| 1 | // Copyright 2018-2023 Developers of the Rand project. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 6 | // option. This file may not be copied, modified, or distributed |
| 7 | // except according to those terms. |
| 8 | |
| 9 | use crate::{Rng, RngCore}; |
| 10 | |
| 11 | /// Similar to a Uniform distribution, |
| 12 | /// but after returning a number in the range [0,n], n is increased by 1. |
| 13 | pub(crate) struct IncreasingUniform<R: RngCore> { |
| 14 | pub rng: R, |
| 15 | n: u32, |
| 16 | // Chunk is a random number in [0, (n + 1) * (n + 2) *..* (n + chunk_remaining) ) |
| 17 | chunk: u32, |
| 18 | chunk_remaining: u8, |
| 19 | } |
| 20 | |
| 21 | impl<R: RngCore> IncreasingUniform<R> { |
| 22 | /// Create a dice roller. |
| 23 | /// The next item returned will be a random number in the range [0,n] |
| 24 | pub fn new(rng: R, n: u32) -> Self { |
| 25 | // If n = 0, the first number returned will always be 0 |
| 26 | // so we don't need to generate a random number |
| 27 | let chunk_remaining = if n == 0 { 1 } else { 0 }; |
| 28 | Self { |
| 29 | rng, |
| 30 | n, |
| 31 | chunk: 0, |
| 32 | chunk_remaining, |
| 33 | } |
| 34 | } |
| 35 | |
| 36 | /// Returns a number in [0,n] and increments n by 1. |
| 37 | /// Generates new random bits as needed |
| 38 | /// Panics if `n >= u32::MAX` |
| 39 | #[inline ] |
| 40 | pub fn next_index(&mut self) -> usize { |
| 41 | let next_n = self.n + 1; |
| 42 | |
| 43 | // There's room for further optimisation here: |
| 44 | // random_range uses rejection sampling (or other method; see #1196) to avoid bias. |
| 45 | // When the initial sample is biased for range 0..bound |
| 46 | // it may still be viable to use for a smaller bound |
| 47 | // (especially if small biases are considered acceptable). |
| 48 | |
| 49 | let next_chunk_remaining = self.chunk_remaining.checked_sub(1).unwrap_or_else(|| { |
| 50 | // If the chunk is empty, generate a new chunk |
| 51 | let (bound, remaining) = calculate_bound_u32(next_n); |
| 52 | // bound = (n + 1) * (n + 2) *..* (n + remaining) |
| 53 | self.chunk = self.rng.random_range(..bound); |
| 54 | // Chunk is a random number in |
| 55 | // [0, (n + 1) * (n + 2) *..* (n + remaining) ) |
| 56 | |
| 57 | remaining - 1 |
| 58 | }); |
| 59 | |
| 60 | let result = if next_chunk_remaining == 0 { |
| 61 | // `chunk` is a random number in the range [0..n+1) |
| 62 | // Because `chunk_remaining` is about to be set to zero |
| 63 | // we do not need to clear the chunk here |
| 64 | self.chunk as usize |
| 65 | } else { |
| 66 | // `chunk` is a random number in a range that is a multiple of n+1 |
| 67 | // so r will be a random number in [0..n+1) |
| 68 | let r = self.chunk % next_n; |
| 69 | self.chunk /= next_n; |
| 70 | r as usize |
| 71 | }; |
| 72 | |
| 73 | self.chunk_remaining = next_chunk_remaining; |
| 74 | self.n = next_n; |
| 75 | result |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | #[inline ] |
| 80 | /// Calculates `bound`, `count` such that bound (m)*(m+1)*..*(m + remaining - 1) |
| 81 | fn calculate_bound_u32(m: u32) -> (u32, u8) { |
| 82 | debug_assert!(m > 0); |
| 83 | #[inline ] |
| 84 | const fn inner(m: u32) -> (u32, u8) { |
| 85 | let mut product = m; |
| 86 | let mut current = m + 1; |
| 87 | |
| 88 | loop { |
| 89 | if let Some(p) = u32::checked_mul(product, current) { |
| 90 | product = p; |
| 91 | current += 1; |
| 92 | } else { |
| 93 | // Count has a maximum value of 13 for when min is 1 or 2 |
| 94 | let count = (current - m) as u8; |
| 95 | return (product, count); |
| 96 | } |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | const RESULT2: (u32, u8) = inner(2); |
| 101 | if m == 2 { |
| 102 | // Making this value a constant instead of recalculating it |
| 103 | // gives a significant (~50%) performance boost for small shuffles |
| 104 | return RESULT2; |
| 105 | } |
| 106 | |
| 107 | inner(m) |
| 108 | } |
| 109 | |