| 1 | // Copyright 2018 Developers of the Rand project. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 6 | // option. This file may not be copied, modified, or distributed |
| 7 | // except according to those terms. |
| 8 | |
| 9 | use super::{Error, Weight}; |
| 10 | use crate::distr::uniform::{SampleBorrow, SampleUniform, UniformSampler}; |
| 11 | use crate::distr::Distribution; |
| 12 | use crate::Rng; |
| 13 | |
| 14 | // Note that this whole module is only imported if feature="alloc" is enabled. |
| 15 | use alloc::vec::Vec; |
| 16 | use core::fmt::{self, Debug}; |
| 17 | |
| 18 | #[cfg (feature = "serde" )] |
| 19 | use serde::{Deserialize, Serialize}; |
| 20 | |
| 21 | /// A distribution using weighted sampling of discrete items. |
| 22 | /// |
| 23 | /// Sampling a `WeightedIndex` distribution returns the index of a randomly |
| 24 | /// selected element from the iterator used when the `WeightedIndex` was |
| 25 | /// created. The chance of a given element being picked is proportional to the |
| 26 | /// weight of the element. The weights can use any type `X` for which an |
| 27 | /// implementation of [`Uniform<X>`] exists. The implementation guarantees that |
| 28 | /// elements with zero weight are never picked, even when the weights are |
| 29 | /// floating point numbers. |
| 30 | /// |
| 31 | /// # Performance |
| 32 | /// |
| 33 | /// Time complexity of sampling from `WeightedIndex` is `O(log N)` where |
| 34 | /// `N` is the number of weights. |
| 35 | /// See also [`rand_distr::weighted`] for alternative implementations supporting |
| 36 | /// potentially-faster sampling or a more easily modifiable tree structure. |
| 37 | /// |
| 38 | /// A `WeightedIndex<X>` contains a `Vec<X>` and a [`Uniform<X>`] and so its |
| 39 | /// size is the sum of the size of those objects, possibly plus some alignment. |
| 40 | /// |
| 41 | /// Creating a `WeightedIndex<X>` will allocate enough space to hold `N - 1` |
| 42 | /// weights of type `X`, where `N` is the number of weights. However, since |
| 43 | /// `Vec` doesn't guarantee a particular growth strategy, additional memory |
| 44 | /// might be allocated but not used. Since the `WeightedIndex` object also |
| 45 | /// contains an instance of `X::Sampler`, this might cause additional allocations, |
| 46 | /// though for primitive types, [`Uniform<X>`] doesn't allocate any memory. |
| 47 | /// |
| 48 | /// Sampling from `WeightedIndex` will result in a single call to |
| 49 | /// `Uniform<X>::sample` (method of the [`Distribution`] trait), which typically |
| 50 | /// will request a single value from the underlying [`RngCore`], though the |
| 51 | /// exact number depends on the implementation of `Uniform<X>::sample`. |
| 52 | /// |
| 53 | /// # Example |
| 54 | /// |
| 55 | /// ``` |
| 56 | /// use rand::prelude::*; |
| 57 | /// use rand::distr::weighted::WeightedIndex; |
| 58 | /// |
| 59 | /// let choices = ['a' , 'b' , 'c' ]; |
| 60 | /// let weights = [2, 1, 1]; |
| 61 | /// let dist = WeightedIndex::new(&weights).unwrap(); |
| 62 | /// let mut rng = rand::rng(); |
| 63 | /// for _ in 0..100 { |
| 64 | /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' |
| 65 | /// println!("{}" , choices[dist.sample(&mut rng)]); |
| 66 | /// } |
| 67 | /// |
| 68 | /// let items = [('a' , 0.0), ('b' , 3.0), ('c' , 7.0)]; |
| 69 | /// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1)).unwrap(); |
| 70 | /// for _ in 0..100 { |
| 71 | /// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c' |
| 72 | /// println!("{}" , items[dist2.sample(&mut rng)].0); |
| 73 | /// } |
| 74 | /// ``` |
| 75 | /// |
| 76 | /// [`Uniform<X>`]: crate::distr::Uniform |
| 77 | /// [`RngCore`]: crate::RngCore |
| 78 | /// [`rand_distr::weighted`]: https://docs.rs/rand_distr/latest/rand_distr/weighted/index.html |
| 79 | #[derive (Debug, Clone, PartialEq)] |
| 80 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 81 | pub struct WeightedIndex<X: SampleUniform + PartialOrd> { |
| 82 | cumulative_weights: Vec<X>, |
| 83 | total_weight: X, |
| 84 | weight_distribution: X::Sampler, |
| 85 | } |
| 86 | |
| 87 | impl<X: SampleUniform + PartialOrd> WeightedIndex<X> { |
| 88 | /// Creates a new a `WeightedIndex` [`Distribution`] using the values |
| 89 | /// in `weights`. The weights can use any type `X` for which an |
| 90 | /// implementation of [`Uniform<X>`] exists. |
| 91 | /// |
| 92 | /// Error cases: |
| 93 | /// - [`Error::InvalidInput`] when the iterator `weights` is empty. |
| 94 | /// - [`Error::InvalidWeight`] when a weight is not-a-number or negative. |
| 95 | /// - [`Error::InsufficientNonZero`] when the sum of all weights is zero. |
| 96 | /// - [`Error::Overflow`] when the sum of all weights overflows. |
| 97 | /// |
| 98 | /// [`Uniform<X>`]: crate::distr::uniform::Uniform |
| 99 | pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, Error> |
| 100 | where |
| 101 | I: IntoIterator, |
| 102 | I::Item: SampleBorrow<X>, |
| 103 | X: Weight, |
| 104 | { |
| 105 | let mut iter = weights.into_iter(); |
| 106 | let mut total_weight: X = iter.next().ok_or(Error::InvalidInput)?.borrow().clone(); |
| 107 | |
| 108 | let zero = X::ZERO; |
| 109 | if !(total_weight >= zero) { |
| 110 | return Err(Error::InvalidWeight); |
| 111 | } |
| 112 | |
| 113 | let mut weights = Vec::<X>::with_capacity(iter.size_hint().0); |
| 114 | for w in iter { |
| 115 | // Note that `!(w >= x)` is not equivalent to `w < x` for partially |
| 116 | // ordered types due to NaNs which are equal to nothing. |
| 117 | if !(w.borrow() >= &zero) { |
| 118 | return Err(Error::InvalidWeight); |
| 119 | } |
| 120 | weights.push(total_weight.clone()); |
| 121 | |
| 122 | if let Err(()) = total_weight.checked_add_assign(w.borrow()) { |
| 123 | return Err(Error::Overflow); |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | if total_weight == zero { |
| 128 | return Err(Error::InsufficientNonZero); |
| 129 | } |
| 130 | let distr = X::Sampler::new(zero, total_weight.clone()).unwrap(); |
| 131 | |
| 132 | Ok(WeightedIndex { |
| 133 | cumulative_weights: weights, |
| 134 | total_weight, |
| 135 | weight_distribution: distr, |
| 136 | }) |
| 137 | } |
| 138 | |
| 139 | /// Update a subset of weights, without changing the number of weights. |
| 140 | /// |
| 141 | /// `new_weights` must be sorted by the index. |
| 142 | /// |
| 143 | /// Using this method instead of `new` might be more efficient if only a small number of |
| 144 | /// weights is modified. No allocations are performed, unless the weight type `X` uses |
| 145 | /// allocation internally. |
| 146 | /// |
| 147 | /// In case of error, `self` is not modified. Error cases: |
| 148 | /// - [`Error::InvalidInput`] when `new_weights` are not ordered by |
| 149 | /// index or an index is too large. |
| 150 | /// - [`Error::InvalidWeight`] when a weight is not-a-number or negative. |
| 151 | /// - [`Error::InsufficientNonZero`] when the sum of all weights is zero. |
| 152 | /// Note that due to floating-point loss of precision, this case is not |
| 153 | /// always correctly detected; usage of a fixed-point weight type may be |
| 154 | /// preferred. |
| 155 | /// |
| 156 | /// Updates take `O(N)` time. If you need to frequently update weights, consider |
| 157 | /// [`rand_distr::weighted_tree`](https://docs.rs/rand_distr/*/rand_distr/weighted_tree/index.html) |
| 158 | /// as an alternative where an update is `O(log N)`. |
| 159 | pub fn update_weights(&mut self, new_weights: &[(usize, &X)]) -> Result<(), Error> |
| 160 | where |
| 161 | X: for<'a> core::ops::AddAssign<&'a X> |
| 162 | + for<'a> core::ops::SubAssign<&'a X> |
| 163 | + Clone |
| 164 | + Default, |
| 165 | { |
| 166 | if new_weights.is_empty() { |
| 167 | return Ok(()); |
| 168 | } |
| 169 | |
| 170 | let zero = <X as Default>::default(); |
| 171 | |
| 172 | let mut total_weight = self.total_weight.clone(); |
| 173 | |
| 174 | // Check for errors first, so we don't modify `self` in case something |
| 175 | // goes wrong. |
| 176 | let mut prev_i = None; |
| 177 | for &(i, w) in new_weights { |
| 178 | if let Some(old_i) = prev_i { |
| 179 | if old_i >= i { |
| 180 | return Err(Error::InvalidInput); |
| 181 | } |
| 182 | } |
| 183 | if !(*w >= zero) { |
| 184 | return Err(Error::InvalidWeight); |
| 185 | } |
| 186 | if i > self.cumulative_weights.len() { |
| 187 | return Err(Error::InvalidInput); |
| 188 | } |
| 189 | |
| 190 | let mut old_w = if i < self.cumulative_weights.len() { |
| 191 | self.cumulative_weights[i].clone() |
| 192 | } else { |
| 193 | self.total_weight.clone() |
| 194 | }; |
| 195 | if i > 0 { |
| 196 | old_w -= &self.cumulative_weights[i - 1]; |
| 197 | } |
| 198 | |
| 199 | total_weight -= &old_w; |
| 200 | total_weight += w; |
| 201 | prev_i = Some(i); |
| 202 | } |
| 203 | if total_weight <= zero { |
| 204 | return Err(Error::InsufficientNonZero); |
| 205 | } |
| 206 | |
| 207 | // Update the weights. Because we checked all the preconditions in the |
| 208 | // previous loop, this should never panic. |
| 209 | let mut iter = new_weights.iter(); |
| 210 | |
| 211 | let mut prev_weight = zero.clone(); |
| 212 | let mut next_new_weight = iter.next(); |
| 213 | let &(first_new_index, _) = next_new_weight.unwrap(); |
| 214 | let mut cumulative_weight = if first_new_index > 0 { |
| 215 | self.cumulative_weights[first_new_index - 1].clone() |
| 216 | } else { |
| 217 | zero.clone() |
| 218 | }; |
| 219 | for i in first_new_index..self.cumulative_weights.len() { |
| 220 | match next_new_weight { |
| 221 | Some(&(j, w)) if i == j => { |
| 222 | cumulative_weight += w; |
| 223 | next_new_weight = iter.next(); |
| 224 | } |
| 225 | _ => { |
| 226 | let mut tmp = self.cumulative_weights[i].clone(); |
| 227 | tmp -= &prev_weight; // We know this is positive. |
| 228 | cumulative_weight += &tmp; |
| 229 | } |
| 230 | } |
| 231 | prev_weight = cumulative_weight.clone(); |
| 232 | core::mem::swap(&mut prev_weight, &mut self.cumulative_weights[i]); |
| 233 | } |
| 234 | |
| 235 | self.total_weight = total_weight; |
| 236 | self.weight_distribution = X::Sampler::new(zero, self.total_weight.clone()).unwrap(); |
| 237 | |
| 238 | Ok(()) |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | /// A lazy-loading iterator over the weights of a `WeightedIndex` distribution. |
| 243 | /// This is returned by [`WeightedIndex::weights`]. |
| 244 | pub struct WeightedIndexIter<'a, X: SampleUniform + PartialOrd> { |
| 245 | weighted_index: &'a WeightedIndex<X>, |
| 246 | index: usize, |
| 247 | } |
| 248 | |
| 249 | impl<X> Debug for WeightedIndexIter<'_, X> |
| 250 | where |
| 251 | X: SampleUniform + PartialOrd + Debug, |
| 252 | X::Sampler: Debug, |
| 253 | { |
| 254 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 255 | f&mut DebugStruct<'_, '_>.debug_struct("WeightedIndexIter" ) |
| 256 | .field("weighted_index" , &self.weighted_index) |
| 257 | .field(name:"index" , &self.index) |
| 258 | .finish() |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | impl<X> Clone for WeightedIndexIter<'_, X> |
| 263 | where |
| 264 | X: SampleUniform + PartialOrd, |
| 265 | { |
| 266 | fn clone(&self) -> Self { |
| 267 | WeightedIndexIter { |
| 268 | weighted_index: self.weighted_index, |
| 269 | index: self.index, |
| 270 | } |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | impl<X> Iterator for WeightedIndexIter<'_, X> |
| 275 | where |
| 276 | X: for<'b> dyncore::ops::SubAssign<&'b X> + SampleUniform + PartialOrd + Clone, |
| 277 | { |
| 278 | type Item = X; |
| 279 | |
| 280 | fn next(&mut self) -> Option<Self::Item> { |
| 281 | match self.weighted_index.weight(self.index) { |
| 282 | None => None, |
| 283 | Some(weight: X) => { |
| 284 | self.index += 1; |
| 285 | Some(weight) |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | impl<X: SampleUniform + PartialOrd + Clone> WeightedIndex<X> { |
| 292 | /// Returns the weight at the given index, if it exists. |
| 293 | /// |
| 294 | /// If the index is out of bounds, this will return `None`. |
| 295 | /// |
| 296 | /// # Example |
| 297 | /// |
| 298 | /// ``` |
| 299 | /// use rand::distr::weighted::WeightedIndex; |
| 300 | /// |
| 301 | /// let weights = [0, 1, 2]; |
| 302 | /// let dist = WeightedIndex::new(&weights).unwrap(); |
| 303 | /// assert_eq!(dist.weight(0), Some(0)); |
| 304 | /// assert_eq!(dist.weight(1), Some(1)); |
| 305 | /// assert_eq!(dist.weight(2), Some(2)); |
| 306 | /// assert_eq!(dist.weight(3), None); |
| 307 | /// ``` |
| 308 | pub fn weight(&self, index: usize) -> Option<X> |
| 309 | where |
| 310 | X: for<'a> core::ops::SubAssign<&'a X>, |
| 311 | { |
| 312 | use core::cmp::Ordering::*; |
| 313 | |
| 314 | let mut weight = match index.cmp(&self.cumulative_weights.len()) { |
| 315 | Less => self.cumulative_weights[index].clone(), |
| 316 | Equal => self.total_weight.clone(), |
| 317 | Greater => return None, |
| 318 | }; |
| 319 | |
| 320 | if index > 0 { |
| 321 | weight -= &self.cumulative_weights[index - 1]; |
| 322 | } |
| 323 | Some(weight) |
| 324 | } |
| 325 | |
| 326 | /// Returns a lazy-loading iterator containing the current weights of this distribution. |
| 327 | /// |
| 328 | /// If this distribution has not been updated since its creation, this will return the |
| 329 | /// same weights as were passed to `new`. |
| 330 | /// |
| 331 | /// # Example |
| 332 | /// |
| 333 | /// ``` |
| 334 | /// use rand::distr::weighted::WeightedIndex; |
| 335 | /// |
| 336 | /// let weights = [1, 2, 3]; |
| 337 | /// let mut dist = WeightedIndex::new(&weights).unwrap(); |
| 338 | /// assert_eq!(dist.weights().collect::<Vec<_>>(), vec![1, 2, 3]); |
| 339 | /// dist.update_weights(&[(0, &2)]).unwrap(); |
| 340 | /// assert_eq!(dist.weights().collect::<Vec<_>>(), vec![2, 2, 3]); |
| 341 | /// ``` |
| 342 | pub fn weights(&self) -> WeightedIndexIter<'_, X> |
| 343 | where |
| 344 | X: for<'a> core::ops::SubAssign<&'a X>, |
| 345 | { |
| 346 | WeightedIndexIter { |
| 347 | weighted_index: self, |
| 348 | index: 0, |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /// Returns the sum of all weights in this distribution. |
| 353 | pub fn total_weight(&self) -> X { |
| 354 | self.total_weight.clone() |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | impl<X> Distribution<usize> for WeightedIndex<X> |
| 359 | where |
| 360 | X: SampleUniform + PartialOrd, |
| 361 | { |
| 362 | fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize { |
| 363 | let chosen_weight: X = self.weight_distribution.sample(rng); |
| 364 | // Find the first item which has a weight *higher* than the chosen weight. |
| 365 | self.cumulative_weights |
| 366 | .partition_point(|w: &X| w <= &chosen_weight) |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | #[cfg (test)] |
| 371 | mod test { |
| 372 | use super::*; |
| 373 | |
| 374 | #[cfg (feature = "serde" )] |
| 375 | #[test ] |
| 376 | fn test_weightedindex_serde() { |
| 377 | let weighted_index = WeightedIndex::new([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).unwrap(); |
| 378 | |
| 379 | let ser_weighted_index = bincode::serialize(&weighted_index).unwrap(); |
| 380 | let de_weighted_index: WeightedIndex<i32> = |
| 381 | bincode::deserialize(&ser_weighted_index).unwrap(); |
| 382 | |
| 383 | assert_eq!( |
| 384 | de_weighted_index.cumulative_weights, |
| 385 | weighted_index.cumulative_weights |
| 386 | ); |
| 387 | assert_eq!(de_weighted_index.total_weight, weighted_index.total_weight); |
| 388 | } |
| 389 | |
| 390 | #[test ] |
| 391 | fn test_accepting_nan() { |
| 392 | assert_eq!( |
| 393 | WeightedIndex::new([f32::NAN, 0.5]).unwrap_err(), |
| 394 | Error::InvalidWeight, |
| 395 | ); |
| 396 | assert_eq!( |
| 397 | WeightedIndex::new([f32::NAN]).unwrap_err(), |
| 398 | Error::InvalidWeight, |
| 399 | ); |
| 400 | assert_eq!( |
| 401 | WeightedIndex::new([0.5, f32::NAN]).unwrap_err(), |
| 402 | Error::InvalidWeight, |
| 403 | ); |
| 404 | |
| 405 | assert_eq!( |
| 406 | WeightedIndex::new([0.5, 7.0]) |
| 407 | .unwrap() |
| 408 | .update_weights(&[(0, &f32::NAN)]) |
| 409 | .unwrap_err(), |
| 410 | Error::InvalidWeight, |
| 411 | ) |
| 412 | } |
| 413 | |
| 414 | #[test ] |
| 415 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 416 | fn test_weightedindex() { |
| 417 | let mut r = crate::test::rng(700); |
| 418 | const N_REPS: u32 = 5000; |
| 419 | let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; |
| 420 | let total_weight = weights.iter().sum::<u32>() as f32; |
| 421 | |
| 422 | let verify = |result: [i32; 14]| { |
| 423 | for (i, count) in result.iter().enumerate() { |
| 424 | let exp = (weights[i] * N_REPS) as f32 / total_weight; |
| 425 | let mut err = (*count as f32 - exp).abs(); |
| 426 | if err != 0.0 { |
| 427 | err /= exp; |
| 428 | } |
| 429 | assert!(err <= 0.25); |
| 430 | } |
| 431 | }; |
| 432 | |
| 433 | // WeightedIndex from vec |
| 434 | let mut chosen = [0i32; 14]; |
| 435 | let distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
| 436 | for _ in 0..N_REPS { |
| 437 | chosen[distr.sample(&mut r)] += 1; |
| 438 | } |
| 439 | verify(chosen); |
| 440 | |
| 441 | // WeightedIndex from slice |
| 442 | chosen = [0i32; 14]; |
| 443 | let distr = WeightedIndex::new(&weights[..]).unwrap(); |
| 444 | for _ in 0..N_REPS { |
| 445 | chosen[distr.sample(&mut r)] += 1; |
| 446 | } |
| 447 | verify(chosen); |
| 448 | |
| 449 | // WeightedIndex from iterator |
| 450 | chosen = [0i32; 14]; |
| 451 | let distr = WeightedIndex::new(weights.iter()).unwrap(); |
| 452 | for _ in 0..N_REPS { |
| 453 | chosen[distr.sample(&mut r)] += 1; |
| 454 | } |
| 455 | verify(chosen); |
| 456 | |
| 457 | for _ in 0..5 { |
| 458 | assert_eq!(WeightedIndex::new([0, 1]).unwrap().sample(&mut r), 1); |
| 459 | assert_eq!(WeightedIndex::new([1, 0]).unwrap().sample(&mut r), 0); |
| 460 | assert_eq!( |
| 461 | WeightedIndex::new([0, 0, 0, 0, 10, 0]) |
| 462 | .unwrap() |
| 463 | .sample(&mut r), |
| 464 | 4 |
| 465 | ); |
| 466 | } |
| 467 | |
| 468 | assert_eq!( |
| 469 | WeightedIndex::new(&[10][0..0]).unwrap_err(), |
| 470 | Error::InvalidInput |
| 471 | ); |
| 472 | assert_eq!( |
| 473 | WeightedIndex::new([0]).unwrap_err(), |
| 474 | Error::InsufficientNonZero |
| 475 | ); |
| 476 | assert_eq!( |
| 477 | WeightedIndex::new([10, 20, -1, 30]).unwrap_err(), |
| 478 | Error::InvalidWeight |
| 479 | ); |
| 480 | assert_eq!( |
| 481 | WeightedIndex::new([-10, 20, 1, 30]).unwrap_err(), |
| 482 | Error::InvalidWeight |
| 483 | ); |
| 484 | assert_eq!(WeightedIndex::new([-10]).unwrap_err(), Error::InvalidWeight); |
| 485 | } |
| 486 | |
| 487 | #[test ] |
| 488 | fn test_update_weights() { |
| 489 | let data = [ |
| 490 | ( |
| 491 | &[10u32, 2, 3, 4][..], |
| 492 | &[(1, &100), (2, &4)][..], // positive change |
| 493 | &[10, 100, 4, 4][..], |
| 494 | ), |
| 495 | ( |
| 496 | &[1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..], |
| 497 | &[(2, &1), (5, &1), (13, &100)][..], // negative change and last element |
| 498 | &[1u32, 2, 1, 0, 5, 1, 7, 1, 2, 3, 4, 5, 6, 100][..], |
| 499 | ), |
| 500 | ]; |
| 501 | |
| 502 | for (weights, update, expected_weights) in data.iter() { |
| 503 | let total_weight = weights.iter().sum::<u32>(); |
| 504 | let mut distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
| 505 | assert_eq!(distr.total_weight, total_weight); |
| 506 | |
| 507 | distr.update_weights(update).unwrap(); |
| 508 | let expected_total_weight = expected_weights.iter().sum::<u32>(); |
| 509 | let expected_distr = WeightedIndex::new(expected_weights.to_vec()).unwrap(); |
| 510 | assert_eq!(distr.total_weight, expected_total_weight); |
| 511 | assert_eq!(distr.total_weight, expected_distr.total_weight); |
| 512 | assert_eq!(distr.cumulative_weights, expected_distr.cumulative_weights); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | #[test ] |
| 517 | fn test_update_weights_errors() { |
| 518 | let data = [ |
| 519 | ( |
| 520 | &[1i32, 0, 0][..], |
| 521 | &[(0, &0)][..], |
| 522 | Error::InsufficientNonZero, |
| 523 | ), |
| 524 | ( |
| 525 | &[10, 10, 10, 10][..], |
| 526 | &[(1, &-11)][..], |
| 527 | Error::InvalidWeight, // A weight is negative |
| 528 | ), |
| 529 | ( |
| 530 | &[1, 2, 3, 4, 5][..], |
| 531 | &[(1, &5), (0, &5)][..], // Wrong order |
| 532 | Error::InvalidInput, |
| 533 | ), |
| 534 | ( |
| 535 | &[1][..], |
| 536 | &[(1, &1)][..], // Index too large |
| 537 | Error::InvalidInput, |
| 538 | ), |
| 539 | ]; |
| 540 | |
| 541 | for (weights, update, err) in data.iter() { |
| 542 | let total_weight = weights.iter().sum::<i32>(); |
| 543 | let mut distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
| 544 | assert_eq!(distr.total_weight, total_weight); |
| 545 | match distr.update_weights(update) { |
| 546 | Ok(_) => panic!("Expected update_weights to fail, but it succeeded" ), |
| 547 | Err(e) => assert_eq!(e, *err), |
| 548 | } |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | #[test ] |
| 553 | fn test_weight_at() { |
| 554 | let data = [ |
| 555 | &[1][..], |
| 556 | &[10, 2, 3, 4][..], |
| 557 | &[1, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..], |
| 558 | &[u32::MAX][..], |
| 559 | ]; |
| 560 | |
| 561 | for weights in data.iter() { |
| 562 | let distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
| 563 | for (i, weight) in weights.iter().enumerate() { |
| 564 | assert_eq!(distr.weight(i), Some(*weight)); |
| 565 | } |
| 566 | assert_eq!(distr.weight(weights.len()), None); |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | #[test ] |
| 571 | fn test_weights() { |
| 572 | let data = [ |
| 573 | &[1][..], |
| 574 | &[10, 2, 3, 4][..], |
| 575 | &[1, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..], |
| 576 | &[u32::MAX][..], |
| 577 | ]; |
| 578 | |
| 579 | for weights in data.iter() { |
| 580 | let distr = WeightedIndex::new(weights.to_vec()).unwrap(); |
| 581 | assert_eq!(distr.weights().collect::<Vec<_>>(), weights.to_vec()); |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | #[test ] |
| 586 | fn value_stability() { |
| 587 | fn test_samples<X: Weight + SampleUniform + PartialOrd, I>( |
| 588 | weights: I, |
| 589 | buf: &mut [usize], |
| 590 | expected: &[usize], |
| 591 | ) where |
| 592 | I: IntoIterator, |
| 593 | I::Item: SampleBorrow<X>, |
| 594 | { |
| 595 | assert_eq!(buf.len(), expected.len()); |
| 596 | let distr = WeightedIndex::new(weights).unwrap(); |
| 597 | let mut rng = crate::test::rng(701); |
| 598 | for r in buf.iter_mut() { |
| 599 | *r = rng.sample(&distr); |
| 600 | } |
| 601 | assert_eq!(buf, expected); |
| 602 | } |
| 603 | |
| 604 | let mut buf = [0; 10]; |
| 605 | test_samples( |
| 606 | [1i32, 1, 1, 1, 1, 1, 1, 1, 1], |
| 607 | &mut buf, |
| 608 | &[0, 6, 2, 6, 3, 4, 7, 8, 2, 5], |
| 609 | ); |
| 610 | test_samples( |
| 611 | [0.7f32, 0.1, 0.1, 0.1], |
| 612 | &mut buf, |
| 613 | &[0, 0, 0, 1, 0, 0, 2, 3, 0, 0], |
| 614 | ); |
| 615 | test_samples( |
| 616 | [1.0f64, 0.999, 0.998, 0.997], |
| 617 | &mut buf, |
| 618 | &[2, 2, 1, 3, 2, 1, 3, 3, 2, 1], |
| 619 | ); |
| 620 | } |
| 621 | |
| 622 | #[test ] |
| 623 | fn weighted_index_distributions_can_be_compared() { |
| 624 | assert_eq!(WeightedIndex::new([1, 2]), WeightedIndex::new([1, 2])); |
| 625 | } |
| 626 | |
| 627 | #[test ] |
| 628 | fn overflow() { |
| 629 | assert_eq!(WeightedIndex::new([2, usize::MAX]), Err(Error::Overflow)); |
| 630 | } |
| 631 | } |
| 632 | |