1 | use core::convert::TryFrom; |
2 | |
3 | use crate::util::{ |
4 | bytes::{DeserializeError, SerializeError}, |
5 | DebugByte, |
6 | }; |
7 | |
8 | /// Unit represents a single unit of input for DFA based regex engines. |
9 | /// |
10 | /// **NOTE:** It is not expected for consumers of this crate to need to use |
11 | /// this type unless they are implementing their own DFA. And even then, it's |
12 | /// not required: implementors may use other techniques to handle input. |
13 | /// |
14 | /// Typically, a single unit of input for a DFA would be a single byte. |
15 | /// However, for the DFAs in this crate, matches are delayed by a single byte |
16 | /// in order to handle look-ahead assertions (`\b`, `$` and `\z`). Thus, once |
17 | /// we have consumed the haystack, we must run the DFA through one additional |
18 | /// transition using an input that indicates the haystack has ended. |
19 | /// |
20 | /// Since there is no way to represent a sentinel with a `u8` since all |
21 | /// possible values *may* be valid inputs to a DFA, this type explicitly adds |
22 | /// room for a sentinel value. |
23 | /// |
24 | /// The sentinel EOI value is always its own equivalence class and is |
25 | /// ultimately represented by adding 1 to the maximum equivalence class value. |
26 | /// So for example, the regex `^[a-z]+$` might be split into the following |
27 | /// equivalence classes: |
28 | /// |
29 | /// ```text |
30 | /// 0 => [\x00-`] |
31 | /// 1 => [a-z] |
32 | /// 2 => [{-\xFF] |
33 | /// 3 => [EOI] |
34 | /// ``` |
35 | /// |
36 | /// Where EOI is the special sentinel value that is always in its own |
37 | /// singleton equivalence class. |
38 | #[derive (Clone, Copy, Eq, PartialEq, PartialOrd, Ord)] |
39 | pub enum Unit { |
40 | U8(u8), |
41 | EOI(u16), |
42 | } |
43 | |
44 | impl Unit { |
45 | /// Create a new input unit from a byte value. |
46 | /// |
47 | /// All possible byte values are legal. However, when creating an input |
48 | /// unit for a specific DFA, one should be careful to only construct input |
49 | /// units that are in that DFA's alphabet. Namely, one way to compact a |
50 | /// DFA's in-memory representation is to collapse its transitions to a set |
51 | /// of equivalence classes into a set of all possible byte values. If a |
52 | /// DFA uses equivalence classes instead of byte values, then the byte |
53 | /// given here should be the equivalence class. |
54 | pub fn u8(byte: u8) -> Unit { |
55 | Unit::U8(byte) |
56 | } |
57 | |
58 | pub fn eoi(num_byte_equiv_classes: usize) -> Unit { |
59 | assert!( |
60 | num_byte_equiv_classes <= 256, |
61 | "max number of byte-based equivalent classes is 256, but got {}" , |
62 | num_byte_equiv_classes, |
63 | ); |
64 | Unit::EOI(u16::try_from(num_byte_equiv_classes).unwrap()) |
65 | } |
66 | |
67 | pub fn as_u8(self) -> Option<u8> { |
68 | match self { |
69 | Unit::U8(b) => Some(b), |
70 | Unit::EOI(_) => None, |
71 | } |
72 | } |
73 | |
74 | #[cfg (feature = "alloc" )] |
75 | pub fn as_eoi(self) -> Option<usize> { |
76 | match self { |
77 | Unit::U8(_) => None, |
78 | Unit::EOI(eoi) => Some(eoi as usize), |
79 | } |
80 | } |
81 | |
82 | pub fn as_usize(self) -> usize { |
83 | match self { |
84 | Unit::U8(b) => b as usize, |
85 | Unit::EOI(eoi) => eoi as usize, |
86 | } |
87 | } |
88 | |
89 | pub fn is_eoi(&self) -> bool { |
90 | match *self { |
91 | Unit::EOI(_) => true, |
92 | _ => false, |
93 | } |
94 | } |
95 | |
96 | #[cfg (feature = "alloc" )] |
97 | pub fn is_word_byte(&self) -> bool { |
98 | self.as_u8().map_or(false, crate::util::is_word_byte) |
99 | } |
100 | } |
101 | |
102 | impl core::fmt::Debug for Unit { |
103 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
104 | match *self { |
105 | Unit::U8(b: u8) => write!(f, " {:?}" , DebugByte(b)), |
106 | Unit::EOI(_) => write!(f, "EOI" ), |
107 | } |
108 | } |
109 | } |
110 | |
111 | /// A representation of byte oriented equivalence classes. |
112 | /// |
113 | /// This is used in a DFA to reduce the size of the transition table. This can |
114 | /// have a particularly large impact not only on the total size of a dense DFA, |
115 | /// but also on compile times. |
116 | #[derive (Clone, Copy)] |
117 | pub struct ByteClasses([u8; 256]); |
118 | |
119 | impl ByteClasses { |
120 | /// Creates a new set of equivalence classes where all bytes are mapped to |
121 | /// the same class. |
122 | pub fn empty() -> ByteClasses { |
123 | ByteClasses([0; 256]) |
124 | } |
125 | |
126 | /// Creates a new set of equivalence classes where each byte belongs to |
127 | /// its own equivalence class. |
128 | #[cfg (feature = "alloc" )] |
129 | pub fn singletons() -> ByteClasses { |
130 | let mut classes = ByteClasses::empty(); |
131 | for i in 0..256 { |
132 | classes.set(i as u8, i as u8); |
133 | } |
134 | classes |
135 | } |
136 | |
137 | /// Deserializes a byte class map from the given slice. If the slice is of |
138 | /// insufficient length or otherwise contains an impossible mapping, then |
139 | /// an error is returned. Upon success, the number of bytes read along with |
140 | /// the map are returned. The number of bytes read is always a multiple of |
141 | /// 8. |
142 | pub fn from_bytes( |
143 | slice: &[u8], |
144 | ) -> Result<(ByteClasses, usize), DeserializeError> { |
145 | if slice.len() < 256 { |
146 | return Err(DeserializeError::buffer_too_small("byte class map" )); |
147 | } |
148 | let mut classes = ByteClasses::empty(); |
149 | for (b, &class) in slice[..256].iter().enumerate() { |
150 | classes.set(b as u8, class); |
151 | } |
152 | for b in classes.iter() { |
153 | if b.as_usize() >= classes.alphabet_len() { |
154 | return Err(DeserializeError::generic( |
155 | "found equivalence class greater than alphabet len" , |
156 | )); |
157 | } |
158 | } |
159 | Ok((classes, 256)) |
160 | } |
161 | |
162 | /// Writes this byte class map to the given byte buffer. if the given |
163 | /// buffer is too small, then an error is returned. Upon success, the total |
164 | /// number of bytes written is returned. The number of bytes written is |
165 | /// guaranteed to be a multiple of 8. |
166 | pub fn write_to( |
167 | &self, |
168 | mut dst: &mut [u8], |
169 | ) -> Result<usize, SerializeError> { |
170 | let nwrite = self.write_to_len(); |
171 | if dst.len() < nwrite { |
172 | return Err(SerializeError::buffer_too_small("byte class map" )); |
173 | } |
174 | for b in 0..=255 { |
175 | dst[0] = self.get(b); |
176 | dst = &mut dst[1..]; |
177 | } |
178 | Ok(nwrite) |
179 | } |
180 | |
181 | /// Returns the total number of bytes written by `write_to`. |
182 | pub fn write_to_len(&self) -> usize { |
183 | 256 |
184 | } |
185 | |
186 | /// Set the equivalence class for the given byte. |
187 | #[inline ] |
188 | pub fn set(&mut self, byte: u8, class: u8) { |
189 | self.0[byte as usize] = class; |
190 | } |
191 | |
192 | /// Get the equivalence class for the given byte. |
193 | #[inline ] |
194 | pub fn get(&self, byte: u8) -> u8 { |
195 | self.0[byte as usize] |
196 | } |
197 | |
198 | /// Get the equivalence class for the given byte while forcefully |
199 | /// eliding bounds checks. |
200 | #[inline ] |
201 | pub unsafe fn get_unchecked(&self, byte: u8) -> u8 { |
202 | *self.0.get_unchecked(byte as usize) |
203 | } |
204 | |
205 | /// Get the equivalence class for the given input unit and return the |
206 | /// class as a `usize`. |
207 | #[inline ] |
208 | pub fn get_by_unit(&self, unit: Unit) -> usize { |
209 | match unit { |
210 | Unit::U8(b) => usize::try_from(self.get(b)).unwrap(), |
211 | Unit::EOI(b) => usize::try_from(b).unwrap(), |
212 | } |
213 | } |
214 | |
215 | #[inline ] |
216 | pub fn eoi(&self) -> Unit { |
217 | Unit::eoi(self.alphabet_len().checked_sub(1).unwrap()) |
218 | } |
219 | |
220 | /// Return the total number of elements in the alphabet represented by |
221 | /// these equivalence classes. Equivalently, this returns the total number |
222 | /// of equivalence classes. |
223 | #[inline ] |
224 | pub fn alphabet_len(&self) -> usize { |
225 | // Add one since the number of equivalence classes is one bigger than |
226 | // the last one. But add another to account for the final EOI class |
227 | // that isn't explicitly represented. |
228 | self.0[255] as usize + 1 + 1 |
229 | } |
230 | |
231 | /// Returns the stride, as a base-2 exponent, required for these |
232 | /// equivalence classes. |
233 | /// |
234 | /// The stride is always the smallest power of 2 that is greater than or |
235 | /// equal to the alphabet length. This is done so that converting between |
236 | /// state IDs and indices can be done with shifts alone, which is much |
237 | /// faster than integer division. |
238 | #[cfg (feature = "alloc" )] |
239 | pub fn stride2(&self) -> usize { |
240 | self.alphabet_len().next_power_of_two().trailing_zeros() as usize |
241 | } |
242 | |
243 | /// Returns true if and only if every byte in this class maps to its own |
244 | /// equivalence class. Equivalently, there are 257 equivalence classes |
245 | /// and each class contains exactly one byte (plus the special EOI class). |
246 | #[inline ] |
247 | pub fn is_singleton(&self) -> bool { |
248 | self.alphabet_len() == 257 |
249 | } |
250 | |
251 | /// Returns an iterator over all equivalence classes in this set. |
252 | pub fn iter(&self) -> ByteClassIter<'_> { |
253 | ByteClassIter { classes: self, i: 0 } |
254 | } |
255 | |
256 | /// Returns an iterator over a sequence of representative bytes from each |
257 | /// equivalence class. Namely, this yields exactly N items, where N is |
258 | /// equivalent to the number of equivalence classes. Each item is an |
259 | /// arbitrary byte drawn from each equivalence class. |
260 | /// |
261 | /// This is useful when one is determinizing an NFA and the NFA's alphabet |
262 | /// hasn't been converted to equivalence classes yet. Picking an arbitrary |
263 | /// byte from each equivalence class then permits a full exploration of |
264 | /// the NFA instead of using every possible byte value. |
265 | #[cfg (feature = "alloc" )] |
266 | pub fn representatives(&self) -> ByteClassRepresentatives<'_> { |
267 | ByteClassRepresentatives { classes: self, byte: 0, last_class: None } |
268 | } |
269 | |
270 | /// Returns an iterator of the bytes in the given equivalence class. |
271 | pub fn elements(&self, class: Unit) -> ByteClassElements { |
272 | ByteClassElements { classes: self, class, byte: 0 } |
273 | } |
274 | |
275 | /// Returns an iterator of byte ranges in the given equivalence class. |
276 | /// |
277 | /// That is, a sequence of contiguous ranges are returned. Typically, every |
278 | /// class maps to a single contiguous range. |
279 | fn element_ranges(&self, class: Unit) -> ByteClassElementRanges { |
280 | ByteClassElementRanges { elements: self.elements(class), range: None } |
281 | } |
282 | } |
283 | |
284 | impl core::fmt::Debug for ByteClasses { |
285 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
286 | if self.is_singleton() { |
287 | write!(f, "ByteClasses( {{singletons }})" ) |
288 | } else { |
289 | write!(f, "ByteClasses(" )?; |
290 | for (i: usize, class: Unit) in self.iter().enumerate() { |
291 | if i > 0 { |
292 | write!(f, ", " )?; |
293 | } |
294 | write!(f, " {:?} => [" , class.as_usize())?; |
295 | for (start: Unit, end: Unit) in self.element_ranges(class) { |
296 | if start == end { |
297 | write!(f, " {:?}" , start)?; |
298 | } else { |
299 | write!(f, " {:?}- {:?}" , start, end)?; |
300 | } |
301 | } |
302 | write!(f, "]" )?; |
303 | } |
304 | write!(f, ")" ) |
305 | } |
306 | } |
307 | } |
308 | |
309 | /// An iterator over each equivalence class. |
310 | #[derive (Debug)] |
311 | pub struct ByteClassIter<'a> { |
312 | classes: &'a ByteClasses, |
313 | i: usize, |
314 | } |
315 | |
316 | impl<'a> Iterator for ByteClassIter<'a> { |
317 | type Item = Unit; |
318 | |
319 | fn next(&mut self) -> Option<Unit> { |
320 | if self.i + 1 == self.classes.alphabet_len() { |
321 | self.i += 1; |
322 | Some(self.classes.eoi()) |
323 | } else if self.i < self.classes.alphabet_len() { |
324 | let class: u8 = self.i as u8; |
325 | self.i += 1; |
326 | Some(Unit::u8(byte:class)) |
327 | } else { |
328 | None |
329 | } |
330 | } |
331 | } |
332 | |
333 | /// An iterator over representative bytes from each equivalence class. |
334 | #[cfg (feature = "alloc" )] |
335 | #[derive (Debug)] |
336 | pub struct ByteClassRepresentatives<'a> { |
337 | classes: &'a ByteClasses, |
338 | byte: usize, |
339 | last_class: Option<u8>, |
340 | } |
341 | |
342 | #[cfg (feature = "alloc" )] |
343 | impl<'a> Iterator for ByteClassRepresentatives<'a> { |
344 | type Item = Unit; |
345 | |
346 | fn next(&mut self) -> Option<Unit> { |
347 | while self.byte < 256 { |
348 | let byte = self.byte as u8; |
349 | let class = self.classes.get(byte); |
350 | self.byte += 1; |
351 | |
352 | if self.last_class != Some(class) { |
353 | self.last_class = Some(class); |
354 | return Some(Unit::u8(byte)); |
355 | } |
356 | } |
357 | if self.byte == 256 { |
358 | self.byte += 1; |
359 | return Some(self.classes.eoi()); |
360 | } |
361 | None |
362 | } |
363 | } |
364 | |
365 | /// An iterator over all elements in an equivalence class. |
366 | #[derive (Debug)] |
367 | pub struct ByteClassElements<'a> { |
368 | classes: &'a ByteClasses, |
369 | class: Unit, |
370 | byte: usize, |
371 | } |
372 | |
373 | impl<'a> Iterator for ByteClassElements<'a> { |
374 | type Item = Unit; |
375 | |
376 | fn next(&mut self) -> Option<Unit> { |
377 | while self.byte < 256 { |
378 | let byte: u8 = self.byte as u8; |
379 | self.byte += 1; |
380 | if self.class.as_u8() == Some(self.classes.get(byte)) { |
381 | return Some(Unit::u8(byte)); |
382 | } |
383 | } |
384 | if self.byte < 257 { |
385 | self.byte += 1; |
386 | if self.class.is_eoi() { |
387 | return Some(Unit::eoi(num_byte_equiv_classes:256)); |
388 | } |
389 | } |
390 | None |
391 | } |
392 | } |
393 | |
394 | /// An iterator over all elements in an equivalence class expressed as a |
395 | /// sequence of contiguous ranges. |
396 | #[derive (Debug)] |
397 | pub struct ByteClassElementRanges<'a> { |
398 | elements: ByteClassElements<'a>, |
399 | range: Option<(Unit, Unit)>, |
400 | } |
401 | |
402 | impl<'a> Iterator for ByteClassElementRanges<'a> { |
403 | type Item = (Unit, Unit); |
404 | |
405 | fn next(&mut self) -> Option<(Unit, Unit)> { |
406 | loop { |
407 | let element = match self.elements.next() { |
408 | None => return self.range.take(), |
409 | Some(element) => element, |
410 | }; |
411 | match self.range.take() { |
412 | None => { |
413 | self.range = Some((element, element)); |
414 | } |
415 | Some((start, end)) => { |
416 | if end.as_usize() + 1 != element.as_usize() |
417 | || element.is_eoi() |
418 | { |
419 | self.range = Some((element, element)); |
420 | return Some((start, end)); |
421 | } |
422 | self.range = Some((start, element)); |
423 | } |
424 | } |
425 | } |
426 | } |
427 | } |
428 | |
429 | /// A byte class set keeps track of an *approximation* of equivalence classes |
430 | /// of bytes during NFA construction. That is, every byte in an equivalence |
431 | /// class cannot discriminate between a match and a non-match. |
432 | /// |
433 | /// For example, in the regex `[ab]+`, the bytes `a` and `b` would be in the |
434 | /// same equivalence class because it never matters whether an `a` or a `b` is |
435 | /// seen, and no combination of `a`s and `b`s in the text can discriminate a |
436 | /// match. |
437 | /// |
438 | /// Note though that this does not compute the minimal set of equivalence |
439 | /// classes. For example, in the regex `[ac]+`, both `a` and `c` are in the |
440 | /// same equivalence class for the same reason that `a` and `b` are in the |
441 | /// same equivalence class in the aforementioned regex. However, in this |
442 | /// implementation, `a` and `c` are put into distinct equivalence classes. The |
443 | /// reason for this is implementation complexity. In the future, we should |
444 | /// endeavor to compute the minimal equivalence classes since they can have a |
445 | /// rather large impact on the size of the DFA. (Doing this will likely require |
446 | /// rethinking how equivalence classes are computed, including changing the |
447 | /// representation here, which is only able to group contiguous bytes into the |
448 | /// same equivalence class.) |
449 | #[derive (Clone, Debug)] |
450 | pub struct ByteClassSet(ByteSet); |
451 | |
452 | impl ByteClassSet { |
453 | /// Create a new set of byte classes where all bytes are part of the same |
454 | /// equivalence class. |
455 | #[cfg (feature = "alloc" )] |
456 | pub fn empty() -> Self { |
457 | ByteClassSet(ByteSet::empty()) |
458 | } |
459 | |
460 | /// Indicate the the range of byte given (inclusive) can discriminate a |
461 | /// match between it and all other bytes outside of the range. |
462 | #[cfg (feature = "alloc" )] |
463 | pub fn set_range(&mut self, start: u8, end: u8) { |
464 | debug_assert!(start <= end); |
465 | if start > 0 { |
466 | self.0.add(start - 1); |
467 | } |
468 | self.0.add(end); |
469 | } |
470 | |
471 | /// Add the contiguous ranges in the set given to this byte class set. |
472 | #[cfg (feature = "alloc" )] |
473 | pub fn add_set(&mut self, set: &ByteSet) { |
474 | for (start, end) in set.iter_ranges() { |
475 | self.set_range(start, end); |
476 | } |
477 | } |
478 | |
479 | /// Convert this boolean set to a map that maps all byte values to their |
480 | /// corresponding equivalence class. The last mapping indicates the largest |
481 | /// equivalence class identifier (which is never bigger than 255). |
482 | #[cfg (feature = "alloc" )] |
483 | pub fn byte_classes(&self) -> ByteClasses { |
484 | let mut classes = ByteClasses::empty(); |
485 | let mut class = 0u8; |
486 | let mut b = 0u8; |
487 | loop { |
488 | classes.set(b, class); |
489 | if b == 255 { |
490 | break; |
491 | } |
492 | if self.0.contains(b) { |
493 | class = class.checked_add(1).unwrap(); |
494 | } |
495 | b = b.checked_add(1).unwrap(); |
496 | } |
497 | classes |
498 | } |
499 | } |
500 | |
501 | /// A simple set of bytes that is reasonably cheap to copy and allocation free. |
502 | #[derive (Clone, Copy, Debug, Default, Eq, PartialEq)] |
503 | pub struct ByteSet { |
504 | bits: BitSet, |
505 | } |
506 | |
507 | /// The representation of a byte set. Split out so that we can define a |
508 | /// convenient Debug impl for it while keeping "ByteSet" in the output. |
509 | #[derive (Clone, Copy, Default, Eq, PartialEq)] |
510 | struct BitSet([u128; 2]); |
511 | |
512 | impl ByteSet { |
513 | /// Create an empty set of bytes. |
514 | #[cfg (feature = "alloc" )] |
515 | pub fn empty() -> ByteSet { |
516 | ByteSet { bits: BitSet([0; 2]) } |
517 | } |
518 | |
519 | /// Add a byte to this set. |
520 | /// |
521 | /// If the given byte already belongs to this set, then this is a no-op. |
522 | #[cfg (feature = "alloc" )] |
523 | pub fn add(&mut self, byte: u8) { |
524 | let bucket = byte / 128; |
525 | let bit = byte % 128; |
526 | self.bits.0[bucket as usize] |= 1 << bit; |
527 | } |
528 | |
529 | /// Add an inclusive range of bytes. |
530 | #[cfg (feature = "alloc" )] |
531 | pub fn add_all(&mut self, start: u8, end: u8) { |
532 | for b in start..=end { |
533 | self.add(b); |
534 | } |
535 | } |
536 | |
537 | /// Remove a byte from this set. |
538 | /// |
539 | /// If the given byte is not in this set, then this is a no-op. |
540 | #[cfg (feature = "alloc" )] |
541 | pub fn remove(&mut self, byte: u8) { |
542 | let bucket = byte / 128; |
543 | let bit = byte % 128; |
544 | self.bits.0[bucket as usize] &= !(1 << bit); |
545 | } |
546 | |
547 | /// Remove an inclusive range of bytes. |
548 | #[cfg (feature = "alloc" )] |
549 | pub fn remove_all(&mut self, start: u8, end: u8) { |
550 | for b in start..=end { |
551 | self.remove(b); |
552 | } |
553 | } |
554 | |
555 | /// Return true if and only if the given byte is in this set. |
556 | pub fn contains(&self, byte: u8) -> bool { |
557 | let bucket = byte / 128; |
558 | let bit = byte % 128; |
559 | self.bits.0[bucket as usize] & (1 << bit) > 0 |
560 | } |
561 | |
562 | /// Return true if and only if the given inclusive range of bytes is in |
563 | /// this set. |
564 | #[cfg (feature = "alloc" )] |
565 | pub fn contains_range(&self, start: u8, end: u8) -> bool { |
566 | (start..=end).all(|b| self.contains(b)) |
567 | } |
568 | |
569 | /// Returns an iterator over all bytes in this set. |
570 | #[cfg (feature = "alloc" )] |
571 | pub fn iter(&self) -> ByteSetIter { |
572 | ByteSetIter { set: self, b: 0 } |
573 | } |
574 | |
575 | /// Returns an iterator over all contiguous ranges of bytes in this set. |
576 | #[cfg (feature = "alloc" )] |
577 | pub fn iter_ranges(&self) -> ByteSetRangeIter { |
578 | ByteSetRangeIter { set: self, b: 0 } |
579 | } |
580 | |
581 | /// Return the number of bytes in this set. |
582 | #[cfg (feature = "alloc" )] |
583 | pub fn len(&self) -> usize { |
584 | (self.bits.0[0].count_ones() + self.bits.0[1].count_ones()) as usize |
585 | } |
586 | |
587 | /// Return true if and only if this set is empty. |
588 | #[cfg (feature = "alloc" )] |
589 | pub fn is_empty(&self) -> bool { |
590 | self.bits.0 == [0, 0] |
591 | } |
592 | } |
593 | |
594 | impl core::fmt::Debug for BitSet { |
595 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
596 | let mut fmtd: DebugSet<'_, '_> = f.debug_set(); |
597 | for b: u8 in (0..256).map(|b: i32| b as u8) { |
598 | if (ByteSet { bits: *self }).contains(byte:b) { |
599 | fmtd.entry(&b); |
600 | } |
601 | } |
602 | fmtd.finish() |
603 | } |
604 | } |
605 | |
606 | #[derive (Debug)] |
607 | pub struct ByteSetIter<'a> { |
608 | set: &'a ByteSet, |
609 | b: usize, |
610 | } |
611 | |
612 | impl<'a> Iterator for ByteSetIter<'a> { |
613 | type Item = u8; |
614 | |
615 | fn next(&mut self) -> Option<u8> { |
616 | while self.b <= 255 { |
617 | let b: u8 = self.b as u8; |
618 | self.b += 1; |
619 | if self.set.contains(byte:b) { |
620 | return Some(b); |
621 | } |
622 | } |
623 | None |
624 | } |
625 | } |
626 | |
627 | #[derive (Debug)] |
628 | pub struct ByteSetRangeIter<'a> { |
629 | set: &'a ByteSet, |
630 | b: usize, |
631 | } |
632 | |
633 | impl<'a> Iterator for ByteSetRangeIter<'a> { |
634 | type Item = (u8, u8); |
635 | |
636 | fn next(&mut self) -> Option<(u8, u8)> { |
637 | while self.b <= 255 { |
638 | let start: u8 = self.b as u8; |
639 | self.b += 1; |
640 | if !self.set.contains(byte:start) { |
641 | continue; |
642 | } |
643 | |
644 | let mut end: u8 = start; |
645 | while self.b <= 255 && self.set.contains(self.b as u8) { |
646 | end = self.b as u8; |
647 | self.b += 1; |
648 | } |
649 | return Some((start, end)); |
650 | } |
651 | None |
652 | } |
653 | } |
654 | |
655 | #[cfg (test)] |
656 | #[cfg (feature = "alloc" )] |
657 | mod tests { |
658 | use alloc::{vec, vec::Vec}; |
659 | |
660 | use super::*; |
661 | |
662 | #[test ] |
663 | fn byte_classes() { |
664 | let mut set = ByteClassSet::empty(); |
665 | set.set_range(b'a' , b'z' ); |
666 | |
667 | let classes = set.byte_classes(); |
668 | assert_eq!(classes.get(0), 0); |
669 | assert_eq!(classes.get(1), 0); |
670 | assert_eq!(classes.get(2), 0); |
671 | assert_eq!(classes.get(b'a' - 1), 0); |
672 | assert_eq!(classes.get(b'a' ), 1); |
673 | assert_eq!(classes.get(b'm' ), 1); |
674 | assert_eq!(classes.get(b'z' ), 1); |
675 | assert_eq!(classes.get(b'z' + 1), 2); |
676 | assert_eq!(classes.get(254), 2); |
677 | assert_eq!(classes.get(255), 2); |
678 | |
679 | let mut set = ByteClassSet::empty(); |
680 | set.set_range(0, 2); |
681 | set.set_range(4, 6); |
682 | let classes = set.byte_classes(); |
683 | assert_eq!(classes.get(0), 0); |
684 | assert_eq!(classes.get(1), 0); |
685 | assert_eq!(classes.get(2), 0); |
686 | assert_eq!(classes.get(3), 1); |
687 | assert_eq!(classes.get(4), 2); |
688 | assert_eq!(classes.get(5), 2); |
689 | assert_eq!(classes.get(6), 2); |
690 | assert_eq!(classes.get(7), 3); |
691 | assert_eq!(classes.get(255), 3); |
692 | } |
693 | |
694 | #[test ] |
695 | fn full_byte_classes() { |
696 | let mut set = ByteClassSet::empty(); |
697 | for i in 0..256u16 { |
698 | set.set_range(i as u8, i as u8); |
699 | } |
700 | assert_eq!(set.byte_classes().alphabet_len(), 257); |
701 | } |
702 | |
703 | #[test ] |
704 | fn elements_typical() { |
705 | let mut set = ByteClassSet::empty(); |
706 | set.set_range(b'b' , b'd' ); |
707 | set.set_range(b'g' , b'm' ); |
708 | set.set_range(b'z' , b'z' ); |
709 | let classes = set.byte_classes(); |
710 | // class 0: \x00-a |
711 | // class 1: b-d |
712 | // class 2: e-f |
713 | // class 3: g-m |
714 | // class 4: n-y |
715 | // class 5: z-z |
716 | // class 6: \x7B-\xFF |
717 | // class 7: EOI |
718 | assert_eq!(classes.alphabet_len(), 8); |
719 | |
720 | let elements = classes.elements(Unit::u8(0)).collect::<Vec<_>>(); |
721 | assert_eq!(elements.len(), 98); |
722 | assert_eq!(elements[0], Unit::u8(b' \x00' )); |
723 | assert_eq!(elements[97], Unit::u8(b'a' )); |
724 | |
725 | let elements = classes.elements(Unit::u8(1)).collect::<Vec<_>>(); |
726 | assert_eq!( |
727 | elements, |
728 | vec![Unit::u8(b'b' ), Unit::u8(b'c' ), Unit::u8(b'd' )], |
729 | ); |
730 | |
731 | let elements = classes.elements(Unit::u8(2)).collect::<Vec<_>>(); |
732 | assert_eq!(elements, vec![Unit::u8(b'e' ), Unit::u8(b'f' )],); |
733 | |
734 | let elements = classes.elements(Unit::u8(3)).collect::<Vec<_>>(); |
735 | assert_eq!( |
736 | elements, |
737 | vec![ |
738 | Unit::u8(b'g' ), |
739 | Unit::u8(b'h' ), |
740 | Unit::u8(b'i' ), |
741 | Unit::u8(b'j' ), |
742 | Unit::u8(b'k' ), |
743 | Unit::u8(b'l' ), |
744 | Unit::u8(b'm' ), |
745 | ], |
746 | ); |
747 | |
748 | let elements = classes.elements(Unit::u8(4)).collect::<Vec<_>>(); |
749 | assert_eq!(elements.len(), 12); |
750 | assert_eq!(elements[0], Unit::u8(b'n' )); |
751 | assert_eq!(elements[11], Unit::u8(b'y' )); |
752 | |
753 | let elements = classes.elements(Unit::u8(5)).collect::<Vec<_>>(); |
754 | assert_eq!(elements, vec![Unit::u8(b'z' )]); |
755 | |
756 | let elements = classes.elements(Unit::u8(6)).collect::<Vec<_>>(); |
757 | assert_eq!(elements.len(), 133); |
758 | assert_eq!(elements[0], Unit::u8(b' \x7B' )); |
759 | assert_eq!(elements[132], Unit::u8(b' \xFF' )); |
760 | |
761 | let elements = classes.elements(Unit::eoi(7)).collect::<Vec<_>>(); |
762 | assert_eq!(elements, vec![Unit::eoi(256)]); |
763 | } |
764 | |
765 | #[test ] |
766 | fn elements_singletons() { |
767 | let classes = ByteClasses::singletons(); |
768 | assert_eq!(classes.alphabet_len(), 257); |
769 | |
770 | let elements = classes.elements(Unit::u8(b'a' )).collect::<Vec<_>>(); |
771 | assert_eq!(elements, vec![Unit::u8(b'a' )]); |
772 | |
773 | let elements = classes.elements(Unit::eoi(5)).collect::<Vec<_>>(); |
774 | assert_eq!(elements, vec![Unit::eoi(256)]); |
775 | } |
776 | |
777 | #[test ] |
778 | fn elements_empty() { |
779 | let classes = ByteClasses::empty(); |
780 | assert_eq!(classes.alphabet_len(), 2); |
781 | |
782 | let elements = classes.elements(Unit::u8(0)).collect::<Vec<_>>(); |
783 | assert_eq!(elements.len(), 256); |
784 | assert_eq!(elements[0], Unit::u8(b' \x00' )); |
785 | assert_eq!(elements[255], Unit::u8(b' \xFF' )); |
786 | |
787 | let elements = classes.elements(Unit::eoi(1)).collect::<Vec<_>>(); |
788 | assert_eq!(elements, vec![Unit::eoi(256)]); |
789 | } |
790 | } |
791 | |