| 1 | /*! |
| 2 | A DFA-backed `Regex`. |
| 3 | |
| 4 | This module provides [`Regex`], which is defined generically over the |
| 5 | [`Automaton`] trait. A `Regex` implements convenience routines you might have |
| 6 | come to expect, such as finding the start/end of a match and iterating over |
| 7 | all non-overlapping matches. This `Regex` type is limited in its capabilities |
| 8 | to what a DFA can provide. Therefore, APIs involving capturing groups, for |
| 9 | example, are not provided. |
| 10 | |
| 11 | Internally, a `Regex` is composed of two DFAs. One is a "forward" DFA that |
| 12 | finds the end offset of a match, where as the other is a "reverse" DFA that |
| 13 | find the start offset of a match. |
| 14 | |
| 15 | See the [parent module](crate::dfa) for examples. |
| 16 | */ |
| 17 | |
| 18 | #[cfg (feature = "alloc" )] |
| 19 | use alloc::vec::Vec; |
| 20 | |
| 21 | #[cfg (feature = "dfa-build" )] |
| 22 | use crate::dfa::dense::BuildError; |
| 23 | use crate::{ |
| 24 | dfa::{automaton::Automaton, dense}, |
| 25 | util::{iter, search::Input}, |
| 26 | Anchored, Match, MatchError, |
| 27 | }; |
| 28 | #[cfg (feature = "alloc" )] |
| 29 | use crate::{ |
| 30 | dfa::{sparse, StartKind}, |
| 31 | util::search::MatchKind, |
| 32 | }; |
| 33 | |
| 34 | // When the alloc feature is enabled, the regex type sets its A type parameter |
| 35 | // to default to an owned dense DFA. But without alloc, we set no default. This |
| 36 | // makes things a lot more convenient in the common case, since writing out the |
| 37 | // DFA types is pretty annoying. |
| 38 | // |
| 39 | // Since we have two different definitions but only want to write one doc |
| 40 | // string, we use a macro to capture the doc and other attributes once and then |
| 41 | // repeat them for each definition. |
| 42 | macro_rules! define_regex_type { |
| 43 | ($(#[$doc:meta])*) => { |
| 44 | #[cfg(feature = "alloc" )] |
| 45 | $(#[$doc])* |
| 46 | pub struct Regex<A = dense::OwnedDFA> { |
| 47 | forward: A, |
| 48 | reverse: A, |
| 49 | } |
| 50 | |
| 51 | #[cfg(not(feature = "alloc" ))] |
| 52 | $(#[$doc])* |
| 53 | pub struct Regex<A> { |
| 54 | forward: A, |
| 55 | reverse: A, |
| 56 | } |
| 57 | }; |
| 58 | } |
| 59 | |
| 60 | define_regex_type!( |
| 61 | /// A regular expression that uses deterministic finite automata for fast |
| 62 | /// searching. |
| 63 | /// |
| 64 | /// A regular expression is comprised of two DFAs, a "forward" DFA and a |
| 65 | /// "reverse" DFA. The forward DFA is responsible for detecting the end of |
| 66 | /// a match while the reverse DFA is responsible for detecting the start |
| 67 | /// of a match. Thus, in order to find the bounds of any given match, a |
| 68 | /// forward search must first be run followed by a reverse search. A match |
| 69 | /// found by the forward DFA guarantees that the reverse DFA will also find |
| 70 | /// a match. |
| 71 | /// |
| 72 | /// The type of the DFA used by a `Regex` corresponds to the `A` type |
| 73 | /// parameter, which must satisfy the [`Automaton`] trait. Typically, |
| 74 | /// `A` is either a [`dense::DFA`](crate::dfa::dense::DFA) or a |
| 75 | /// [`sparse::DFA`](crate::dfa::sparse::DFA), where dense DFAs use more |
| 76 | /// memory but search faster, while sparse DFAs use less memory but search |
| 77 | /// more slowly. |
| 78 | /// |
| 79 | /// # Crate features |
| 80 | /// |
| 81 | /// Note that despite what the documentation auto-generates, the _only_ |
| 82 | /// crate feature needed to use this type is `dfa-search`. You do _not_ |
| 83 | /// need to enable the `alloc` feature. |
| 84 | /// |
| 85 | /// By default, a regex's automaton type parameter is set to |
| 86 | /// `dense::DFA<Vec<u32>>` when the `alloc` feature is enabled. For most |
| 87 | /// in-memory work loads, this is the most convenient type that gives the |
| 88 | /// best search performance. When the `alloc` feature is disabled, no |
| 89 | /// default type is used. |
| 90 | /// |
| 91 | /// # When should I use this? |
| 92 | /// |
| 93 | /// Generally speaking, if you can afford the overhead of building a full |
| 94 | /// DFA for your regex, and you don't need things like capturing groups, |
| 95 | /// then this is a good choice if you're looking to optimize for matching |
| 96 | /// speed. Note however that its speed may be worse than a general purpose |
| 97 | /// regex engine if you don't provide a [`dense::Config::prefilter`] to the |
| 98 | /// underlying DFA. |
| 99 | /// |
| 100 | /// # Sparse DFAs |
| 101 | /// |
| 102 | /// Since a `Regex` is generic over the [`Automaton`] trait, it can be |
| 103 | /// used with any kind of DFA. While this crate constructs dense DFAs by |
| 104 | /// default, it is easy enough to build corresponding sparse DFAs, and then |
| 105 | /// build a regex from them: |
| 106 | /// |
| 107 | /// ``` |
| 108 | /// use regex_automata::dfa::regex::Regex; |
| 109 | /// |
| 110 | /// // First, build a regex that uses dense DFAs. |
| 111 | /// let dense_re = Regex::new("foo[0-9]+")?; |
| 112 | /// |
| 113 | /// // Second, build sparse DFAs from the forward and reverse dense DFAs. |
| 114 | /// let fwd = dense_re.forward().to_sparse()?; |
| 115 | /// let rev = dense_re.reverse().to_sparse()?; |
| 116 | /// |
| 117 | /// // Third, build a new regex from the constituent sparse DFAs. |
| 118 | /// let sparse_re = Regex::builder().build_from_dfas(fwd, rev); |
| 119 | /// |
| 120 | /// // A regex that uses sparse DFAs can be used just like with dense DFAs. |
| 121 | /// assert_eq!(true, sparse_re.is_match(b"foo123")); |
| 122 | /// |
| 123 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 124 | /// ``` |
| 125 | /// |
| 126 | /// Alternatively, one can use a [`Builder`] to construct a sparse DFA |
| 127 | /// more succinctly. (Note though that dense DFAs are still constructed |
| 128 | /// first internally, and then converted to sparse DFAs, as in the example |
| 129 | /// above.) |
| 130 | /// |
| 131 | /// ``` |
| 132 | /// use regex_automata::dfa::regex::Regex; |
| 133 | /// |
| 134 | /// let sparse_re = Regex::builder().build_sparse(r"foo[0-9]+")?; |
| 135 | /// // A regex that uses sparse DFAs can be used just like with dense DFAs. |
| 136 | /// assert!(sparse_re.is_match(b"foo123")); |
| 137 | /// |
| 138 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 139 | /// ``` |
| 140 | /// |
| 141 | /// # Fallibility |
| 142 | /// |
| 143 | /// Most of the search routines defined on this type will _panic_ when the |
| 144 | /// underlying search fails. This might be because the DFA gave up because |
| 145 | /// it saw a quit byte, whether configured explicitly or via heuristic |
| 146 | /// Unicode word boundary support, although neither are enabled by default. |
| 147 | /// Or it might fail because an invalid `Input` configuration is given, |
| 148 | /// for example, with an unsupported [`Anchored`] mode. |
| 149 | /// |
| 150 | /// If you need to handle these error cases instead of allowing them to |
| 151 | /// trigger a panic, then the lower level [`Regex::try_search`] provides |
| 152 | /// a fallible API that never panics. |
| 153 | /// |
| 154 | /// # Example |
| 155 | /// |
| 156 | /// This example shows how to cause a search to terminate if it sees a |
| 157 | /// `\n` byte, and handle the error returned. This could be useful if, for |
| 158 | /// example, you wanted to prevent a user supplied pattern from matching |
| 159 | /// across a line boundary. |
| 160 | /// |
| 161 | /// ``` |
| 162 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 163 | /// use regex_automata::{dfa::{self, regex::Regex}, Input, MatchError}; |
| 164 | /// |
| 165 | /// let re = Regex::builder() |
| 166 | /// .dense(dfa::dense::Config::new().quit(b'\n', true)) |
| 167 | /// .build(r"foo\p{any}+bar")?; |
| 168 | /// |
| 169 | /// let input = Input::new("foo\nbar"); |
| 170 | /// // Normally this would produce a match, since \p{any} contains '\n'. |
| 171 | /// // But since we instructed the automaton to enter a quit state if a |
| 172 | /// // '\n' is observed, this produces a match error instead. |
| 173 | /// let expected = MatchError::quit(b'\n', 3); |
| 174 | /// let got = re.try_search(&input).unwrap_err(); |
| 175 | /// assert_eq!(expected, got); |
| 176 | /// |
| 177 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 178 | /// ``` |
| 179 | #[derive (Clone, Debug)] |
| 180 | ); |
| 181 | |
| 182 | #[cfg (all(feature = "syntax" , feature = "dfa-build" ))] |
| 183 | impl Regex { |
| 184 | /// Parse the given regular expression using the default configuration and |
| 185 | /// return the corresponding regex. |
| 186 | /// |
| 187 | /// If you want a non-default configuration, then use the [`Builder`] to |
| 188 | /// set your own configuration. |
| 189 | /// |
| 190 | /// # Example |
| 191 | /// |
| 192 | /// ``` |
| 193 | /// use regex_automata::{Match, dfa::regex::Regex}; |
| 194 | /// |
| 195 | /// let re = Regex::new("foo[0-9]+bar")?; |
| 196 | /// assert_eq!( |
| 197 | /// Some(Match::must(0, 3..14)), |
| 198 | /// re.find(b"zzzfoo12345barzzz"), |
| 199 | /// ); |
| 200 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 201 | /// ``` |
| 202 | pub fn new(pattern: &str) -> Result<Regex, BuildError> { |
| 203 | Builder::new().build(pattern) |
| 204 | } |
| 205 | |
| 206 | /// Like `new`, but parses multiple patterns into a single "regex set." |
| 207 | /// This similarly uses the default regex configuration. |
| 208 | /// |
| 209 | /// # Example |
| 210 | /// |
| 211 | /// ``` |
| 212 | /// use regex_automata::{Match, dfa::regex::Regex}; |
| 213 | /// |
| 214 | /// let re = Regex::new_many(&["[a-z]+", "[0-9]+"])?; |
| 215 | /// |
| 216 | /// let mut it = re.find_iter(b"abc 1 foo 4567 0 quux"); |
| 217 | /// assert_eq!(Some(Match::must(0, 0..3)), it.next()); |
| 218 | /// assert_eq!(Some(Match::must(1, 4..5)), it.next()); |
| 219 | /// assert_eq!(Some(Match::must(0, 6..9)), it.next()); |
| 220 | /// assert_eq!(Some(Match::must(1, 10..14)), it.next()); |
| 221 | /// assert_eq!(Some(Match::must(1, 15..16)), it.next()); |
| 222 | /// assert_eq!(Some(Match::must(0, 17..21)), it.next()); |
| 223 | /// assert_eq!(None, it.next()); |
| 224 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 225 | /// ``` |
| 226 | pub fn new_many<P: AsRef<str>>( |
| 227 | patterns: &[P], |
| 228 | ) -> Result<Regex, BuildError> { |
| 229 | Builder::new().build_many(patterns) |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | #[cfg (all(feature = "syntax" , feature = "dfa-build" ))] |
| 234 | impl Regex<sparse::DFA<Vec<u8>>> { |
| 235 | /// Parse the given regular expression using the default configuration, |
| 236 | /// except using sparse DFAs, and return the corresponding regex. |
| 237 | /// |
| 238 | /// If you want a non-default configuration, then use the [`Builder`] to |
| 239 | /// set your own configuration. |
| 240 | /// |
| 241 | /// # Example |
| 242 | /// |
| 243 | /// ``` |
| 244 | /// use regex_automata::{Match, dfa::regex::Regex}; |
| 245 | /// |
| 246 | /// let re = Regex::new_sparse("foo[0-9]+bar")?; |
| 247 | /// assert_eq!( |
| 248 | /// Some(Match::must(0, 3..14)), |
| 249 | /// re.find(b"zzzfoo12345barzzz"), |
| 250 | /// ); |
| 251 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 252 | /// ``` |
| 253 | pub fn new_sparse( |
| 254 | pattern: &str, |
| 255 | ) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> { |
| 256 | Builder::new().build_sparse(pattern) |
| 257 | } |
| 258 | |
| 259 | /// Like `new`, but parses multiple patterns into a single "regex set" |
| 260 | /// using sparse DFAs. This otherwise similarly uses the default regex |
| 261 | /// configuration. |
| 262 | /// |
| 263 | /// # Example |
| 264 | /// |
| 265 | /// ``` |
| 266 | /// use regex_automata::{Match, dfa::regex::Regex}; |
| 267 | /// |
| 268 | /// let re = Regex::new_many_sparse(&["[a-z]+", "[0-9]+"])?; |
| 269 | /// |
| 270 | /// let mut it = re.find_iter(b"abc 1 foo 4567 0 quux"); |
| 271 | /// assert_eq!(Some(Match::must(0, 0..3)), it.next()); |
| 272 | /// assert_eq!(Some(Match::must(1, 4..5)), it.next()); |
| 273 | /// assert_eq!(Some(Match::must(0, 6..9)), it.next()); |
| 274 | /// assert_eq!(Some(Match::must(1, 10..14)), it.next()); |
| 275 | /// assert_eq!(Some(Match::must(1, 15..16)), it.next()); |
| 276 | /// assert_eq!(Some(Match::must(0, 17..21)), it.next()); |
| 277 | /// assert_eq!(None, it.next()); |
| 278 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 279 | /// ``` |
| 280 | pub fn new_many_sparse<P: AsRef<str>>( |
| 281 | patterns: &[P], |
| 282 | ) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> { |
| 283 | Builder::new().build_many_sparse(patterns) |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | /// Convenience routines for regex construction. |
| 288 | impl Regex<dense::DFA<&'static [u32]>> { |
| 289 | /// Return a builder for configuring the construction of a `Regex`. |
| 290 | /// |
| 291 | /// This is a convenience routine to avoid needing to import the |
| 292 | /// [`Builder`] type in common cases. |
| 293 | /// |
| 294 | /// # Example |
| 295 | /// |
| 296 | /// This example shows how to use the builder to disable UTF-8 mode |
| 297 | /// everywhere. |
| 298 | /// |
| 299 | /// ``` |
| 300 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 301 | /// use regex_automata::{ |
| 302 | /// dfa::regex::Regex, nfa::thompson, util::syntax, Match, |
| 303 | /// }; |
| 304 | /// |
| 305 | /// let re = Regex::builder() |
| 306 | /// .syntax(syntax::Config::new().utf8(false)) |
| 307 | /// .thompson(thompson::Config::new().utf8(false)) |
| 308 | /// .build(r"foo(?-u:[^b])ar.*" )?; |
| 309 | /// let haystack = b" \xFEfoo \xFFarzz \xE2\x98\xFF\n" ; |
| 310 | /// let expected = Some(Match::must(0, 1..9)); |
| 311 | /// let got = re.find(haystack); |
| 312 | /// assert_eq!(expected, got); |
| 313 | /// |
| 314 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 315 | /// ``` |
| 316 | pub fn builder() -> Builder { |
| 317 | Builder::new() |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | /// Standard search routines for finding and iterating over matches. |
| 322 | impl<A: Automaton> Regex<A> { |
| 323 | /// Returns true if and only if this regex matches the given haystack. |
| 324 | /// |
| 325 | /// This routine may short circuit if it knows that scanning future input |
| 326 | /// will never lead to a different result. In particular, if the underlying |
| 327 | /// DFA enters a match state or a dead state, then this routine will return |
| 328 | /// `true` or `false`, respectively, without inspecting any future input. |
| 329 | /// |
| 330 | /// # Panics |
| 331 | /// |
| 332 | /// This routine panics if the search could not complete. This can occur |
| 333 | /// in a number of circumstances: |
| 334 | /// |
| 335 | /// * The configuration of the DFA may permit it to "quit" the search. |
| 336 | /// For example, setting quit bytes or enabling heuristic support for |
| 337 | /// Unicode word boundaries. The default configuration does not enable any |
| 338 | /// option that could result in the DFA quitting. |
| 339 | /// * When the provided `Input` configuration is not supported. For |
| 340 | /// example, by providing an unsupported anchor mode. |
| 341 | /// |
| 342 | /// When a search panics, callers cannot know whether a match exists or |
| 343 | /// not. |
| 344 | /// |
| 345 | /// Use [`Regex::try_search`] if you want to handle these error conditions. |
| 346 | /// |
| 347 | /// # Example |
| 348 | /// |
| 349 | /// ``` |
| 350 | /// use regex_automata::dfa::regex::Regex; |
| 351 | /// |
| 352 | /// let re = Regex::new("foo[0-9]+bar" )?; |
| 353 | /// assert_eq!(true, re.is_match("foo12345bar" )); |
| 354 | /// assert_eq!(false, re.is_match("foobar" )); |
| 355 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 356 | /// ``` |
| 357 | #[inline ] |
| 358 | pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool { |
| 359 | // Not only can we do an "earliest" search, but we can avoid doing a |
| 360 | // reverse scan too. |
| 361 | let input = input.into().earliest(true); |
| 362 | self.forward().try_search_fwd(&input).map(|x| x.is_some()).unwrap() |
| 363 | } |
| 364 | |
| 365 | /// Returns the start and end offset of the leftmost match. If no match |
| 366 | /// exists, then `None` is returned. |
| 367 | /// |
| 368 | /// # Panics |
| 369 | /// |
| 370 | /// This routine panics if the search could not complete. This can occur |
| 371 | /// in a number of circumstances: |
| 372 | /// |
| 373 | /// * The configuration of the DFA may permit it to "quit" the search. |
| 374 | /// For example, setting quit bytes or enabling heuristic support for |
| 375 | /// Unicode word boundaries. The default configuration does not enable any |
| 376 | /// option that could result in the DFA quitting. |
| 377 | /// * When the provided `Input` configuration is not supported. For |
| 378 | /// example, by providing an unsupported anchor mode. |
| 379 | /// |
| 380 | /// When a search panics, callers cannot know whether a match exists or |
| 381 | /// not. |
| 382 | /// |
| 383 | /// Use [`Regex::try_search`] if you want to handle these error conditions. |
| 384 | /// |
| 385 | /// # Example |
| 386 | /// |
| 387 | /// ``` |
| 388 | /// use regex_automata::{Match, dfa::regex::Regex}; |
| 389 | /// |
| 390 | /// // Greediness is applied appropriately. |
| 391 | /// let re = Regex::new("foo[0-9]+" )?; |
| 392 | /// assert_eq!(Some(Match::must(0, 3..11)), re.find("zzzfoo12345zzz" )); |
| 393 | /// |
| 394 | /// // Even though a match is found after reading the first byte (`a`), |
| 395 | /// // the default leftmost-first match semantics demand that we find the |
| 396 | /// // earliest match that prefers earlier parts of the pattern over latter |
| 397 | /// // parts. |
| 398 | /// let re = Regex::new("abc|a" )?; |
| 399 | /// assert_eq!(Some(Match::must(0, 0..3)), re.find("abc" )); |
| 400 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 401 | /// ``` |
| 402 | #[inline ] |
| 403 | pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> { |
| 404 | self.try_search(&input.into()).unwrap() |
| 405 | } |
| 406 | |
| 407 | /// Returns an iterator over all non-overlapping leftmost matches in the |
| 408 | /// given bytes. If no match exists, then the iterator yields no elements. |
| 409 | /// |
| 410 | /// This corresponds to the "standard" regex search iterator. |
| 411 | /// |
| 412 | /// # Panics |
| 413 | /// |
| 414 | /// If the search returns an error during iteration, then iteration |
| 415 | /// panics. See [`Regex::find`] for the panic conditions. |
| 416 | /// |
| 417 | /// Use [`Regex::try_search`] with |
| 418 | /// [`util::iter::Searcher`](crate::util::iter::Searcher) if you want to |
| 419 | /// handle these error conditions. |
| 420 | /// |
| 421 | /// # Example |
| 422 | /// |
| 423 | /// ``` |
| 424 | /// use regex_automata::{Match, dfa::regex::Regex}; |
| 425 | /// |
| 426 | /// let re = Regex::new("foo[0-9]+" )?; |
| 427 | /// let text = "foo1 foo12 foo123" ; |
| 428 | /// let matches: Vec<Match> = re.find_iter(text).collect(); |
| 429 | /// assert_eq!(matches, vec![ |
| 430 | /// Match::must(0, 0..4), |
| 431 | /// Match::must(0, 5..10), |
| 432 | /// Match::must(0, 11..17), |
| 433 | /// ]); |
| 434 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 435 | /// ``` |
| 436 | #[inline ] |
| 437 | pub fn find_iter<'r, 'h, I: Into<Input<'h>>>( |
| 438 | &'r self, |
| 439 | input: I, |
| 440 | ) -> FindMatches<'r, 'h, A> { |
| 441 | let it = iter::Searcher::new(input.into()); |
| 442 | FindMatches { re: self, it } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | /// Lower level fallible search routines that permit controlling where the |
| 447 | /// search starts and ends in a particular sequence. |
| 448 | impl<A: Automaton> Regex<A> { |
| 449 | /// Returns the start and end offset of the leftmost match. If no match |
| 450 | /// exists, then `None` is returned. |
| 451 | /// |
| 452 | /// This is like [`Regex::find`] but with two differences: |
| 453 | /// |
| 454 | /// 1. It is not generic over `Into<Input>` and instead accepts a |
| 455 | /// `&Input`. This permits reusing the same `Input` for multiple searches |
| 456 | /// without needing to create a new one. This _may_ help with latency. |
| 457 | /// 2. It returns an error if the search could not complete where as |
| 458 | /// [`Regex::find`] will panic. |
| 459 | /// |
| 460 | /// # Errors |
| 461 | /// |
| 462 | /// This routine errors if the search could not complete. This can occur |
| 463 | /// in the following circumstances: |
| 464 | /// |
| 465 | /// * The configuration of the DFA may permit it to "quit" the search. |
| 466 | /// For example, setting quit bytes or enabling heuristic support for |
| 467 | /// Unicode word boundaries. The default configuration does not enable any |
| 468 | /// option that could result in the DFA quitting. |
| 469 | /// * When the provided `Input` configuration is not supported. For |
| 470 | /// example, by providing an unsupported anchor mode. |
| 471 | /// |
| 472 | /// When a search returns an error, callers cannot know whether a match |
| 473 | /// exists or not. |
| 474 | #[inline ] |
| 475 | pub fn try_search( |
| 476 | &self, |
| 477 | input: &Input<'_>, |
| 478 | ) -> Result<Option<Match>, MatchError> { |
| 479 | let (fwd, rev) = (self.forward(), self.reverse()); |
| 480 | let end = match fwd.try_search_fwd(input)? { |
| 481 | None => return Ok(None), |
| 482 | Some(end) => end, |
| 483 | }; |
| 484 | // This special cases an empty match at the beginning of the search. If |
| 485 | // our end matches our start, then since a reverse DFA can't match past |
| 486 | // the start, it must follow that our starting position is also our end |
| 487 | // position. So short circuit and skip the reverse search. |
| 488 | if input.start() == end.offset() { |
| 489 | return Ok(Some(Match::new( |
| 490 | end.pattern(), |
| 491 | end.offset()..end.offset(), |
| 492 | ))); |
| 493 | } |
| 494 | // We can also skip the reverse search if we know our search was |
| 495 | // anchored. This occurs either when the input config is anchored or |
| 496 | // when we know the regex itself is anchored. In this case, we know the |
| 497 | // start of the match, if one is found, must be the start of the |
| 498 | // search. |
| 499 | if self.is_anchored(input) { |
| 500 | return Ok(Some(Match::new( |
| 501 | end.pattern(), |
| 502 | input.start()..end.offset(), |
| 503 | ))); |
| 504 | } |
| 505 | // N.B. I have tentatively convinced myself that it isn't necessary |
| 506 | // to specify the specific pattern for the reverse search since the |
| 507 | // reverse search will always find the same pattern to match as the |
| 508 | // forward search. But I lack a rigorous proof. Why not just provide |
| 509 | // the pattern anyway? Well, if it is needed, then leaving it out |
| 510 | // gives us a chance to find a witness. (Also, if we don't need to |
| 511 | // specify the pattern, then we don't need to build the reverse DFA |
| 512 | // with 'starts_for_each_pattern' enabled.) |
| 513 | // |
| 514 | // We also need to be careful to disable 'earliest' for the reverse |
| 515 | // search, since it could be enabled for the forward search. In the |
| 516 | // reverse case, to satisfy "leftmost" criteria, we need to match |
| 517 | // as much as we can. We also need to be careful to make the search |
| 518 | // anchored. We don't want the reverse search to report any matches |
| 519 | // other than the one beginning at the end of our forward search. |
| 520 | let revsearch = input |
| 521 | .clone() |
| 522 | .span(input.start()..end.offset()) |
| 523 | .anchored(Anchored::Yes) |
| 524 | .earliest(false); |
| 525 | let start = rev |
| 526 | .try_search_rev(&revsearch)? |
| 527 | .expect("reverse search must match if forward search does" ); |
| 528 | assert_eq!( |
| 529 | start.pattern(), |
| 530 | end.pattern(), |
| 531 | "forward and reverse search must match same pattern" , |
| 532 | ); |
| 533 | assert!(start.offset() <= end.offset()); |
| 534 | Ok(Some(Match::new(end.pattern(), start.offset()..end.offset()))) |
| 535 | } |
| 536 | |
| 537 | /// Returns true if either the given input specifies an anchored search |
| 538 | /// or if the underlying DFA is always anchored. |
| 539 | fn is_anchored(&self, input: &Input<'_>) -> bool { |
| 540 | match input.get_anchored() { |
| 541 | Anchored::No => self.forward().is_always_start_anchored(), |
| 542 | Anchored::Yes | Anchored::Pattern(_) => true, |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | /// Non-search APIs for querying information about the regex and setting a |
| 548 | /// prefilter. |
| 549 | impl<A: Automaton> Regex<A> { |
| 550 | /// Return the underlying DFA responsible for forward matching. |
| 551 | /// |
| 552 | /// This is useful for accessing the underlying DFA and converting it to |
| 553 | /// some other format or size. See the [`Builder::build_from_dfas`] docs |
| 554 | /// for an example of where this might be useful. |
| 555 | pub fn forward(&self) -> &A { |
| 556 | &self.forward |
| 557 | } |
| 558 | |
| 559 | /// Return the underlying DFA responsible for reverse matching. |
| 560 | /// |
| 561 | /// This is useful for accessing the underlying DFA and converting it to |
| 562 | /// some other format or size. See the [`Builder::build_from_dfas`] docs |
| 563 | /// for an example of where this might be useful. |
| 564 | pub fn reverse(&self) -> &A { |
| 565 | &self.reverse |
| 566 | } |
| 567 | |
| 568 | /// Returns the total number of patterns matched by this regex. |
| 569 | /// |
| 570 | /// # Example |
| 571 | /// |
| 572 | /// ``` |
| 573 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 574 | /// use regex_automata::dfa::regex::Regex; |
| 575 | /// |
| 576 | /// let re = Regex::new_many(&[r"[a-z]+" , r"[0-9]+" , r"\w+" ])?; |
| 577 | /// assert_eq!(3, re.pattern_len()); |
| 578 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 579 | /// ``` |
| 580 | pub fn pattern_len(&self) -> usize { |
| 581 | assert_eq!(self.forward().pattern_len(), self.reverse().pattern_len()); |
| 582 | self.forward().pattern_len() |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | /// An iterator over all non-overlapping matches for an infallible search. |
| 587 | /// |
| 588 | /// The iterator yields a [`Match`] value until no more matches could be found. |
| 589 | /// If the underlying regex engine returns an error, then a panic occurs. |
| 590 | /// |
| 591 | /// The type parameters are as follows: |
| 592 | /// |
| 593 | /// * `A` represents the type of the underlying DFA that implements the |
| 594 | /// [`Automaton`] trait. |
| 595 | /// |
| 596 | /// The lifetime parameters are as follows: |
| 597 | /// |
| 598 | /// * `'h` represents the lifetime of the haystack being searched. |
| 599 | /// * `'r` represents the lifetime of the regex object itself. |
| 600 | /// |
| 601 | /// This iterator can be created with the [`Regex::find_iter`] method. |
| 602 | #[derive (Debug)] |
| 603 | pub struct FindMatches<'r, 'h, A> { |
| 604 | re: &'r Regex<A>, |
| 605 | it: iter::Searcher<'h>, |
| 606 | } |
| 607 | |
| 608 | impl<'r, 'h, A: Automaton> Iterator for FindMatches<'r, 'h, A> { |
| 609 | type Item = Match; |
| 610 | |
| 611 | #[inline ] |
| 612 | fn next(&mut self) -> Option<Match> { |
| 613 | let FindMatches { re: &Regex, ref mut it: &mut Searcher<'_> } = *self; |
| 614 | it.advance(|input: &Input<'_>| re.try_search(input)) |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | /// A builder for a regex based on deterministic finite automatons. |
| 619 | /// |
| 620 | /// This builder permits configuring options for the syntax of a pattern, the |
| 621 | /// NFA construction, the DFA construction and finally the regex searching |
| 622 | /// itself. This builder is different from a general purpose regex builder in |
| 623 | /// that it permits fine grain configuration of the construction process. The |
| 624 | /// trade off for this is complexity, and the possibility of setting a |
| 625 | /// configuration that might not make sense. For example, there are two |
| 626 | /// different UTF-8 modes: |
| 627 | /// |
| 628 | /// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls |
| 629 | /// whether the pattern itself can contain sub-expressions that match invalid |
| 630 | /// UTF-8. |
| 631 | /// * [`thompson::Config::utf8`](crate::nfa::thompson::Config::utf8) controls |
| 632 | /// how the regex iterators themselves advance the starting position of the |
| 633 | /// next search when a match with zero length is found. |
| 634 | /// |
| 635 | /// Generally speaking, callers will want to either enable all of these or |
| 636 | /// disable all of these. |
| 637 | /// |
| 638 | /// Internally, building a regex requires building two DFAs, where one is |
| 639 | /// responsible for finding the end of a match and the other is responsible |
| 640 | /// for finding the start of a match. If you only need to detect whether |
| 641 | /// something matched, or only the end of a match, then you should use a |
| 642 | /// [`dense::Builder`] to construct a single DFA, which is cheaper than |
| 643 | /// building two DFAs. |
| 644 | /// |
| 645 | /// # Build methods |
| 646 | /// |
| 647 | /// This builder has a few "build" methods. In general, it's the result of |
| 648 | /// combining the following parameters: |
| 649 | /// |
| 650 | /// * Building one or many regexes. |
| 651 | /// * Building a regex with dense or sparse DFAs. |
| 652 | /// |
| 653 | /// The simplest "build" method is [`Builder::build`]. It accepts a single |
| 654 | /// pattern and builds a dense DFA using `usize` for the state identifier |
| 655 | /// representation. |
| 656 | /// |
| 657 | /// The most general "build" method is [`Builder::build_many`], which permits |
| 658 | /// building a regex that searches for multiple patterns simultaneously while |
| 659 | /// using a specific state identifier representation. |
| 660 | /// |
| 661 | /// The most flexible "build" method, but hardest to use, is |
| 662 | /// [`Builder::build_from_dfas`]. This exposes the fact that a [`Regex`] is |
| 663 | /// just a pair of DFAs, and this method allows you to specify those DFAs |
| 664 | /// exactly. |
| 665 | /// |
| 666 | /// # Example |
| 667 | /// |
| 668 | /// This example shows how to disable UTF-8 mode in the syntax and the regex |
| 669 | /// itself. This is generally what you want for matching on arbitrary bytes. |
| 670 | /// |
| 671 | /// ``` |
| 672 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 673 | /// use regex_automata::{ |
| 674 | /// dfa::regex::Regex, nfa::thompson, util::syntax, Match, |
| 675 | /// }; |
| 676 | /// |
| 677 | /// let re = Regex::builder() |
| 678 | /// .syntax(syntax::Config::new().utf8(false)) |
| 679 | /// .thompson(thompson::Config::new().utf8(false)) |
| 680 | /// .build(r"foo(?-u:[^b])ar.*" )?; |
| 681 | /// let haystack = b" \xFEfoo \xFFarzz \xE2\x98\xFF\n" ; |
| 682 | /// let expected = Some(Match::must(0, 1..9)); |
| 683 | /// let got = re.find(haystack); |
| 684 | /// assert_eq!(expected, got); |
| 685 | /// // Notice that `(?-u:[^b])` matches invalid UTF-8, |
| 686 | /// // but the subsequent `.*` does not! Disabling UTF-8 |
| 687 | /// // on the syntax permits this. |
| 688 | /// assert_eq!(b"foo \xFFarzz" , &haystack[got.unwrap().range()]); |
| 689 | /// |
| 690 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 691 | /// ``` |
| 692 | #[derive (Clone, Debug)] |
| 693 | pub struct Builder { |
| 694 | #[cfg (feature = "dfa-build" )] |
| 695 | dfa: dense::Builder, |
| 696 | } |
| 697 | |
| 698 | impl Builder { |
| 699 | /// Create a new regex builder with the default configuration. |
| 700 | pub fn new() -> Builder { |
| 701 | Builder { |
| 702 | #[cfg (feature = "dfa-build" )] |
| 703 | dfa: dense::Builder::new(), |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | /// Build a regex from the given pattern. |
| 708 | /// |
| 709 | /// If there was a problem parsing or compiling the pattern, then an error |
| 710 | /// is returned. |
| 711 | #[cfg (all(feature = "syntax" , feature = "dfa-build" ))] |
| 712 | pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> { |
| 713 | self.build_many(&[pattern]) |
| 714 | } |
| 715 | |
| 716 | /// Build a regex from the given pattern using sparse DFAs. |
| 717 | /// |
| 718 | /// If there was a problem parsing or compiling the pattern, then an error |
| 719 | /// is returned. |
| 720 | #[cfg (all(feature = "syntax" , feature = "dfa-build" ))] |
| 721 | pub fn build_sparse( |
| 722 | &self, |
| 723 | pattern: &str, |
| 724 | ) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> { |
| 725 | self.build_many_sparse(&[pattern]) |
| 726 | } |
| 727 | |
| 728 | /// Build a regex from the given patterns. |
| 729 | #[cfg (all(feature = "syntax" , feature = "dfa-build" ))] |
| 730 | pub fn build_many<P: AsRef<str>>( |
| 731 | &self, |
| 732 | patterns: &[P], |
| 733 | ) -> Result<Regex, BuildError> { |
| 734 | let forward = self.dfa.build_many(patterns)?; |
| 735 | let reverse = self |
| 736 | .dfa |
| 737 | .clone() |
| 738 | .configure( |
| 739 | dense::Config::new() |
| 740 | .prefilter(None) |
| 741 | .specialize_start_states(false) |
| 742 | .start_kind(StartKind::Anchored) |
| 743 | .match_kind(MatchKind::All), |
| 744 | ) |
| 745 | .thompson(crate::nfa::thompson::Config::new().reverse(true)) |
| 746 | .build_many(patterns)?; |
| 747 | Ok(self.build_from_dfas(forward, reverse)) |
| 748 | } |
| 749 | |
| 750 | /// Build a sparse regex from the given patterns. |
| 751 | #[cfg (all(feature = "syntax" , feature = "dfa-build" ))] |
| 752 | pub fn build_many_sparse<P: AsRef<str>>( |
| 753 | &self, |
| 754 | patterns: &[P], |
| 755 | ) -> Result<Regex<sparse::DFA<Vec<u8>>>, BuildError> { |
| 756 | let re = self.build_many(patterns)?; |
| 757 | let forward = re.forward().to_sparse()?; |
| 758 | let reverse = re.reverse().to_sparse()?; |
| 759 | Ok(self.build_from_dfas(forward, reverse)) |
| 760 | } |
| 761 | |
| 762 | /// Build a regex from its component forward and reverse DFAs. |
| 763 | /// |
| 764 | /// This is useful when deserializing a regex from some arbitrary |
| 765 | /// memory region. This is also useful for building regexes from other |
| 766 | /// types of DFAs. |
| 767 | /// |
| 768 | /// If you're building the DFAs from scratch instead of building new DFAs |
| 769 | /// from other DFAs, then you'll need to make sure that the reverse DFA is |
| 770 | /// configured correctly to match the intended semantics. Namely: |
| 771 | /// |
| 772 | /// * It should be anchored. |
| 773 | /// * It should use [`MatchKind::All`] semantics. |
| 774 | /// * It should match in reverse. |
| 775 | /// * Otherwise, its configuration should match the forward DFA. |
| 776 | /// |
| 777 | /// If these conditions aren't satisfied, then the behavior of searches is |
| 778 | /// unspecified. |
| 779 | /// |
| 780 | /// Note that when using this constructor, no configuration is applied. |
| 781 | /// Since this routine provides the DFAs to the builder, there is no |
| 782 | /// opportunity to apply other configuration options. |
| 783 | /// |
| 784 | /// # Example |
| 785 | /// |
| 786 | /// This example is a bit a contrived. The usual use of these methods |
| 787 | /// would involve serializing `initial_re` somewhere and then deserializing |
| 788 | /// it later to build a regex. But in this case, we do everything in |
| 789 | /// memory. |
| 790 | /// |
| 791 | /// ``` |
| 792 | /// use regex_automata::dfa::regex::Regex; |
| 793 | /// |
| 794 | /// let initial_re = Regex::new("foo[0-9]+" )?; |
| 795 | /// assert_eq!(true, initial_re.is_match(b"foo123" )); |
| 796 | /// |
| 797 | /// let (fwd, rev) = (initial_re.forward(), initial_re.reverse()); |
| 798 | /// let re = Regex::builder().build_from_dfas(fwd, rev); |
| 799 | /// assert_eq!(true, re.is_match(b"foo123" )); |
| 800 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 801 | /// ``` |
| 802 | /// |
| 803 | /// This example shows how to build a `Regex` that uses sparse DFAs instead |
| 804 | /// of dense DFAs without using one of the convenience `build_sparse` |
| 805 | /// routines: |
| 806 | /// |
| 807 | /// ``` |
| 808 | /// use regex_automata::dfa::regex::Regex; |
| 809 | /// |
| 810 | /// let initial_re = Regex::new("foo[0-9]+" )?; |
| 811 | /// assert_eq!(true, initial_re.is_match(b"foo123" )); |
| 812 | /// |
| 813 | /// let fwd = initial_re.forward().to_sparse()?; |
| 814 | /// let rev = initial_re.reverse().to_sparse()?; |
| 815 | /// let re = Regex::builder().build_from_dfas(fwd, rev); |
| 816 | /// assert_eq!(true, re.is_match(b"foo123" )); |
| 817 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 818 | /// ``` |
| 819 | pub fn build_from_dfas<A: Automaton>( |
| 820 | &self, |
| 821 | forward: A, |
| 822 | reverse: A, |
| 823 | ) -> Regex<A> { |
| 824 | Regex { forward, reverse } |
| 825 | } |
| 826 | |
| 827 | /// Set the syntax configuration for this builder using |
| 828 | /// [`syntax::Config`](crate::util::syntax::Config). |
| 829 | /// |
| 830 | /// This permits setting things like case insensitivity, Unicode and multi |
| 831 | /// line mode. |
| 832 | #[cfg (all(feature = "syntax" , feature = "dfa-build" ))] |
| 833 | pub fn syntax( |
| 834 | &mut self, |
| 835 | config: crate::util::syntax::Config, |
| 836 | ) -> &mut Builder { |
| 837 | self.dfa.syntax(config); |
| 838 | self |
| 839 | } |
| 840 | |
| 841 | /// Set the Thompson NFA configuration for this builder using |
| 842 | /// [`nfa::thompson::Config`](crate::nfa::thompson::Config). |
| 843 | /// |
| 844 | /// This permits setting things like whether additional time should be |
| 845 | /// spent shrinking the size of the NFA. |
| 846 | #[cfg (all(feature = "syntax" , feature = "dfa-build" ))] |
| 847 | pub fn thompson( |
| 848 | &mut self, |
| 849 | config: crate::nfa::thompson::Config, |
| 850 | ) -> &mut Builder { |
| 851 | self.dfa.thompson(config); |
| 852 | self |
| 853 | } |
| 854 | |
| 855 | /// Set the dense DFA compilation configuration for this builder using |
| 856 | /// [`dense::Config`]. |
| 857 | /// |
| 858 | /// This permits setting things like whether the underlying DFAs should |
| 859 | /// be minimized. |
| 860 | #[cfg (feature = "dfa-build" )] |
| 861 | pub fn dense(&mut self, config: dense::Config) -> &mut Builder { |
| 862 | self.dfa.configure(config); |
| 863 | self |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | impl Default for Builder { |
| 868 | fn default() -> Builder { |
| 869 | Builder::new() |
| 870 | } |
| 871 | } |
| 872 | |