Duration`]; these types do not normally |
| 25 | //! need to be used directly (unless implementing a derived back-end). |
| 26 | //! |
| 27 | //! # Example usage |
| 28 | //! |
| 29 | //! ``` |
| 30 | //! use rand::{Rng, thread_rng}; |
| 31 | //! use rand::distributions::Uniform; |
| 32 | //! |
| 33 | //! let mut rng = thread_rng(); |
| 34 | //! let side = Uniform::new(-10.0, 10.0); |
| 35 | //! |
| 36 | //! // sample between 1 and 10 points |
| 37 | //! for _ in 0..rng.gen_range(1..=10) { |
| 38 | //! // sample a point from the square with sides -10 - 10 in two dimensions |
| 39 | //! let (x, y) = (rng.sample(side), rng.sample(side)); |
| 40 | //! println!("Point: {}, {}" , x, y); |
| 41 | //! } |
| 42 | //! ``` |
| 43 | //! |
| 44 | //! # Extending `Uniform` to support a custom type |
| 45 | //! |
| 46 | //! To extend [`Uniform`] to support your own types, write a back-end which |
| 47 | //! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`] |
| 48 | //! helper trait to "register" your back-end. See the `MyF32` example below. |
| 49 | //! |
| 50 | //! At a minimum, the back-end needs to store any parameters needed for sampling |
| 51 | //! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`. |
| 52 | //! Those methods should include an assert to check the range is valid (i.e. |
| 53 | //! `low < high`). The example below merely wraps another back-end. |
| 54 | //! |
| 55 | //! The `new`, `new_inclusive` and `sample_single` functions use arguments of |
| 56 | //! type SampleBorrow<X> in order to support passing in values by reference or |
| 57 | //! by value. In the implementation of these functions, you can choose to |
| 58 | //! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose |
| 59 | //! to copy or clone the value, whatever is appropriate for your type. |
| 60 | //! |
| 61 | //! ``` |
| 62 | //! use rand::prelude::*; |
| 63 | //! use rand::distributions::uniform::{Uniform, SampleUniform, |
| 64 | //! UniformSampler, UniformFloat, SampleBorrow}; |
| 65 | //! |
| 66 | //! struct MyF32(f32); |
| 67 | //! |
| 68 | //! #[derive(Clone, Copy, Debug)] |
| 69 | //! struct UniformMyF32(UniformFloat<f32>); |
| 70 | //! |
| 71 | //! impl UniformSampler for UniformMyF32 { |
| 72 | //! type X = MyF32; |
| 73 | //! fn new<B1, B2>(low: B1, high: B2) -> Self |
| 74 | //! where B1: SampleBorrow<Self::X> + Sized, |
| 75 | //! B2: SampleBorrow<Self::X> + Sized |
| 76 | //! { |
| 77 | //! UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0)) |
| 78 | //! } |
| 79 | //! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self |
| 80 | //! where B1: SampleBorrow<Self::X> + Sized, |
| 81 | //! B2: SampleBorrow<Self::X> + Sized |
| 82 | //! { |
| 83 | //! UniformMyF32(UniformFloat::<f32>::new_inclusive( |
| 84 | //! low.borrow().0, |
| 85 | //! high.borrow().0, |
| 86 | //! )) |
| 87 | //! } |
| 88 | //! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
| 89 | //! MyF32(self.0.sample(rng)) |
| 90 | //! } |
| 91 | //! } |
| 92 | //! |
| 93 | //! impl SampleUniform for MyF32 { |
| 94 | //! type Sampler = UniformMyF32; |
| 95 | //! } |
| 96 | //! |
| 97 | //! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32)); |
| 98 | //! let uniform = Uniform::new(low, high); |
| 99 | //! let x = uniform.sample(&mut thread_rng()); |
| 100 | //! ``` |
| 101 | //! |
| 102 | //! [`SampleUniform`]: crate::distributions::uniform::SampleUniform |
| 103 | //! [`UniformSampler`]: crate::distributions::uniform::UniformSampler |
| 104 | //! [`UniformInt`]: crate::distributions::uniform::UniformInt |
| 105 | //! [`UniformFloat`]: crate::distributions::uniform::UniformFloat |
| 106 | //! [`UniformDuration`]: crate::distributions::uniform::UniformDuration |
| 107 | //! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow |
| 108 | |
| 109 | use core::time::Duration; |
| 110 | use core::ops::{Range, RangeInclusive}; |
| 111 | |
| 112 | use crate::distributions::float::IntoFloat; |
| 113 | use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply}; |
| 114 | use crate::distributions::Distribution; |
| 115 | use crate::{Rng, RngCore}; |
| 116 | |
| 117 | #[cfg (not(feature = "std" ))] |
| 118 | #[allow (unused_imports)] // rustc doesn't detect that this is actually used |
| 119 | use crate::distributions::utils::Float; |
| 120 | |
| 121 | #[cfg (feature = "simd_support" )] use packed_simd::*; |
| 122 | |
| 123 | #[cfg (feature = "serde1" )] |
| 124 | use serde::{Serialize, Deserialize}; |
| 125 | |
| 126 | /// Sample values uniformly between two bounds. |
| 127 | /// |
| 128 | /// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform |
| 129 | /// distribution sampling from the given range; these functions may do extra |
| 130 | /// work up front to make sampling of multiple values faster. If only one sample |
| 131 | /// from the range is required, [`Rng::gen_range`] can be more efficient. |
| 132 | /// |
| 133 | /// When sampling from a constant range, many calculations can happen at |
| 134 | /// compile-time and all methods should be fast; for floating-point ranges and |
| 135 | /// the full range of integer types this should have comparable performance to |
| 136 | /// the `Standard` distribution. |
| 137 | /// |
| 138 | /// Steps are taken to avoid bias which might be present in naive |
| 139 | /// implementations; for example `rng.gen::<u8>() % 170` samples from the range |
| 140 | /// `[0, 169]` but is twice as likely to select numbers less than 85 than other |
| 141 | /// values. Further, the implementations here give more weight to the high-bits |
| 142 | /// generated by the RNG than the low bits, since with some RNGs the low-bits |
| 143 | /// are of lower quality than the high bits. |
| 144 | /// |
| 145 | /// Implementations must sample in `[low, high)` range for |
| 146 | /// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must |
| 147 | /// be taken to ensure that rounding never results values `< low` or `>= high`. |
| 148 | /// |
| 149 | /// # Example |
| 150 | /// |
| 151 | /// ``` |
| 152 | /// use rand::distributions::{Distribution, Uniform}; |
| 153 | /// |
| 154 | /// let between = Uniform::from(10..10000); |
| 155 | /// let mut rng = rand::thread_rng(); |
| 156 | /// let mut sum = 0; |
| 157 | /// for _ in 0..1000 { |
| 158 | /// sum += between.sample(&mut rng); |
| 159 | /// } |
| 160 | /// println!("{}" , sum); |
| 161 | /// ``` |
| 162 | /// |
| 163 | /// For a single sample, [`Rng::gen_range`] may be preferred: |
| 164 | /// |
| 165 | /// ``` |
| 166 | /// use rand::Rng; |
| 167 | /// |
| 168 | /// let mut rng = rand::thread_rng(); |
| 169 | /// println!("{}" , rng.gen_range(0..10)); |
| 170 | /// ``` |
| 171 | /// |
| 172 | /// [`new`]: Uniform::new |
| 173 | /// [`new_inclusive`]: Uniform::new_inclusive |
| 174 | /// [`Rng::gen_range`]: Rng::gen_range |
| 175 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 176 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
| 177 | #[cfg_attr (feature = "serde1" , serde(bound(serialize = "X::Sampler: Serialize" )))] |
| 178 | #[cfg_attr (feature = "serde1" , serde(bound(deserialize = "X::Sampler: Deserialize<'de>" )))] |
| 179 | pub struct Uniform<X: SampleUniform>(X::Sampler); |
| 180 | |
| 181 | impl<X: SampleUniform> Uniform<X> { |
| 182 | /// Create a new `Uniform` instance which samples uniformly from the half |
| 183 | /// open range `[low, high)` (excluding `high`). Panics if `low >= high`. |
| 184 | pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X> |
| 185 | where |
| 186 | B1: SampleBorrow<X> + Sized, |
| 187 | B2: SampleBorrow<X> + Sized, |
| 188 | { |
| 189 | Uniform(X::Sampler::new(low, high)) |
| 190 | } |
| 191 | |
| 192 | /// Create a new `Uniform` instance which samples uniformly from the closed |
| 193 | /// range `[low, high]` (inclusive). Panics if `low > high`. |
| 194 | pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X> |
| 195 | where |
| 196 | B1: SampleBorrow<X> + Sized, |
| 197 | B2: SampleBorrow<X> + Sized, |
| 198 | { |
| 199 | Uniform(X::Sampler::new_inclusive(low, high)) |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | impl<X: SampleUniform> Distribution<X> for Uniform<X> { |
| 204 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X { |
| 205 | self.0.sample(rng) |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | /// Helper trait for creating objects using the correct implementation of |
| 210 | /// [`UniformSampler`] for the sampling type. |
| 211 | /// |
| 212 | /// See the [module documentation] on how to implement [`Uniform`] range |
| 213 | /// sampling for a custom type. |
| 214 | /// |
| 215 | /// [module documentation]: crate::distributions::uniform |
| 216 | pub trait SampleUniform: Sized { |
| 217 | /// The `UniformSampler` implementation supporting type `X`. |
| 218 | type Sampler: UniformSampler<X = Self>; |
| 219 | } |
| 220 | |
| 221 | /// Helper trait handling actual uniform sampling. |
| 222 | /// |
| 223 | /// See the [module documentation] on how to implement [`Uniform`] range |
| 224 | /// sampling for a custom type. |
| 225 | /// |
| 226 | /// Implementation of [`sample_single`] is optional, and is only useful when |
| 227 | /// the implementation can be faster than `Self::new(low, high).sample(rng)`. |
| 228 | /// |
| 229 | /// [module documentation]: crate::distributions::uniform |
| 230 | /// [`sample_single`]: UniformSampler::sample_single |
| 231 | pub trait UniformSampler: Sized { |
| 232 | /// The type sampled by this implementation. |
| 233 | type X; |
| 234 | |
| 235 | /// Construct self, with inclusive lower bound and exclusive upper bound |
| 236 | /// `[low, high)`. |
| 237 | /// |
| 238 | /// Usually users should not call this directly but instead use |
| 239 | /// `Uniform::new`, which asserts that `low < high` before calling this. |
| 240 | fn new<B1, B2>(low: B1, high: B2) -> Self |
| 241 | where |
| 242 | B1: SampleBorrow<Self::X> + Sized, |
| 243 | B2: SampleBorrow<Self::X> + Sized; |
| 244 | |
| 245 | /// Construct self, with inclusive bounds `[low, high]`. |
| 246 | /// |
| 247 | /// Usually users should not call this directly but instead use |
| 248 | /// `Uniform::new_inclusive`, which asserts that `low <= high` before |
| 249 | /// calling this. |
| 250 | fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self |
| 251 | where |
| 252 | B1: SampleBorrow<Self::X> + Sized, |
| 253 | B2: SampleBorrow<Self::X> + Sized; |
| 254 | |
| 255 | /// Sample a value. |
| 256 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X; |
| 257 | |
| 258 | /// Sample a single value uniformly from a range with inclusive lower bound |
| 259 | /// and exclusive upper bound `[low, high)`. |
| 260 | /// |
| 261 | /// By default this is implemented using |
| 262 | /// `UniformSampler::new(low, high).sample(rng)`. However, for some types |
| 263 | /// more optimal implementations for single usage may be provided via this |
| 264 | /// method (which is the case for integers and floats). |
| 265 | /// Results may not be identical. |
| 266 | /// |
| 267 | /// Note that to use this method in a generic context, the type needs to be |
| 268 | /// retrieved via `SampleUniform::Sampler` as follows: |
| 269 | /// ``` |
| 270 | /// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}}; |
| 271 | /// # #[allow (unused)] |
| 272 | /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T { |
| 273 | /// let mut rng = thread_rng(); |
| 274 | /// <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng) |
| 275 | /// } |
| 276 | /// ``` |
| 277 | fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X |
| 278 | where |
| 279 | B1: SampleBorrow<Self::X> + Sized, |
| 280 | B2: SampleBorrow<Self::X> + Sized, |
| 281 | { |
| 282 | let uniform: Self = UniformSampler::new(low, high); |
| 283 | uniform.sample(rng) |
| 284 | } |
| 285 | |
| 286 | /// Sample a single value uniformly from a range with inclusive lower bound |
| 287 | /// and inclusive upper bound `[low, high]`. |
| 288 | /// |
| 289 | /// By default this is implemented using |
| 290 | /// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for |
| 291 | /// some types more optimal implementations for single usage may be provided |
| 292 | /// via this method. |
| 293 | /// Results may not be identical. |
| 294 | fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) |
| 295 | -> Self::X |
| 296 | where B1: SampleBorrow<Self::X> + Sized, |
| 297 | B2: SampleBorrow<Self::X> + Sized |
| 298 | { |
| 299 | let uniform: Self = UniformSampler::new_inclusive(low, high); |
| 300 | uniform.sample(rng) |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | impl<X: SampleUniform> From<Range<X>> for Uniform<X> { |
| 305 | fn from(r: ::core::ops::Range<X>) -> Uniform<X> { |
| 306 | Uniform::new(low:r.start, high:r.end) |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | impl<X: SampleUniform> From<RangeInclusive<X>> for Uniform<X> { |
| 311 | fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> { |
| 312 | Uniform::new_inclusive(low:r.start(), high:r.end()) |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | |
| 317 | /// Helper trait similar to [`Borrow`] but implemented |
| 318 | /// only for SampleUniform and references to SampleUniform in |
| 319 | /// order to resolve ambiguity issues. |
| 320 | /// |
| 321 | /// [`Borrow`]: std::borrow::Borrow |
| 322 | pub trait SampleBorrow<Borrowed> { |
| 323 | /// Immutably borrows from an owned value. See [`Borrow::borrow`] |
| 324 | /// |
| 325 | /// [`Borrow::borrow`]: std::borrow::Borrow::borrow |
| 326 | fn borrow(&self) -> &Borrowed; |
| 327 | } |
| 328 | impl<Borrowed> SampleBorrow<Borrowed> for Borrowed |
| 329 | where Borrowed: SampleUniform |
| 330 | { |
| 331 | #[inline (always)] |
| 332 | fn borrow(&self) -> &Borrowed { |
| 333 | self |
| 334 | } |
| 335 | } |
| 336 | impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed |
| 337 | where Borrowed: SampleUniform |
| 338 | { |
| 339 | #[inline (always)] |
| 340 | fn borrow(&self) -> &Borrowed { |
| 341 | *self |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | /// Range that supports generating a single sample efficiently. |
| 346 | /// |
| 347 | /// Any type implementing this trait can be used to specify the sampled range |
| 348 | /// for `Rng::gen_range`. |
| 349 | pub trait SampleRange<T> { |
| 350 | /// Generate a sample from the given range. |
| 351 | fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T; |
| 352 | |
| 353 | /// Check whether the range is empty. |
| 354 | fn is_empty(&self) -> bool; |
| 355 | } |
| 356 | |
| 357 | impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> { |
| 358 | #[inline ] |
| 359 | fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T { |
| 360 | T::Sampler::sample_single(self.start, self.end, rng) |
| 361 | } |
| 362 | |
| 363 | #[inline ] |
| 364 | fn is_empty(&self) -> bool { |
| 365 | !(self.start < self.end) |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> { |
| 370 | #[inline ] |
| 371 | fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T { |
| 372 | T::Sampler::sample_single_inclusive(self.start(), self.end(), rng) |
| 373 | } |
| 374 | |
| 375 | #[inline ] |
| 376 | fn is_empty(&self) -> bool { |
| 377 | !(self.start() <= self.end()) |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | |
| 382 | //////////////////////////////////////////////////////////////////////////////// |
| 383 | |
| 384 | // What follows are all back-ends. |
| 385 | |
| 386 | |
| 387 | /// The back-end implementing [`UniformSampler`] for integer types. |
| 388 | /// |
| 389 | /// Unless you are implementing [`UniformSampler`] for your own type, this type |
| 390 | /// should not be used directly, use [`Uniform`] instead. |
| 391 | /// |
| 392 | /// # Implementation notes |
| 393 | /// |
| 394 | /// For simplicity, we use the same generic struct `UniformInt<X>` for all |
| 395 | /// integer types `X`. This gives us only one field type, `X`; to store unsigned |
| 396 | /// values of this size, we take use the fact that these conversions are no-ops. |
| 397 | /// |
| 398 | /// For a closed range, the number of possible numbers we should generate is |
| 399 | /// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of |
| 400 | /// our sample space, `zone`, is a multiple of `range`; other values must be |
| 401 | /// rejected (by replacing with a new random sample). |
| 402 | /// |
| 403 | /// As a special case, we use `range = 0` to represent the full range of the |
| 404 | /// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`). |
| 405 | /// |
| 406 | /// The optimum `zone` is the largest product of `range` which fits in our |
| 407 | /// (unsigned) target type. We calculate this by calculating how many numbers we |
| 408 | /// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large) |
| 409 | /// product of `range` will suffice, thus in `sample_single` we multiply by a |
| 410 | /// power of 2 via bit-shifting (faster but may cause more rejections). |
| 411 | /// |
| 412 | /// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we |
| 413 | /// use `u32` for our `zone` and samples (because it's not slower and because |
| 414 | /// it reduces the chance of having to reject a sample). In this case we cannot |
| 415 | /// store `zone` in the target type since it is too large, however we know |
| 416 | /// `ints_to_reject < range <= $unsigned::MAX`. |
| 417 | /// |
| 418 | /// An alternative to using a modulus is widening multiply: After a widening |
| 419 | /// multiply by `range`, the result is in the high word. Then comparing the low |
| 420 | /// word against `zone` makes sure our distribution is uniform. |
| 421 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 422 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
| 423 | pub struct UniformInt<X> { |
| 424 | low: X, |
| 425 | range: X, |
| 426 | z: X, // either ints_to_reject or zone depending on implementation |
| 427 | } |
| 428 | |
| 429 | macro_rules! uniform_int_impl { |
| 430 | ($ty:ty, $unsigned:ident, $u_large:ident) => { |
| 431 | impl SampleUniform for $ty { |
| 432 | type Sampler = UniformInt<$ty>; |
| 433 | } |
| 434 | |
| 435 | impl UniformSampler for UniformInt<$ty> { |
| 436 | // We play free and fast with unsigned vs signed here |
| 437 | // (when $ty is signed), but that's fine, since the |
| 438 | // contract of this macro is for $ty and $unsigned to be |
| 439 | // "bit-equal", so casting between them is a no-op. |
| 440 | |
| 441 | type X = $ty; |
| 442 | |
| 443 | #[inline] // if the range is constant, this helps LLVM to do the |
| 444 | // calculations at compile-time. |
| 445 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 446 | where |
| 447 | B1: SampleBorrow<Self::X> + Sized, |
| 448 | B2: SampleBorrow<Self::X> + Sized, |
| 449 | { |
| 450 | let low = *low_b.borrow(); |
| 451 | let high = *high_b.borrow(); |
| 452 | assert!(low < high, "Uniform::new called with `low >= high`" ); |
| 453 | UniformSampler::new_inclusive(low, high - 1) |
| 454 | } |
| 455 | |
| 456 | #[inline] // if the range is constant, this helps LLVM to do the |
| 457 | // calculations at compile-time. |
| 458 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 459 | where |
| 460 | B1: SampleBorrow<Self::X> + Sized, |
| 461 | B2: SampleBorrow<Self::X> + Sized, |
| 462 | { |
| 463 | let low = *low_b.borrow(); |
| 464 | let high = *high_b.borrow(); |
| 465 | assert!( |
| 466 | low <= high, |
| 467 | "Uniform::new_inclusive called with `low > high`" |
| 468 | ); |
| 469 | let unsigned_max = ::core::$u_large::MAX; |
| 470 | |
| 471 | let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned; |
| 472 | let ints_to_reject = if range > 0 { |
| 473 | let range = $u_large::from(range); |
| 474 | (unsigned_max - range + 1) % range |
| 475 | } else { |
| 476 | 0 |
| 477 | }; |
| 478 | |
| 479 | UniformInt { |
| 480 | low, |
| 481 | // These are really $unsigned values, but store as $ty: |
| 482 | range: range as $ty, |
| 483 | z: ints_to_reject as $unsigned as $ty, |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | #[inline] |
| 488 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
| 489 | let range = self.range as $unsigned as $u_large; |
| 490 | if range > 0 { |
| 491 | let unsigned_max = ::core::$u_large::MAX; |
| 492 | let zone = unsigned_max - (self.z as $unsigned as $u_large); |
| 493 | loop { |
| 494 | let v: $u_large = rng.gen(); |
| 495 | let (hi, lo) = v.wmul(range); |
| 496 | if lo <= zone { |
| 497 | return self.low.wrapping_add(hi as $ty); |
| 498 | } |
| 499 | } |
| 500 | } else { |
| 501 | // Sample from the entire integer range. |
| 502 | rng.gen() |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | #[inline] |
| 507 | fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X |
| 508 | where |
| 509 | B1: SampleBorrow<Self::X> + Sized, |
| 510 | B2: SampleBorrow<Self::X> + Sized, |
| 511 | { |
| 512 | let low = *low_b.borrow(); |
| 513 | let high = *high_b.borrow(); |
| 514 | assert!(low < high, "UniformSampler::sample_single: low >= high" ); |
| 515 | Self::sample_single_inclusive(low, high - 1, rng) |
| 516 | } |
| 517 | |
| 518 | #[inline] |
| 519 | fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X |
| 520 | where |
| 521 | B1: SampleBorrow<Self::X> + Sized, |
| 522 | B2: SampleBorrow<Self::X> + Sized, |
| 523 | { |
| 524 | let low = *low_b.borrow(); |
| 525 | let high = *high_b.borrow(); |
| 526 | assert!(low <= high, "UniformSampler::sample_single_inclusive: low > high" ); |
| 527 | let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large; |
| 528 | // If the above resulted in wrap-around to 0, the range is $ty::MIN..=$ty::MAX, |
| 529 | // and any integer will do. |
| 530 | if range == 0 { |
| 531 | return rng.gen(); |
| 532 | } |
| 533 | |
| 534 | let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned { |
| 535 | // Using a modulus is faster than the approximation for |
| 536 | // i8 and i16. I suppose we trade the cost of one |
| 537 | // modulus for near-perfect branch prediction. |
| 538 | let unsigned_max: $u_large = ::core::$u_large::MAX; |
| 539 | let ints_to_reject = (unsigned_max - range + 1) % range; |
| 540 | unsigned_max - ints_to_reject |
| 541 | } else { |
| 542 | // conservative but fast approximation. `- 1` is necessary to allow the |
| 543 | // same comparison without bias. |
| 544 | (range << range.leading_zeros()).wrapping_sub(1) |
| 545 | }; |
| 546 | |
| 547 | loop { |
| 548 | let v: $u_large = rng.gen(); |
| 549 | let (hi, lo) = v.wmul(range); |
| 550 | if lo <= zone { |
| 551 | return low.wrapping_add(hi as $ty); |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | } |
| 556 | }; |
| 557 | } |
| 558 | |
| 559 | uniform_int_impl! { i8, u8, u32 } |
| 560 | uniform_int_impl! { i16, u16, u32 } |
| 561 | uniform_int_impl! { i32, u32, u32 } |
| 562 | uniform_int_impl! { i64, u64, u64 } |
| 563 | uniform_int_impl! { i128, u128, u128 } |
| 564 | uniform_int_impl! { isize, usize, usize } |
| 565 | uniform_int_impl! { u8, u8, u32 } |
| 566 | uniform_int_impl! { u16, u16, u32 } |
| 567 | uniform_int_impl! { u32, u32, u32 } |
| 568 | uniform_int_impl! { u64, u64, u64 } |
| 569 | uniform_int_impl! { usize, usize, usize } |
| 570 | uniform_int_impl! { u128, u128, u128 } |
| 571 | |
| 572 | #[cfg (feature = "simd_support" )] |
| 573 | macro_rules! uniform_simd_int_impl { |
| 574 | ($ty:ident, $unsigned:ident, $u_scalar:ident) => { |
| 575 | // The "pick the largest zone that can fit in an `u32`" optimization |
| 576 | // is less useful here. Multiple lanes complicate things, we don't |
| 577 | // know the PRNG's minimal output size, and casting to a larger vector |
| 578 | // is generally a bad idea for SIMD performance. The user can still |
| 579 | // implement it manually. |
| 580 | |
| 581 | // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality |
| 582 | // perhaps `impl SampleUniform for $u_scalar`? |
| 583 | impl SampleUniform for $ty { |
| 584 | type Sampler = UniformInt<$ty>; |
| 585 | } |
| 586 | |
| 587 | impl UniformSampler for UniformInt<$ty> { |
| 588 | type X = $ty; |
| 589 | |
| 590 | #[inline] // if the range is constant, this helps LLVM to do the |
| 591 | // calculations at compile-time. |
| 592 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 593 | where B1: SampleBorrow<Self::X> + Sized, |
| 594 | B2: SampleBorrow<Self::X> + Sized |
| 595 | { |
| 596 | let low = *low_b.borrow(); |
| 597 | let high = *high_b.borrow(); |
| 598 | assert!(low.lt(high).all(), "Uniform::new called with `low >= high`" ); |
| 599 | UniformSampler::new_inclusive(low, high - 1) |
| 600 | } |
| 601 | |
| 602 | #[inline] // if the range is constant, this helps LLVM to do the |
| 603 | // calculations at compile-time. |
| 604 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 605 | where B1: SampleBorrow<Self::X> + Sized, |
| 606 | B2: SampleBorrow<Self::X> + Sized |
| 607 | { |
| 608 | let low = *low_b.borrow(); |
| 609 | let high = *high_b.borrow(); |
| 610 | assert!(low.le(high).all(), |
| 611 | "Uniform::new_inclusive called with `low > high`" ); |
| 612 | let unsigned_max = ::core::$u_scalar::MAX; |
| 613 | |
| 614 | // NOTE: these may need to be replaced with explicitly |
| 615 | // wrapping operations if `packed_simd` changes |
| 616 | let range: $unsigned = ((high - low) + 1).cast(); |
| 617 | // `% 0` will panic at runtime. |
| 618 | let not_full_range = range.gt($unsigned::splat(0)); |
| 619 | // replacing 0 with `unsigned_max` allows a faster `select` |
| 620 | // with bitwise OR |
| 621 | let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max)); |
| 622 | // wrapping addition |
| 623 | let ints_to_reject = (unsigned_max - range + 1) % modulo; |
| 624 | // When `range` is 0, `lo` of `v.wmul(range)` will always be |
| 625 | // zero which means only one sample is needed. |
| 626 | let zone = unsigned_max - ints_to_reject; |
| 627 | |
| 628 | UniformInt { |
| 629 | low, |
| 630 | // These are really $unsigned values, but store as $ty: |
| 631 | range: range.cast(), |
| 632 | z: zone.cast(), |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
| 637 | let range: $unsigned = self.range.cast(); |
| 638 | let zone: $unsigned = self.z.cast(); |
| 639 | |
| 640 | // This might seem very slow, generating a whole new |
| 641 | // SIMD vector for every sample rejection. For most uses |
| 642 | // though, the chance of rejection is small and provides good |
| 643 | // general performance. With multiple lanes, that chance is |
| 644 | // multiplied. To mitigate this, we replace only the lanes of |
| 645 | // the vector which fail, iteratively reducing the chance of |
| 646 | // rejection. The replacement method does however add a little |
| 647 | // overhead. Benchmarking or calculating probabilities might |
| 648 | // reveal contexts where this replacement method is slower. |
| 649 | let mut v: $unsigned = rng.gen(); |
| 650 | loop { |
| 651 | let (hi, lo) = v.wmul(range); |
| 652 | let mask = lo.le(zone); |
| 653 | if mask.all() { |
| 654 | let hi: $ty = hi.cast(); |
| 655 | // wrapping addition |
| 656 | let result = self.low + hi; |
| 657 | // `select` here compiles to a blend operation |
| 658 | // When `range.eq(0).none()` the compare and blend |
| 659 | // operations are avoided. |
| 660 | let v: $ty = v.cast(); |
| 661 | return range.gt($unsigned::splat(0)).select(result, v); |
| 662 | } |
| 663 | // Replace only the failing lanes |
| 664 | v = mask.select(v, rng.gen()); |
| 665 | } |
| 666 | } |
| 667 | } |
| 668 | }; |
| 669 | |
| 670 | // bulk implementation |
| 671 | ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => { |
| 672 | $( |
| 673 | uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar); |
| 674 | uniform_simd_int_impl!($signed, $unsigned, $u_scalar); |
| 675 | )+ |
| 676 | }; |
| 677 | } |
| 678 | |
| 679 | #[cfg (feature = "simd_support" )] |
| 680 | uniform_simd_int_impl! { |
| 681 | (u64x2, i64x2), |
| 682 | (u64x4, i64x4), |
| 683 | (u64x8, i64x8), |
| 684 | u64 |
| 685 | } |
| 686 | |
| 687 | #[cfg (feature = "simd_support" )] |
| 688 | uniform_simd_int_impl! { |
| 689 | (u32x2, i32x2), |
| 690 | (u32x4, i32x4), |
| 691 | (u32x8, i32x8), |
| 692 | (u32x16, i32x16), |
| 693 | u32 |
| 694 | } |
| 695 | |
| 696 | #[cfg (feature = "simd_support" )] |
| 697 | uniform_simd_int_impl! { |
| 698 | (u16x2, i16x2), |
| 699 | (u16x4, i16x4), |
| 700 | (u16x8, i16x8), |
| 701 | (u16x16, i16x16), |
| 702 | (u16x32, i16x32), |
| 703 | u16 |
| 704 | } |
| 705 | |
| 706 | #[cfg (feature = "simd_support" )] |
| 707 | uniform_simd_int_impl! { |
| 708 | (u8x2, i8x2), |
| 709 | (u8x4, i8x4), |
| 710 | (u8x8, i8x8), |
| 711 | (u8x16, i8x16), |
| 712 | (u8x32, i8x32), |
| 713 | (u8x64, i8x64), |
| 714 | u8 |
| 715 | } |
| 716 | |
| 717 | impl SampleUniform for char { |
| 718 | type Sampler = UniformChar; |
| 719 | } |
| 720 | |
| 721 | /// The back-end implementing [`UniformSampler`] for `char`. |
| 722 | /// |
| 723 | /// Unless you are implementing [`UniformSampler`] for your own type, this type |
| 724 | /// should not be used directly, use [`Uniform`] instead. |
| 725 | /// |
| 726 | /// This differs from integer range sampling since the range `0xD800..=0xDFFF` |
| 727 | /// are used for surrogate pairs in UCS and UTF-16, and consequently are not |
| 728 | /// valid Unicode code points. We must therefore avoid sampling values in this |
| 729 | /// range. |
| 730 | #[derive (Clone, Copy, Debug)] |
| 731 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
| 732 | pub struct UniformChar { |
| 733 | sampler: UniformInt<u32>, |
| 734 | } |
| 735 | |
| 736 | /// UTF-16 surrogate range start |
| 737 | const CHAR_SURROGATE_START: u32 = 0xD800; |
| 738 | /// UTF-16 surrogate range size |
| 739 | const CHAR_SURROGATE_LEN: u32 = 0xE000 - CHAR_SURROGATE_START; |
| 740 | |
| 741 | /// Convert `char` to compressed `u32` |
| 742 | fn char_to_comp_u32(c: char) -> u32 { |
| 743 | match c as u32 { |
| 744 | c: u32 if c >= CHAR_SURROGATE_START => c - CHAR_SURROGATE_LEN, |
| 745 | c: u32 => c, |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | impl UniformSampler for UniformChar { |
| 750 | type X = char; |
| 751 | |
| 752 | #[inline ] // if the range is constant, this helps LLVM to do the |
| 753 | // calculations at compile-time. |
| 754 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 755 | where |
| 756 | B1: SampleBorrow<Self::X> + Sized, |
| 757 | B2: SampleBorrow<Self::X> + Sized, |
| 758 | { |
| 759 | let low = char_to_comp_u32(*low_b.borrow()); |
| 760 | let high = char_to_comp_u32(*high_b.borrow()); |
| 761 | let sampler = UniformInt::<u32>::new(low, high); |
| 762 | UniformChar { sampler } |
| 763 | } |
| 764 | |
| 765 | #[inline ] // if the range is constant, this helps LLVM to do the |
| 766 | // calculations at compile-time. |
| 767 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 768 | where |
| 769 | B1: SampleBorrow<Self::X> + Sized, |
| 770 | B2: SampleBorrow<Self::X> + Sized, |
| 771 | { |
| 772 | let low = char_to_comp_u32(*low_b.borrow()); |
| 773 | let high = char_to_comp_u32(*high_b.borrow()); |
| 774 | let sampler = UniformInt::<u32>::new_inclusive(low, high); |
| 775 | UniformChar { sampler } |
| 776 | } |
| 777 | |
| 778 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
| 779 | let mut x = self.sampler.sample(rng); |
| 780 | if x >= CHAR_SURROGATE_START { |
| 781 | x += CHAR_SURROGATE_LEN; |
| 782 | } |
| 783 | // SAFETY: x must not be in surrogate range or greater than char::MAX. |
| 784 | // This relies on range constructors which accept char arguments. |
| 785 | // Validity of input char values is assumed. |
| 786 | unsafe { core::char::from_u32_unchecked(x) } |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | /// The back-end implementing [`UniformSampler`] for floating-point types. |
| 791 | /// |
| 792 | /// Unless you are implementing [`UniformSampler`] for your own type, this type |
| 793 | /// should not be used directly, use [`Uniform`] instead. |
| 794 | /// |
| 795 | /// # Implementation notes |
| 796 | /// |
| 797 | /// Instead of generating a float in the `[0, 1)` range using [`Standard`], the |
| 798 | /// `UniformFloat` implementation converts the output of an PRNG itself. This |
| 799 | /// way one or two steps can be optimized out. |
| 800 | /// |
| 801 | /// The floats are first converted to a value in the `[1, 2)` interval using a |
| 802 | /// transmute-based method, and then mapped to the expected range with a |
| 803 | /// multiply and addition. Values produced this way have what equals 23 bits of |
| 804 | /// random digits for an `f32`, and 52 for an `f64`. |
| 805 | /// |
| 806 | /// [`new`]: UniformSampler::new |
| 807 | /// [`new_inclusive`]: UniformSampler::new_inclusive |
| 808 | /// [`Standard`]: crate::distributions::Standard |
| 809 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 810 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
| 811 | pub struct UniformFloat<X> { |
| 812 | low: X, |
| 813 | scale: X, |
| 814 | } |
| 815 | |
| 816 | macro_rules! uniform_float_impl { |
| 817 | ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => { |
| 818 | impl SampleUniform for $ty { |
| 819 | type Sampler = UniformFloat<$ty>; |
| 820 | } |
| 821 | |
| 822 | impl UniformSampler for UniformFloat<$ty> { |
| 823 | type X = $ty; |
| 824 | |
| 825 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 826 | where |
| 827 | B1: SampleBorrow<Self::X> + Sized, |
| 828 | B2: SampleBorrow<Self::X> + Sized, |
| 829 | { |
| 830 | let low = *low_b.borrow(); |
| 831 | let high = *high_b.borrow(); |
| 832 | debug_assert!( |
| 833 | low.all_finite(), |
| 834 | "Uniform::new called with `low` non-finite." |
| 835 | ); |
| 836 | debug_assert!( |
| 837 | high.all_finite(), |
| 838 | "Uniform::new called with `high` non-finite." |
| 839 | ); |
| 840 | assert!(low.all_lt(high), "Uniform::new called with `low >= high`" ); |
| 841 | let max_rand = <$ty>::splat( |
| 842 | (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0, |
| 843 | ); |
| 844 | |
| 845 | let mut scale = high - low; |
| 846 | assert!(scale.all_finite(), "Uniform::new: range overflow" ); |
| 847 | |
| 848 | loop { |
| 849 | let mask = (scale * max_rand + low).ge_mask(high); |
| 850 | if mask.none() { |
| 851 | break; |
| 852 | } |
| 853 | scale = scale.decrease_masked(mask); |
| 854 | } |
| 855 | |
| 856 | debug_assert!(<$ty>::splat(0.0).all_le(scale)); |
| 857 | |
| 858 | UniformFloat { low, scale } |
| 859 | } |
| 860 | |
| 861 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 862 | where |
| 863 | B1: SampleBorrow<Self::X> + Sized, |
| 864 | B2: SampleBorrow<Self::X> + Sized, |
| 865 | { |
| 866 | let low = *low_b.borrow(); |
| 867 | let high = *high_b.borrow(); |
| 868 | debug_assert!( |
| 869 | low.all_finite(), |
| 870 | "Uniform::new_inclusive called with `low` non-finite." |
| 871 | ); |
| 872 | debug_assert!( |
| 873 | high.all_finite(), |
| 874 | "Uniform::new_inclusive called with `high` non-finite." |
| 875 | ); |
| 876 | assert!( |
| 877 | low.all_le(high), |
| 878 | "Uniform::new_inclusive called with `low > high`" |
| 879 | ); |
| 880 | let max_rand = <$ty>::splat( |
| 881 | (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0, |
| 882 | ); |
| 883 | |
| 884 | let mut scale = (high - low) / max_rand; |
| 885 | assert!(scale.all_finite(), "Uniform::new_inclusive: range overflow" ); |
| 886 | |
| 887 | loop { |
| 888 | let mask = (scale * max_rand + low).gt_mask(high); |
| 889 | if mask.none() { |
| 890 | break; |
| 891 | } |
| 892 | scale = scale.decrease_masked(mask); |
| 893 | } |
| 894 | |
| 895 | debug_assert!(<$ty>::splat(0.0).all_le(scale)); |
| 896 | |
| 897 | UniformFloat { low, scale } |
| 898 | } |
| 899 | |
| 900 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
| 901 | // Generate a value in the range [1, 2) |
| 902 | let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0); |
| 903 | |
| 904 | // Get a value in the range [0, 1) in order to avoid |
| 905 | // overflowing into infinity when multiplying with scale |
| 906 | let value0_1 = value1_2 - 1.0; |
| 907 | |
| 908 | // We don't use `f64::mul_add`, because it is not available with |
| 909 | // `no_std`. Furthermore, it is slower for some targets (but |
| 910 | // faster for others). However, the order of multiplication and |
| 911 | // addition is important, because on some platforms (e.g. ARM) |
| 912 | // it will be optimized to a single (non-FMA) instruction. |
| 913 | value0_1 * self.scale + self.low |
| 914 | } |
| 915 | |
| 916 | #[inline] |
| 917 | fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X |
| 918 | where |
| 919 | B1: SampleBorrow<Self::X> + Sized, |
| 920 | B2: SampleBorrow<Self::X> + Sized, |
| 921 | { |
| 922 | let low = *low_b.borrow(); |
| 923 | let high = *high_b.borrow(); |
| 924 | debug_assert!( |
| 925 | low.all_finite(), |
| 926 | "UniformSampler::sample_single called with `low` non-finite." |
| 927 | ); |
| 928 | debug_assert!( |
| 929 | high.all_finite(), |
| 930 | "UniformSampler::sample_single called with `high` non-finite." |
| 931 | ); |
| 932 | assert!( |
| 933 | low.all_lt(high), |
| 934 | "UniformSampler::sample_single: low >= high" |
| 935 | ); |
| 936 | let mut scale = high - low; |
| 937 | assert!(scale.all_finite(), "UniformSampler::sample_single: range overflow" ); |
| 938 | |
| 939 | loop { |
| 940 | // Generate a value in the range [1, 2) |
| 941 | let value1_2 = |
| 942 | (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0); |
| 943 | |
| 944 | // Get a value in the range [0, 1) in order to avoid |
| 945 | // overflowing into infinity when multiplying with scale |
| 946 | let value0_1 = value1_2 - 1.0; |
| 947 | |
| 948 | // Doing multiply before addition allows some architectures |
| 949 | // to use a single instruction. |
| 950 | let res = value0_1 * scale + low; |
| 951 | |
| 952 | debug_assert!(low.all_le(res) || !scale.all_finite()); |
| 953 | if res.all_lt(high) { |
| 954 | return res; |
| 955 | } |
| 956 | |
| 957 | // This handles a number of edge cases. |
| 958 | // * `low` or `high` is NaN. In this case `scale` and |
| 959 | // `res` are going to end up as NaN. |
| 960 | // * `low` is negative infinity and `high` is finite. |
| 961 | // `scale` is going to be infinite and `res` will be |
| 962 | // NaN. |
| 963 | // * `high` is positive infinity and `low` is finite. |
| 964 | // `scale` is going to be infinite and `res` will |
| 965 | // be infinite or NaN (if value0_1 is 0). |
| 966 | // * `low` is negative infinity and `high` is positive |
| 967 | // infinity. `scale` will be infinite and `res` will |
| 968 | // be NaN. |
| 969 | // * `low` and `high` are finite, but `high - low` |
| 970 | // overflows to infinite. `scale` will be infinite |
| 971 | // and `res` will be infinite or NaN (if value0_1 is 0). |
| 972 | // So if `high` or `low` are non-finite, we are guaranteed |
| 973 | // to fail the `res < high` check above and end up here. |
| 974 | // |
| 975 | // While we technically should check for non-finite `low` |
| 976 | // and `high` before entering the loop, by doing the checks |
| 977 | // here instead, we allow the common case to avoid these |
| 978 | // checks. But we are still guaranteed that if `low` or |
| 979 | // `high` are non-finite we'll end up here and can do the |
| 980 | // appropriate checks. |
| 981 | // |
| 982 | // Likewise `high - low` overflowing to infinity is also |
| 983 | // rare, so handle it here after the common case. |
| 984 | let mask = !scale.finite_mask(); |
| 985 | if mask.any() { |
| 986 | assert!( |
| 987 | low.all_finite() && high.all_finite(), |
| 988 | "Uniform::sample_single: low and high must be finite" |
| 989 | ); |
| 990 | scale = scale.decrease_masked(mask); |
| 991 | } |
| 992 | } |
| 993 | } |
| 994 | } |
| 995 | }; |
| 996 | } |
| 997 | |
| 998 | uniform_float_impl! { f32, u32, f32, u32, 32 - 23 } |
| 999 | uniform_float_impl! { f64, u64, f64, u64, 64 - 52 } |
| 1000 | |
| 1001 | #[cfg (feature = "simd_support" )] |
| 1002 | uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 } |
| 1003 | #[cfg (feature = "simd_support" )] |
| 1004 | uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 } |
| 1005 | #[cfg (feature = "simd_support" )] |
| 1006 | uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 } |
| 1007 | #[cfg (feature = "simd_support" )] |
| 1008 | uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 } |
| 1009 | |
| 1010 | #[cfg (feature = "simd_support" )] |
| 1011 | uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 } |
| 1012 | #[cfg (feature = "simd_support" )] |
| 1013 | uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 } |
| 1014 | #[cfg (feature = "simd_support" )] |
| 1015 | uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 } |
| 1016 | |
| 1017 | |
| 1018 | /// The back-end implementing [`UniformSampler`] for `Duration`. |
| 1019 | /// |
| 1020 | /// Unless you are implementing [`UniformSampler`] for your own types, this type |
| 1021 | /// should not be used directly, use [`Uniform`] instead. |
| 1022 | #[derive (Clone, Copy, Debug)] |
| 1023 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
| 1024 | pub struct UniformDuration { |
| 1025 | mode: UniformDurationMode, |
| 1026 | offset: u32, |
| 1027 | } |
| 1028 | |
| 1029 | #[derive (Debug, Copy, Clone)] |
| 1030 | #[cfg_attr (feature = "serde1" , derive(Serialize, Deserialize))] |
| 1031 | enum UniformDurationMode { |
| 1032 | Small { |
| 1033 | secs: u64, |
| 1034 | nanos: Uniform<u32>, |
| 1035 | }, |
| 1036 | Medium { |
| 1037 | nanos: Uniform<u64>, |
| 1038 | }, |
| 1039 | Large { |
| 1040 | max_secs: u64, |
| 1041 | max_nanos: u32, |
| 1042 | secs: Uniform<u64>, |
| 1043 | }, |
| 1044 | } |
| 1045 | |
| 1046 | impl SampleUniform for Duration { |
| 1047 | type Sampler = UniformDuration; |
| 1048 | } |
| 1049 | |
| 1050 | impl UniformSampler for UniformDuration { |
| 1051 | type X = Duration; |
| 1052 | |
| 1053 | #[inline ] |
| 1054 | fn new<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 1055 | where |
| 1056 | B1: SampleBorrow<Self::X> + Sized, |
| 1057 | B2: SampleBorrow<Self::X> + Sized, |
| 1058 | { |
| 1059 | let low = *low_b.borrow(); |
| 1060 | let high = *high_b.borrow(); |
| 1061 | assert!(low < high, "Uniform::new called with `low >= high`" ); |
| 1062 | UniformDuration::new_inclusive(low, high - Duration::new(0, 1)) |
| 1063 | } |
| 1064 | |
| 1065 | #[inline ] |
| 1066 | fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self |
| 1067 | where |
| 1068 | B1: SampleBorrow<Self::X> + Sized, |
| 1069 | B2: SampleBorrow<Self::X> + Sized, |
| 1070 | { |
| 1071 | let low = *low_b.borrow(); |
| 1072 | let high = *high_b.borrow(); |
| 1073 | assert!( |
| 1074 | low <= high, |
| 1075 | "Uniform::new_inclusive called with `low > high`" |
| 1076 | ); |
| 1077 | |
| 1078 | let low_s = low.as_secs(); |
| 1079 | let low_n = low.subsec_nanos(); |
| 1080 | let mut high_s = high.as_secs(); |
| 1081 | let mut high_n = high.subsec_nanos(); |
| 1082 | |
| 1083 | if high_n < low_n { |
| 1084 | high_s -= 1; |
| 1085 | high_n += 1_000_000_000; |
| 1086 | } |
| 1087 | |
| 1088 | let mode = if low_s == high_s { |
| 1089 | UniformDurationMode::Small { |
| 1090 | secs: low_s, |
| 1091 | nanos: Uniform::new_inclusive(low_n, high_n), |
| 1092 | } |
| 1093 | } else { |
| 1094 | let max = high_s |
| 1095 | .checked_mul(1_000_000_000) |
| 1096 | .and_then(|n| n.checked_add(u64::from(high_n))); |
| 1097 | |
| 1098 | if let Some(higher_bound) = max { |
| 1099 | let lower_bound = low_s * 1_000_000_000 + u64::from(low_n); |
| 1100 | UniformDurationMode::Medium { |
| 1101 | nanos: Uniform::new_inclusive(lower_bound, higher_bound), |
| 1102 | } |
| 1103 | } else { |
| 1104 | // An offset is applied to simplify generation of nanoseconds |
| 1105 | let max_nanos = high_n - low_n; |
| 1106 | UniformDurationMode::Large { |
| 1107 | max_secs: high_s, |
| 1108 | max_nanos, |
| 1109 | secs: Uniform::new_inclusive(low_s, high_s), |
| 1110 | } |
| 1111 | } |
| 1112 | }; |
| 1113 | UniformDuration { |
| 1114 | mode, |
| 1115 | offset: low_n, |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | #[inline ] |
| 1120 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration { |
| 1121 | match self.mode { |
| 1122 | UniformDurationMode::Small { secs, nanos } => { |
| 1123 | let n = nanos.sample(rng); |
| 1124 | Duration::new(secs, n) |
| 1125 | } |
| 1126 | UniformDurationMode::Medium { nanos } => { |
| 1127 | let nanos = nanos.sample(rng); |
| 1128 | Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32) |
| 1129 | } |
| 1130 | UniformDurationMode::Large { |
| 1131 | max_secs, |
| 1132 | max_nanos, |
| 1133 | secs, |
| 1134 | } => { |
| 1135 | // constant folding means this is at least as fast as `Rng::sample(Range)` |
| 1136 | let nano_range = Uniform::new(0, 1_000_000_000); |
| 1137 | loop { |
| 1138 | let s = secs.sample(rng); |
| 1139 | let n = nano_range.sample(rng); |
| 1140 | if !(s == max_secs && n > max_nanos) { |
| 1141 | let sum = n + self.offset; |
| 1142 | break Duration::new(s, sum); |
| 1143 | } |
| 1144 | } |
| 1145 | } |
| 1146 | } |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | #[cfg (test)] |
| 1151 | mod tests { |
| 1152 | use super::*; |
| 1153 | use crate::rngs::mock::StepRng; |
| 1154 | |
| 1155 | #[test ] |
| 1156 | #[cfg (feature = "serde1" )] |
| 1157 | fn test_serialization_uniform_duration() { |
| 1158 | let distr = UniformDuration::new(Duration::from_secs(10), Duration::from_secs(60)); |
| 1159 | let de_distr: UniformDuration = bincode::deserialize(&bincode::serialize(&distr).unwrap()).unwrap(); |
| 1160 | assert_eq!( |
| 1161 | distr.offset, de_distr.offset |
| 1162 | ); |
| 1163 | match (distr.mode, de_distr.mode) { |
| 1164 | (UniformDurationMode::Small {secs: a_secs, nanos: a_nanos}, UniformDurationMode::Small {secs, nanos}) => { |
| 1165 | assert_eq!(a_secs, secs); |
| 1166 | |
| 1167 | assert_eq!(a_nanos.0.low, nanos.0.low); |
| 1168 | assert_eq!(a_nanos.0.range, nanos.0.range); |
| 1169 | assert_eq!(a_nanos.0.z, nanos.0.z); |
| 1170 | } |
| 1171 | (UniformDurationMode::Medium {nanos: a_nanos} , UniformDurationMode::Medium {nanos}) => { |
| 1172 | assert_eq!(a_nanos.0.low, nanos.0.low); |
| 1173 | assert_eq!(a_nanos.0.range, nanos.0.range); |
| 1174 | assert_eq!(a_nanos.0.z, nanos.0.z); |
| 1175 | } |
| 1176 | (UniformDurationMode::Large {max_secs:a_max_secs, max_nanos:a_max_nanos, secs:a_secs}, UniformDurationMode::Large {max_secs, max_nanos, secs} ) => { |
| 1177 | assert_eq!(a_max_secs, max_secs); |
| 1178 | assert_eq!(a_max_nanos, max_nanos); |
| 1179 | |
| 1180 | assert_eq!(a_secs.0.low, secs.0.low); |
| 1181 | assert_eq!(a_secs.0.range, secs.0.range); |
| 1182 | assert_eq!(a_secs.0.z, secs.0.z); |
| 1183 | } |
| 1184 | _ => panic!("`UniformDurationMode` was not serialized/deserialized correctly" ) |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | #[test ] |
| 1189 | #[cfg (feature = "serde1" )] |
| 1190 | fn test_uniform_serialization() { |
| 1191 | let unit_box: Uniform<i32> = Uniform::new(-1, 1); |
| 1192 | let de_unit_box: Uniform<i32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap(); |
| 1193 | |
| 1194 | assert_eq!(unit_box.0.low, de_unit_box.0.low); |
| 1195 | assert_eq!(unit_box.0.range, de_unit_box.0.range); |
| 1196 | assert_eq!(unit_box.0.z, de_unit_box.0.z); |
| 1197 | |
| 1198 | let unit_box: Uniform<f32> = Uniform::new(-1., 1.); |
| 1199 | let de_unit_box: Uniform<f32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap(); |
| 1200 | |
| 1201 | assert_eq!(unit_box.0.low, de_unit_box.0.low); |
| 1202 | assert_eq!(unit_box.0.scale, de_unit_box.0.scale); |
| 1203 | } |
| 1204 | |
| 1205 | #[should_panic ] |
| 1206 | #[test ] |
| 1207 | fn test_uniform_bad_limits_equal_int() { |
| 1208 | Uniform::new(10, 10); |
| 1209 | } |
| 1210 | |
| 1211 | #[test ] |
| 1212 | fn test_uniform_good_limits_equal_int() { |
| 1213 | let mut rng = crate::test::rng(804); |
| 1214 | let dist = Uniform::new_inclusive(10, 10); |
| 1215 | for _ in 0..20 { |
| 1216 | assert_eq!(rng.sample(dist), 10); |
| 1217 | } |
| 1218 | } |
| 1219 | |
| 1220 | #[should_panic ] |
| 1221 | #[test ] |
| 1222 | fn test_uniform_bad_limits_flipped_int() { |
| 1223 | Uniform::new(10, 5); |
| 1224 | } |
| 1225 | |
| 1226 | #[test ] |
| 1227 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 1228 | fn test_integers() { |
| 1229 | use core::{i128, u128}; |
| 1230 | use core::{i16, i32, i64, i8, isize}; |
| 1231 | use core::{u16, u32, u64, u8, usize}; |
| 1232 | |
| 1233 | let mut rng = crate::test::rng(251); |
| 1234 | macro_rules! t { |
| 1235 | ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{ |
| 1236 | for &(low, high) in $v.iter() { |
| 1237 | let my_uniform = Uniform::new(low, high); |
| 1238 | for _ in 0..1000 { |
| 1239 | let v: $ty = rng.sample(my_uniform); |
| 1240 | assert!($le(low, v) && $lt(v, high)); |
| 1241 | } |
| 1242 | |
| 1243 | let my_uniform = Uniform::new_inclusive(low, high); |
| 1244 | for _ in 0..1000 { |
| 1245 | let v: $ty = rng.sample(my_uniform); |
| 1246 | assert!($le(low, v) && $le(v, high)); |
| 1247 | } |
| 1248 | |
| 1249 | let my_uniform = Uniform::new(&low, high); |
| 1250 | for _ in 0..1000 { |
| 1251 | let v: $ty = rng.sample(my_uniform); |
| 1252 | assert!($le(low, v) && $lt(v, high)); |
| 1253 | } |
| 1254 | |
| 1255 | let my_uniform = Uniform::new_inclusive(&low, &high); |
| 1256 | for _ in 0..1000 { |
| 1257 | let v: $ty = rng.sample(my_uniform); |
| 1258 | assert!($le(low, v) && $le(v, high)); |
| 1259 | } |
| 1260 | |
| 1261 | for _ in 0..1000 { |
| 1262 | let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng); |
| 1263 | assert!($le(low, v) && $lt(v, high)); |
| 1264 | } |
| 1265 | |
| 1266 | for _ in 0..1000 { |
| 1267 | let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng); |
| 1268 | assert!($le(low, v) && $le(v, high)); |
| 1269 | } |
| 1270 | } |
| 1271 | }}; |
| 1272 | |
| 1273 | // scalar bulk |
| 1274 | ($($ty:ident),*) => {{ |
| 1275 | $(t!( |
| 1276 | $ty, |
| 1277 | [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)], |
| 1278 | |x, y| x <= y, |
| 1279 | |x, y| x < y |
| 1280 | );)* |
| 1281 | }}; |
| 1282 | |
| 1283 | // simd bulk |
| 1284 | ($($ty:ident),* => $scalar:ident) => {{ |
| 1285 | $(t!( |
| 1286 | $ty, |
| 1287 | [ |
| 1288 | ($ty::splat(0), $ty::splat(10)), |
| 1289 | ($ty::splat(10), $ty::splat(127)), |
| 1290 | ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)), |
| 1291 | ], |
| 1292 | |x: $ty, y| x.le(y).all(), |
| 1293 | |x: $ty, y| x.lt(y).all() |
| 1294 | );)* |
| 1295 | }}; |
| 1296 | } |
| 1297 | t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize, i128, u128); |
| 1298 | |
| 1299 | #[cfg (feature = "simd_support" )] |
| 1300 | { |
| 1301 | t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8); |
| 1302 | t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8); |
| 1303 | t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16); |
| 1304 | t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16); |
| 1305 | t!(u32x2, u32x4, u32x8, u32x16 => u32); |
| 1306 | t!(i32x2, i32x4, i32x8, i32x16 => i32); |
| 1307 | t!(u64x2, u64x4, u64x8 => u64); |
| 1308 | t!(i64x2, i64x4, i64x8 => i64); |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | #[test ] |
| 1313 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 1314 | fn test_char() { |
| 1315 | let mut rng = crate::test::rng(891); |
| 1316 | let mut max = core::char::from_u32(0).unwrap(); |
| 1317 | for _ in 0..100 { |
| 1318 | let c = rng.gen_range('A' ..='Z' ); |
| 1319 | assert!(('A' ..='Z' ).contains(&c)); |
| 1320 | max = max.max(c); |
| 1321 | } |
| 1322 | assert_eq!(max, 'Z' ); |
| 1323 | let d = Uniform::new( |
| 1324 | core::char::from_u32(0xD7F0).unwrap(), |
| 1325 | core::char::from_u32(0xE010).unwrap(), |
| 1326 | ); |
| 1327 | for _ in 0..100 { |
| 1328 | let c = d.sample(&mut rng); |
| 1329 | assert!((c as u32) < 0xD800 || (c as u32) > 0xDFFF); |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | #[test ] |
| 1334 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 1335 | fn test_floats() { |
| 1336 | let mut rng = crate::test::rng(252); |
| 1337 | let mut zero_rng = StepRng::new(0, 0); |
| 1338 | let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0); |
| 1339 | macro_rules! t { |
| 1340 | ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{ |
| 1341 | let v: &[($f_scalar, $f_scalar)] = &[ |
| 1342 | (0.0, 100.0), |
| 1343 | (-1e35, -1e25), |
| 1344 | (1e-35, 1e-25), |
| 1345 | (-1e35, 1e35), |
| 1346 | (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)), |
| 1347 | (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)), |
| 1348 | (-<$f_scalar>::from_bits(5), 0.0), |
| 1349 | (-<$f_scalar>::from_bits(7), -0.0), |
| 1350 | (0.1 * ::core::$f_scalar::MAX, ::core::$f_scalar::MAX), |
| 1351 | (-::core::$f_scalar::MAX * 0.2, ::core::$f_scalar::MAX * 0.7), |
| 1352 | ]; |
| 1353 | for &(low_scalar, high_scalar) in v.iter() { |
| 1354 | for lane in 0..<$ty>::lanes() { |
| 1355 | let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); |
| 1356 | let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); |
| 1357 | let my_uniform = Uniform::new(low, high); |
| 1358 | let my_incl_uniform = Uniform::new_inclusive(low, high); |
| 1359 | for _ in 0..100 { |
| 1360 | let v = rng.sample(my_uniform).extract(lane); |
| 1361 | assert!(low_scalar <= v && v < high_scalar); |
| 1362 | let v = rng.sample(my_incl_uniform).extract(lane); |
| 1363 | assert!(low_scalar <= v && v <= high_scalar); |
| 1364 | let v = <$ty as SampleUniform>::Sampler |
| 1365 | ::sample_single(low, high, &mut rng).extract(lane); |
| 1366 | assert!(low_scalar <= v && v < high_scalar); |
| 1367 | } |
| 1368 | |
| 1369 | assert_eq!( |
| 1370 | rng.sample(Uniform::new_inclusive(low, low)).extract(lane), |
| 1371 | low_scalar |
| 1372 | ); |
| 1373 | |
| 1374 | assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar); |
| 1375 | assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar); |
| 1376 | assert_eq!(<$ty as SampleUniform>::Sampler |
| 1377 | ::sample_single(low, high, &mut zero_rng) |
| 1378 | .extract(lane), low_scalar); |
| 1379 | assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar); |
| 1380 | assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar); |
| 1381 | |
| 1382 | // Don't run this test for really tiny differences between high and low |
| 1383 | // since for those rounding might result in selecting high for a very |
| 1384 | // long time. |
| 1385 | if (high_scalar - low_scalar) > 0.0001 { |
| 1386 | let mut lowering_max_rng = StepRng::new( |
| 1387 | 0xffff_ffff_ffff_ffff, |
| 1388 | (-1i64 << $bits_shifted) as u64, |
| 1389 | ); |
| 1390 | assert!( |
| 1391 | <$ty as SampleUniform>::Sampler |
| 1392 | ::sample_single(low, high, &mut lowering_max_rng) |
| 1393 | .extract(lane) < high_scalar |
| 1394 | ); |
| 1395 | } |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | assert_eq!( |
| 1400 | rng.sample(Uniform::new_inclusive( |
| 1401 | ::core::$f_scalar::MAX, |
| 1402 | ::core::$f_scalar::MAX |
| 1403 | )), |
| 1404 | ::core::$f_scalar::MAX |
| 1405 | ); |
| 1406 | assert_eq!( |
| 1407 | rng.sample(Uniform::new_inclusive( |
| 1408 | -::core::$f_scalar::MAX, |
| 1409 | -::core::$f_scalar::MAX |
| 1410 | )), |
| 1411 | -::core::$f_scalar::MAX |
| 1412 | ); |
| 1413 | }}; |
| 1414 | } |
| 1415 | |
| 1416 | t!(f32, f32, 32 - 23); |
| 1417 | t!(f64, f64, 64 - 52); |
| 1418 | #[cfg (feature = "simd_support" )] |
| 1419 | { |
| 1420 | t!(f32x2, f32, 32 - 23); |
| 1421 | t!(f32x4, f32, 32 - 23); |
| 1422 | t!(f32x8, f32, 32 - 23); |
| 1423 | t!(f32x16, f32, 32 - 23); |
| 1424 | t!(f64x2, f64, 64 - 52); |
| 1425 | t!(f64x4, f64, 64 - 52); |
| 1426 | t!(f64x8, f64, 64 - 52); |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | #[test ] |
| 1431 | #[should_panic ] |
| 1432 | fn test_float_overflow() { |
| 1433 | let _ = Uniform::from(::core::f64::MIN..::core::f64::MAX); |
| 1434 | } |
| 1435 | |
| 1436 | #[test ] |
| 1437 | #[should_panic ] |
| 1438 | fn test_float_overflow_single() { |
| 1439 | let mut rng = crate::test::rng(252); |
| 1440 | rng.gen_range(::core::f64::MIN..::core::f64::MAX); |
| 1441 | } |
| 1442 | |
| 1443 | #[test ] |
| 1444 | #[cfg (all( |
| 1445 | feature = "std" , |
| 1446 | not(target_arch = "wasm32" ), |
| 1447 | not(target_arch = "asmjs" ) |
| 1448 | ))] |
| 1449 | fn test_float_assertions() { |
| 1450 | use super::SampleUniform; |
| 1451 | use std::panic::catch_unwind; |
| 1452 | fn range<T: SampleUniform>(low: T, high: T) { |
| 1453 | let mut rng = crate::test::rng(253); |
| 1454 | T::Sampler::sample_single(low, high, &mut rng); |
| 1455 | } |
| 1456 | |
| 1457 | macro_rules! t { |
| 1458 | ($ty:ident, $f_scalar:ident) => {{ |
| 1459 | let v: &[($f_scalar, $f_scalar)] = &[ |
| 1460 | (::std::$f_scalar::NAN, 0.0), |
| 1461 | (1.0, ::std::$f_scalar::NAN), |
| 1462 | (::std::$f_scalar::NAN, ::std::$f_scalar::NAN), |
| 1463 | (1.0, 0.5), |
| 1464 | (::std::$f_scalar::MAX, -::std::$f_scalar::MAX), |
| 1465 | (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY), |
| 1466 | ( |
| 1467 | ::std::$f_scalar::NEG_INFINITY, |
| 1468 | ::std::$f_scalar::NEG_INFINITY, |
| 1469 | ), |
| 1470 | (::std::$f_scalar::NEG_INFINITY, 5.0), |
| 1471 | (5.0, ::std::$f_scalar::INFINITY), |
| 1472 | (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY), |
| 1473 | (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN), |
| 1474 | (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY), |
| 1475 | ]; |
| 1476 | for &(low_scalar, high_scalar) in v.iter() { |
| 1477 | for lane in 0..<$ty>::lanes() { |
| 1478 | let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); |
| 1479 | let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); |
| 1480 | assert!(catch_unwind(|| range(low, high)).is_err()); |
| 1481 | assert!(catch_unwind(|| Uniform::new(low, high)).is_err()); |
| 1482 | assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err()); |
| 1483 | assert!(catch_unwind(|| range(low, low)).is_err()); |
| 1484 | assert!(catch_unwind(|| Uniform::new(low, low)).is_err()); |
| 1485 | } |
| 1486 | } |
| 1487 | }}; |
| 1488 | } |
| 1489 | |
| 1490 | t!(f32, f32); |
| 1491 | t!(f64, f64); |
| 1492 | #[cfg (feature = "simd_support" )] |
| 1493 | { |
| 1494 | t!(f32x2, f32); |
| 1495 | t!(f32x4, f32); |
| 1496 | t!(f32x8, f32); |
| 1497 | t!(f32x16, f32); |
| 1498 | t!(f64x2, f64); |
| 1499 | t!(f64x4, f64); |
| 1500 | t!(f64x8, f64); |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | |
| 1505 | #[test ] |
| 1506 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 1507 | fn test_durations() { |
| 1508 | let mut rng = crate::test::rng(253); |
| 1509 | |
| 1510 | let v = &[ |
| 1511 | (Duration::new(10, 50000), Duration::new(100, 1234)), |
| 1512 | (Duration::new(0, 100), Duration::new(1, 50)), |
| 1513 | ( |
| 1514 | Duration::new(0, 0), |
| 1515 | Duration::new(u64::max_value(), 999_999_999), |
| 1516 | ), |
| 1517 | ]; |
| 1518 | for &(low, high) in v.iter() { |
| 1519 | let my_uniform = Uniform::new(low, high); |
| 1520 | for _ in 0..1000 { |
| 1521 | let v = rng.sample(my_uniform); |
| 1522 | assert!(low <= v && v < high); |
| 1523 | } |
| 1524 | } |
| 1525 | } |
| 1526 | |
| 1527 | #[test ] |
| 1528 | fn test_custom_uniform() { |
| 1529 | use crate::distributions::uniform::{ |
| 1530 | SampleBorrow, SampleUniform, UniformFloat, UniformSampler, |
| 1531 | }; |
| 1532 | #[derive (Clone, Copy, PartialEq, PartialOrd)] |
| 1533 | struct MyF32 { |
| 1534 | x: f32, |
| 1535 | } |
| 1536 | #[derive (Clone, Copy, Debug)] |
| 1537 | struct UniformMyF32(UniformFloat<f32>); |
| 1538 | impl UniformSampler for UniformMyF32 { |
| 1539 | type X = MyF32; |
| 1540 | |
| 1541 | fn new<B1, B2>(low: B1, high: B2) -> Self |
| 1542 | where |
| 1543 | B1: SampleBorrow<Self::X> + Sized, |
| 1544 | B2: SampleBorrow<Self::X> + Sized, |
| 1545 | { |
| 1546 | UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x)) |
| 1547 | } |
| 1548 | |
| 1549 | fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self |
| 1550 | where |
| 1551 | B1: SampleBorrow<Self::X> + Sized, |
| 1552 | B2: SampleBorrow<Self::X> + Sized, |
| 1553 | { |
| 1554 | UniformSampler::new(low, high) |
| 1555 | } |
| 1556 | |
| 1557 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { |
| 1558 | MyF32 { |
| 1559 | x: self.0.sample(rng), |
| 1560 | } |
| 1561 | } |
| 1562 | } |
| 1563 | impl SampleUniform for MyF32 { |
| 1564 | type Sampler = UniformMyF32; |
| 1565 | } |
| 1566 | |
| 1567 | let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 }); |
| 1568 | let uniform = Uniform::new(low, high); |
| 1569 | let mut rng = crate::test::rng(804); |
| 1570 | for _ in 0..100 { |
| 1571 | let x: MyF32 = rng.sample(uniform); |
| 1572 | assert!(low <= x && x < high); |
| 1573 | } |
| 1574 | } |
| 1575 | |
| 1576 | #[test ] |
| 1577 | fn test_uniform_from_std_range() { |
| 1578 | let r = Uniform::from(2u32..7); |
| 1579 | assert_eq!(r.0.low, 2); |
| 1580 | assert_eq!(r.0.range, 5); |
| 1581 | let r = Uniform::from(2.0f64..7.0); |
| 1582 | assert_eq!(r.0.low, 2.0); |
| 1583 | assert_eq!(r.0.scale, 5.0); |
| 1584 | } |
| 1585 | |
| 1586 | #[test ] |
| 1587 | fn test_uniform_from_std_range_inclusive() { |
| 1588 | let r = Uniform::from(2u32..=6); |
| 1589 | assert_eq!(r.0.low, 2); |
| 1590 | assert_eq!(r.0.range, 5); |
| 1591 | let r = Uniform::from(2.0f64..=7.0); |
| 1592 | assert_eq!(r.0.low, 2.0); |
| 1593 | assert!(r.0.scale > 5.0); |
| 1594 | assert!(r.0.scale < 5.0 + 1e-14); |
| 1595 | } |
| 1596 | |
| 1597 | #[test ] |
| 1598 | fn value_stability() { |
| 1599 | fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>( |
| 1600 | lb: T, ub: T, expected_single: &[T], expected_multiple: &[T], |
| 1601 | ) where Uniform<T>: Distribution<T> { |
| 1602 | let mut rng = crate::test::rng(897); |
| 1603 | let mut buf = [lb; 3]; |
| 1604 | |
| 1605 | for x in &mut buf { |
| 1606 | *x = T::Sampler::sample_single(lb, ub, &mut rng); |
| 1607 | } |
| 1608 | assert_eq!(&buf, expected_single); |
| 1609 | |
| 1610 | let distr = Uniform::new(lb, ub); |
| 1611 | for x in &mut buf { |
| 1612 | *x = rng.sample(&distr); |
| 1613 | } |
| 1614 | assert_eq!(&buf, expected_multiple); |
| 1615 | } |
| 1616 | |
| 1617 | // We test on a sub-set of types; possibly we should do more. |
| 1618 | // TODO: SIMD types |
| 1619 | |
| 1620 | test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]); |
| 1621 | test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]); |
| 1622 | |
| 1623 | test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[ |
| 1624 | 0.008194133, |
| 1625 | 0.00398172, |
| 1626 | 0.007428536, |
| 1627 | ]); |
| 1628 | test_samples( |
| 1629 | -1e10f64, |
| 1630 | 1e10f64, |
| 1631 | &[-4673848682.871551, 6388267422.932352, 4857075081.198343], |
| 1632 | &[1173375212.1808167, 1917642852.109581, 2365076174.3153973], |
| 1633 | ); |
| 1634 | |
| 1635 | test_samples( |
| 1636 | Duration::new(2, 0), |
| 1637 | Duration::new(4, 0), |
| 1638 | &[ |
| 1639 | Duration::new(2, 532615131), |
| 1640 | Duration::new(3, 638826742), |
| 1641 | Duration::new(3, 485707508), |
| 1642 | ], |
| 1643 | &[ |
| 1644 | Duration::new(3, 117337521), |
| 1645 | Duration::new(3, 191764285), |
| 1646 | Duration::new(3, 236507617), |
| 1647 | ], |
| 1648 | ); |
| 1649 | } |
| 1650 | |
| 1651 | #[test ] |
| 1652 | fn uniform_distributions_can_be_compared() { |
| 1653 | assert_eq!(Uniform::new(1.0, 2.0), Uniform::new(1.0, 2.0)); |
| 1654 | |
| 1655 | // To cover UniformInt |
| 1656 | assert_eq!(Uniform::new(1 as u32, 2 as u32), Uniform::new(1 as u32, 2 as u32)); |
| 1657 | } |
| 1658 | } |
| 1659 | |