| 1 | /*! |
| 2 | Types and routines specific to dense DFAs. |
| 3 | |
| 4 | This module is the home of [`dense::DFA`](DFA). |
| 5 | |
| 6 | This module also contains a [`dense::Builder`](Builder) and a |
| 7 | [`dense::Config`](Config) for building and configuring a dense DFA. |
| 8 | */ |
| 9 | |
| 10 | #[cfg (feature = "dfa-build" )] |
| 11 | use core::cmp; |
| 12 | use core::{fmt, iter, mem::size_of, slice}; |
| 13 | |
| 14 | #[cfg (feature = "dfa-build" )] |
| 15 | use alloc::{ |
| 16 | collections::{BTreeMap, BTreeSet}, |
| 17 | vec, |
| 18 | vec::Vec, |
| 19 | }; |
| 20 | |
| 21 | #[cfg (feature = "dfa-build" )] |
| 22 | use crate::{ |
| 23 | dfa::{ |
| 24 | accel::Accel, determinize, minimize::Minimizer, remapper::Remapper, |
| 25 | sparse, |
| 26 | }, |
| 27 | nfa::thompson, |
| 28 | util::{look::LookMatcher, search::MatchKind}, |
| 29 | }; |
| 30 | use crate::{ |
| 31 | dfa::{ |
| 32 | accel::Accels, |
| 33 | automaton::{fmt_state_indicator, Automaton, StartError}, |
| 34 | special::Special, |
| 35 | start::StartKind, |
| 36 | DEAD, |
| 37 | }, |
| 38 | util::{ |
| 39 | alphabet::{self, ByteClasses, ByteSet}, |
| 40 | int::{Pointer, Usize}, |
| 41 | prefilter::Prefilter, |
| 42 | primitives::{PatternID, StateID}, |
| 43 | search::Anchored, |
| 44 | start::{self, Start, StartByteMap}, |
| 45 | wire::{self, DeserializeError, Endian, SerializeError}, |
| 46 | }, |
| 47 | }; |
| 48 | |
| 49 | /// The label that is pre-pended to a serialized DFA. |
| 50 | const LABEL: &str = "rust-regex-automata-dfa-dense" ; |
| 51 | |
| 52 | /// The format version of dense regexes. This version gets incremented when a |
| 53 | /// change occurs. A change may not necessarily be a breaking change, but the |
| 54 | /// version does permit good error messages in the case where a breaking change |
| 55 | /// is made. |
| 56 | const VERSION: u32 = 2; |
| 57 | |
| 58 | /// The configuration used for compiling a dense DFA. |
| 59 | /// |
| 60 | /// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The |
| 61 | /// advantage of the former is that it often lets you avoid importing the |
| 62 | /// `Config` type directly. |
| 63 | /// |
| 64 | /// A dense DFA configuration is a simple data object that is typically used |
| 65 | /// with [`dense::Builder::configure`](self::Builder::configure). |
| 66 | /// |
| 67 | /// The default configuration guarantees that a search will never return |
| 68 | /// a "quit" error, although it is possible for a search to fail if |
| 69 | /// [`Config::starts_for_each_pattern`] wasn't enabled (which it is |
| 70 | /// not by default) and an [`Anchored::Pattern`] mode is requested via |
| 71 | /// [`Input`](crate::Input). |
| 72 | #[cfg (feature = "dfa-build" )] |
| 73 | #[derive (Clone, Debug, Default)] |
| 74 | pub struct Config { |
| 75 | // As with other configuration types in this crate, we put all our knobs |
| 76 | // in options so that we can distinguish between "default" and "not set." |
| 77 | // This makes it possible to easily combine multiple configurations |
| 78 | // without default values overwriting explicitly specified values. See the |
| 79 | // 'overwrite' method. |
| 80 | // |
| 81 | // For docs on the fields below, see the corresponding method setters. |
| 82 | accelerate: Option<bool>, |
| 83 | pre: Option<Option<Prefilter>>, |
| 84 | minimize: Option<bool>, |
| 85 | match_kind: Option<MatchKind>, |
| 86 | start_kind: Option<StartKind>, |
| 87 | starts_for_each_pattern: Option<bool>, |
| 88 | byte_classes: Option<bool>, |
| 89 | unicode_word_boundary: Option<bool>, |
| 90 | quitset: Option<ByteSet>, |
| 91 | specialize_start_states: Option<bool>, |
| 92 | dfa_size_limit: Option<Option<usize>>, |
| 93 | determinize_size_limit: Option<Option<usize>>, |
| 94 | } |
| 95 | |
| 96 | #[cfg (feature = "dfa-build" )] |
| 97 | impl Config { |
| 98 | /// Return a new default dense DFA compiler configuration. |
| 99 | pub fn new() -> Config { |
| 100 | Config::default() |
| 101 | } |
| 102 | |
| 103 | /// Enable state acceleration. |
| 104 | /// |
| 105 | /// When enabled, DFA construction will analyze each state to determine |
| 106 | /// whether it is eligible for simple acceleration. Acceleration typically |
| 107 | /// occurs when most of a state's transitions loop back to itself, leaving |
| 108 | /// only a select few bytes that will exit the state. When this occurs, |
| 109 | /// other routines like `memchr` can be used to look for those bytes which |
| 110 | /// may be much faster than traversing the DFA. |
| 111 | /// |
| 112 | /// Callers may elect to disable this if consistent performance is more |
| 113 | /// desirable than variable performance. Namely, acceleration can sometimes |
| 114 | /// make searching slower than it otherwise would be if the transitions |
| 115 | /// that leave accelerated states are traversed frequently. |
| 116 | /// |
| 117 | /// See [`Automaton::accelerator`] for an example. |
| 118 | /// |
| 119 | /// This is enabled by default. |
| 120 | pub fn accelerate(mut self, yes: bool) -> Config { |
| 121 | self.accelerate = Some(yes); |
| 122 | self |
| 123 | } |
| 124 | |
| 125 | /// Set a prefilter to be used whenever a start state is entered. |
| 126 | /// |
| 127 | /// A [`Prefilter`] in this context is meant to accelerate searches by |
| 128 | /// looking for literal prefixes that every match for the corresponding |
| 129 | /// pattern (or patterns) must start with. Once a prefilter produces a |
| 130 | /// match, the underlying search routine continues on to try and confirm |
| 131 | /// the match. |
| 132 | /// |
| 133 | /// Be warned that setting a prefilter does not guarantee that the search |
| 134 | /// will be faster. While it's usually a good bet, if the prefilter |
| 135 | /// produces a lot of false positive candidates (i.e., positions matched |
| 136 | /// by the prefilter but not by the regex), then the overall result can |
| 137 | /// be slower than if you had just executed the regex engine without any |
| 138 | /// prefilters. |
| 139 | /// |
| 140 | /// Note that unless [`Config::specialize_start_states`] has been |
| 141 | /// explicitly set, then setting this will also enable (when `pre` is |
| 142 | /// `Some`) or disable (when `pre` is `None`) start state specialization. |
| 143 | /// This occurs because without start state specialization, a prefilter |
| 144 | /// is likely to be less effective. And without a prefilter, start state |
| 145 | /// specialization is usually pointless. |
| 146 | /// |
| 147 | /// **WARNING:** Note that prefilters are not preserved as part of |
| 148 | /// serialization. Serializing a DFA will drop its prefilter. |
| 149 | /// |
| 150 | /// By default no prefilter is set. |
| 151 | /// |
| 152 | /// # Example |
| 153 | /// |
| 154 | /// ``` |
| 155 | /// use regex_automata::{ |
| 156 | /// dfa::{dense::DFA, Automaton}, |
| 157 | /// util::prefilter::Prefilter, |
| 158 | /// Input, HalfMatch, MatchKind, |
| 159 | /// }; |
| 160 | /// |
| 161 | /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]); |
| 162 | /// let re = DFA::builder() |
| 163 | /// .configure(DFA::config().prefilter(pre)) |
| 164 | /// .build(r"(foo|bar)[a-z]+")?; |
| 165 | /// let input = Input::new("foo1 barfox bar"); |
| 166 | /// assert_eq!( |
| 167 | /// Some(HalfMatch::must(0, 11)), |
| 168 | /// re.try_search_fwd(&input)?, |
| 169 | /// ); |
| 170 | /// |
| 171 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 172 | /// ``` |
| 173 | /// |
| 174 | /// Be warned though that an incorrect prefilter can lead to incorrect |
| 175 | /// results! |
| 176 | /// |
| 177 | /// ``` |
| 178 | /// use regex_automata::{ |
| 179 | /// dfa::{dense::DFA, Automaton}, |
| 180 | /// util::prefilter::Prefilter, |
| 181 | /// Input, HalfMatch, MatchKind, |
| 182 | /// }; |
| 183 | /// |
| 184 | /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]); |
| 185 | /// let re = DFA::builder() |
| 186 | /// .configure(DFA::config().prefilter(pre)) |
| 187 | /// .build(r"(foo|bar)[a-z]+")?; |
| 188 | /// let input = Input::new("foo1 barfox bar"); |
| 189 | /// assert_eq!( |
| 190 | /// // No match reported even though there clearly is one! |
| 191 | /// None, |
| 192 | /// re.try_search_fwd(&input)?, |
| 193 | /// ); |
| 194 | /// |
| 195 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 196 | /// ``` |
| 197 | pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config { |
| 198 | self.pre = Some(pre); |
| 199 | if self.specialize_start_states.is_none() { |
| 200 | self.specialize_start_states = |
| 201 | Some(self.get_prefilter().is_some()); |
| 202 | } |
| 203 | self |
| 204 | } |
| 205 | |
| 206 | /// Minimize the DFA. |
| 207 | /// |
| 208 | /// When enabled, the DFA built will be minimized such that it is as small |
| 209 | /// as possible. |
| 210 | /// |
| 211 | /// Whether one enables minimization or not depends on the types of costs |
| 212 | /// you're willing to pay and how much you care about its benefits. In |
| 213 | /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)` |
| 214 | /// space, where `n` is the number of DFA states and `k` is the alphabet |
| 215 | /// size. In practice, minimization can be quite costly in terms of both |
| 216 | /// space and time, so it should only be done if you're willing to wait |
| 217 | /// longer to produce a DFA. In general, you might want a minimal DFA in |
| 218 | /// the following circumstances: |
| 219 | /// |
| 220 | /// 1. You would like to optimize for the size of the automaton. This can |
| 221 | /// manifest in one of two ways. Firstly, if you're converting the |
| 222 | /// DFA into Rust code (or a table embedded in the code), then a minimal |
| 223 | /// DFA will translate into a corresponding reduction in code size, and |
| 224 | /// thus, also the final compiled binary size. Secondly, if you are |
| 225 | /// building many DFAs and putting them on the heap, you'll be able to |
| 226 | /// fit more if they are smaller. Note though that building a minimal |
| 227 | /// DFA itself requires additional space; you only realize the space |
| 228 | /// savings once the minimal DFA is constructed (at which point, the |
| 229 | /// space used for minimization is freed). |
| 230 | /// 2. You've observed that a smaller DFA results in faster match |
| 231 | /// performance. Naively, this isn't guaranteed since there is no |
| 232 | /// inherent difference between matching with a bigger-than-minimal |
| 233 | /// DFA and a minimal DFA. However, a smaller DFA may make use of your |
| 234 | /// CPU's cache more efficiently. |
| 235 | /// 3. You are trying to establish an equivalence between regular |
| 236 | /// languages. The standard method for this is to build a minimal DFA |
| 237 | /// for each language and then compare them. If the DFAs are equivalent |
| 238 | /// (up to state renaming), then the languages are equivalent. |
| 239 | /// |
| 240 | /// Typically, minimization only makes sense as an offline process. That |
| 241 | /// is, one might minimize a DFA before serializing it to persistent |
| 242 | /// storage. In practical terms, minimization can take around an order of |
| 243 | /// magnitude more time than compiling the initial DFA via determinization. |
| 244 | /// |
| 245 | /// This option is disabled by default. |
| 246 | pub fn minimize(mut self, yes: bool) -> Config { |
| 247 | self.minimize = Some(yes); |
| 248 | self |
| 249 | } |
| 250 | |
| 251 | /// Set the desired match semantics. |
| 252 | /// |
| 253 | /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the |
| 254 | /// match semantics of Perl-like regex engines. That is, when multiple |
| 255 | /// patterns would match at the same leftmost position, the pattern that |
| 256 | /// appears first in the concrete syntax is chosen. |
| 257 | /// |
| 258 | /// Currently, the only other kind of match semantics supported is |
| 259 | /// [`MatchKind::All`]. This corresponds to classical DFA construction |
| 260 | /// where all possible matches are added to the DFA. |
| 261 | /// |
| 262 | /// Typically, `All` is used when one wants to execute an overlapping |
| 263 | /// search and `LeftmostFirst` otherwise. In particular, it rarely makes |
| 264 | /// sense to use `All` with the various "leftmost" find routines, since the |
| 265 | /// leftmost routines depend on the `LeftmostFirst` automata construction |
| 266 | /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA |
| 267 | /// as a way to terminate the search and report a match. `LeftmostFirst` |
| 268 | /// also supports non-greedy matches using this strategy where as `All` |
| 269 | /// does not. |
| 270 | /// |
| 271 | /// # Example: overlapping search |
| 272 | /// |
| 273 | /// This example shows the typical use of `MatchKind::All`, which is to |
| 274 | /// report overlapping matches. |
| 275 | /// |
| 276 | /// ``` |
| 277 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 278 | /// use regex_automata::{ |
| 279 | /// dfa::{Automaton, OverlappingState, dense}, |
| 280 | /// HalfMatch, Input, MatchKind, |
| 281 | /// }; |
| 282 | /// |
| 283 | /// let dfa = dense::Builder::new() |
| 284 | /// .configure(dense::Config::new().match_kind(MatchKind::All)) |
| 285 | /// .build_many(&[r"\w+$", r"\S+$"])?; |
| 286 | /// let input = Input::new("@foo"); |
| 287 | /// let mut state = OverlappingState::start(); |
| 288 | /// |
| 289 | /// let expected = Some(HalfMatch::must(1, 4)); |
| 290 | /// dfa.try_search_overlapping_fwd(&input, &mut state)?; |
| 291 | /// assert_eq!(expected, state.get_match()); |
| 292 | /// |
| 293 | /// // The first pattern also matches at the same position, so re-running |
| 294 | /// // the search will yield another match. Notice also that the first |
| 295 | /// // pattern is returned after the second. This is because the second |
| 296 | /// // pattern begins its match before the first, is therefore an earlier |
| 297 | /// // match and is thus reported first. |
| 298 | /// let expected = Some(HalfMatch::must(0, 4)); |
| 299 | /// dfa.try_search_overlapping_fwd(&input, &mut state)?; |
| 300 | /// assert_eq!(expected, state.get_match()); |
| 301 | /// |
| 302 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 303 | /// ``` |
| 304 | /// |
| 305 | /// # Example: reverse automaton to find start of match |
| 306 | /// |
| 307 | /// Another example for using `MatchKind::All` is for constructing a |
| 308 | /// reverse automaton to find the start of a match. `All` semantics are |
| 309 | /// used for this in order to find the longest possible match, which |
| 310 | /// corresponds to the leftmost starting position. |
| 311 | /// |
| 312 | /// Note that if you need the starting position then |
| 313 | /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for |
| 314 | /// you, so it's usually not necessary to do this yourself. |
| 315 | /// |
| 316 | /// ``` |
| 317 | /// use regex_automata::{ |
| 318 | /// dfa::{dense, Automaton, StartKind}, |
| 319 | /// nfa::thompson::NFA, |
| 320 | /// Anchored, HalfMatch, Input, MatchKind, |
| 321 | /// }; |
| 322 | /// |
| 323 | /// let haystack = "123foobar456".as_bytes(); |
| 324 | /// let pattern = r"[a-z]+r"; |
| 325 | /// |
| 326 | /// let dfa_fwd = dense::DFA::new(pattern)?; |
| 327 | /// let dfa_rev = dense::Builder::new() |
| 328 | /// .thompson(NFA::config().reverse(true)) |
| 329 | /// .configure(dense::Config::new() |
| 330 | /// // This isn't strictly necessary since both anchored and |
| 331 | /// // unanchored searches are supported by default. But since |
| 332 | /// // finding the start-of-match only requires anchored searches, |
| 333 | /// // we can get rid of the unanchored configuration and possibly |
| 334 | /// // slim down our DFA considerably. |
| 335 | /// .start_kind(StartKind::Anchored) |
| 336 | /// .match_kind(MatchKind::All) |
| 337 | /// ) |
| 338 | /// .build(pattern)?; |
| 339 | /// let expected_fwd = HalfMatch::must(0, 9); |
| 340 | /// let expected_rev = HalfMatch::must(0, 3); |
| 341 | /// let got_fwd = dfa_fwd.try_search_fwd(&Input::new(haystack))?.unwrap(); |
| 342 | /// // Here we don't specify the pattern to search for since there's only |
| 343 | /// // one pattern and we're doing a leftmost search. But if this were an |
| 344 | /// // overlapping search, you'd need to specify the pattern that matched |
| 345 | /// // in the forward direction. (Otherwise, you might wind up finding the |
| 346 | /// // starting position of a match of some other pattern.) That in turn |
| 347 | /// // requires building the reverse automaton with starts_for_each_pattern |
| 348 | /// // enabled. Indeed, this is what Regex does internally. |
| 349 | /// let input = Input::new(haystack) |
| 350 | /// .range(..got_fwd.offset()) |
| 351 | /// .anchored(Anchored::Yes); |
| 352 | /// let got_rev = dfa_rev.try_search_rev(&input)?.unwrap(); |
| 353 | /// assert_eq!(expected_fwd, got_fwd); |
| 354 | /// assert_eq!(expected_rev, got_rev); |
| 355 | /// |
| 356 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 357 | /// ``` |
| 358 | pub fn match_kind(mut self, kind: MatchKind) -> Config { |
| 359 | self.match_kind = Some(kind); |
| 360 | self |
| 361 | } |
| 362 | |
| 363 | /// The type of starting state configuration to use for a DFA. |
| 364 | /// |
| 365 | /// By default, the starting state configuration is [`StartKind::Both`]. |
| 366 | /// |
| 367 | /// # Example |
| 368 | /// |
| 369 | /// ``` |
| 370 | /// use regex_automata::{ |
| 371 | /// dfa::{dense::DFA, Automaton, StartKind}, |
| 372 | /// Anchored, HalfMatch, Input, |
| 373 | /// }; |
| 374 | /// |
| 375 | /// let haystack = "quux foo123"; |
| 376 | /// let expected = HalfMatch::must(0, 11); |
| 377 | /// |
| 378 | /// // By default, DFAs support both anchored and unanchored searches. |
| 379 | /// let dfa = DFA::new(r"[0-9]+")?; |
| 380 | /// let input = Input::new(haystack); |
| 381 | /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?); |
| 382 | /// |
| 383 | /// // But if we only need anchored searches, then we can build a DFA |
| 384 | /// // that only supports anchored searches. This leads to a smaller DFA |
| 385 | /// // (potentially significantly smaller in some cases), but a DFA that |
| 386 | /// // will panic if you try to use it with an unanchored search. |
| 387 | /// let dfa = DFA::builder() |
| 388 | /// .configure(DFA::config().start_kind(StartKind::Anchored)) |
| 389 | /// .build(r"[0-9]+")?; |
| 390 | /// let input = Input::new(haystack) |
| 391 | /// .range(8..) |
| 392 | /// .anchored(Anchored::Yes); |
| 393 | /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?); |
| 394 | /// |
| 395 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 396 | /// ``` |
| 397 | pub fn start_kind(mut self, kind: StartKind) -> Config { |
| 398 | self.start_kind = Some(kind); |
| 399 | self |
| 400 | } |
| 401 | |
| 402 | /// Whether to compile a separate start state for each pattern in the |
| 403 | /// automaton. |
| 404 | /// |
| 405 | /// When enabled, a separate **anchored** start state is added for each |
| 406 | /// pattern in the DFA. When this start state is used, then the DFA will |
| 407 | /// only search for matches for the pattern specified, even if there are |
| 408 | /// other patterns in the DFA. |
| 409 | /// |
| 410 | /// The main downside of this option is that it can potentially increase |
| 411 | /// the size of the DFA and/or increase the time it takes to build the DFA. |
| 412 | /// |
| 413 | /// There are a few reasons one might want to enable this (it's disabled |
| 414 | /// by default): |
| 415 | /// |
| 416 | /// 1. When looking for the start of an overlapping match (using a |
| 417 | /// reverse DFA), doing it correctly requires starting the reverse search |
| 418 | /// using the starting state of the pattern that matched in the forward |
| 419 | /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex), |
| 420 | /// it will automatically enable this option when building the reverse DFA |
| 421 | /// internally. |
| 422 | /// 2. When you want to use a DFA with multiple patterns to both search |
| 423 | /// for matches of any pattern or to search for anchored matches of one |
| 424 | /// particular pattern while using the same DFA. (Otherwise, you would need |
| 425 | /// to compile a new DFA for each pattern.) |
| 426 | /// 3. Since the start states added for each pattern are anchored, if you |
| 427 | /// compile an unanchored DFA with one pattern while also enabling this |
| 428 | /// option, then you can use the same DFA to perform anchored or unanchored |
| 429 | /// searches. The latter you get with the standard search APIs. The former |
| 430 | /// you get from the various `_at` search methods that allow you specify a |
| 431 | /// pattern ID to search for. |
| 432 | /// |
| 433 | /// By default this is disabled. |
| 434 | /// |
| 435 | /// # Example |
| 436 | /// |
| 437 | /// This example shows how to use this option to permit the same DFA to |
| 438 | /// run both anchored and unanchored searches for a single pattern. |
| 439 | /// |
| 440 | /// ``` |
| 441 | /// use regex_automata::{ |
| 442 | /// dfa::{dense, Automaton}, |
| 443 | /// Anchored, HalfMatch, PatternID, Input, |
| 444 | /// }; |
| 445 | /// |
| 446 | /// let dfa = dense::Builder::new() |
| 447 | /// .configure(dense::Config::new().starts_for_each_pattern(true)) |
| 448 | /// .build(r"foo[0-9]+")?; |
| 449 | /// let haystack = "quux foo123"; |
| 450 | /// |
| 451 | /// // Here's a normal unanchored search. Notice that we use 'None' for the |
| 452 | /// // pattern ID. Since the DFA was built as an unanchored machine, it |
| 453 | /// // use its default unanchored starting state. |
| 454 | /// let expected = HalfMatch::must(0, 11); |
| 455 | /// let input = Input::new(haystack); |
| 456 | /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?); |
| 457 | /// // But now if we explicitly specify the pattern to search ('0' being |
| 458 | /// // the only pattern in the DFA), then it will use the starting state |
| 459 | /// // for that specific pattern which is always anchored. Since the |
| 460 | /// // pattern doesn't have a match at the beginning of the haystack, we |
| 461 | /// // find nothing. |
| 462 | /// let input = Input::new(haystack) |
| 463 | /// .anchored(Anchored::Pattern(PatternID::must(0))); |
| 464 | /// assert_eq!(None, dfa.try_search_fwd(&input)?); |
| 465 | /// // And finally, an anchored search is not the same as putting a '^' at |
| 466 | /// // beginning of the pattern. An anchored search can only match at the |
| 467 | /// // beginning of the *search*, which we can change: |
| 468 | /// let input = Input::new(haystack) |
| 469 | /// .anchored(Anchored::Pattern(PatternID::must(0))) |
| 470 | /// .range(5..); |
| 471 | /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?); |
| 472 | /// |
| 473 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 474 | /// ``` |
| 475 | pub fn starts_for_each_pattern(mut self, yes: bool) -> Config { |
| 476 | self.starts_for_each_pattern = Some(yes); |
| 477 | self |
| 478 | } |
| 479 | |
| 480 | /// Whether to attempt to shrink the size of the DFA's alphabet or not. |
| 481 | /// |
| 482 | /// This option is enabled by default and should never be disabled unless |
| 483 | /// one is debugging a generated DFA. |
| 484 | /// |
| 485 | /// When enabled, the DFA will use a map from all possible bytes to their |
| 486 | /// corresponding equivalence class. Each equivalence class represents a |
| 487 | /// set of bytes that does not discriminate between a match and a non-match |
| 488 | /// in the DFA. For example, the pattern `[ab]+` has at least two |
| 489 | /// equivalence classes: a set containing `a` and `b` and a set containing |
| 490 | /// every byte except for `a` and `b`. `a` and `b` are in the same |
| 491 | /// equivalence class because they never discriminate between a match and a |
| 492 | /// non-match. |
| 493 | /// |
| 494 | /// The advantage of this map is that the size of the transition table |
| 495 | /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to |
| 496 | /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence |
| 497 | /// classes (rounded up to the nearest power of 2). As a result, total |
| 498 | /// space usage can decrease substantially. Moreover, since a smaller |
| 499 | /// alphabet is used, DFA compilation becomes faster as well. |
| 500 | /// |
| 501 | /// **WARNING:** This is only useful for debugging DFAs. Disabling this |
| 502 | /// does not yield any speed advantages. Namely, even when this is |
| 503 | /// disabled, a byte class map is still used while searching. The only |
| 504 | /// difference is that every byte will be forced into its own distinct |
| 505 | /// equivalence class. This is useful for debugging the actual generated |
| 506 | /// transitions because it lets one see the transitions defined on actual |
| 507 | /// bytes instead of the equivalence classes. |
| 508 | pub fn byte_classes(mut self, yes: bool) -> Config { |
| 509 | self.byte_classes = Some(yes); |
| 510 | self |
| 511 | } |
| 512 | |
| 513 | /// Heuristically enable Unicode word boundaries. |
| 514 | /// |
| 515 | /// When set, this will attempt to implement Unicode word boundaries as if |
| 516 | /// they were ASCII word boundaries. This only works when the search input |
| 517 | /// is ASCII only. If a non-ASCII byte is observed while searching, then a |
| 518 | /// [`MatchError::quit`](crate::MatchError::quit) error is returned. |
| 519 | /// |
| 520 | /// A possible alternative to enabling this option is to simply use an |
| 521 | /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this |
| 522 | /// option is if you absolutely need Unicode support. This option lets one |
| 523 | /// use a fast search implementation (a DFA) for some potentially very |
| 524 | /// common cases, while providing the option to fall back to some other |
| 525 | /// regex engine to handle the general case when an error is returned. |
| 526 | /// |
| 527 | /// If the pattern provided has no Unicode word boundary in it, then this |
| 528 | /// option has no effect. (That is, quitting on a non-ASCII byte only |
| 529 | /// occurs when this option is enabled _and_ a Unicode word boundary is |
| 530 | /// present in the pattern.) |
| 531 | /// |
| 532 | /// This is almost equivalent to setting all non-ASCII bytes to be quit |
| 533 | /// bytes. The only difference is that this will cause non-ASCII bytes to |
| 534 | /// be quit bytes _only_ when a Unicode word boundary is present in the |
| 535 | /// pattern. |
| 536 | /// |
| 537 | /// When enabling this option, callers _must_ be prepared to handle |
| 538 | /// a [`MatchError`](crate::MatchError) error during search. |
| 539 | /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds |
| 540 | /// to using the `try_` suite of methods. Alternatively, if |
| 541 | /// callers can guarantee that their input is ASCII only, then a |
| 542 | /// [`MatchError::quit`](crate::MatchError::quit) error will never be |
| 543 | /// returned while searching. |
| 544 | /// |
| 545 | /// This is disabled by default. |
| 546 | /// |
| 547 | /// # Example |
| 548 | /// |
| 549 | /// This example shows how to heuristically enable Unicode word boundaries |
| 550 | /// in a pattern. It also shows what happens when a search comes across a |
| 551 | /// non-ASCII byte. |
| 552 | /// |
| 553 | /// ``` |
| 554 | /// use regex_automata::{ |
| 555 | /// dfa::{Automaton, dense}, |
| 556 | /// HalfMatch, Input, MatchError, |
| 557 | /// }; |
| 558 | /// |
| 559 | /// let dfa = dense::Builder::new() |
| 560 | /// .configure(dense::Config::new().unicode_word_boundary(true)) |
| 561 | /// .build(r"\b[0-9]+\b")?; |
| 562 | /// |
| 563 | /// // The match occurs before the search ever observes the snowman |
| 564 | /// // character, so no error occurs. |
| 565 | /// let haystack = "foo 123 ☃".as_bytes(); |
| 566 | /// let expected = Some(HalfMatch::must(0, 7)); |
| 567 | /// let got = dfa.try_search_fwd(&Input::new(haystack))?; |
| 568 | /// assert_eq!(expected, got); |
| 569 | /// |
| 570 | /// // Notice that this search fails, even though the snowman character |
| 571 | /// // occurs after the ending match offset. This is because search |
| 572 | /// // routines read one byte past the end of the search to account for |
| 573 | /// // look-around, and indeed, this is required here to determine whether |
| 574 | /// // the trailing \b matches. |
| 575 | /// let haystack = "foo 123 ☃".as_bytes(); |
| 576 | /// let expected = MatchError::quit(0xE2, 8); |
| 577 | /// let got = dfa.try_search_fwd(&Input::new(haystack)); |
| 578 | /// assert_eq!(Err(expected), got); |
| 579 | /// |
| 580 | /// // Another example is executing a search where the span of the haystack |
| 581 | /// // we specify is all ASCII, but there is non-ASCII just before it. This |
| 582 | /// // correctly also reports an error. |
| 583 | /// let input = Input::new("β123").range(2..); |
| 584 | /// let expected = MatchError::quit(0xB2, 1); |
| 585 | /// let got = dfa.try_search_fwd(&input); |
| 586 | /// assert_eq!(Err(expected), got); |
| 587 | /// |
| 588 | /// // And similarly for the trailing word boundary. |
| 589 | /// let input = Input::new("123β").range(..3); |
| 590 | /// let expected = MatchError::quit(0xCE, 3); |
| 591 | /// let got = dfa.try_search_fwd(&input); |
| 592 | /// assert_eq!(Err(expected), got); |
| 593 | /// |
| 594 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 595 | /// ``` |
| 596 | pub fn unicode_word_boundary(mut self, yes: bool) -> Config { |
| 597 | // We have a separate option for this instead of just setting the |
| 598 | // appropriate quit bytes here because we don't want to set quit bytes |
| 599 | // for every regex. We only want to set them when the regex contains a |
| 600 | // Unicode word boundary. |
| 601 | self.unicode_word_boundary = Some(yes); |
| 602 | self |
| 603 | } |
| 604 | |
| 605 | /// Add a "quit" byte to the DFA. |
| 606 | /// |
| 607 | /// When a quit byte is seen during search time, then search will return |
| 608 | /// a [`MatchError::quit`](crate::MatchError::quit) error indicating the |
| 609 | /// offset at which the search stopped. |
| 610 | /// |
| 611 | /// A quit byte will always overrule any other aspects of a regex. For |
| 612 | /// example, if the `x` byte is added as a quit byte and the regex `\w` is |
| 613 | /// used, then observing `x` will cause the search to quit immediately |
| 614 | /// despite the fact that `x` is in the `\w` class. |
| 615 | /// |
| 616 | /// This mechanism is primarily useful for heuristically enabling certain |
| 617 | /// features like Unicode word boundaries in a DFA. Namely, if the input |
| 618 | /// to search is ASCII, then a Unicode word boundary can be implemented |
| 619 | /// via an ASCII word boundary with no change in semantics. Thus, a DFA |
| 620 | /// can attempt to match a Unicode word boundary but give up as soon as it |
| 621 | /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes |
| 622 | /// to be quit bytes, then Unicode word boundaries will be permitted when |
| 623 | /// building DFAs. Of course, callers should enable |
| 624 | /// [`Config::unicode_word_boundary`] if they want this behavior instead. |
| 625 | /// (The advantage being that non-ASCII quit bytes will only be added if a |
| 626 | /// Unicode word boundary is in the pattern.) |
| 627 | /// |
| 628 | /// When enabling this option, callers _must_ be prepared to handle a |
| 629 | /// [`MatchError`](crate::MatchError) error during search. When using a |
| 630 | /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the |
| 631 | /// `try_` suite of methods. |
| 632 | /// |
| 633 | /// By default, there are no quit bytes set. |
| 634 | /// |
| 635 | /// # Panics |
| 636 | /// |
| 637 | /// This panics if heuristic Unicode word boundaries are enabled and any |
| 638 | /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling |
| 639 | /// Unicode word boundaries requires setting every non-ASCII byte to a quit |
| 640 | /// byte. So if the caller attempts to undo any of that, then this will |
| 641 | /// panic. |
| 642 | /// |
| 643 | /// # Example |
| 644 | /// |
| 645 | /// This example shows how to cause a search to terminate if it sees a |
| 646 | /// `\n` byte. This could be useful if, for example, you wanted to prevent |
| 647 | /// a user supplied pattern from matching across a line boundary. |
| 648 | /// |
| 649 | /// ``` |
| 650 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 651 | /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchError}; |
| 652 | /// |
| 653 | /// let dfa = dense::Builder::new() |
| 654 | /// .configure(dense::Config::new().quit(b'\n', true)) |
| 655 | /// .build(r"foo\p{any}+bar")?; |
| 656 | /// |
| 657 | /// let haystack = "foo\nbar".as_bytes(); |
| 658 | /// // Normally this would produce a match, since \p{any} contains '\n'. |
| 659 | /// // But since we instructed the automaton to enter a quit state if a |
| 660 | /// // '\n' is observed, this produces a match error instead. |
| 661 | /// let expected = MatchError::quit(b'\n', 3); |
| 662 | /// let got = dfa.try_search_fwd(&Input::new(haystack)).unwrap_err(); |
| 663 | /// assert_eq!(expected, got); |
| 664 | /// |
| 665 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 666 | /// ``` |
| 667 | pub fn quit(mut self, byte: u8, yes: bool) -> Config { |
| 668 | if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes { |
| 669 | panic!( |
| 670 | "cannot set non-ASCII byte to be non-quit when \ |
| 671 | Unicode word boundaries are enabled" |
| 672 | ); |
| 673 | } |
| 674 | if self.quitset.is_none() { |
| 675 | self.quitset = Some(ByteSet::empty()); |
| 676 | } |
| 677 | if yes { |
| 678 | self.quitset.as_mut().unwrap().add(byte); |
| 679 | } else { |
| 680 | self.quitset.as_mut().unwrap().remove(byte); |
| 681 | } |
| 682 | self |
| 683 | } |
| 684 | |
| 685 | /// Enable specializing start states in the DFA. |
| 686 | /// |
| 687 | /// When start states are specialized, an implementor of a search routine |
| 688 | /// using a lazy DFA can tell when the search has entered a starting state. |
| 689 | /// When start states aren't specialized, then it is impossible to know |
| 690 | /// whether the search has entered a start state. |
| 691 | /// |
| 692 | /// Ideally, this option wouldn't need to exist and we could always |
| 693 | /// specialize start states. The problem is that start states can be quite |
| 694 | /// active. This in turn means that an efficient search routine is likely |
| 695 | /// to ping-pong between a heavily optimized hot loop that handles most |
| 696 | /// states and to a less optimized specialized handling of start states. |
| 697 | /// This causes branches to get heavily mispredicted and overall can |
| 698 | /// materially decrease throughput. Therefore, specializing start states |
| 699 | /// should only be enabled when it is needed. |
| 700 | /// |
| 701 | /// Knowing whether a search is in a start state is typically useful when a |
| 702 | /// prefilter is active for the search. A prefilter is typically only run |
| 703 | /// when in a start state and a prefilter can greatly accelerate a search. |
| 704 | /// Therefore, the possible cost of specializing start states is worth it |
| 705 | /// in this case. Otherwise, if you have no prefilter, there is likely no |
| 706 | /// reason to specialize start states. |
| 707 | /// |
| 708 | /// This is disabled by default, but note that it is automatically |
| 709 | /// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless |
| 710 | /// `specialize_start_states` has already been set, [`Config::prefilter`] |
| 711 | /// will automatically enable or disable it based on whether a prefilter |
| 712 | /// is present or not, respectively. This is done because a prefilter's |
| 713 | /// effectiveness is rooted in being executed whenever the DFA is in a |
| 714 | /// start state, and that's only possible to do when they are specialized. |
| 715 | /// |
| 716 | /// Note that it is plausibly reasonable to _disable_ this option |
| 717 | /// explicitly while _enabling_ a prefilter. In that case, a prefilter |
| 718 | /// will still be run at the beginning of a search, but never again. This |
| 719 | /// in theory could strike a good balance if you're in a situation where a |
| 720 | /// prefilter is likely to produce many false positive candidates. |
| 721 | /// |
| 722 | /// # Example |
| 723 | /// |
| 724 | /// This example shows how to enable start state specialization and then |
| 725 | /// shows how to check whether a state is a start state or not. |
| 726 | /// |
| 727 | /// ``` |
| 728 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input}; |
| 729 | /// |
| 730 | /// let dfa = DFA::builder() |
| 731 | /// .configure(DFA::config().specialize_start_states(true)) |
| 732 | /// .build(r"[a-z]+")?; |
| 733 | /// |
| 734 | /// let haystack = "123 foobar 4567".as_bytes(); |
| 735 | /// let sid = dfa.start_state_forward(&Input::new(haystack))?; |
| 736 | /// // The ID returned by 'start_state_forward' will always be tagged as |
| 737 | /// // a start state when start state specialization is enabled. |
| 738 | /// assert!(dfa.is_special_state(sid)); |
| 739 | /// assert!(dfa.is_start_state(sid)); |
| 740 | /// |
| 741 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 742 | /// ``` |
| 743 | /// |
| 744 | /// Compare the above with the default DFA configuration where start states |
| 745 | /// are _not_ specialized. In this case, the start state is not tagged at |
| 746 | /// all: |
| 747 | /// |
| 748 | /// ``` |
| 749 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input}; |
| 750 | /// |
| 751 | /// let dfa = DFA::new(r"[a-z]+")?; |
| 752 | /// |
| 753 | /// let haystack = "123 foobar 4567"; |
| 754 | /// let sid = dfa.start_state_forward(&Input::new(haystack))?; |
| 755 | /// // Start states are not special in the default configuration! |
| 756 | /// assert!(!dfa.is_special_state(sid)); |
| 757 | /// assert!(!dfa.is_start_state(sid)); |
| 758 | /// |
| 759 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 760 | /// ``` |
| 761 | pub fn specialize_start_states(mut self, yes: bool) -> Config { |
| 762 | self.specialize_start_states = Some(yes); |
| 763 | self |
| 764 | } |
| 765 | |
| 766 | /// Set a size limit on the total heap used by a DFA. |
| 767 | /// |
| 768 | /// This size limit is expressed in bytes and is applied during |
| 769 | /// determinization of an NFA into a DFA. If the DFA's heap usage, and only |
| 770 | /// the DFA, exceeds this configured limit, then determinization is stopped |
| 771 | /// and an error is returned. |
| 772 | /// |
| 773 | /// This limit does not apply to auxiliary storage used during |
| 774 | /// determinization that isn't part of the generated DFA. |
| 775 | /// |
| 776 | /// This limit is only applied during determinization. Currently, there is |
| 777 | /// no way to post-pone this check to after minimization if minimization |
| 778 | /// was enabled. |
| 779 | /// |
| 780 | /// The total limit on heap used during determinization is the sum of the |
| 781 | /// DFA and determinization size limits. |
| 782 | /// |
| 783 | /// The default is no limit. |
| 784 | /// |
| 785 | /// # Example |
| 786 | /// |
| 787 | /// This example shows a DFA that fails to build because of a configured |
| 788 | /// size limit. This particular example also serves as a cautionary tale |
| 789 | /// demonstrating just how big DFAs with large Unicode character classes |
| 790 | /// can get. |
| 791 | /// |
| 792 | /// ``` |
| 793 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 794 | /// use regex_automata::{dfa::{dense, Automaton}, Input}; |
| 795 | /// |
| 796 | /// // 6MB isn't enough! |
| 797 | /// dense::Builder::new() |
| 798 | /// .configure(dense::Config::new().dfa_size_limit(Some(6_000_000))) |
| 799 | /// .build(r"\w{20}") |
| 800 | /// .unwrap_err(); |
| 801 | /// |
| 802 | /// // ... but 7MB probably is! |
| 803 | /// // (Note that DFA sizes aren't necessarily stable between releases.) |
| 804 | /// let dfa = dense::Builder::new() |
| 805 | /// .configure(dense::Config::new().dfa_size_limit(Some(7_000_000))) |
| 806 | /// .build(r"\w{20}")?; |
| 807 | /// let haystack = "A".repeat(20).into_bytes(); |
| 808 | /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some()); |
| 809 | /// |
| 810 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 811 | /// ``` |
| 812 | /// |
| 813 | /// While one needs a little more than 6MB to represent `\w{20}`, it |
| 814 | /// turns out that you only need a little more than 6KB to represent |
| 815 | /// `(?-u:\w{20})`. So only use Unicode if you need it! |
| 816 | /// |
| 817 | /// As with [`Config::determinize_size_limit`], the size of a DFA is |
| 818 | /// influenced by other factors, such as what start state configurations |
| 819 | /// to support. For example, if you only need unanchored searches and not |
| 820 | /// anchored searches, then configuring the DFA to only support unanchored |
| 821 | /// searches can reduce its size. By default, DFAs support both unanchored |
| 822 | /// and anchored searches. |
| 823 | /// |
| 824 | /// ``` |
| 825 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 826 | /// use regex_automata::{dfa::{dense, Automaton, StartKind}, Input}; |
| 827 | /// |
| 828 | /// // 3MB isn't enough! |
| 829 | /// dense::Builder::new() |
| 830 | /// .configure(dense::Config::new() |
| 831 | /// .dfa_size_limit(Some(3_000_000)) |
| 832 | /// .start_kind(StartKind::Unanchored) |
| 833 | /// ) |
| 834 | /// .build(r"\w{20}") |
| 835 | /// .unwrap_err(); |
| 836 | /// |
| 837 | /// // ... but 4MB probably is! |
| 838 | /// // (Note that DFA sizes aren't necessarily stable between releases.) |
| 839 | /// let dfa = dense::Builder::new() |
| 840 | /// .configure(dense::Config::new() |
| 841 | /// .dfa_size_limit(Some(4_000_000)) |
| 842 | /// .start_kind(StartKind::Unanchored) |
| 843 | /// ) |
| 844 | /// .build(r"\w{20}")?; |
| 845 | /// let haystack = "A".repeat(20).into_bytes(); |
| 846 | /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some()); |
| 847 | /// |
| 848 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 849 | /// ``` |
| 850 | pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config { |
| 851 | self.dfa_size_limit = Some(bytes); |
| 852 | self |
| 853 | } |
| 854 | |
| 855 | /// Set a size limit on the total heap used by determinization. |
| 856 | /// |
| 857 | /// This size limit is expressed in bytes and is applied during |
| 858 | /// determinization of an NFA into a DFA. If the heap used for auxiliary |
| 859 | /// storage during determinization (memory that is not in the DFA but |
| 860 | /// necessary for building the DFA) exceeds this configured limit, then |
| 861 | /// determinization is stopped and an error is returned. |
| 862 | /// |
| 863 | /// This limit does not apply to heap used by the DFA itself. |
| 864 | /// |
| 865 | /// The total limit on heap used during determinization is the sum of the |
| 866 | /// DFA and determinization size limits. |
| 867 | /// |
| 868 | /// The default is no limit. |
| 869 | /// |
| 870 | /// # Example |
| 871 | /// |
| 872 | /// This example shows a DFA that fails to build because of a |
| 873 | /// configured size limit on the amount of heap space used by |
| 874 | /// determinization. This particular example complements the example for |
| 875 | /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode |
| 876 | /// potentially make DFAs themselves big, but it also results in more |
| 877 | /// auxiliary storage during determinization. (Although, auxiliary storage |
| 878 | /// is still not as much as the DFA itself.) |
| 879 | /// |
| 880 | /// ``` |
| 881 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 882 | /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039 |
| 883 | /// use regex_automata::{dfa::{dense, Automaton}, Input}; |
| 884 | /// |
| 885 | /// // 700KB isn't enough! |
| 886 | /// dense::Builder::new() |
| 887 | /// .configure(dense::Config::new() |
| 888 | /// .determinize_size_limit(Some(700_000)) |
| 889 | /// ) |
| 890 | /// .build(r"\w{20}") |
| 891 | /// .unwrap_err(); |
| 892 | /// |
| 893 | /// // ... but 800KB probably is! |
| 894 | /// // (Note that auxiliary storage sizes aren't necessarily stable between |
| 895 | /// // releases.) |
| 896 | /// let dfa = dense::Builder::new() |
| 897 | /// .configure(dense::Config::new() |
| 898 | /// .determinize_size_limit(Some(800_000)) |
| 899 | /// ) |
| 900 | /// .build(r"\w{20}")?; |
| 901 | /// let haystack = "A".repeat(20).into_bytes(); |
| 902 | /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some()); |
| 903 | /// |
| 904 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 905 | /// ``` |
| 906 | /// |
| 907 | /// Note that some parts of the configuration on a DFA can have a |
| 908 | /// big impact on how big the DFA is, and thus, how much memory is |
| 909 | /// used. For example, the default setting for [`Config::start_kind`] is |
| 910 | /// [`StartKind::Both`]. But if you only need an anchored search, for |
| 911 | /// example, then it can be much cheaper to build a DFA that only supports |
| 912 | /// anchored searches. (Running an unanchored search with it would panic.) |
| 913 | /// |
| 914 | /// ``` |
| 915 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 916 | /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039 |
| 917 | /// use regex_automata::{ |
| 918 | /// dfa::{dense, Automaton, StartKind}, |
| 919 | /// Anchored, Input, |
| 920 | /// }; |
| 921 | /// |
| 922 | /// // 200KB isn't enough! |
| 923 | /// dense::Builder::new() |
| 924 | /// .configure(dense::Config::new() |
| 925 | /// .determinize_size_limit(Some(200_000)) |
| 926 | /// .start_kind(StartKind::Anchored) |
| 927 | /// ) |
| 928 | /// .build(r"\w{20}") |
| 929 | /// .unwrap_err(); |
| 930 | /// |
| 931 | /// // ... but 300KB probably is! |
| 932 | /// // (Note that auxiliary storage sizes aren't necessarily stable between |
| 933 | /// // releases.) |
| 934 | /// let dfa = dense::Builder::new() |
| 935 | /// .configure(dense::Config::new() |
| 936 | /// .determinize_size_limit(Some(300_000)) |
| 937 | /// .start_kind(StartKind::Anchored) |
| 938 | /// ) |
| 939 | /// .build(r"\w{20}")?; |
| 940 | /// let haystack = "A".repeat(20).into_bytes(); |
| 941 | /// let input = Input::new(&haystack).anchored(Anchored::Yes); |
| 942 | /// assert!(dfa.try_search_fwd(&input)?.is_some()); |
| 943 | /// |
| 944 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 945 | /// ``` |
| 946 | pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config { |
| 947 | self.determinize_size_limit = Some(bytes); |
| 948 | self |
| 949 | } |
| 950 | |
| 951 | /// Returns whether this configuration has enabled simple state |
| 952 | /// acceleration. |
| 953 | pub fn get_accelerate(&self) -> bool { |
| 954 | self.accelerate.unwrap_or(true) |
| 955 | } |
| 956 | |
| 957 | /// Returns the prefilter attached to this configuration, if any. |
| 958 | pub fn get_prefilter(&self) -> Option<&Prefilter> { |
| 959 | self.pre.as_ref().unwrap_or(&None).as_ref() |
| 960 | } |
| 961 | |
| 962 | /// Returns whether this configuration has enabled the expensive process |
| 963 | /// of minimizing a DFA. |
| 964 | pub fn get_minimize(&self) -> bool { |
| 965 | self.minimize.unwrap_or(false) |
| 966 | } |
| 967 | |
| 968 | /// Returns the match semantics set in this configuration. |
| 969 | pub fn get_match_kind(&self) -> MatchKind { |
| 970 | self.match_kind.unwrap_or(MatchKind::LeftmostFirst) |
| 971 | } |
| 972 | |
| 973 | /// Returns the starting state configuration for a DFA. |
| 974 | pub fn get_starts(&self) -> StartKind { |
| 975 | self.start_kind.unwrap_or(StartKind::Both) |
| 976 | } |
| 977 | |
| 978 | /// Returns whether this configuration has enabled anchored starting states |
| 979 | /// for every pattern in the DFA. |
| 980 | pub fn get_starts_for_each_pattern(&self) -> bool { |
| 981 | self.starts_for_each_pattern.unwrap_or(false) |
| 982 | } |
| 983 | |
| 984 | /// Returns whether this configuration has enabled byte classes or not. |
| 985 | /// This is typically a debugging oriented option, as disabling it confers |
| 986 | /// no speed benefit. |
| 987 | pub fn get_byte_classes(&self) -> bool { |
| 988 | self.byte_classes.unwrap_or(true) |
| 989 | } |
| 990 | |
| 991 | /// Returns whether this configuration has enabled heuristic Unicode word |
| 992 | /// boundary support. When enabled, it is possible for a search to return |
| 993 | /// an error. |
| 994 | pub fn get_unicode_word_boundary(&self) -> bool { |
| 995 | self.unicode_word_boundary.unwrap_or(false) |
| 996 | } |
| 997 | |
| 998 | /// Returns whether this configuration will instruct the DFA to enter a |
| 999 | /// quit state whenever the given byte is seen during a search. When at |
| 1000 | /// least one byte has this enabled, it is possible for a search to return |
| 1001 | /// an error. |
| 1002 | pub fn get_quit(&self, byte: u8) -> bool { |
| 1003 | self.quitset.map_or(false, |q| q.contains(byte)) |
| 1004 | } |
| 1005 | |
| 1006 | /// Returns whether this configuration will instruct the DFA to |
| 1007 | /// "specialize" start states. When enabled, the DFA will mark start states |
| 1008 | /// as "special" so that search routines using the DFA can detect when |
| 1009 | /// it's in a start state and do some kind of optimization (like run a |
| 1010 | /// prefilter). |
| 1011 | pub fn get_specialize_start_states(&self) -> bool { |
| 1012 | self.specialize_start_states.unwrap_or(false) |
| 1013 | } |
| 1014 | |
| 1015 | /// Returns the DFA size limit of this configuration if one was set. |
| 1016 | /// The size limit is total number of bytes on the heap that a DFA is |
| 1017 | /// permitted to use. If the DFA exceeds this limit during construction, |
| 1018 | /// then construction is stopped and an error is returned. |
| 1019 | pub fn get_dfa_size_limit(&self) -> Option<usize> { |
| 1020 | self.dfa_size_limit.unwrap_or(None) |
| 1021 | } |
| 1022 | |
| 1023 | /// Returns the determinization size limit of this configuration if one |
| 1024 | /// was set. The size limit is total number of bytes on the heap that |
| 1025 | /// determinization is permitted to use. If determinization exceeds this |
| 1026 | /// limit during construction, then construction is stopped and an error is |
| 1027 | /// returned. |
| 1028 | /// |
| 1029 | /// This is different from the DFA size limit in that this only applies to |
| 1030 | /// the auxiliary storage used during determinization. Once determinization |
| 1031 | /// is complete, this memory is freed. |
| 1032 | /// |
| 1033 | /// The limit on the total heap memory used is the sum of the DFA and |
| 1034 | /// determinization size limits. |
| 1035 | pub fn get_determinize_size_limit(&self) -> Option<usize> { |
| 1036 | self.determinize_size_limit.unwrap_or(None) |
| 1037 | } |
| 1038 | |
| 1039 | /// Overwrite the default configuration such that the options in `o` are |
| 1040 | /// always used. If an option in `o` is not set, then the corresponding |
| 1041 | /// option in `self` is used. If it's not set in `self` either, then it |
| 1042 | /// remains not set. |
| 1043 | pub(crate) fn overwrite(&self, o: Config) -> Config { |
| 1044 | Config { |
| 1045 | accelerate: o.accelerate.or(self.accelerate), |
| 1046 | pre: o.pre.or_else(|| self.pre.clone()), |
| 1047 | minimize: o.minimize.or(self.minimize), |
| 1048 | match_kind: o.match_kind.or(self.match_kind), |
| 1049 | start_kind: o.start_kind.or(self.start_kind), |
| 1050 | starts_for_each_pattern: o |
| 1051 | .starts_for_each_pattern |
| 1052 | .or(self.starts_for_each_pattern), |
| 1053 | byte_classes: o.byte_classes.or(self.byte_classes), |
| 1054 | unicode_word_boundary: o |
| 1055 | .unicode_word_boundary |
| 1056 | .or(self.unicode_word_boundary), |
| 1057 | quitset: o.quitset.or(self.quitset), |
| 1058 | specialize_start_states: o |
| 1059 | .specialize_start_states |
| 1060 | .or(self.specialize_start_states), |
| 1061 | dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit), |
| 1062 | determinize_size_limit: o |
| 1063 | .determinize_size_limit |
| 1064 | .or(self.determinize_size_limit), |
| 1065 | } |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | /// A builder for constructing a deterministic finite automaton from regular |
| 1070 | /// expressions. |
| 1071 | /// |
| 1072 | /// This builder provides two main things: |
| 1073 | /// |
| 1074 | /// 1. It provides a few different `build` routines for actually constructing |
| 1075 | /// a DFA from different kinds of inputs. The most convenient is |
| 1076 | /// [`Builder::build`], which builds a DFA directly from a pattern string. The |
| 1077 | /// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight |
| 1078 | /// from an NFA. |
| 1079 | /// 2. The builder permits configuring a number of things. |
| 1080 | /// [`Builder::configure`] is used with [`Config`] to configure aspects of |
| 1081 | /// the DFA and the construction process itself. [`Builder::syntax`] and |
| 1082 | /// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA |
| 1083 | /// construction, respectively. The syntax and thompson configurations only |
| 1084 | /// apply when building from a pattern string. |
| 1085 | /// |
| 1086 | /// This builder always constructs a *single* DFA. As such, this builder |
| 1087 | /// can only be used to construct regexes that either detect the presence |
| 1088 | /// of a match or find the end location of a match. A single DFA cannot |
| 1089 | /// produce both the start and end of a match. For that information, use a |
| 1090 | /// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured |
| 1091 | /// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to |
| 1092 | /// use a DFA directly is if the end location of a match is enough for your use |
| 1093 | /// case. Namely, a `Regex` will construct two DFAs instead of one, since a |
| 1094 | /// second reverse DFA is needed to find the start of a match. |
| 1095 | /// |
| 1096 | /// Note that if one wants to build a sparse DFA, you must first build a dense |
| 1097 | /// DFA and convert that to a sparse DFA. There is no way to build a sparse |
| 1098 | /// DFA without first building a dense DFA. |
| 1099 | /// |
| 1100 | /// # Example |
| 1101 | /// |
| 1102 | /// This example shows how to build a minimized DFA that completely disables |
| 1103 | /// Unicode. That is: |
| 1104 | /// |
| 1105 | /// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w` |
| 1106 | /// and `\b` are ASCII-only while `.` matches any byte except for `\n` |
| 1107 | /// (instead of any UTF-8 encoding of a Unicode scalar value except for |
| 1108 | /// `\n`). Things that are Unicode only, such as `\pL`, are not allowed. |
| 1109 | /// * The pattern itself is permitted to match invalid UTF-8. For example, |
| 1110 | /// things like `[^a]` that match any byte except for `a` are permitted. |
| 1111 | /// |
| 1112 | /// ``` |
| 1113 | /// use regex_automata::{ |
| 1114 | /// dfa::{Automaton, dense}, |
| 1115 | /// util::syntax, |
| 1116 | /// HalfMatch, Input, |
| 1117 | /// }; |
| 1118 | /// |
| 1119 | /// let dfa = dense::Builder::new() |
| 1120 | /// .configure(dense::Config::new().minimize(false)) |
| 1121 | /// .syntax(syntax::Config::new().unicode(false).utf8(false)) |
| 1122 | /// .build(r"foo[^b]ar.*")?; |
| 1123 | /// |
| 1124 | /// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n"; |
| 1125 | /// let expected = Some(HalfMatch::must(0, 10)); |
| 1126 | /// let got = dfa.try_search_fwd(&Input::new(haystack))?; |
| 1127 | /// assert_eq!(expected, got); |
| 1128 | /// |
| 1129 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1130 | /// ``` |
| 1131 | #[cfg (feature = "dfa-build" )] |
| 1132 | #[derive (Clone, Debug)] |
| 1133 | pub struct Builder { |
| 1134 | config: Config, |
| 1135 | #[cfg (feature = "syntax" )] |
| 1136 | thompson: thompson::Compiler, |
| 1137 | } |
| 1138 | |
| 1139 | #[cfg (feature = "dfa-build" )] |
| 1140 | impl Builder { |
| 1141 | /// Create a new dense DFA builder with the default configuration. |
| 1142 | pub fn new() -> Builder { |
| 1143 | Builder { |
| 1144 | config: Config::default(), |
| 1145 | #[cfg (feature = "syntax" )] |
| 1146 | thompson: thompson::Compiler::new(), |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | /// Build a DFA from the given pattern. |
| 1151 | /// |
| 1152 | /// If there was a problem parsing or compiling the pattern, then an error |
| 1153 | /// is returned. |
| 1154 | #[cfg (feature = "syntax" )] |
| 1155 | pub fn build(&self, pattern: &str) -> Result<OwnedDFA, BuildError> { |
| 1156 | self.build_many(&[pattern]) |
| 1157 | } |
| 1158 | |
| 1159 | /// Build a DFA from the given patterns. |
| 1160 | /// |
| 1161 | /// When matches are returned, the pattern ID corresponds to the index of |
| 1162 | /// the pattern in the slice given. |
| 1163 | #[cfg (feature = "syntax" )] |
| 1164 | pub fn build_many<P: AsRef<str>>( |
| 1165 | &self, |
| 1166 | patterns: &[P], |
| 1167 | ) -> Result<OwnedDFA, BuildError> { |
| 1168 | let nfa = self |
| 1169 | .thompson |
| 1170 | .clone() |
| 1171 | // We can always forcefully disable captures because DFAs do not |
| 1172 | // support them. |
| 1173 | .configure( |
| 1174 | thompson::Config::new() |
| 1175 | .which_captures(thompson::WhichCaptures::None), |
| 1176 | ) |
| 1177 | .build_many(patterns) |
| 1178 | .map_err(BuildError::nfa)?; |
| 1179 | self.build_from_nfa(&nfa) |
| 1180 | } |
| 1181 | |
| 1182 | /// Build a DFA from the given NFA. |
| 1183 | /// |
| 1184 | /// # Example |
| 1185 | /// |
| 1186 | /// This example shows how to build a DFA if you already have an NFA in |
| 1187 | /// hand. |
| 1188 | /// |
| 1189 | /// ``` |
| 1190 | /// use regex_automata::{ |
| 1191 | /// dfa::{Automaton, dense}, |
| 1192 | /// nfa::thompson::NFA, |
| 1193 | /// HalfMatch, Input, |
| 1194 | /// }; |
| 1195 | /// |
| 1196 | /// let haystack = "foo123bar".as_bytes(); |
| 1197 | /// |
| 1198 | /// // This shows how to set non-default options for building an NFA. |
| 1199 | /// let nfa = NFA::compiler() |
| 1200 | /// .configure(NFA::config().shrink(true)) |
| 1201 | /// .build(r"[0-9]+")?; |
| 1202 | /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?; |
| 1203 | /// let expected = Some(HalfMatch::must(0, 6)); |
| 1204 | /// let got = dfa.try_search_fwd(&Input::new(haystack))?; |
| 1205 | /// assert_eq!(expected, got); |
| 1206 | /// |
| 1207 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1208 | /// ``` |
| 1209 | pub fn build_from_nfa( |
| 1210 | &self, |
| 1211 | nfa: &thompson::NFA, |
| 1212 | ) -> Result<OwnedDFA, BuildError> { |
| 1213 | let mut quitset = self.config.quitset.unwrap_or(ByteSet::empty()); |
| 1214 | if self.config.get_unicode_word_boundary() |
| 1215 | && nfa.look_set_any().contains_word_unicode() |
| 1216 | { |
| 1217 | for b in 0x80..=0xFF { |
| 1218 | quitset.add(b); |
| 1219 | } |
| 1220 | } |
| 1221 | let classes = if !self.config.get_byte_classes() { |
| 1222 | // DFAs will always use the equivalence class map, but enabling |
| 1223 | // this option is useful for debugging. Namely, this will cause all |
| 1224 | // transitions to be defined over their actual bytes instead of an |
| 1225 | // opaque equivalence class identifier. The former is much easier |
| 1226 | // to grok as a human. |
| 1227 | ByteClasses::singletons() |
| 1228 | } else { |
| 1229 | let mut set = nfa.byte_class_set().clone(); |
| 1230 | // It is important to distinguish any "quit" bytes from all other |
| 1231 | // bytes. Otherwise, a non-quit byte may end up in the same |
| 1232 | // class as a quit byte, and thus cause the DFA to stop when it |
| 1233 | // shouldn't. |
| 1234 | // |
| 1235 | // Test case: |
| 1236 | // |
| 1237 | // regex-cli find match dense --unicode-word-boundary \ |
| 1238 | // -p '^#' -p '\b10\.55\.182\.100\b' -y @conn.json.1000x.log |
| 1239 | if !quitset.is_empty() { |
| 1240 | set.add_set(&quitset); |
| 1241 | } |
| 1242 | set.byte_classes() |
| 1243 | }; |
| 1244 | |
| 1245 | let mut dfa = DFA::initial( |
| 1246 | classes, |
| 1247 | nfa.pattern_len(), |
| 1248 | self.config.get_starts(), |
| 1249 | nfa.look_matcher(), |
| 1250 | self.config.get_starts_for_each_pattern(), |
| 1251 | self.config.get_prefilter().map(|p| p.clone()), |
| 1252 | quitset, |
| 1253 | Flags::from_nfa(&nfa), |
| 1254 | )?; |
| 1255 | determinize::Config::new() |
| 1256 | .match_kind(self.config.get_match_kind()) |
| 1257 | .quit(quitset) |
| 1258 | .dfa_size_limit(self.config.get_dfa_size_limit()) |
| 1259 | .determinize_size_limit(self.config.get_determinize_size_limit()) |
| 1260 | .run(nfa, &mut dfa)?; |
| 1261 | if self.config.get_minimize() { |
| 1262 | dfa.minimize(); |
| 1263 | } |
| 1264 | if self.config.get_accelerate() { |
| 1265 | dfa.accelerate(); |
| 1266 | } |
| 1267 | // The state shuffling done before this point always assumes that start |
| 1268 | // states should be marked as "special," even though it isn't the |
| 1269 | // default configuration. State shuffling is complex enough as it is, |
| 1270 | // so it's simpler to just "fix" our special state ID ranges to not |
| 1271 | // include starting states after-the-fact. |
| 1272 | if !self.config.get_specialize_start_states() { |
| 1273 | dfa.special.set_no_special_start_states(); |
| 1274 | } |
| 1275 | // Look for and set the universal starting states. |
| 1276 | dfa.set_universal_starts(); |
| 1277 | Ok(dfa) |
| 1278 | } |
| 1279 | |
| 1280 | /// Apply the given dense DFA configuration options to this builder. |
| 1281 | pub fn configure(&mut self, config: Config) -> &mut Builder { |
| 1282 | self.config = self.config.overwrite(config); |
| 1283 | self |
| 1284 | } |
| 1285 | |
| 1286 | /// Set the syntax configuration for this builder using |
| 1287 | /// [`syntax::Config`](crate::util::syntax::Config). |
| 1288 | /// |
| 1289 | /// This permits setting things like case insensitivity, Unicode and multi |
| 1290 | /// line mode. |
| 1291 | /// |
| 1292 | /// These settings only apply when constructing a DFA directly from a |
| 1293 | /// pattern. |
| 1294 | #[cfg (feature = "syntax" )] |
| 1295 | pub fn syntax( |
| 1296 | &mut self, |
| 1297 | config: crate::util::syntax::Config, |
| 1298 | ) -> &mut Builder { |
| 1299 | self.thompson.syntax(config); |
| 1300 | self |
| 1301 | } |
| 1302 | |
| 1303 | /// Set the Thompson NFA configuration for this builder using |
| 1304 | /// [`nfa::thompson::Config`](crate::nfa::thompson::Config). |
| 1305 | /// |
| 1306 | /// This permits setting things like whether the DFA should match the regex |
| 1307 | /// in reverse or if additional time should be spent shrinking the size of |
| 1308 | /// the NFA. |
| 1309 | /// |
| 1310 | /// These settings only apply when constructing a DFA directly from a |
| 1311 | /// pattern. |
| 1312 | #[cfg (feature = "syntax" )] |
| 1313 | pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder { |
| 1314 | self.thompson.configure(config); |
| 1315 | self |
| 1316 | } |
| 1317 | } |
| 1318 | |
| 1319 | #[cfg (feature = "dfa-build" )] |
| 1320 | impl Default for Builder { |
| 1321 | fn default() -> Builder { |
| 1322 | Builder::new() |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | /// A convenience alias for an owned DFA. We use this particular instantiation |
| 1327 | /// a lot in this crate, so it's worth giving it a name. This instantiation |
| 1328 | /// is commonly used for mutable APIs on the DFA while building it. The main |
| 1329 | /// reason for making DFAs generic is no_std support, and more generally, |
| 1330 | /// making it possible to load a DFA from an arbitrary slice of bytes. |
| 1331 | #[cfg (feature = "alloc" )] |
| 1332 | pub(crate) type OwnedDFA = DFA<alloc::vec::Vec<u32>>; |
| 1333 | |
| 1334 | /// A dense table-based deterministic finite automaton (DFA). |
| 1335 | /// |
| 1336 | /// All dense DFAs have one or more start states, zero or more match states |
| 1337 | /// and a transition table that maps the current state and the current byte |
| 1338 | /// of input to the next state. A DFA can use this information to implement |
| 1339 | /// fast searching. In particular, the use of a dense DFA generally makes the |
| 1340 | /// trade off that match speed is the most valuable characteristic, even if |
| 1341 | /// building the DFA may take significant time *and* space. (More concretely, |
| 1342 | /// building a DFA takes time and space that is exponential in the size of the |
| 1343 | /// pattern in the worst case.) As such, the processing of every byte of input |
| 1344 | /// is done with a small constant number of operations that does not vary with |
| 1345 | /// the pattern, its size or the size of the alphabet. If your needs don't line |
| 1346 | /// up with this trade off, then a dense DFA may not be an adequate solution to |
| 1347 | /// your problem. |
| 1348 | /// |
| 1349 | /// In contrast, a [`sparse::DFA`] makes the opposite |
| 1350 | /// trade off: it uses less space but will execute a variable number of |
| 1351 | /// instructions per byte at match time, which makes it slower for matching. |
| 1352 | /// (Note that space usage is still exponential in the size of the pattern in |
| 1353 | /// the worst case.) |
| 1354 | /// |
| 1355 | /// A DFA can be built using the default configuration via the |
| 1356 | /// [`DFA::new`] constructor. Otherwise, one can |
| 1357 | /// configure various aspects via [`dense::Builder`](Builder). |
| 1358 | /// |
| 1359 | /// A single DFA fundamentally supports the following operations: |
| 1360 | /// |
| 1361 | /// 1. Detection of a match. |
| 1362 | /// 2. Location of the end of a match. |
| 1363 | /// 3. In the case of a DFA with multiple patterns, which pattern matched is |
| 1364 | /// reported as well. |
| 1365 | /// |
| 1366 | /// A notable absence from the above list of capabilities is the location of |
| 1367 | /// the *start* of a match. In order to provide both the start and end of |
| 1368 | /// a match, *two* DFAs are required. This functionality is provided by a |
| 1369 | /// [`Regex`](crate::dfa::regex::Regex). |
| 1370 | /// |
| 1371 | /// # Type parameters |
| 1372 | /// |
| 1373 | /// A `DFA` has one type parameter, `T`, which is used to represent state IDs, |
| 1374 | /// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`. |
| 1375 | /// |
| 1376 | /// # The `Automaton` trait |
| 1377 | /// |
| 1378 | /// This type implements the [`Automaton`] trait, which means it can be used |
| 1379 | /// for searching. For example: |
| 1380 | /// |
| 1381 | /// ``` |
| 1382 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 1383 | /// |
| 1384 | /// let dfa = DFA::new("foo[0-9]+" )?; |
| 1385 | /// let expected = HalfMatch::must(0, 8); |
| 1386 | /// assert_eq!(Some(expected), dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 1387 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1388 | /// ``` |
| 1389 | #[derive (Clone)] |
| 1390 | pub struct DFA<T> { |
| 1391 | /// The transition table for this DFA. This includes the transitions |
| 1392 | /// themselves, along with the stride, number of states and the equivalence |
| 1393 | /// class mapping. |
| 1394 | tt: TransitionTable<T>, |
| 1395 | /// The set of starting state identifiers for this DFA. The starting state |
| 1396 | /// IDs act as pointers into the transition table. The specific starting |
| 1397 | /// state chosen for each search is dependent on the context at which the |
| 1398 | /// search begins. |
| 1399 | st: StartTable<T>, |
| 1400 | /// The set of match states and the patterns that match for each |
| 1401 | /// corresponding match state. |
| 1402 | /// |
| 1403 | /// This structure is technically only needed because of support for |
| 1404 | /// multi-regexes. Namely, multi-regexes require answering not just whether |
| 1405 | /// a match exists, but _which_ patterns match. So we need to store the |
| 1406 | /// matching pattern IDs for each match state. We do this even when there |
| 1407 | /// is only one pattern for the sake of simplicity. In practice, this uses |
| 1408 | /// up very little space for the case of one pattern. |
| 1409 | ms: MatchStates<T>, |
| 1410 | /// Information about which states are "special." Special states are states |
| 1411 | /// that are dead, quit, matching, starting or accelerated. For more info, |
| 1412 | /// see the docs for `Special`. |
| 1413 | special: Special, |
| 1414 | /// The accelerators for this DFA. |
| 1415 | /// |
| 1416 | /// If a state is accelerated, then there exist only a small number of |
| 1417 | /// bytes that can cause the DFA to leave the state. This permits searching |
| 1418 | /// to use optimized routines to find those specific bytes instead of using |
| 1419 | /// the transition table. |
| 1420 | /// |
| 1421 | /// All accelerated states exist in a contiguous range in the DFA's |
| 1422 | /// transition table. See dfa/special.rs for more details on how states are |
| 1423 | /// arranged. |
| 1424 | accels: Accels<T>, |
| 1425 | /// Any prefilter attached to this DFA. |
| 1426 | /// |
| 1427 | /// Note that currently prefilters are not serialized. When deserializing |
| 1428 | /// a DFA from bytes, this is always set to `None`. |
| 1429 | pre: Option<Prefilter>, |
| 1430 | /// The set of "quit" bytes for this DFA. |
| 1431 | /// |
| 1432 | /// This is only used when computing the start state for a particular |
| 1433 | /// position in a haystack. Namely, in the case where there is a quit |
| 1434 | /// byte immediately before the start of the search, this set needs to be |
| 1435 | /// explicitly consulted. In all other cases, quit bytes are detected by |
| 1436 | /// the DFA itself, by transitioning all quit bytes to a special "quit |
| 1437 | /// state." |
| 1438 | quitset: ByteSet, |
| 1439 | /// Various flags describing the behavior of this DFA. |
| 1440 | flags: Flags, |
| 1441 | } |
| 1442 | |
| 1443 | #[cfg (feature = "dfa-build" )] |
| 1444 | impl OwnedDFA { |
| 1445 | /// Parse the given regular expression using a default configuration and |
| 1446 | /// return the corresponding DFA. |
| 1447 | /// |
| 1448 | /// If you want a non-default configuration, then use the |
| 1449 | /// [`dense::Builder`](Builder) to set your own configuration. |
| 1450 | /// |
| 1451 | /// # Example |
| 1452 | /// |
| 1453 | /// ``` |
| 1454 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
| 1455 | /// |
| 1456 | /// let dfa = dense::DFA::new("foo[0-9]+bar")?; |
| 1457 | /// let expected = Some(HalfMatch::must(0, 11)); |
| 1458 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?); |
| 1459 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1460 | /// ``` |
| 1461 | #[cfg (feature = "syntax" )] |
| 1462 | pub fn new(pattern: &str) -> Result<OwnedDFA, BuildError> { |
| 1463 | Builder::new().build(pattern) |
| 1464 | } |
| 1465 | |
| 1466 | /// Parse the given regular expressions using a default configuration and |
| 1467 | /// return the corresponding multi-DFA. |
| 1468 | /// |
| 1469 | /// If you want a non-default configuration, then use the |
| 1470 | /// [`dense::Builder`](Builder) to set your own configuration. |
| 1471 | /// |
| 1472 | /// # Example |
| 1473 | /// |
| 1474 | /// ``` |
| 1475 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
| 1476 | /// |
| 1477 | /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?; |
| 1478 | /// let expected = Some(HalfMatch::must(1, 3)); |
| 1479 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?); |
| 1480 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1481 | /// ``` |
| 1482 | #[cfg (feature = "syntax" )] |
| 1483 | pub fn new_many<P: AsRef<str>>( |
| 1484 | patterns: &[P], |
| 1485 | ) -> Result<OwnedDFA, BuildError> { |
| 1486 | Builder::new().build_many(patterns) |
| 1487 | } |
| 1488 | } |
| 1489 | |
| 1490 | #[cfg (feature = "dfa-build" )] |
| 1491 | impl OwnedDFA { |
| 1492 | /// Create a new DFA that matches every input. |
| 1493 | /// |
| 1494 | /// # Example |
| 1495 | /// |
| 1496 | /// ``` |
| 1497 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
| 1498 | /// |
| 1499 | /// let dfa = dense::DFA::always_match()?; |
| 1500 | /// |
| 1501 | /// let expected = Some(HalfMatch::must(0, 0)); |
| 1502 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(""))?); |
| 1503 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo"))?); |
| 1504 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1505 | /// ``` |
| 1506 | pub fn always_match() -> Result<OwnedDFA, BuildError> { |
| 1507 | let nfa = thompson::NFA::always_match(); |
| 1508 | Builder::new().build_from_nfa(&nfa) |
| 1509 | } |
| 1510 | |
| 1511 | /// Create a new DFA that never matches any input. |
| 1512 | /// |
| 1513 | /// # Example |
| 1514 | /// |
| 1515 | /// ``` |
| 1516 | /// use regex_automata::{dfa::{Automaton, dense}, Input}; |
| 1517 | /// |
| 1518 | /// let dfa = dense::DFA::never_match()?; |
| 1519 | /// assert_eq!(None, dfa.try_search_fwd(&Input::new(""))?); |
| 1520 | /// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo"))?); |
| 1521 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1522 | /// ``` |
| 1523 | pub fn never_match() -> Result<OwnedDFA, BuildError> { |
| 1524 | let nfa = thompson::NFA::never_match(); |
| 1525 | Builder::new().build_from_nfa(&nfa) |
| 1526 | } |
| 1527 | |
| 1528 | /// Create an initial DFA with the given equivalence classes, pattern |
| 1529 | /// length and whether anchored starting states are enabled for each |
| 1530 | /// pattern. An initial DFA can be further mutated via determinization. |
| 1531 | fn initial( |
| 1532 | classes: ByteClasses, |
| 1533 | pattern_len: usize, |
| 1534 | starts: StartKind, |
| 1535 | lookm: &LookMatcher, |
| 1536 | starts_for_each_pattern: bool, |
| 1537 | pre: Option<Prefilter>, |
| 1538 | quitset: ByteSet, |
| 1539 | flags: Flags, |
| 1540 | ) -> Result<OwnedDFA, BuildError> { |
| 1541 | let start_pattern_len = |
| 1542 | if starts_for_each_pattern { Some(pattern_len) } else { None }; |
| 1543 | Ok(DFA { |
| 1544 | tt: TransitionTable::minimal(classes), |
| 1545 | st: StartTable::dead(starts, lookm, start_pattern_len)?, |
| 1546 | ms: MatchStates::empty(pattern_len), |
| 1547 | special: Special::new(), |
| 1548 | accels: Accels::empty(), |
| 1549 | pre, |
| 1550 | quitset, |
| 1551 | flags, |
| 1552 | }) |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | #[cfg (feature = "dfa-build" )] |
| 1557 | impl DFA<&[u32]> { |
| 1558 | /// Return a new default dense DFA compiler configuration. |
| 1559 | /// |
| 1560 | /// This is a convenience routine to avoid needing to import the [`Config`] |
| 1561 | /// type when customizing the construction of a dense DFA. |
| 1562 | pub fn config() -> Config { |
| 1563 | Config::new() |
| 1564 | } |
| 1565 | |
| 1566 | /// Create a new dense DFA builder with the default configuration. |
| 1567 | /// |
| 1568 | /// This is a convenience routine to avoid needing to import the |
| 1569 | /// [`Builder`] type in common cases. |
| 1570 | pub fn builder() -> Builder { |
| 1571 | Builder::new() |
| 1572 | } |
| 1573 | } |
| 1574 | |
| 1575 | impl<T: AsRef<[u32]>> DFA<T> { |
| 1576 | /// Cheaply return a borrowed version of this dense DFA. Specifically, |
| 1577 | /// the DFA returned always uses `&[u32]` for its transition table. |
| 1578 | pub fn as_ref(&self) -> DFA<&'_ [u32]> { |
| 1579 | DFA { |
| 1580 | tt: self.tt.as_ref(), |
| 1581 | st: self.st.as_ref(), |
| 1582 | ms: self.ms.as_ref(), |
| 1583 | special: self.special, |
| 1584 | accels: self.accels(), |
| 1585 | pre: self.pre.clone(), |
| 1586 | quitset: self.quitset, |
| 1587 | flags: self.flags, |
| 1588 | } |
| 1589 | } |
| 1590 | |
| 1591 | /// Return an owned version of this sparse DFA. Specifically, the DFA |
| 1592 | /// returned always uses `Vec<u32>` for its transition table. |
| 1593 | /// |
| 1594 | /// Effectively, this returns a dense DFA whose transition table lives on |
| 1595 | /// the heap. |
| 1596 | #[cfg (feature = "alloc" )] |
| 1597 | pub fn to_owned(&self) -> OwnedDFA { |
| 1598 | DFA { |
| 1599 | tt: self.tt.to_owned(), |
| 1600 | st: self.st.to_owned(), |
| 1601 | ms: self.ms.to_owned(), |
| 1602 | special: self.special, |
| 1603 | accels: self.accels().to_owned(), |
| 1604 | pre: self.pre.clone(), |
| 1605 | quitset: self.quitset, |
| 1606 | flags: self.flags, |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | /// Returns the starting state configuration for this DFA. |
| 1611 | /// |
| 1612 | /// The default is [`StartKind::Both`], which means the DFA supports both |
| 1613 | /// unanchored and anchored searches. However, this can generally lead to |
| 1614 | /// bigger DFAs. Therefore, a DFA might be compiled with support for just |
| 1615 | /// unanchored or anchored searches. In that case, running a search with |
| 1616 | /// an unsupported configuration will panic. |
| 1617 | pub fn start_kind(&self) -> StartKind { |
| 1618 | self.st.kind |
| 1619 | } |
| 1620 | |
| 1621 | /// Returns the start byte map used for computing the `Start` configuration |
| 1622 | /// at the beginning of a search. |
| 1623 | pub(crate) fn start_map(&self) -> &StartByteMap { |
| 1624 | &self.st.start_map |
| 1625 | } |
| 1626 | |
| 1627 | /// Returns true only if this DFA has starting states for each pattern. |
| 1628 | /// |
| 1629 | /// When a DFA has starting states for each pattern, then a search with the |
| 1630 | /// DFA can be configured to only look for anchored matches of a specific |
| 1631 | /// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can |
| 1632 | /// accept a non-None `pattern_id` if and only if this method returns true. |
| 1633 | /// Otherwise, calling `try_search_fwd` will panic. |
| 1634 | /// |
| 1635 | /// Note that if the DFA has no patterns, this always returns false. |
| 1636 | pub fn starts_for_each_pattern(&self) -> bool { |
| 1637 | self.st.pattern_len.is_some() |
| 1638 | } |
| 1639 | |
| 1640 | /// Returns the equivalence classes that make up the alphabet for this DFA. |
| 1641 | /// |
| 1642 | /// Unless [`Config::byte_classes`] was disabled, it is possible that |
| 1643 | /// multiple distinct bytes are grouped into the same equivalence class |
| 1644 | /// if it is impossible for them to discriminate between a match and a |
| 1645 | /// non-match. This has the effect of reducing the overall alphabet size |
| 1646 | /// and in turn potentially substantially reducing the size of the DFA's |
| 1647 | /// transition table. |
| 1648 | /// |
| 1649 | /// The downside of using equivalence classes like this is that every state |
| 1650 | /// transition will automatically use this map to convert an arbitrary |
| 1651 | /// byte to its corresponding equivalence class. In practice this has a |
| 1652 | /// negligible impact on performance. |
| 1653 | pub fn byte_classes(&self) -> &ByteClasses { |
| 1654 | &self.tt.classes |
| 1655 | } |
| 1656 | |
| 1657 | /// Returns the total number of elements in the alphabet for this DFA. |
| 1658 | /// |
| 1659 | /// That is, this returns the total number of transitions that each state |
| 1660 | /// in this DFA must have. Typically, a normal byte oriented DFA would |
| 1661 | /// always have an alphabet size of 256, corresponding to the number of |
| 1662 | /// unique values in a single byte. However, this implementation has two |
| 1663 | /// peculiarities that impact the alphabet length: |
| 1664 | /// |
| 1665 | /// * Every state has a special "EOI" transition that is only followed |
| 1666 | /// after the end of some haystack is reached. This EOI transition is |
| 1667 | /// necessary to account for one byte of look-ahead when implementing |
| 1668 | /// things like `\b` and `$`. |
| 1669 | /// * Bytes are grouped into equivalence classes such that no two bytes in |
| 1670 | /// the same class can distinguish a match from a non-match. For example, |
| 1671 | /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the |
| 1672 | /// same equivalence class. This leads to a massive space savings. |
| 1673 | /// |
| 1674 | /// Note though that the alphabet length does _not_ necessarily equal the |
| 1675 | /// total stride space taken up by a single DFA state in the transition |
| 1676 | /// table. Namely, for performance reasons, the stride is always the |
| 1677 | /// smallest power of two that is greater than or equal to the alphabet |
| 1678 | /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are |
| 1679 | /// often more useful. The alphabet length is typically useful only for |
| 1680 | /// informational purposes. |
| 1681 | pub fn alphabet_len(&self) -> usize { |
| 1682 | self.tt.alphabet_len() |
| 1683 | } |
| 1684 | |
| 1685 | /// Returns the total stride for every state in this DFA, expressed as the |
| 1686 | /// exponent of a power of 2. The stride is the amount of space each state |
| 1687 | /// takes up in the transition table, expressed as a number of transitions. |
| 1688 | /// (Unused transitions map to dead states.) |
| 1689 | /// |
| 1690 | /// The stride of a DFA is always equivalent to the smallest power of 2 |
| 1691 | /// that is greater than or equal to the DFA's alphabet length. This |
| 1692 | /// definition uses extra space, but permits faster translation between |
| 1693 | /// premultiplied state identifiers and contiguous indices (by using shifts |
| 1694 | /// instead of relying on integer division). |
| 1695 | /// |
| 1696 | /// For example, if the DFA's stride is 16 transitions, then its `stride2` |
| 1697 | /// is `4` since `2^4 = 16`. |
| 1698 | /// |
| 1699 | /// The minimum `stride2` value is `1` (corresponding to a stride of `2`) |
| 1700 | /// while the maximum `stride2` value is `9` (corresponding to a stride of |
| 1701 | /// `512`). The maximum is not `8` since the maximum alphabet size is `257` |
| 1702 | /// when accounting for the special EOI transition. However, an alphabet |
| 1703 | /// length of that size is exceptionally rare since the alphabet is shrunk |
| 1704 | /// into equivalence classes. |
| 1705 | pub fn stride2(&self) -> usize { |
| 1706 | self.tt.stride2 |
| 1707 | } |
| 1708 | |
| 1709 | /// Returns the total stride for every state in this DFA. This corresponds |
| 1710 | /// to the total number of transitions used by each state in this DFA's |
| 1711 | /// transition table. |
| 1712 | /// |
| 1713 | /// Please see [`DFA::stride2`] for more information. In particular, this |
| 1714 | /// returns the stride as the number of transitions, where as `stride2` |
| 1715 | /// returns it as the exponent of a power of 2. |
| 1716 | pub fn stride(&self) -> usize { |
| 1717 | self.tt.stride() |
| 1718 | } |
| 1719 | |
| 1720 | /// Returns the memory usage, in bytes, of this DFA. |
| 1721 | /// |
| 1722 | /// The memory usage is computed based on the number of bytes used to |
| 1723 | /// represent this DFA. |
| 1724 | /// |
| 1725 | /// This does **not** include the stack size used up by this DFA. To |
| 1726 | /// compute that, use `std::mem::size_of::<dense::DFA>()`. |
| 1727 | pub fn memory_usage(&self) -> usize { |
| 1728 | self.tt.memory_usage() |
| 1729 | + self.st.memory_usage() |
| 1730 | + self.ms.memory_usage() |
| 1731 | + self.accels.memory_usage() |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | /// Routines for converting a dense DFA to other representations, such as |
| 1736 | /// sparse DFAs or raw bytes suitable for persistent storage. |
| 1737 | impl<T: AsRef<[u32]>> DFA<T> { |
| 1738 | /// Convert this dense DFA to a sparse DFA. |
| 1739 | /// |
| 1740 | /// If a `StateID` is too small to represent all states in the sparse |
| 1741 | /// DFA, then this returns an error. In most cases, if a dense DFA is |
| 1742 | /// constructable with `StateID` then a sparse DFA will be as well. |
| 1743 | /// However, it is not guaranteed. |
| 1744 | /// |
| 1745 | /// # Example |
| 1746 | /// |
| 1747 | /// ``` |
| 1748 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input}; |
| 1749 | /// |
| 1750 | /// let dense = dense::DFA::new("foo[0-9]+")?; |
| 1751 | /// let sparse = dense.to_sparse()?; |
| 1752 | /// |
| 1753 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 1754 | /// assert_eq!(expected, sparse.try_search_fwd(&Input::new("foo12345"))?); |
| 1755 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1756 | /// ``` |
| 1757 | #[cfg (feature = "dfa-build" )] |
| 1758 | pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, BuildError> { |
| 1759 | sparse::DFA::from_dense(self) |
| 1760 | } |
| 1761 | |
| 1762 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian |
| 1763 | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
| 1764 | /// returned. |
| 1765 | /// |
| 1766 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1767 | /// without errors in a semver compatible release of this crate by a |
| 1768 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1769 | /// deserialization APIs has been satisfied): |
| 1770 | /// |
| 1771 | /// * [`DFA::from_bytes`] |
| 1772 | /// * [`DFA::from_bytes_unchecked`] |
| 1773 | /// |
| 1774 | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
| 1775 | /// an address that does not have the same alignment as `u32`. The padding |
| 1776 | /// corresponds to the number of leading bytes written to the returned |
| 1777 | /// `Vec<u8>`. |
| 1778 | /// |
| 1779 | /// # Example |
| 1780 | /// |
| 1781 | /// This example shows how to serialize and deserialize a DFA: |
| 1782 | /// |
| 1783 | /// ``` |
| 1784 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 1785 | /// |
| 1786 | /// // Compile our original DFA. |
| 1787 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 1788 | /// |
| 1789 | /// // N.B. We use native endianness here to make the example work, but |
| 1790 | /// // using to_bytes_little_endian would work on a little endian target. |
| 1791 | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
| 1792 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 1793 | /// // ignore it. |
| 1794 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
| 1795 | /// |
| 1796 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 1797 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
| 1798 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1799 | /// ``` |
| 1800 | #[cfg (feature = "dfa-build" )] |
| 1801 | pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) { |
| 1802 | self.to_bytes::<wire::LE>() |
| 1803 | } |
| 1804 | |
| 1805 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian |
| 1806 | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
| 1807 | /// returned. |
| 1808 | /// |
| 1809 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1810 | /// without errors in a semver compatible release of this crate by a |
| 1811 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1812 | /// deserialization APIs has been satisfied): |
| 1813 | /// |
| 1814 | /// * [`DFA::from_bytes`] |
| 1815 | /// * [`DFA::from_bytes_unchecked`] |
| 1816 | /// |
| 1817 | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
| 1818 | /// an address that does not have the same alignment as `u32`. The padding |
| 1819 | /// corresponds to the number of leading bytes written to the returned |
| 1820 | /// `Vec<u8>`. |
| 1821 | /// |
| 1822 | /// # Example |
| 1823 | /// |
| 1824 | /// This example shows how to serialize and deserialize a DFA: |
| 1825 | /// |
| 1826 | /// ``` |
| 1827 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 1828 | /// |
| 1829 | /// // Compile our original DFA. |
| 1830 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 1831 | /// |
| 1832 | /// // N.B. We use native endianness here to make the example work, but |
| 1833 | /// // using to_bytes_big_endian would work on a big endian target. |
| 1834 | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
| 1835 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 1836 | /// // ignore it. |
| 1837 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
| 1838 | /// |
| 1839 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 1840 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
| 1841 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1842 | /// ``` |
| 1843 | #[cfg (feature = "dfa-build" )] |
| 1844 | pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) { |
| 1845 | self.to_bytes::<wire::BE>() |
| 1846 | } |
| 1847 | |
| 1848 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian |
| 1849 | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
| 1850 | /// returned. |
| 1851 | /// |
| 1852 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1853 | /// without errors in a semver compatible release of this crate by a |
| 1854 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1855 | /// deserialization APIs has been satisfied): |
| 1856 | /// |
| 1857 | /// * [`DFA::from_bytes`] |
| 1858 | /// * [`DFA::from_bytes_unchecked`] |
| 1859 | /// |
| 1860 | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
| 1861 | /// an address that does not have the same alignment as `u32`. The padding |
| 1862 | /// corresponds to the number of leading bytes written to the returned |
| 1863 | /// `Vec<u8>`. |
| 1864 | /// |
| 1865 | /// Generally speaking, native endian format should only be used when |
| 1866 | /// you know that the target you're compiling the DFA for matches the |
| 1867 | /// endianness of the target on which you're compiling DFA. For example, |
| 1868 | /// if serialization and deserialization happen in the same process or on |
| 1869 | /// the same machine. Otherwise, when serializing a DFA for use in a |
| 1870 | /// portable environment, you'll almost certainly want to serialize _both_ |
| 1871 | /// a little endian and a big endian version and then load the correct one |
| 1872 | /// based on the target's configuration. |
| 1873 | /// |
| 1874 | /// # Example |
| 1875 | /// |
| 1876 | /// This example shows how to serialize and deserialize a DFA: |
| 1877 | /// |
| 1878 | /// ``` |
| 1879 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 1880 | /// |
| 1881 | /// // Compile our original DFA. |
| 1882 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 1883 | /// |
| 1884 | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
| 1885 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 1886 | /// // ignore it. |
| 1887 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
| 1888 | /// |
| 1889 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 1890 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?); |
| 1891 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1892 | /// ``` |
| 1893 | #[cfg (feature = "dfa-build" )] |
| 1894 | pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) { |
| 1895 | self.to_bytes::<wire::NE>() |
| 1896 | } |
| 1897 | |
| 1898 | /// The implementation of the public `to_bytes` serialization methods, |
| 1899 | /// which is generic over endianness. |
| 1900 | #[cfg (feature = "dfa-build" )] |
| 1901 | fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) { |
| 1902 | let len = self.write_to_len(); |
| 1903 | let (mut buf, padding) = wire::alloc_aligned_buffer::<u32>(len); |
| 1904 | // This should always succeed since the only possible serialization |
| 1905 | // error is providing a buffer that's too small, but we've ensured that |
| 1906 | // `buf` is big enough here. |
| 1907 | self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap(); |
| 1908 | (buf, padding) |
| 1909 | } |
| 1910 | |
| 1911 | /// Serialize this DFA as raw bytes to the given slice, in little endian |
| 1912 | /// format. Upon success, the total number of bytes written to `dst` is |
| 1913 | /// returned. |
| 1914 | /// |
| 1915 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1916 | /// without errors in a semver compatible release of this crate by a |
| 1917 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1918 | /// deserialization APIs has been satisfied): |
| 1919 | /// |
| 1920 | /// * [`DFA::from_bytes`] |
| 1921 | /// * [`DFA::from_bytes_unchecked`] |
| 1922 | /// |
| 1923 | /// Note that unlike the various `to_byte_*` routines, this does not write |
| 1924 | /// any padding. Callers are responsible for handling alignment correctly. |
| 1925 | /// |
| 1926 | /// # Errors |
| 1927 | /// |
| 1928 | /// This returns an error if the given destination slice is not big enough |
| 1929 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 1930 | /// is written to `dst`. |
| 1931 | /// |
| 1932 | /// # Example |
| 1933 | /// |
| 1934 | /// This example shows how to serialize and deserialize a DFA without |
| 1935 | /// dynamic memory allocation. |
| 1936 | /// |
| 1937 | /// ``` |
| 1938 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 1939 | /// |
| 1940 | /// // Compile our original DFA. |
| 1941 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 1942 | /// |
| 1943 | /// // Create a 4KB buffer on the stack to store our serialized DFA. We |
| 1944 | /// // need to use a special type to force the alignment of our [u8; N] |
| 1945 | /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing |
| 1946 | /// // the DFA may fail because of an alignment mismatch. |
| 1947 | /// #[repr(C)] |
| 1948 | /// struct Aligned<B: ?Sized> { |
| 1949 | /// _align: [u32; 0], |
| 1950 | /// bytes: B, |
| 1951 | /// } |
| 1952 | /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] }; |
| 1953 | /// // N.B. We use native endianness here to make the example work, but |
| 1954 | /// // using write_to_little_endian would work on a little endian target. |
| 1955 | /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?; |
| 1956 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0; |
| 1957 | /// |
| 1958 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 1959 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 1960 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1961 | /// ``` |
| 1962 | pub fn write_to_little_endian( |
| 1963 | &self, |
| 1964 | dst: &mut [u8], |
| 1965 | ) -> Result<usize, SerializeError> { |
| 1966 | self.as_ref().write_to::<wire::LE>(dst) |
| 1967 | } |
| 1968 | |
| 1969 | /// Serialize this DFA as raw bytes to the given slice, in big endian |
| 1970 | /// format. Upon success, the total number of bytes written to `dst` is |
| 1971 | /// returned. |
| 1972 | /// |
| 1973 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1974 | /// without errors in a semver compatible release of this crate by a |
| 1975 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1976 | /// deserialization APIs has been satisfied): |
| 1977 | /// |
| 1978 | /// * [`DFA::from_bytes`] |
| 1979 | /// * [`DFA::from_bytes_unchecked`] |
| 1980 | /// |
| 1981 | /// Note that unlike the various `to_byte_*` routines, this does not write |
| 1982 | /// any padding. Callers are responsible for handling alignment correctly. |
| 1983 | /// |
| 1984 | /// # Errors |
| 1985 | /// |
| 1986 | /// This returns an error if the given destination slice is not big enough |
| 1987 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 1988 | /// is written to `dst`. |
| 1989 | /// |
| 1990 | /// # Example |
| 1991 | /// |
| 1992 | /// This example shows how to serialize and deserialize a DFA without |
| 1993 | /// dynamic memory allocation. |
| 1994 | /// |
| 1995 | /// ``` |
| 1996 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 1997 | /// |
| 1998 | /// // Compile our original DFA. |
| 1999 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 2000 | /// |
| 2001 | /// // Create a 4KB buffer on the stack to store our serialized DFA. We |
| 2002 | /// // need to use a special type to force the alignment of our [u8; N] |
| 2003 | /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing |
| 2004 | /// // the DFA may fail because of an alignment mismatch. |
| 2005 | /// #[repr(C)] |
| 2006 | /// struct Aligned<B: ?Sized> { |
| 2007 | /// _align: [u32; 0], |
| 2008 | /// bytes: B, |
| 2009 | /// } |
| 2010 | /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] }; |
| 2011 | /// // N.B. We use native endianness here to make the example work, but |
| 2012 | /// // using write_to_big_endian would work on a big endian target. |
| 2013 | /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?; |
| 2014 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0; |
| 2015 | /// |
| 2016 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 2017 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 2018 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2019 | /// ``` |
| 2020 | pub fn write_to_big_endian( |
| 2021 | &self, |
| 2022 | dst: &mut [u8], |
| 2023 | ) -> Result<usize, SerializeError> { |
| 2024 | self.as_ref().write_to::<wire::BE>(dst) |
| 2025 | } |
| 2026 | |
| 2027 | /// Serialize this DFA as raw bytes to the given slice, in native endian |
| 2028 | /// format. Upon success, the total number of bytes written to `dst` is |
| 2029 | /// returned. |
| 2030 | /// |
| 2031 | /// The written bytes are guaranteed to be deserialized correctly and |
| 2032 | /// without errors in a semver compatible release of this crate by a |
| 2033 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 2034 | /// deserialization APIs has been satisfied): |
| 2035 | /// |
| 2036 | /// * [`DFA::from_bytes`] |
| 2037 | /// * [`DFA::from_bytes_unchecked`] |
| 2038 | /// |
| 2039 | /// Generally speaking, native endian format should only be used when |
| 2040 | /// you know that the target you're compiling the DFA for matches the |
| 2041 | /// endianness of the target on which you're compiling DFA. For example, |
| 2042 | /// if serialization and deserialization happen in the same process or on |
| 2043 | /// the same machine. Otherwise, when serializing a DFA for use in a |
| 2044 | /// portable environment, you'll almost certainly want to serialize _both_ |
| 2045 | /// a little endian and a big endian version and then load the correct one |
| 2046 | /// based on the target's configuration. |
| 2047 | /// |
| 2048 | /// Note that unlike the various `to_byte_*` routines, this does not write |
| 2049 | /// any padding. Callers are responsible for handling alignment correctly. |
| 2050 | /// |
| 2051 | /// # Errors |
| 2052 | /// |
| 2053 | /// This returns an error if the given destination slice is not big enough |
| 2054 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 2055 | /// is written to `dst`. |
| 2056 | /// |
| 2057 | /// # Example |
| 2058 | /// |
| 2059 | /// This example shows how to serialize and deserialize a DFA without |
| 2060 | /// dynamic memory allocation. |
| 2061 | /// |
| 2062 | /// ``` |
| 2063 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 2064 | /// |
| 2065 | /// // Compile our original DFA. |
| 2066 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 2067 | /// |
| 2068 | /// // Create a 4KB buffer on the stack to store our serialized DFA. We |
| 2069 | /// // need to use a special type to force the alignment of our [u8; N] |
| 2070 | /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing |
| 2071 | /// // the DFA may fail because of an alignment mismatch. |
| 2072 | /// #[repr(C)] |
| 2073 | /// struct Aligned<B: ?Sized> { |
| 2074 | /// _align: [u32; 0], |
| 2075 | /// bytes: B, |
| 2076 | /// } |
| 2077 | /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] }; |
| 2078 | /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?; |
| 2079 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0; |
| 2080 | /// |
| 2081 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 2082 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 2083 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2084 | /// ``` |
| 2085 | pub fn write_to_native_endian( |
| 2086 | &self, |
| 2087 | dst: &mut [u8], |
| 2088 | ) -> Result<usize, SerializeError> { |
| 2089 | self.as_ref().write_to::<wire::NE>(dst) |
| 2090 | } |
| 2091 | |
| 2092 | /// Return the total number of bytes required to serialize this DFA. |
| 2093 | /// |
| 2094 | /// This is useful for determining the size of the buffer required to pass |
| 2095 | /// to one of the serialization routines: |
| 2096 | /// |
| 2097 | /// * [`DFA::write_to_little_endian`] |
| 2098 | /// * [`DFA::write_to_big_endian`] |
| 2099 | /// * [`DFA::write_to_native_endian`] |
| 2100 | /// |
| 2101 | /// Passing a buffer smaller than the size returned by this method will |
| 2102 | /// result in a serialization error. Serialization routines are guaranteed |
| 2103 | /// to succeed when the buffer is big enough. |
| 2104 | /// |
| 2105 | /// # Example |
| 2106 | /// |
| 2107 | /// This example shows how to dynamically allocate enough room to serialize |
| 2108 | /// a DFA. |
| 2109 | /// |
| 2110 | /// ``` |
| 2111 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 2112 | /// |
| 2113 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 2114 | /// |
| 2115 | /// let mut buf = vec![0; original_dfa.write_to_len()]; |
| 2116 | /// // This is guaranteed to succeed, because the only serialization error |
| 2117 | /// // that can occur is when the provided buffer is too small. But |
| 2118 | /// // write_to_len guarantees a correct size. |
| 2119 | /// let written = original_dfa.write_to_native_endian(&mut buf).unwrap(); |
| 2120 | /// // But this is not guaranteed to succeed! In particular, |
| 2121 | /// // deserialization requires proper alignment for &[u32], but our buffer |
| 2122 | /// // was allocated as a &[u8] whose required alignment is smaller than |
| 2123 | /// // &[u32]. However, it's likely to work in practice because of how most |
| 2124 | /// // allocators work. So if you write code like this, make sure to either |
| 2125 | /// // handle the error correctly and/or run it under Miri since Miri will |
| 2126 | /// // likely provoke the error by returning Vec<u8> buffers with alignment |
| 2127 | /// // less than &[u32]. |
| 2128 | /// let dfa: DFA<&[u32]> = match DFA::from_bytes(&buf[..written]) { |
| 2129 | /// // As mentioned above, it is legal for an error to be returned |
| 2130 | /// // here. It is quite difficult to get a Vec<u8> with a guaranteed |
| 2131 | /// // alignment equivalent to Vec<u32>. |
| 2132 | /// Err(_) => return Ok(()), |
| 2133 | /// Ok((dfa, _)) => dfa, |
| 2134 | /// }; |
| 2135 | /// |
| 2136 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 2137 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 2138 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2139 | /// ``` |
| 2140 | /// |
| 2141 | /// Note that this example isn't actually guaranteed to work! In |
| 2142 | /// particular, if `buf` is not aligned to a 4-byte boundary, then the |
| 2143 | /// `DFA::from_bytes` call will fail. If you need this to work, then you |
| 2144 | /// either need to deal with adding some initial padding yourself, or use |
| 2145 | /// one of the `to_bytes` methods, which will do it for you. |
| 2146 | pub fn write_to_len(&self) -> usize { |
| 2147 | wire::write_label_len(LABEL) |
| 2148 | + wire::write_endianness_check_len() |
| 2149 | + wire::write_version_len() |
| 2150 | + size_of::<u32>() // unused, intended for future flexibility |
| 2151 | + self.flags.write_to_len() |
| 2152 | + self.tt.write_to_len() |
| 2153 | + self.st.write_to_len() |
| 2154 | + self.ms.write_to_len() |
| 2155 | + self.special.write_to_len() |
| 2156 | + self.accels.write_to_len() |
| 2157 | + self.quitset.write_to_len() |
| 2158 | } |
| 2159 | } |
| 2160 | |
| 2161 | impl<'a> DFA<&'a [u32]> { |
| 2162 | /// Safely deserialize a DFA with a specific state identifier |
| 2163 | /// representation. Upon success, this returns both the deserialized DFA |
| 2164 | /// and the number of bytes read from the given slice. Namely, the contents |
| 2165 | /// of the slice beyond the DFA are not read. |
| 2166 | /// |
| 2167 | /// Deserializing a DFA using this routine will never allocate heap memory. |
| 2168 | /// For safety purposes, the DFA's transition table will be verified such |
| 2169 | /// that every transition points to a valid state. If this verification is |
| 2170 | /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which |
| 2171 | /// will always execute in constant time. |
| 2172 | /// |
| 2173 | /// The bytes given must be generated by one of the serialization APIs |
| 2174 | /// of a `DFA` using a semver compatible release of this crate. Those |
| 2175 | /// include: |
| 2176 | /// |
| 2177 | /// * [`DFA::to_bytes_little_endian`] |
| 2178 | /// * [`DFA::to_bytes_big_endian`] |
| 2179 | /// * [`DFA::to_bytes_native_endian`] |
| 2180 | /// * [`DFA::write_to_little_endian`] |
| 2181 | /// * [`DFA::write_to_big_endian`] |
| 2182 | /// * [`DFA::write_to_native_endian`] |
| 2183 | /// |
| 2184 | /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along |
| 2185 | /// with handling alignment correctly. The `write_to` methods do not |
| 2186 | /// allocate and write to an existing slice (which may be on the stack). |
| 2187 | /// Since deserialization always uses the native endianness of the target |
| 2188 | /// platform, the serialization API you use should match the endianness of |
| 2189 | /// the target platform. (It's often a good idea to generate serialized |
| 2190 | /// DFAs for both forms of endianness and then load the correct one based |
| 2191 | /// on endianness.) |
| 2192 | /// |
| 2193 | /// # Errors |
| 2194 | /// |
| 2195 | /// Generally speaking, it's easier to state the conditions in which an |
| 2196 | /// error is _not_ returned. All of the following must be true: |
| 2197 | /// |
| 2198 | /// * The bytes given must be produced by one of the serialization APIs |
| 2199 | /// on this DFA, as mentioned above. |
| 2200 | /// * The endianness of the target platform matches the endianness used to |
| 2201 | /// serialized the provided DFA. |
| 2202 | /// * The slice given must have the same alignment as `u32`. |
| 2203 | /// |
| 2204 | /// If any of the above are not true, then an error will be returned. |
| 2205 | /// |
| 2206 | /// # Panics |
| 2207 | /// |
| 2208 | /// This routine will never panic for any input. |
| 2209 | /// |
| 2210 | /// # Example |
| 2211 | /// |
| 2212 | /// This example shows how to serialize a DFA to raw bytes, deserialize it |
| 2213 | /// and then use it for searching. |
| 2214 | /// |
| 2215 | /// ``` |
| 2216 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 2217 | /// |
| 2218 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 2219 | /// let (bytes, _) = initial.to_bytes_native_endian(); |
| 2220 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0; |
| 2221 | /// |
| 2222 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 2223 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 2224 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2225 | /// ``` |
| 2226 | /// |
| 2227 | /// # Example: dealing with alignment and padding |
| 2228 | /// |
| 2229 | /// In the above example, we used the `to_bytes_native_endian` method to |
| 2230 | /// serialize a DFA, but we ignored part of its return value corresponding |
| 2231 | /// to padding added to the beginning of the serialized DFA. This is OK |
| 2232 | /// because deserialization will skip this initial padding. What matters |
| 2233 | /// is that the address immediately following the padding has an alignment |
| 2234 | /// that matches `u32`. That is, the following is an equivalent but |
| 2235 | /// alternative way to write the above example: |
| 2236 | /// |
| 2237 | /// ``` |
| 2238 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 2239 | /// |
| 2240 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 2241 | /// // Serialization returns the number of leading padding bytes added to |
| 2242 | /// // the returned Vec<u8>. |
| 2243 | /// let (bytes, pad) = initial.to_bytes_native_endian(); |
| 2244 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0; |
| 2245 | /// |
| 2246 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 2247 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 2248 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2249 | /// ``` |
| 2250 | /// |
| 2251 | /// This padding is necessary because Rust's standard library does |
| 2252 | /// not expose any safe and robust way of creating a `Vec<u8>` with a |
| 2253 | /// guaranteed alignment other than 1. Now, in practice, the underlying |
| 2254 | /// allocator is likely to provide a `Vec<u8>` that meets our alignment |
| 2255 | /// requirements, which means `pad` is zero in practice most of the time. |
| 2256 | /// |
| 2257 | /// The purpose of exposing the padding like this is flexibility for the |
| 2258 | /// caller. For example, if one wants to embed a serialized DFA into a |
| 2259 | /// compiled program, then it's important to guarantee that it starts at a |
| 2260 | /// `u32`-aligned address. The simplest way to do this is to discard the |
| 2261 | /// padding bytes and set it up so that the serialized DFA itself begins at |
| 2262 | /// a properly aligned address. We can show this in two parts. The first |
| 2263 | /// part is serializing the DFA to a file: |
| 2264 | /// |
| 2265 | /// ```no_run |
| 2266 | /// use regex_automata::dfa::dense::DFA; |
| 2267 | /// |
| 2268 | /// let dfa = DFA::new("foo[0-9]+" )?; |
| 2269 | /// |
| 2270 | /// let (bytes, pad) = dfa.to_bytes_big_endian(); |
| 2271 | /// // Write the contents of the DFA *without* the initial padding. |
| 2272 | /// std::fs::write("foo.bigendian.dfa" , &bytes[pad..])?; |
| 2273 | /// |
| 2274 | /// // Do it again, but this time for little endian. |
| 2275 | /// let (bytes, pad) = dfa.to_bytes_little_endian(); |
| 2276 | /// std::fs::write("foo.littleendian.dfa" , &bytes[pad..])?; |
| 2277 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2278 | /// ``` |
| 2279 | /// |
| 2280 | /// And now the second part is embedding the DFA into the compiled program |
| 2281 | /// and deserializing it at runtime on first use. We use conditional |
| 2282 | /// compilation to choose the correct endianness. |
| 2283 | /// |
| 2284 | /// ```no_run |
| 2285 | /// use regex_automata::{ |
| 2286 | /// dfa::{Automaton, dense::DFA}, |
| 2287 | /// util::{lazy::Lazy, wire::AlignAs}, |
| 2288 | /// HalfMatch, Input, |
| 2289 | /// }; |
| 2290 | /// |
| 2291 | /// // This crate provides its own "lazy" type, kind of like |
| 2292 | /// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc |
| 2293 | /// // no-std environments and let's us write this using completely |
| 2294 | /// // safe code. |
| 2295 | /// static RE: Lazy<DFA<&'static [u32]>> = Lazy::new(|| { |
| 2296 | /// # const _: &str = stringify! { |
| 2297 | /// // This assignment is made possible (implicitly) via the |
| 2298 | /// // CoerceUnsized trait. This is what guarantees that our |
| 2299 | /// // bytes are stored in memory on a 4 byte boundary. You |
| 2300 | /// // *must* do this or something equivalent for correct |
| 2301 | /// // deserialization. |
| 2302 | /// static ALIGNED: &AlignAs<[u8], u32> = &AlignAs { |
| 2303 | /// _align: [], |
| 2304 | /// #[cfg(target_endian = "big" )] |
| 2305 | /// bytes: *include_bytes!("foo.bigendian.dfa" ), |
| 2306 | /// #[cfg(target_endian = "little" )] |
| 2307 | /// bytes: *include_bytes!("foo.littleendian.dfa" ), |
| 2308 | /// }; |
| 2309 | /// # }; |
| 2310 | /// # static ALIGNED: &AlignAs<[u8], u32> = &AlignAs { |
| 2311 | /// # _align: [], |
| 2312 | /// # bytes: [], |
| 2313 | /// # }; |
| 2314 | /// |
| 2315 | /// let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes) |
| 2316 | /// .expect("serialized DFA should be valid" ); |
| 2317 | /// dfa |
| 2318 | /// }); |
| 2319 | /// |
| 2320 | /// let expected = Ok(Some(HalfMatch::must(0, 8))); |
| 2321 | /// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345" ))); |
| 2322 | /// ``` |
| 2323 | /// |
| 2324 | /// An alternative to [`util::lazy::Lazy`](crate::util::lazy::Lazy) |
| 2325 | /// is [`lazy_static`](https://crates.io/crates/lazy_static) or |
| 2326 | /// [`once_cell`](https://crates.io/crates/once_cell), which provide |
| 2327 | /// stronger guarantees (like the initialization function only being |
| 2328 | /// executed once). And `once_cell` in particular provides a more |
| 2329 | /// expressive API. But a `Lazy` value from this crate is likely just fine |
| 2330 | /// in most circumstances. |
| 2331 | /// |
| 2332 | /// Note that regardless of which initialization method you use, you |
| 2333 | /// will still need to use the [`AlignAs`](crate::util::wire::AlignAs) |
| 2334 | /// trick above to force correct alignment, but this is safe to do and |
| 2335 | /// `from_bytes` will return an error if you get it wrong. |
| 2336 | pub fn from_bytes( |
| 2337 | slice: &'a [u8], |
| 2338 | ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> { |
| 2339 | // SAFETY: This is safe because we validate the transition table, start |
| 2340 | // table, match states and accelerators below. If any validation fails, |
| 2341 | // then we return an error. |
| 2342 | let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? }; |
| 2343 | dfa.tt.validate(&dfa)?; |
| 2344 | dfa.st.validate(&dfa)?; |
| 2345 | dfa.ms.validate(&dfa)?; |
| 2346 | dfa.accels.validate()?; |
| 2347 | // N.B. dfa.special doesn't have a way to do unchecked deserialization, |
| 2348 | // so it has already been validated. |
| 2349 | for state in dfa.states() { |
| 2350 | // If the state is an accel state, then it must have a non-empty |
| 2351 | // accelerator. |
| 2352 | if dfa.is_accel_state(state.id()) { |
| 2353 | let index = dfa.accelerator_index(state.id()); |
| 2354 | if index >= dfa.accels.len() { |
| 2355 | return Err(DeserializeError::generic( |
| 2356 | "found DFA state with invalid accelerator index" , |
| 2357 | )); |
| 2358 | } |
| 2359 | let needles = dfa.accels.needles(index); |
| 2360 | if !(1 <= needles.len() && needles.len() <= 3) { |
| 2361 | return Err(DeserializeError::generic( |
| 2362 | "accelerator needles has invalid length" , |
| 2363 | )); |
| 2364 | } |
| 2365 | } |
| 2366 | } |
| 2367 | Ok((dfa, nread)) |
| 2368 | } |
| 2369 | |
| 2370 | /// Deserialize a DFA with a specific state identifier representation in |
| 2371 | /// constant time by omitting the verification of the validity of the |
| 2372 | /// transition table and other data inside the DFA. |
| 2373 | /// |
| 2374 | /// This is just like [`DFA::from_bytes`], except it can potentially return |
| 2375 | /// a DFA that exhibits undefined behavior if its transition table contains |
| 2376 | /// invalid state identifiers. |
| 2377 | /// |
| 2378 | /// This routine is useful if you need to deserialize a DFA cheaply |
| 2379 | /// and cannot afford the transition table validation performed by |
| 2380 | /// `from_bytes`. |
| 2381 | /// |
| 2382 | /// # Example |
| 2383 | /// |
| 2384 | /// ``` |
| 2385 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input}; |
| 2386 | /// |
| 2387 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 2388 | /// let (bytes, _) = initial.to_bytes_native_endian(); |
| 2389 | /// // SAFETY: This is guaranteed to be safe since the bytes given come |
| 2390 | /// // directly from a compatible serialization routine. |
| 2391 | /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 }; |
| 2392 | /// |
| 2393 | /// let expected = Some(HalfMatch::must(0, 8)); |
| 2394 | /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345" ))?); |
| 2395 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2396 | /// ``` |
| 2397 | pub unsafe fn from_bytes_unchecked( |
| 2398 | slice: &'a [u8], |
| 2399 | ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> { |
| 2400 | let mut nr = 0; |
| 2401 | |
| 2402 | nr += wire::skip_initial_padding(slice); |
| 2403 | wire::check_alignment::<StateID>(&slice[nr..])?; |
| 2404 | nr += wire::read_label(&slice[nr..], LABEL)?; |
| 2405 | nr += wire::read_endianness_check(&slice[nr..])?; |
| 2406 | nr += wire::read_version(&slice[nr..], VERSION)?; |
| 2407 | |
| 2408 | let _unused = wire::try_read_u32(&slice[nr..], "unused space" )?; |
| 2409 | nr += size_of::<u32>(); |
| 2410 | |
| 2411 | let (flags, nread) = Flags::from_bytes(&slice[nr..])?; |
| 2412 | nr += nread; |
| 2413 | |
| 2414 | let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?; |
| 2415 | nr += nread; |
| 2416 | |
| 2417 | let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?; |
| 2418 | nr += nread; |
| 2419 | |
| 2420 | let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?; |
| 2421 | nr += nread; |
| 2422 | |
| 2423 | let (special, nread) = Special::from_bytes(&slice[nr..])?; |
| 2424 | nr += nread; |
| 2425 | special.validate_state_len(tt.len(), tt.stride2)?; |
| 2426 | |
| 2427 | let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?; |
| 2428 | nr += nread; |
| 2429 | |
| 2430 | let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?; |
| 2431 | nr += nread; |
| 2432 | |
| 2433 | // Prefilters don't support serialization, so they're always absent. |
| 2434 | let pre = None; |
| 2435 | Ok((DFA { tt, st, ms, special, accels, pre, quitset, flags }, nr)) |
| 2436 | } |
| 2437 | |
| 2438 | /// The implementation of the public `write_to` serialization methods, |
| 2439 | /// which is generic over endianness. |
| 2440 | /// |
| 2441 | /// This is defined only for &[u32] to reduce binary size/compilation time. |
| 2442 | fn write_to<E: Endian>( |
| 2443 | &self, |
| 2444 | mut dst: &mut [u8], |
| 2445 | ) -> Result<usize, SerializeError> { |
| 2446 | let nwrite = self.write_to_len(); |
| 2447 | if dst.len() < nwrite { |
| 2448 | return Err(SerializeError::buffer_too_small("dense DFA" )); |
| 2449 | } |
| 2450 | dst = &mut dst[..nwrite]; |
| 2451 | |
| 2452 | let mut nw = 0; |
| 2453 | nw += wire::write_label(LABEL, &mut dst[nw..])?; |
| 2454 | nw += wire::write_endianness_check::<E>(&mut dst[nw..])?; |
| 2455 | nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?; |
| 2456 | nw += { |
| 2457 | // Currently unused, intended for future flexibility |
| 2458 | E::write_u32(0, &mut dst[nw..]); |
| 2459 | size_of::<u32>() |
| 2460 | }; |
| 2461 | nw += self.flags.write_to::<E>(&mut dst[nw..])?; |
| 2462 | nw += self.tt.write_to::<E>(&mut dst[nw..])?; |
| 2463 | nw += self.st.write_to::<E>(&mut dst[nw..])?; |
| 2464 | nw += self.ms.write_to::<E>(&mut dst[nw..])?; |
| 2465 | nw += self.special.write_to::<E>(&mut dst[nw..])?; |
| 2466 | nw += self.accels.write_to::<E>(&mut dst[nw..])?; |
| 2467 | nw += self.quitset.write_to::<E>(&mut dst[nw..])?; |
| 2468 | Ok(nw) |
| 2469 | } |
| 2470 | } |
| 2471 | |
| 2472 | // The following methods implement mutable routines on the internal |
| 2473 | // representation of a DFA. As such, we must fix the first type parameter to a |
| 2474 | // `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We |
| 2475 | // can get away with this because these methods are internal to the crate and |
| 2476 | // are exclusively used during construction of the DFA. |
| 2477 | #[cfg (feature = "dfa-build" )] |
| 2478 | impl OwnedDFA { |
| 2479 | /// Add a start state of this DFA. |
| 2480 | pub(crate) fn set_start_state( |
| 2481 | &mut self, |
| 2482 | anchored: Anchored, |
| 2483 | start: Start, |
| 2484 | id: StateID, |
| 2485 | ) { |
| 2486 | assert!(self.tt.is_valid(id), "invalid start state" ); |
| 2487 | self.st.set_start(anchored, start, id); |
| 2488 | } |
| 2489 | |
| 2490 | /// Set the given transition to this DFA. Both the `from` and `to` states |
| 2491 | /// must already exist. |
| 2492 | pub(crate) fn set_transition( |
| 2493 | &mut self, |
| 2494 | from: StateID, |
| 2495 | byte: alphabet::Unit, |
| 2496 | to: StateID, |
| 2497 | ) { |
| 2498 | self.tt.set(from, byte, to); |
| 2499 | } |
| 2500 | |
| 2501 | /// An empty state (a state where all transitions lead to a dead state) |
| 2502 | /// and return its identifier. The identifier returned is guaranteed to |
| 2503 | /// not point to any other existing state. |
| 2504 | /// |
| 2505 | /// If adding a state would exceed `StateID::LIMIT`, then this returns an |
| 2506 | /// error. |
| 2507 | pub(crate) fn add_empty_state(&mut self) -> Result<StateID, BuildError> { |
| 2508 | self.tt.add_empty_state() |
| 2509 | } |
| 2510 | |
| 2511 | /// Swap the two states given in the transition table. |
| 2512 | /// |
| 2513 | /// This routine does not do anything to check the correctness of this |
| 2514 | /// swap. Callers must ensure that other states pointing to id1 and id2 are |
| 2515 | /// updated appropriately. |
| 2516 | pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) { |
| 2517 | self.tt.swap(id1, id2); |
| 2518 | } |
| 2519 | |
| 2520 | /// Remap all of the state identifiers in this DFA according to the map |
| 2521 | /// function given. This includes all transitions and all starting state |
| 2522 | /// identifiers. |
| 2523 | pub(crate) fn remap(&mut self, map: impl Fn(StateID) -> StateID) { |
| 2524 | // We could loop over each state ID and call 'remap_state' here, but |
| 2525 | // this is more direct: just map every transition directly. This |
| 2526 | // technically might do a little extra work since the alphabet length |
| 2527 | // is likely less than the stride, but if that is indeed an issue we |
| 2528 | // should benchmark it and fix it. |
| 2529 | for sid in self.tt.table_mut().iter_mut() { |
| 2530 | *sid = map(*sid); |
| 2531 | } |
| 2532 | for sid in self.st.table_mut().iter_mut() { |
| 2533 | *sid = map(*sid); |
| 2534 | } |
| 2535 | } |
| 2536 | |
| 2537 | /// Remap the transitions for the state given according to the function |
| 2538 | /// given. This applies the given map function to every transition in the |
| 2539 | /// given state and changes the transition in place to the result of the |
| 2540 | /// map function for that transition. |
| 2541 | pub(crate) fn remap_state( |
| 2542 | &mut self, |
| 2543 | id: StateID, |
| 2544 | map: impl Fn(StateID) -> StateID, |
| 2545 | ) { |
| 2546 | self.tt.remap(id, map); |
| 2547 | } |
| 2548 | |
| 2549 | /// Truncate the states in this DFA to the given length. |
| 2550 | /// |
| 2551 | /// This routine does not do anything to check the correctness of this |
| 2552 | /// truncation. Callers must ensure that other states pointing to truncated |
| 2553 | /// states are updated appropriately. |
| 2554 | pub(crate) fn truncate_states(&mut self, len: usize) { |
| 2555 | self.tt.truncate(len); |
| 2556 | } |
| 2557 | |
| 2558 | /// Minimize this DFA in place using Hopcroft's algorithm. |
| 2559 | pub(crate) fn minimize(&mut self) { |
| 2560 | Minimizer::new(self).run(); |
| 2561 | } |
| 2562 | |
| 2563 | /// Updates the match state pattern ID map to use the one provided. |
| 2564 | /// |
| 2565 | /// This is useful when it's convenient to manipulate matching states |
| 2566 | /// (and their corresponding pattern IDs) as a map. In particular, the |
| 2567 | /// representation used by a DFA for this map is not amenable to mutation, |
| 2568 | /// so if things need to be changed (like when shuffling states), it's |
| 2569 | /// often easier to work with the map form. |
| 2570 | pub(crate) fn set_pattern_map( |
| 2571 | &mut self, |
| 2572 | map: &BTreeMap<StateID, Vec<PatternID>>, |
| 2573 | ) -> Result<(), BuildError> { |
| 2574 | self.ms = self.ms.new_with_map(map)?; |
| 2575 | Ok(()) |
| 2576 | } |
| 2577 | |
| 2578 | /// Find states that have a small number of non-loop transitions and mark |
| 2579 | /// them as candidates for acceleration during search. |
| 2580 | pub(crate) fn accelerate(&mut self) { |
| 2581 | // dead and quit states can never be accelerated. |
| 2582 | if self.state_len() <= 2 { |
| 2583 | return; |
| 2584 | } |
| 2585 | |
| 2586 | // Go through every state and record their accelerator, if possible. |
| 2587 | let mut accels = BTreeMap::new(); |
| 2588 | // Count the number of accelerated match, start and non-match/start |
| 2589 | // states. |
| 2590 | let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0); |
| 2591 | for state in self.states() { |
| 2592 | if let Some(accel) = state.accelerate(self.byte_classes()) { |
| 2593 | debug!( |
| 2594 | "accelerating full DFA state {}: {:?}" , |
| 2595 | state.id().as_usize(), |
| 2596 | accel, |
| 2597 | ); |
| 2598 | accels.insert(state.id(), accel); |
| 2599 | if self.is_match_state(state.id()) { |
| 2600 | cmatch += 1; |
| 2601 | } else if self.is_start_state(state.id()) { |
| 2602 | cstart += 1; |
| 2603 | } else { |
| 2604 | assert!(!self.is_dead_state(state.id())); |
| 2605 | assert!(!self.is_quit_state(state.id())); |
| 2606 | cnormal += 1; |
| 2607 | } |
| 2608 | } |
| 2609 | } |
| 2610 | // If no states were able to be accelerated, then we're done. |
| 2611 | if accels.is_empty() { |
| 2612 | return; |
| 2613 | } |
| 2614 | let original_accels_len = accels.len(); |
| 2615 | |
| 2616 | // A remapper keeps track of state ID changes. Once we're done |
| 2617 | // shuffling, the remapper is used to rewrite all transitions in the |
| 2618 | // DFA based on the new positions of states. |
| 2619 | let mut remapper = Remapper::new(self); |
| 2620 | |
| 2621 | // As we swap states, if they are match states, we need to swap their |
| 2622 | // pattern ID lists too (for multi-regexes). We do this by converting |
| 2623 | // the lists to an easily swappable map, and then convert back to |
| 2624 | // MatchStates once we're done. |
| 2625 | let mut new_matches = self.ms.to_map(self); |
| 2626 | |
| 2627 | // There is at least one state that gets accelerated, so these are |
| 2628 | // guaranteed to get set to sensible values below. |
| 2629 | self.special.min_accel = StateID::MAX; |
| 2630 | self.special.max_accel = StateID::ZERO; |
| 2631 | let update_special_accel = |
| 2632 | |special: &mut Special, accel_id: StateID| { |
| 2633 | special.min_accel = cmp::min(special.min_accel, accel_id); |
| 2634 | special.max_accel = cmp::max(special.max_accel, accel_id); |
| 2635 | }; |
| 2636 | |
| 2637 | // Start by shuffling match states. Any match states that are |
| 2638 | // accelerated get moved to the end of the match state range. |
| 2639 | if cmatch > 0 && self.special.matches() { |
| 2640 | // N.B. special.{min,max}_match do not need updating, since the |
| 2641 | // range/number of match states does not change. Only the ordering |
| 2642 | // of match states may change. |
| 2643 | let mut next_id = self.special.max_match; |
| 2644 | let mut cur_id = next_id; |
| 2645 | while cur_id >= self.special.min_match { |
| 2646 | if let Some(accel) = accels.remove(&cur_id) { |
| 2647 | accels.insert(next_id, accel); |
| 2648 | update_special_accel(&mut self.special, next_id); |
| 2649 | |
| 2650 | // No need to do any actual swapping for equivalent IDs. |
| 2651 | if cur_id != next_id { |
| 2652 | remapper.swap(self, cur_id, next_id); |
| 2653 | |
| 2654 | // Swap pattern IDs for match states. |
| 2655 | let cur_pids = new_matches.remove(&cur_id).unwrap(); |
| 2656 | let next_pids = new_matches.remove(&next_id).unwrap(); |
| 2657 | new_matches.insert(cur_id, next_pids); |
| 2658 | new_matches.insert(next_id, cur_pids); |
| 2659 | } |
| 2660 | next_id = self.tt.prev_state_id(next_id); |
| 2661 | } |
| 2662 | cur_id = self.tt.prev_state_id(cur_id); |
| 2663 | } |
| 2664 | } |
| 2665 | |
| 2666 | // This is where it gets tricky. Without acceleration, start states |
| 2667 | // normally come right after match states. But we want accelerated |
| 2668 | // states to be a single contiguous range (to make it very fast |
| 2669 | // to determine whether a state *is* accelerated), while also keeping |
| 2670 | // match and starting states as contiguous ranges for the same reason. |
| 2671 | // So what we do here is shuffle states such that it looks like this: |
| 2672 | // |
| 2673 | // DQMMMMAAAAASSSSSSNNNNNNN |
| 2674 | // | | |
| 2675 | // |---------| |
| 2676 | // accelerated states |
| 2677 | // |
| 2678 | // Where: |
| 2679 | // D - dead state |
| 2680 | // Q - quit state |
| 2681 | // M - match state (may be accelerated) |
| 2682 | // A - normal state that is accelerated |
| 2683 | // S - start state (may be accelerated) |
| 2684 | // N - normal state that is NOT accelerated |
| 2685 | // |
| 2686 | // We implement this by shuffling states, which is done by a sequence |
| 2687 | // of pairwise swaps. We start by looking at all normal states to be |
| 2688 | // accelerated. When we find one, we swap it with the earliest starting |
| 2689 | // state, and then swap that with the earliest normal state. This |
| 2690 | // preserves the contiguous property. |
| 2691 | // |
| 2692 | // Once we're done looking for accelerated normal states, now we look |
| 2693 | // for accelerated starting states by moving them to the beginning |
| 2694 | // of the starting state range (just like we moved accelerated match |
| 2695 | // states to the end of the matching state range). |
| 2696 | // |
| 2697 | // For a more detailed/different perspective on this, see the docs |
| 2698 | // in dfa/special.rs. |
| 2699 | if cnormal > 0 { |
| 2700 | // our next available starting and normal states for swapping. |
| 2701 | let mut next_start_id = self.special.min_start; |
| 2702 | let mut cur_id = self.to_state_id(self.state_len() - 1); |
| 2703 | // This is guaranteed to exist since cnormal > 0. |
| 2704 | let mut next_norm_id = |
| 2705 | self.tt.next_state_id(self.special.max_start); |
| 2706 | while cur_id >= next_norm_id { |
| 2707 | if let Some(accel) = accels.remove(&cur_id) { |
| 2708 | remapper.swap(self, next_start_id, cur_id); |
| 2709 | remapper.swap(self, next_norm_id, cur_id); |
| 2710 | // Keep our accelerator map updated with new IDs if the |
| 2711 | // states we swapped were also accelerated. |
| 2712 | if let Some(accel2) = accels.remove(&next_norm_id) { |
| 2713 | accels.insert(cur_id, accel2); |
| 2714 | } |
| 2715 | if let Some(accel2) = accels.remove(&next_start_id) { |
| 2716 | accels.insert(next_norm_id, accel2); |
| 2717 | } |
| 2718 | accels.insert(next_start_id, accel); |
| 2719 | update_special_accel(&mut self.special, next_start_id); |
| 2720 | // Our start range shifts one to the right now. |
| 2721 | self.special.min_start = |
| 2722 | self.tt.next_state_id(self.special.min_start); |
| 2723 | self.special.max_start = |
| 2724 | self.tt.next_state_id(self.special.max_start); |
| 2725 | next_start_id = self.tt.next_state_id(next_start_id); |
| 2726 | next_norm_id = self.tt.next_state_id(next_norm_id); |
| 2727 | } |
| 2728 | // This is pretty tricky, but if our 'next_norm_id' state also |
| 2729 | // happened to be accelerated, then the result is that it is |
| 2730 | // now in the position of cur_id, so we need to consider it |
| 2731 | // again. This loop is still guaranteed to terminate though, |
| 2732 | // because when accels contains cur_id, we're guaranteed to |
| 2733 | // increment next_norm_id even if cur_id remains unchanged. |
| 2734 | if !accels.contains_key(&cur_id) { |
| 2735 | cur_id = self.tt.prev_state_id(cur_id); |
| 2736 | } |
| 2737 | } |
| 2738 | } |
| 2739 | // Just like we did for match states, but we want to move accelerated |
| 2740 | // start states to the beginning of the range instead of the end. |
| 2741 | if cstart > 0 { |
| 2742 | // N.B. special.{min,max}_start do not need updating, since the |
| 2743 | // range/number of start states does not change at this point. Only |
| 2744 | // the ordering of start states may change. |
| 2745 | let mut next_id = self.special.min_start; |
| 2746 | let mut cur_id = next_id; |
| 2747 | while cur_id <= self.special.max_start { |
| 2748 | if let Some(accel) = accels.remove(&cur_id) { |
| 2749 | remapper.swap(self, cur_id, next_id); |
| 2750 | accels.insert(next_id, accel); |
| 2751 | update_special_accel(&mut self.special, next_id); |
| 2752 | next_id = self.tt.next_state_id(next_id); |
| 2753 | } |
| 2754 | cur_id = self.tt.next_state_id(cur_id); |
| 2755 | } |
| 2756 | } |
| 2757 | |
| 2758 | // Remap all transitions in our DFA and assert some things. |
| 2759 | remapper.remap(self); |
| 2760 | // This unwrap is OK because acceleration never changes the number of |
| 2761 | // match states or patterns in those match states. Since acceleration |
| 2762 | // runs after the pattern map has been set at least once, we know that |
| 2763 | // our match states cannot error. |
| 2764 | self.set_pattern_map(&new_matches).unwrap(); |
| 2765 | self.special.set_max(); |
| 2766 | self.special.validate().expect("special state ranges should validate" ); |
| 2767 | self.special |
| 2768 | .validate_state_len(self.state_len(), self.stride2()) |
| 2769 | .expect( |
| 2770 | "special state ranges should be consistent with state length" , |
| 2771 | ); |
| 2772 | assert_eq!( |
| 2773 | self.special.accel_len(self.stride()), |
| 2774 | // We record the number of accelerated states initially detected |
| 2775 | // since the accels map is itself mutated in the process above. |
| 2776 | // If mutated incorrectly, its size may change, and thus can't be |
| 2777 | // trusted as a source of truth of how many accelerated states we |
| 2778 | // expected there to be. |
| 2779 | original_accels_len, |
| 2780 | "mismatch with expected number of accelerated states" , |
| 2781 | ); |
| 2782 | |
| 2783 | // And finally record our accelerators. We kept our accels map updated |
| 2784 | // as we shuffled states above, so the accelerators should now |
| 2785 | // correspond to a contiguous range in the state ID space. (Which we |
| 2786 | // assert.) |
| 2787 | let mut prev: Option<StateID> = None; |
| 2788 | for (id, accel) in accels { |
| 2789 | assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id)); |
| 2790 | prev = Some(id); |
| 2791 | self.accels.add(accel); |
| 2792 | } |
| 2793 | } |
| 2794 | |
| 2795 | /// Shuffle the states in this DFA so that starting states, match |
| 2796 | /// states and accelerated states are all contiguous. |
| 2797 | /// |
| 2798 | /// See dfa/special.rs for more details. |
| 2799 | pub(crate) fn shuffle( |
| 2800 | &mut self, |
| 2801 | mut matches: BTreeMap<StateID, Vec<PatternID>>, |
| 2802 | ) -> Result<(), BuildError> { |
| 2803 | // The determinizer always adds a quit state and it is always second. |
| 2804 | self.special.quit_id = self.to_state_id(1); |
| 2805 | // If all we have are the dead and quit states, then we're done and |
| 2806 | // the DFA will never produce a match. |
| 2807 | if self.state_len() <= 2 { |
| 2808 | self.special.set_max(); |
| 2809 | return Ok(()); |
| 2810 | } |
| 2811 | |
| 2812 | // Collect all our non-DEAD start states into a convenient set and |
| 2813 | // confirm there is no overlap with match states. In the classicl DFA |
| 2814 | // construction, start states can be match states. But because of |
| 2815 | // look-around, we delay all matches by a byte, which prevents start |
| 2816 | // states from being match states. |
| 2817 | let mut is_start: BTreeSet<StateID> = BTreeSet::new(); |
| 2818 | for (start_id, _, _) in self.starts() { |
| 2819 | // If a starting configuration points to a DEAD state, then we |
| 2820 | // don't want to shuffle it. The DEAD state is always the first |
| 2821 | // state with ID=0. So we can just leave it be. |
| 2822 | if start_id == DEAD { |
| 2823 | continue; |
| 2824 | } |
| 2825 | assert!( |
| 2826 | !matches.contains_key(&start_id), |
| 2827 | "{:?} is both a start and a match state, which is not allowed" , |
| 2828 | start_id, |
| 2829 | ); |
| 2830 | is_start.insert(start_id); |
| 2831 | } |
| 2832 | |
| 2833 | // We implement shuffling by a sequence of pairwise swaps of states. |
| 2834 | // Since we have a number of things referencing states via their |
| 2835 | // IDs and swapping them changes their IDs, we need to record every |
| 2836 | // swap we make so that we can remap IDs. The remapper handles this |
| 2837 | // book-keeping for us. |
| 2838 | let mut remapper = Remapper::new(self); |
| 2839 | |
| 2840 | // Shuffle matching states. |
| 2841 | if matches.is_empty() { |
| 2842 | self.special.min_match = DEAD; |
| 2843 | self.special.max_match = DEAD; |
| 2844 | } else { |
| 2845 | // The determinizer guarantees that the first two states are the |
| 2846 | // dead and quit states, respectively. We want our match states to |
| 2847 | // come right after quit. |
| 2848 | let mut next_id = self.to_state_id(2); |
| 2849 | let mut new_matches = BTreeMap::new(); |
| 2850 | self.special.min_match = next_id; |
| 2851 | for (id, pids) in matches { |
| 2852 | remapper.swap(self, next_id, id); |
| 2853 | new_matches.insert(next_id, pids); |
| 2854 | // If we swapped a start state, then update our set. |
| 2855 | if is_start.contains(&next_id) { |
| 2856 | is_start.remove(&next_id); |
| 2857 | is_start.insert(id); |
| 2858 | } |
| 2859 | next_id = self.tt.next_state_id(next_id); |
| 2860 | } |
| 2861 | matches = new_matches; |
| 2862 | self.special.max_match = cmp::max( |
| 2863 | self.special.min_match, |
| 2864 | self.tt.prev_state_id(next_id), |
| 2865 | ); |
| 2866 | } |
| 2867 | |
| 2868 | // Shuffle starting states. |
| 2869 | { |
| 2870 | let mut next_id = self.to_state_id(2); |
| 2871 | if self.special.matches() { |
| 2872 | next_id = self.tt.next_state_id(self.special.max_match); |
| 2873 | } |
| 2874 | self.special.min_start = next_id; |
| 2875 | for id in is_start { |
| 2876 | remapper.swap(self, next_id, id); |
| 2877 | next_id = self.tt.next_state_id(next_id); |
| 2878 | } |
| 2879 | self.special.max_start = cmp::max( |
| 2880 | self.special.min_start, |
| 2881 | self.tt.prev_state_id(next_id), |
| 2882 | ); |
| 2883 | } |
| 2884 | |
| 2885 | // Finally remap all transitions in our DFA. |
| 2886 | remapper.remap(self); |
| 2887 | self.set_pattern_map(&matches)?; |
| 2888 | self.special.set_max(); |
| 2889 | self.special.validate().expect("special state ranges should validate" ); |
| 2890 | self.special |
| 2891 | .validate_state_len(self.state_len(), self.stride2()) |
| 2892 | .expect( |
| 2893 | "special state ranges should be consistent with state length" , |
| 2894 | ); |
| 2895 | Ok(()) |
| 2896 | } |
| 2897 | |
| 2898 | /// Checks whether there are universal start states (both anchored and |
| 2899 | /// unanchored), and if so, sets the relevant fields to the start state |
| 2900 | /// IDs. |
| 2901 | /// |
| 2902 | /// Universal start states occur precisely when the all patterns in the |
| 2903 | /// DFA have no look-around assertions in their prefix. |
| 2904 | fn set_universal_starts(&mut self) { |
| 2905 | assert_eq!(6, Start::len(), "expected 6 start configurations" ); |
| 2906 | |
| 2907 | let start_id = |dfa: &mut OwnedDFA, |
| 2908 | anchored: Anchored, |
| 2909 | start: Start| { |
| 2910 | // This OK because we only call 'start' under conditions |
| 2911 | // in which we know it will succeed. |
| 2912 | dfa.st.start(anchored, start).expect("valid Input configuration" ) |
| 2913 | }; |
| 2914 | if self.start_kind().has_unanchored() { |
| 2915 | let anchor = Anchored::No; |
| 2916 | let sid = start_id(self, anchor, Start::NonWordByte); |
| 2917 | if sid == start_id(self, anchor, Start::WordByte) |
| 2918 | && sid == start_id(self, anchor, Start::Text) |
| 2919 | && sid == start_id(self, anchor, Start::LineLF) |
| 2920 | && sid == start_id(self, anchor, Start::LineCR) |
| 2921 | && sid == start_id(self, anchor, Start::CustomLineTerminator) |
| 2922 | { |
| 2923 | self.st.universal_start_unanchored = Some(sid); |
| 2924 | } |
| 2925 | } |
| 2926 | if self.start_kind().has_anchored() { |
| 2927 | let anchor = Anchored::Yes; |
| 2928 | let sid = start_id(self, anchor, Start::NonWordByte); |
| 2929 | if sid == start_id(self, anchor, Start::WordByte) |
| 2930 | && sid == start_id(self, anchor, Start::Text) |
| 2931 | && sid == start_id(self, anchor, Start::LineLF) |
| 2932 | && sid == start_id(self, anchor, Start::LineCR) |
| 2933 | && sid == start_id(self, anchor, Start::CustomLineTerminator) |
| 2934 | { |
| 2935 | self.st.universal_start_anchored = Some(sid); |
| 2936 | } |
| 2937 | } |
| 2938 | } |
| 2939 | } |
| 2940 | |
| 2941 | // A variety of generic internal methods for accessing DFA internals. |
| 2942 | impl<T: AsRef<[u32]>> DFA<T> { |
| 2943 | /// Return the info about special states. |
| 2944 | pub(crate) fn special(&self) -> &Special { |
| 2945 | &self.special |
| 2946 | } |
| 2947 | |
| 2948 | /// Return the info about special states as a mutable borrow. |
| 2949 | #[cfg (feature = "dfa-build" )] |
| 2950 | pub(crate) fn special_mut(&mut self) -> &mut Special { |
| 2951 | &mut self.special |
| 2952 | } |
| 2953 | |
| 2954 | /// Returns the quit set (may be empty) used by this DFA. |
| 2955 | pub(crate) fn quitset(&self) -> &ByteSet { |
| 2956 | &self.quitset |
| 2957 | } |
| 2958 | |
| 2959 | /// Returns the flags for this DFA. |
| 2960 | pub(crate) fn flags(&self) -> &Flags { |
| 2961 | &self.flags |
| 2962 | } |
| 2963 | |
| 2964 | /// Returns an iterator over all states in this DFA. |
| 2965 | /// |
| 2966 | /// This iterator yields a tuple for each state. The first element of the |
| 2967 | /// tuple corresponds to a state's identifier, and the second element |
| 2968 | /// corresponds to the state itself (comprised of its transitions). |
| 2969 | pub(crate) fn states(&self) -> StateIter<'_, T> { |
| 2970 | self.tt.states() |
| 2971 | } |
| 2972 | |
| 2973 | /// Return the total number of states in this DFA. Every DFA has at least |
| 2974 | /// 1 state, even the empty DFA. |
| 2975 | pub(crate) fn state_len(&self) -> usize { |
| 2976 | self.tt.len() |
| 2977 | } |
| 2978 | |
| 2979 | /// Return an iterator over all pattern IDs for the given match state. |
| 2980 | /// |
| 2981 | /// If the given state is not a match state, then this panics. |
| 2982 | #[cfg (feature = "dfa-build" )] |
| 2983 | pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] { |
| 2984 | assert!(self.is_match_state(id)); |
| 2985 | self.ms.pattern_id_slice(self.match_state_index(id)) |
| 2986 | } |
| 2987 | |
| 2988 | /// Return the total number of pattern IDs for the given match state. |
| 2989 | /// |
| 2990 | /// If the given state is not a match state, then this panics. |
| 2991 | pub(crate) fn match_pattern_len(&self, id: StateID) -> usize { |
| 2992 | assert!(self.is_match_state(id)); |
| 2993 | self.ms.pattern_len(self.match_state_index(id)) |
| 2994 | } |
| 2995 | |
| 2996 | /// Returns the total number of patterns matched by this DFA. |
| 2997 | pub(crate) fn pattern_len(&self) -> usize { |
| 2998 | self.ms.pattern_len |
| 2999 | } |
| 3000 | |
| 3001 | /// Returns a map from match state ID to a list of pattern IDs that match |
| 3002 | /// in that state. |
| 3003 | #[cfg (feature = "dfa-build" )] |
| 3004 | pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> { |
| 3005 | self.ms.to_map(self) |
| 3006 | } |
| 3007 | |
| 3008 | /// Returns the ID of the quit state for this DFA. |
| 3009 | #[cfg (feature = "dfa-build" )] |
| 3010 | pub(crate) fn quit_id(&self) -> StateID { |
| 3011 | self.to_state_id(1) |
| 3012 | } |
| 3013 | |
| 3014 | /// Convert the given state identifier to the state's index. The state's |
| 3015 | /// index corresponds to the position in which it appears in the transition |
| 3016 | /// table. When a DFA is NOT premultiplied, then a state's identifier is |
| 3017 | /// also its index. When a DFA is premultiplied, then a state's identifier |
| 3018 | /// is equal to `index * alphabet_len`. This routine reverses that. |
| 3019 | pub(crate) fn to_index(&self, id: StateID) -> usize { |
| 3020 | self.tt.to_index(id) |
| 3021 | } |
| 3022 | |
| 3023 | /// Convert an index to a state (in the range 0..self.state_len()) to an |
| 3024 | /// actual state identifier. |
| 3025 | /// |
| 3026 | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
| 3027 | /// to some other information (such as a remapped state ID). |
| 3028 | #[cfg (feature = "dfa-build" )] |
| 3029 | pub(crate) fn to_state_id(&self, index: usize) -> StateID { |
| 3030 | self.tt.to_state_id(index) |
| 3031 | } |
| 3032 | |
| 3033 | /// Return the table of state IDs for this DFA's start states. |
| 3034 | pub(crate) fn starts(&self) -> StartStateIter<'_> { |
| 3035 | self.st.iter() |
| 3036 | } |
| 3037 | |
| 3038 | /// Returns the index of the match state for the given ID. If the |
| 3039 | /// given ID does not correspond to a match state, then this may |
| 3040 | /// panic or produce an incorrect result. |
| 3041 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3042 | fn match_state_index(&self, id: StateID) -> usize { |
| 3043 | debug_assert!(self.is_match_state(id)); |
| 3044 | // This is one of the places where we rely on the fact that match |
| 3045 | // states are contiguous in the transition table. Namely, that the |
| 3046 | // first match state ID always corresponds to dfa.special.min_match. |
| 3047 | // From there, since we know the stride, we can compute the overall |
| 3048 | // index of any match state given the match state's ID. |
| 3049 | let min = self.special().min_match.as_usize(); |
| 3050 | // CORRECTNESS: We're allowed to produce an incorrect result or panic, |
| 3051 | // so both the subtraction and the unchecked StateID construction is |
| 3052 | // OK. |
| 3053 | self.to_index(StateID::new_unchecked(id.as_usize() - min)) |
| 3054 | } |
| 3055 | |
| 3056 | /// Returns the index of the accelerator state for the given ID. If the |
| 3057 | /// given ID does not correspond to an accelerator state, then this may |
| 3058 | /// panic or produce an incorrect result. |
| 3059 | fn accelerator_index(&self, id: StateID) -> usize { |
| 3060 | let min = self.special().min_accel.as_usize(); |
| 3061 | // CORRECTNESS: We're allowed to produce an incorrect result or panic, |
| 3062 | // so both the subtraction and the unchecked StateID construction is |
| 3063 | // OK. |
| 3064 | self.to_index(StateID::new_unchecked(id.as_usize() - min)) |
| 3065 | } |
| 3066 | |
| 3067 | /// Return the accelerators for this DFA. |
| 3068 | fn accels(&self) -> Accels<&[u32]> { |
| 3069 | self.accels.as_ref() |
| 3070 | } |
| 3071 | |
| 3072 | /// Return this DFA's transition table as a slice. |
| 3073 | fn trans(&self) -> &[StateID] { |
| 3074 | self.tt.table() |
| 3075 | } |
| 3076 | } |
| 3077 | |
| 3078 | impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> { |
| 3079 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3080 | writeln!(f, "dense::DFA(" )?; |
| 3081 | for state in self.states() { |
| 3082 | fmt_state_indicator(f, self, state.id())?; |
| 3083 | let id = if f.alternate() { |
| 3084 | state.id().as_usize() |
| 3085 | } else { |
| 3086 | self.to_index(state.id()) |
| 3087 | }; |
| 3088 | write!(f, " {:06?}: " , id)?; |
| 3089 | state.fmt(f)?; |
| 3090 | write!(f, " \n" )?; |
| 3091 | } |
| 3092 | writeln!(f, "" )?; |
| 3093 | for (i, (start_id, anchored, sty)) in self.starts().enumerate() { |
| 3094 | let id = if f.alternate() { |
| 3095 | start_id.as_usize() |
| 3096 | } else { |
| 3097 | self.to_index(start_id) |
| 3098 | }; |
| 3099 | if i % self.st.stride == 0 { |
| 3100 | match anchored { |
| 3101 | Anchored::No => writeln!(f, "START-GROUP(unanchored)" )?, |
| 3102 | Anchored::Yes => writeln!(f, "START-GROUP(anchored)" )?, |
| 3103 | Anchored::Pattern(pid) => { |
| 3104 | writeln!(f, "START_GROUP(pattern: {:?})" , pid)? |
| 3105 | } |
| 3106 | } |
| 3107 | } |
| 3108 | writeln!(f, " {:?} => {:06?}" , sty, id)?; |
| 3109 | } |
| 3110 | if self.pattern_len() > 1 { |
| 3111 | writeln!(f, "" )?; |
| 3112 | for i in 0..self.ms.len() { |
| 3113 | let id = self.ms.match_state_id(self, i); |
| 3114 | let id = if f.alternate() { |
| 3115 | id.as_usize() |
| 3116 | } else { |
| 3117 | self.to_index(id) |
| 3118 | }; |
| 3119 | write!(f, "MATCH( {:06?}): " , id)?; |
| 3120 | for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate() |
| 3121 | { |
| 3122 | if i > 0 { |
| 3123 | write!(f, ", " )?; |
| 3124 | } |
| 3125 | write!(f, " {:?}" , pid)?; |
| 3126 | } |
| 3127 | writeln!(f, "" )?; |
| 3128 | } |
| 3129 | } |
| 3130 | writeln!(f, "state length: {:?}" , self.state_len())?; |
| 3131 | writeln!(f, "pattern length: {:?}" , self.pattern_len())?; |
| 3132 | writeln!(f, "flags: {:?}" , self.flags)?; |
| 3133 | writeln!(f, ")" )?; |
| 3134 | Ok(()) |
| 3135 | } |
| 3136 | } |
| 3137 | |
| 3138 | // SAFETY: We assert that our implementation of each method is correct. |
| 3139 | unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> { |
| 3140 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3141 | fn is_special_state(&self, id: StateID) -> bool { |
| 3142 | self.special.is_special_state(id) |
| 3143 | } |
| 3144 | |
| 3145 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3146 | fn is_dead_state(&self, id: StateID) -> bool { |
| 3147 | self.special.is_dead_state(id) |
| 3148 | } |
| 3149 | |
| 3150 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3151 | fn is_quit_state(&self, id: StateID) -> bool { |
| 3152 | self.special.is_quit_state(id) |
| 3153 | } |
| 3154 | |
| 3155 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3156 | fn is_match_state(&self, id: StateID) -> bool { |
| 3157 | self.special.is_match_state(id) |
| 3158 | } |
| 3159 | |
| 3160 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3161 | fn is_start_state(&self, id: StateID) -> bool { |
| 3162 | self.special.is_start_state(id) |
| 3163 | } |
| 3164 | |
| 3165 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3166 | fn is_accel_state(&self, id: StateID) -> bool { |
| 3167 | self.special.is_accel_state(id) |
| 3168 | } |
| 3169 | |
| 3170 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3171 | fn next_state(&self, current: StateID, input: u8) -> StateID { |
| 3172 | let input = self.byte_classes().get(input); |
| 3173 | let o = current.as_usize() + usize::from(input); |
| 3174 | self.trans()[o] |
| 3175 | } |
| 3176 | |
| 3177 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3178 | unsafe fn next_state_unchecked( |
| 3179 | &self, |
| 3180 | current: StateID, |
| 3181 | byte: u8, |
| 3182 | ) -> StateID { |
| 3183 | // We don't (or shouldn't) need an unchecked variant for the byte |
| 3184 | // class mapping, since bound checks should be omitted automatically |
| 3185 | // by virtue of its representation. If this ends up not being true as |
| 3186 | // confirmed by codegen, please file an issue. ---AG |
| 3187 | let class = self.byte_classes().get(byte); |
| 3188 | let o = current.as_usize() + usize::from(class); |
| 3189 | let next = *self.trans().get_unchecked(o); |
| 3190 | next |
| 3191 | } |
| 3192 | |
| 3193 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3194 | fn next_eoi_state(&self, current: StateID) -> StateID { |
| 3195 | let eoi = self.byte_classes().eoi().as_usize(); |
| 3196 | let o = current.as_usize() + eoi; |
| 3197 | self.trans()[o] |
| 3198 | } |
| 3199 | |
| 3200 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3201 | fn pattern_len(&self) -> usize { |
| 3202 | self.ms.pattern_len |
| 3203 | } |
| 3204 | |
| 3205 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3206 | fn match_len(&self, id: StateID) -> usize { |
| 3207 | self.match_pattern_len(id) |
| 3208 | } |
| 3209 | |
| 3210 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3211 | fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID { |
| 3212 | // This is an optimization for the very common case of a DFA with a |
| 3213 | // single pattern. This conditional avoids a somewhat more costly path |
| 3214 | // that finds the pattern ID from the state machine, which requires |
| 3215 | // a bit of slicing/pointer-chasing. This optimization tends to only |
| 3216 | // matter when matches are frequent. |
| 3217 | if self.ms.pattern_len == 1 { |
| 3218 | return PatternID::ZERO; |
| 3219 | } |
| 3220 | let state_index = self.match_state_index(id); |
| 3221 | self.ms.pattern_id(state_index, match_index) |
| 3222 | } |
| 3223 | |
| 3224 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3225 | fn has_empty(&self) -> bool { |
| 3226 | self.flags.has_empty |
| 3227 | } |
| 3228 | |
| 3229 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3230 | fn is_utf8(&self) -> bool { |
| 3231 | self.flags.is_utf8 |
| 3232 | } |
| 3233 | |
| 3234 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3235 | fn is_always_start_anchored(&self) -> bool { |
| 3236 | self.flags.is_always_start_anchored |
| 3237 | } |
| 3238 | |
| 3239 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3240 | fn start_state( |
| 3241 | &self, |
| 3242 | config: &start::Config, |
| 3243 | ) -> Result<StateID, StartError> { |
| 3244 | let anchored = config.get_anchored(); |
| 3245 | let start = match config.get_look_behind() { |
| 3246 | None => Start::Text, |
| 3247 | Some(byte) => { |
| 3248 | if !self.quitset.is_empty() && self.quitset.contains(byte) { |
| 3249 | return Err(StartError::quit(byte)); |
| 3250 | } |
| 3251 | self.st.start_map.get(byte) |
| 3252 | } |
| 3253 | }; |
| 3254 | self.st.start(anchored, start) |
| 3255 | } |
| 3256 | |
| 3257 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3258 | fn universal_start_state(&self, mode: Anchored) -> Option<StateID> { |
| 3259 | match mode { |
| 3260 | Anchored::No => self.st.universal_start_unanchored, |
| 3261 | Anchored::Yes => self.st.universal_start_anchored, |
| 3262 | Anchored::Pattern(_) => None, |
| 3263 | } |
| 3264 | } |
| 3265 | |
| 3266 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3267 | fn accelerator(&self, id: StateID) -> &[u8] { |
| 3268 | if !self.is_accel_state(id) { |
| 3269 | return &[]; |
| 3270 | } |
| 3271 | self.accels.needles(self.accelerator_index(id)) |
| 3272 | } |
| 3273 | |
| 3274 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3275 | fn get_prefilter(&self) -> Option<&Prefilter> { |
| 3276 | self.pre.as_ref() |
| 3277 | } |
| 3278 | } |
| 3279 | |
| 3280 | /// The transition table portion of a dense DFA. |
| 3281 | /// |
| 3282 | /// The transition table is the core part of the DFA in that it describes how |
| 3283 | /// to move from one state to another based on the input sequence observed. |
| 3284 | #[derive (Clone)] |
| 3285 | pub(crate) struct TransitionTable<T> { |
| 3286 | /// A contiguous region of memory representing the transition table in |
| 3287 | /// row-major order. The representation is dense. That is, every state |
| 3288 | /// has precisely the same number of transitions. The maximum number of |
| 3289 | /// transitions per state is 257 (256 for each possible byte value, plus 1 |
| 3290 | /// for the special EOI transition). If a DFA has been instructed to use |
| 3291 | /// byte classes (the default), then the number of transitions is usually |
| 3292 | /// substantially fewer. |
| 3293 | /// |
| 3294 | /// In practice, T is either `Vec<u32>` or `&[u32]`. |
| 3295 | table: T, |
| 3296 | /// A set of equivalence classes, where a single equivalence class |
| 3297 | /// represents a set of bytes that never discriminate between a match |
| 3298 | /// and a non-match in the DFA. Each equivalence class corresponds to a |
| 3299 | /// single character in this DFA's alphabet, where the maximum number of |
| 3300 | /// characters is 257 (each possible value of a byte plus the special |
| 3301 | /// EOI transition). Consequently, the number of equivalence classes |
| 3302 | /// corresponds to the number of transitions for each DFA state. Note |
| 3303 | /// though that the *space* used by each DFA state in the transition table |
| 3304 | /// may be larger. The total space used by each DFA state is known as the |
| 3305 | /// stride. |
| 3306 | /// |
| 3307 | /// The only time the number of equivalence classes is fewer than 257 is if |
| 3308 | /// the DFA's kind uses byte classes (which is the default). Equivalence |
| 3309 | /// classes should generally only be disabled when debugging, so that |
| 3310 | /// the transitions themselves aren't obscured. Disabling them has no |
| 3311 | /// other benefit, since the equivalence class map is always used while |
| 3312 | /// searching. In the vast majority of cases, the number of equivalence |
| 3313 | /// classes is substantially smaller than 257, particularly when large |
| 3314 | /// Unicode classes aren't used. |
| 3315 | classes: ByteClasses, |
| 3316 | /// The stride of each DFA state, expressed as a power-of-two exponent. |
| 3317 | /// |
| 3318 | /// The stride of a DFA corresponds to the total amount of space used by |
| 3319 | /// each DFA state in the transition table. This may be bigger than the |
| 3320 | /// size of a DFA's alphabet, since the stride is always the smallest |
| 3321 | /// power of two greater than or equal to the alphabet size. |
| 3322 | /// |
| 3323 | /// While this wastes space, this avoids the need for integer division |
| 3324 | /// to convert between premultiplied state IDs and their corresponding |
| 3325 | /// indices. Instead, we can use simple bit-shifts. |
| 3326 | /// |
| 3327 | /// See the docs for the `stride2` method for more details. |
| 3328 | /// |
| 3329 | /// The minimum `stride2` value is `1` (corresponding to a stride of `2`) |
| 3330 | /// while the maximum `stride2` value is `9` (corresponding to a stride of |
| 3331 | /// `512`). The maximum is not `8` since the maximum alphabet size is `257` |
| 3332 | /// when accounting for the special EOI transition. However, an alphabet |
| 3333 | /// length of that size is exceptionally rare since the alphabet is shrunk |
| 3334 | /// into equivalence classes. |
| 3335 | stride2: usize, |
| 3336 | } |
| 3337 | |
| 3338 | impl<'a> TransitionTable<&'a [u32]> { |
| 3339 | /// Deserialize a transition table starting at the beginning of `slice`. |
| 3340 | /// Upon success, return the total number of bytes read along with the |
| 3341 | /// transition table. |
| 3342 | /// |
| 3343 | /// If there was a problem deserializing any part of the transition table, |
| 3344 | /// then this returns an error. Notably, if the given slice does not have |
| 3345 | /// the same alignment as `StateID`, then this will return an error (among |
| 3346 | /// other possible errors). |
| 3347 | /// |
| 3348 | /// This is guaranteed to execute in constant time. |
| 3349 | /// |
| 3350 | /// # Safety |
| 3351 | /// |
| 3352 | /// This routine is not safe because it does not check the validity of the |
| 3353 | /// transition table itself. In particular, the transition table can be |
| 3354 | /// quite large, so checking its validity can be somewhat expensive. An |
| 3355 | /// invalid transition table is not safe because other code may rely on the |
| 3356 | /// transition table being correct (such as explicit bounds check elision). |
| 3357 | /// Therefore, an invalid transition table can lead to undefined behavior. |
| 3358 | /// |
| 3359 | /// Callers that use this function must either pass on the safety invariant |
| 3360 | /// or guarantee that the bytes given contain a valid transition table. |
| 3361 | /// This guarantee is upheld by the bytes written by `write_to`. |
| 3362 | unsafe fn from_bytes_unchecked( |
| 3363 | mut slice: &'a [u8], |
| 3364 | ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> { |
| 3365 | let slice_start = slice.as_ptr().as_usize(); |
| 3366 | |
| 3367 | let (state_len, nr) = |
| 3368 | wire::try_read_u32_as_usize(slice, "state length" )?; |
| 3369 | slice = &slice[nr..]; |
| 3370 | |
| 3371 | let (stride2, nr) = wire::try_read_u32_as_usize(slice, "stride2" )?; |
| 3372 | slice = &slice[nr..]; |
| 3373 | |
| 3374 | let (classes, nr) = ByteClasses::from_bytes(slice)?; |
| 3375 | slice = &slice[nr..]; |
| 3376 | |
| 3377 | // The alphabet length (determined by the byte class map) cannot be |
| 3378 | // bigger than the stride (total space used by each DFA state). |
| 3379 | if stride2 > 9 { |
| 3380 | return Err(DeserializeError::generic( |
| 3381 | "dense DFA has invalid stride2 (too big)" , |
| 3382 | )); |
| 3383 | } |
| 3384 | // It also cannot be zero, since even a DFA that never matches anything |
| 3385 | // has a non-zero number of states with at least two equivalence |
| 3386 | // classes: one for all 256 byte values and another for the EOI |
| 3387 | // sentinel. |
| 3388 | if stride2 < 1 { |
| 3389 | return Err(DeserializeError::generic( |
| 3390 | "dense DFA has invalid stride2 (too small)" , |
| 3391 | )); |
| 3392 | } |
| 3393 | // This is OK since 1 <= stride2 <= 9. |
| 3394 | let stride = |
| 3395 | 1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap(); |
| 3396 | if classes.alphabet_len() > stride { |
| 3397 | return Err(DeserializeError::generic( |
| 3398 | "alphabet size cannot be bigger than transition table stride" , |
| 3399 | )); |
| 3400 | } |
| 3401 | |
| 3402 | let trans_len = |
| 3403 | wire::shl(state_len, stride2, "dense table transition length" )?; |
| 3404 | let table_bytes_len = wire::mul( |
| 3405 | trans_len, |
| 3406 | StateID::SIZE, |
| 3407 | "dense table state byte length" , |
| 3408 | )?; |
| 3409 | wire::check_slice_len(slice, table_bytes_len, "transition table" )?; |
| 3410 | wire::check_alignment::<StateID>(slice)?; |
| 3411 | let table_bytes = &slice[..table_bytes_len]; |
| 3412 | slice = &slice[table_bytes_len..]; |
| 3413 | // SAFETY: Since StateID is always representable as a u32, all we need |
| 3414 | // to do is ensure that we have the proper length and alignment. We've |
| 3415 | // checked both above, so the cast below is safe. |
| 3416 | // |
| 3417 | // N.B. This is the only not-safe code in this function. |
| 3418 | let table = core::slice::from_raw_parts( |
| 3419 | table_bytes.as_ptr().cast::<u32>(), |
| 3420 | trans_len, |
| 3421 | ); |
| 3422 | let tt = TransitionTable { table, classes, stride2 }; |
| 3423 | Ok((tt, slice.as_ptr().as_usize() - slice_start)) |
| 3424 | } |
| 3425 | } |
| 3426 | |
| 3427 | #[cfg (feature = "dfa-build" )] |
| 3428 | impl TransitionTable<Vec<u32>> { |
| 3429 | /// Create a minimal transition table with just two states: a dead state |
| 3430 | /// and a quit state. The alphabet length and stride of the transition |
| 3431 | /// table is determined by the given set of equivalence classes. |
| 3432 | fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> { |
| 3433 | let mut tt = TransitionTable { |
| 3434 | table: vec![], |
| 3435 | classes, |
| 3436 | stride2: classes.stride2(), |
| 3437 | }; |
| 3438 | // Two states, regardless of alphabet size, can always fit into u32. |
| 3439 | tt.add_empty_state().unwrap(); // dead state |
| 3440 | tt.add_empty_state().unwrap(); // quit state |
| 3441 | tt |
| 3442 | } |
| 3443 | |
| 3444 | /// Set a transition in this table. Both the `from` and `to` states must |
| 3445 | /// already exist, otherwise this panics. `unit` should correspond to the |
| 3446 | /// transition out of `from` to set to `to`. |
| 3447 | fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) { |
| 3448 | assert!(self.is_valid(from), "invalid 'from' state" ); |
| 3449 | assert!(self.is_valid(to), "invalid 'to' state" ); |
| 3450 | self.table[from.as_usize() + self.classes.get_by_unit(unit)] = |
| 3451 | to.as_u32(); |
| 3452 | } |
| 3453 | |
| 3454 | /// Add an empty state (a state where all transitions lead to a dead state) |
| 3455 | /// and return its identifier. The identifier returned is guaranteed to |
| 3456 | /// not point to any other existing state. |
| 3457 | /// |
| 3458 | /// If adding a state would exhaust the state identifier space, then this |
| 3459 | /// returns an error. |
| 3460 | fn add_empty_state(&mut self) -> Result<StateID, BuildError> { |
| 3461 | // Normally, to get a fresh state identifier, we would just |
| 3462 | // take the index of the next state added to the transition |
| 3463 | // table. However, we actually perform an optimization here |
| 3464 | // that premultiplies state IDs by the stride, such that they |
| 3465 | // point immediately at the beginning of their transitions in |
| 3466 | // the transition table. This avoids an extra multiplication |
| 3467 | // instruction for state lookup at search time. |
| 3468 | // |
| 3469 | // Premultiplied identifiers means that instead of your matching |
| 3470 | // loop looking something like this: |
| 3471 | // |
| 3472 | // state = dfa.start |
| 3473 | // for byte in haystack: |
| 3474 | // next = dfa.transitions[state * stride + byte] |
| 3475 | // if dfa.is_match(next): |
| 3476 | // return true |
| 3477 | // return false |
| 3478 | // |
| 3479 | // it can instead look like this: |
| 3480 | // |
| 3481 | // state = dfa.start |
| 3482 | // for byte in haystack: |
| 3483 | // next = dfa.transitions[state + byte] |
| 3484 | // if dfa.is_match(next): |
| 3485 | // return true |
| 3486 | // return false |
| 3487 | // |
| 3488 | // In other words, we save a multiplication instruction in the |
| 3489 | // critical path. This turns out to be a decent performance win. |
| 3490 | // The cost of using premultiplied state ids is that they can |
| 3491 | // require a bigger state id representation. (And they also make |
| 3492 | // the code a bit more complex, especially during minimization and |
| 3493 | // when reshuffling states, as one needs to convert back and forth |
| 3494 | // between state IDs and state indices.) |
| 3495 | // |
| 3496 | // To do this, we simply take the index of the state into the |
| 3497 | // entire transition table, rather than the index of the state |
| 3498 | // itself. e.g., If the stride is 64, then the ID of the 3rd state |
| 3499 | // is 192, not 2. |
| 3500 | let next = self.table.len(); |
| 3501 | let id = |
| 3502 | StateID::new(next).map_err(|_| BuildError::too_many_states())?; |
| 3503 | self.table.extend(iter::repeat(0).take(self.stride())); |
| 3504 | Ok(id) |
| 3505 | } |
| 3506 | |
| 3507 | /// Swap the two states given in this transition table. |
| 3508 | /// |
| 3509 | /// This routine does not do anything to check the correctness of this |
| 3510 | /// swap. Callers must ensure that other states pointing to id1 and id2 are |
| 3511 | /// updated appropriately. |
| 3512 | /// |
| 3513 | /// Both id1 and id2 must point to valid states, otherwise this panics. |
| 3514 | fn swap(&mut self, id1: StateID, id2: StateID) { |
| 3515 | assert!(self.is_valid(id1), "invalid 'id1' state: {:?}" , id1); |
| 3516 | assert!(self.is_valid(id2), "invalid 'id2' state: {:?}" , id2); |
| 3517 | // We only need to swap the parts of the state that are used. So if the |
| 3518 | // stride is 64, but the alphabet length is only 33, then we save a lot |
| 3519 | // of work. |
| 3520 | for b in 0..self.classes.alphabet_len() { |
| 3521 | self.table.swap(id1.as_usize() + b, id2.as_usize() + b); |
| 3522 | } |
| 3523 | } |
| 3524 | |
| 3525 | /// Remap the transitions for the state given according to the function |
| 3526 | /// given. This applies the given map function to every transition in the |
| 3527 | /// given state and changes the transition in place to the result of the |
| 3528 | /// map function for that transition. |
| 3529 | fn remap(&mut self, id: StateID, map: impl Fn(StateID) -> StateID) { |
| 3530 | for byte in 0..self.alphabet_len() { |
| 3531 | let i = id.as_usize() + byte; |
| 3532 | let next = self.table()[i]; |
| 3533 | self.table_mut()[id.as_usize() + byte] = map(next); |
| 3534 | } |
| 3535 | } |
| 3536 | |
| 3537 | /// Truncate the states in this transition table to the given length. |
| 3538 | /// |
| 3539 | /// This routine does not do anything to check the correctness of this |
| 3540 | /// truncation. Callers must ensure that other states pointing to truncated |
| 3541 | /// states are updated appropriately. |
| 3542 | fn truncate(&mut self, len: usize) { |
| 3543 | self.table.truncate(len << self.stride2); |
| 3544 | } |
| 3545 | } |
| 3546 | |
| 3547 | impl<T: AsRef<[u32]>> TransitionTable<T> { |
| 3548 | /// Writes a serialized form of this transition table to the buffer given. |
| 3549 | /// If the buffer is too small, then an error is returned. To determine |
| 3550 | /// how big the buffer must be, use `write_to_len`. |
| 3551 | fn write_to<E: Endian>( |
| 3552 | &self, |
| 3553 | mut dst: &mut [u8], |
| 3554 | ) -> Result<usize, SerializeError> { |
| 3555 | let nwrite = self.write_to_len(); |
| 3556 | if dst.len() < nwrite { |
| 3557 | return Err(SerializeError::buffer_too_small("transition table" )); |
| 3558 | } |
| 3559 | dst = &mut dst[..nwrite]; |
| 3560 | |
| 3561 | // write state length |
| 3562 | // Unwrap is OK since number of states is guaranteed to fit in a u32. |
| 3563 | E::write_u32(u32::try_from(self.len()).unwrap(), dst); |
| 3564 | dst = &mut dst[size_of::<u32>()..]; |
| 3565 | |
| 3566 | // write state stride (as power of 2) |
| 3567 | // Unwrap is OK since stride2 is guaranteed to be <= 9. |
| 3568 | E::write_u32(u32::try_from(self.stride2).unwrap(), dst); |
| 3569 | dst = &mut dst[size_of::<u32>()..]; |
| 3570 | |
| 3571 | // write byte class map |
| 3572 | let n = self.classes.write_to(dst)?; |
| 3573 | dst = &mut dst[n..]; |
| 3574 | |
| 3575 | // write actual transitions |
| 3576 | for &sid in self.table() { |
| 3577 | let n = wire::write_state_id::<E>(sid, &mut dst); |
| 3578 | dst = &mut dst[n..]; |
| 3579 | } |
| 3580 | Ok(nwrite) |
| 3581 | } |
| 3582 | |
| 3583 | /// Returns the number of bytes the serialized form of this transition |
| 3584 | /// table will use. |
| 3585 | fn write_to_len(&self) -> usize { |
| 3586 | size_of::<u32>() // state length |
| 3587 | + size_of::<u32>() // stride2 |
| 3588 | + self.classes.write_to_len() |
| 3589 | + (self.table().len() * StateID::SIZE) |
| 3590 | } |
| 3591 | |
| 3592 | /// Validates that every state ID in this transition table is valid. |
| 3593 | /// |
| 3594 | /// That is, every state ID can be used to correctly index a state in this |
| 3595 | /// table. |
| 3596 | fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> { |
| 3597 | let sp = &dfa.special; |
| 3598 | for state in self.states() { |
| 3599 | // We check that the ID itself is well formed. That is, if it's |
| 3600 | // a special state then it must actually be a quit, dead, accel, |
| 3601 | // match or start state. |
| 3602 | if sp.is_special_state(state.id()) { |
| 3603 | let is_actually_special = sp.is_dead_state(state.id()) |
| 3604 | || sp.is_quit_state(state.id()) |
| 3605 | || sp.is_match_state(state.id()) |
| 3606 | || sp.is_start_state(state.id()) |
| 3607 | || sp.is_accel_state(state.id()); |
| 3608 | if !is_actually_special { |
| 3609 | // This is kind of a cryptic error message... |
| 3610 | return Err(DeserializeError::generic( |
| 3611 | "found dense state tagged as special but \ |
| 3612 | wasn't actually special" , |
| 3613 | )); |
| 3614 | } |
| 3615 | if sp.is_match_state(state.id()) |
| 3616 | && dfa.match_len(state.id()) == 0 |
| 3617 | { |
| 3618 | return Err(DeserializeError::generic( |
| 3619 | "found match state with zero pattern IDs" , |
| 3620 | )); |
| 3621 | } |
| 3622 | } |
| 3623 | for (_, to) in state.transitions() { |
| 3624 | if !self.is_valid(to) { |
| 3625 | return Err(DeserializeError::generic( |
| 3626 | "found invalid state ID in transition table" , |
| 3627 | )); |
| 3628 | } |
| 3629 | } |
| 3630 | } |
| 3631 | Ok(()) |
| 3632 | } |
| 3633 | |
| 3634 | /// Converts this transition table to a borrowed value. |
| 3635 | fn as_ref(&self) -> TransitionTable<&'_ [u32]> { |
| 3636 | TransitionTable { |
| 3637 | table: self.table.as_ref(), |
| 3638 | classes: self.classes.clone(), |
| 3639 | stride2: self.stride2, |
| 3640 | } |
| 3641 | } |
| 3642 | |
| 3643 | /// Converts this transition table to an owned value. |
| 3644 | #[cfg (feature = "alloc" )] |
| 3645 | fn to_owned(&self) -> TransitionTable<alloc::vec::Vec<u32>> { |
| 3646 | TransitionTable { |
| 3647 | table: self.table.as_ref().to_vec(), |
| 3648 | classes: self.classes.clone(), |
| 3649 | stride2: self.stride2, |
| 3650 | } |
| 3651 | } |
| 3652 | |
| 3653 | /// Return the state for the given ID. If the given ID is not valid, then |
| 3654 | /// this panics. |
| 3655 | fn state(&self, id: StateID) -> State<'_> { |
| 3656 | assert!(self.is_valid(id)); |
| 3657 | |
| 3658 | let i = id.as_usize(); |
| 3659 | State { |
| 3660 | id, |
| 3661 | stride2: self.stride2, |
| 3662 | transitions: &self.table()[i..i + self.alphabet_len()], |
| 3663 | } |
| 3664 | } |
| 3665 | |
| 3666 | /// Returns an iterator over all states in this transition table. |
| 3667 | /// |
| 3668 | /// This iterator yields a tuple for each state. The first element of the |
| 3669 | /// tuple corresponds to a state's identifier, and the second element |
| 3670 | /// corresponds to the state itself (comprised of its transitions). |
| 3671 | fn states(&self) -> StateIter<'_, T> { |
| 3672 | StateIter { |
| 3673 | tt: self, |
| 3674 | it: self.table().chunks(self.stride()).enumerate(), |
| 3675 | } |
| 3676 | } |
| 3677 | |
| 3678 | /// Convert a state identifier to an index to a state (in the range |
| 3679 | /// 0..self.len()). |
| 3680 | /// |
| 3681 | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
| 3682 | /// to some other information (such as a remapped state ID). |
| 3683 | /// |
| 3684 | /// If the given ID is not valid, then this may panic or produce an |
| 3685 | /// incorrect index. |
| 3686 | fn to_index(&self, id: StateID) -> usize { |
| 3687 | id.as_usize() >> self.stride2 |
| 3688 | } |
| 3689 | |
| 3690 | /// Convert an index to a state (in the range 0..self.len()) to an actual |
| 3691 | /// state identifier. |
| 3692 | /// |
| 3693 | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
| 3694 | /// to some other information (such as a remapped state ID). |
| 3695 | /// |
| 3696 | /// If the given index is not in the specified range, then this may panic |
| 3697 | /// or produce an incorrect state ID. |
| 3698 | fn to_state_id(&self, index: usize) -> StateID { |
| 3699 | // CORRECTNESS: If the given index is not valid, then it is not |
| 3700 | // required for this to panic or return a valid state ID. |
| 3701 | StateID::new_unchecked(index << self.stride2) |
| 3702 | } |
| 3703 | |
| 3704 | /// Returns the state ID for the state immediately following the one given. |
| 3705 | /// |
| 3706 | /// This does not check whether the state ID returned is invalid. In fact, |
| 3707 | /// if the state ID given is the last state in this DFA, then the state ID |
| 3708 | /// returned is guaranteed to be invalid. |
| 3709 | #[cfg (feature = "dfa-build" )] |
| 3710 | fn next_state_id(&self, id: StateID) -> StateID { |
| 3711 | self.to_state_id(self.to_index(id).checked_add(1).unwrap()) |
| 3712 | } |
| 3713 | |
| 3714 | /// Returns the state ID for the state immediately preceding the one given. |
| 3715 | /// |
| 3716 | /// If the dead ID given (which is zero), then this panics. |
| 3717 | #[cfg (feature = "dfa-build" )] |
| 3718 | fn prev_state_id(&self, id: StateID) -> StateID { |
| 3719 | self.to_state_id(self.to_index(id).checked_sub(1).unwrap()) |
| 3720 | } |
| 3721 | |
| 3722 | /// Returns the table as a slice of state IDs. |
| 3723 | fn table(&self) -> &[StateID] { |
| 3724 | wire::u32s_to_state_ids(self.table.as_ref()) |
| 3725 | } |
| 3726 | |
| 3727 | /// Returns the total number of states in this transition table. |
| 3728 | /// |
| 3729 | /// Note that a DFA always has at least two states: the dead and quit |
| 3730 | /// states. In particular, the dead state always has ID 0 and is |
| 3731 | /// correspondingly always the first state. The dead state is never a match |
| 3732 | /// state. |
| 3733 | fn len(&self) -> usize { |
| 3734 | self.table().len() >> self.stride2 |
| 3735 | } |
| 3736 | |
| 3737 | /// Returns the total stride for every state in this DFA. This corresponds |
| 3738 | /// to the total number of transitions used by each state in this DFA's |
| 3739 | /// transition table. |
| 3740 | fn stride(&self) -> usize { |
| 3741 | 1 << self.stride2 |
| 3742 | } |
| 3743 | |
| 3744 | /// Returns the total number of elements in the alphabet for this |
| 3745 | /// transition table. This is always less than or equal to `self.stride()`. |
| 3746 | /// It is only equal when the alphabet length is a power of 2. Otherwise, |
| 3747 | /// it is always strictly less. |
| 3748 | fn alphabet_len(&self) -> usize { |
| 3749 | self.classes.alphabet_len() |
| 3750 | } |
| 3751 | |
| 3752 | /// Returns true if and only if the given state ID is valid for this |
| 3753 | /// transition table. Validity in this context means that the given ID can |
| 3754 | /// be used as a valid offset with `self.stride()` to index this transition |
| 3755 | /// table. |
| 3756 | fn is_valid(&self, id: StateID) -> bool { |
| 3757 | let id = id.as_usize(); |
| 3758 | id < self.table().len() && id % self.stride() == 0 |
| 3759 | } |
| 3760 | |
| 3761 | /// Return the memory usage, in bytes, of this transition table. |
| 3762 | /// |
| 3763 | /// This does not include the size of a `TransitionTable` value itself. |
| 3764 | fn memory_usage(&self) -> usize { |
| 3765 | self.table().len() * StateID::SIZE |
| 3766 | } |
| 3767 | } |
| 3768 | |
| 3769 | #[cfg (feature = "dfa-build" )] |
| 3770 | impl<T: AsMut<[u32]>> TransitionTable<T> { |
| 3771 | /// Returns the table as a slice of state IDs. |
| 3772 | fn table_mut(&mut self) -> &mut [StateID] { |
| 3773 | wire::u32s_to_state_ids_mut(self.table.as_mut()) |
| 3774 | } |
| 3775 | } |
| 3776 | |
| 3777 | /// The set of all possible starting states in a DFA. |
| 3778 | /// |
| 3779 | /// The set of starting states corresponds to the possible choices one can make |
| 3780 | /// in terms of starting a DFA. That is, before following the first transition, |
| 3781 | /// you first need to select the state that you start in. |
| 3782 | /// |
| 3783 | /// Normally, a DFA converted from an NFA that has a single starting state |
| 3784 | /// would itself just have one starting state. However, our support for look |
| 3785 | /// around generally requires more starting states. The correct starting state |
| 3786 | /// is chosen based on certain properties of the position at which we begin |
| 3787 | /// our search. |
| 3788 | /// |
| 3789 | /// Before listing those properties, we first must define two terms: |
| 3790 | /// |
| 3791 | /// * `haystack` - The bytes to execute the search. The search always starts |
| 3792 | /// at the beginning of `haystack` and ends before or at the end of |
| 3793 | /// `haystack`. |
| 3794 | /// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack` |
| 3795 | /// must be contained within `context` such that `context` is at least as big |
| 3796 | /// as `haystack`. |
| 3797 | /// |
| 3798 | /// This split is crucial for dealing with look-around. For example, consider |
| 3799 | /// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This |
| 3800 | /// regex should _not_ match the haystack since `bar` does not appear at the |
| 3801 | /// beginning of the input. Similarly, the regex `\Bbar\B` should match the |
| 3802 | /// haystack because `bar` is not surrounded by word boundaries. But a search |
| 3803 | /// that does not take context into account would not permit `\B` to match |
| 3804 | /// since the beginning of any string matches a word boundary. Similarly, a |
| 3805 | /// search that does not take context into account when searching `^bar$` in |
| 3806 | /// the haystack `bar` would produce a match when it shouldn't. |
| 3807 | /// |
| 3808 | /// Thus, it follows that the starting state is chosen based on the following |
| 3809 | /// criteria, derived from the position at which the search starts in the |
| 3810 | /// `context` (corresponding to the start of `haystack`): |
| 3811 | /// |
| 3812 | /// 1. If the search starts at the beginning of `context`, then the `Text` |
| 3813 | /// start state is used. (Since `^` corresponds to |
| 3814 | /// `hir::Anchor::Start`.) |
| 3815 | /// 2. If the search starts at a position immediately following a line |
| 3816 | /// terminator, then the `Line` start state is used. (Since `(?m:^)` |
| 3817 | /// corresponds to `hir::Anchor::StartLF`.) |
| 3818 | /// 3. If the search starts at a position immediately following a byte |
| 3819 | /// classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte` |
| 3820 | /// start state is used. (Since `(?-u:\b)` corresponds to a word boundary.) |
| 3821 | /// 4. Otherwise, if the search starts at a position immediately following |
| 3822 | /// a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`), |
| 3823 | /// then the `NonWordByte` start state is used. (Since `(?-u:\B)` |
| 3824 | /// corresponds to a not-word-boundary.) |
| 3825 | /// |
| 3826 | /// (N.B. Unicode word boundaries are not supported by the DFA because they |
| 3827 | /// require multi-byte look-around and this is difficult to support in a DFA.) |
| 3828 | /// |
| 3829 | /// To further complicate things, we also support constructing individual |
| 3830 | /// anchored start states for each pattern in the DFA. (Which is required to |
| 3831 | /// implement overlapping regexes correctly, but is also generally useful.) |
| 3832 | /// Thus, when individual start states for each pattern are enabled, then the |
| 3833 | /// total number of start states represented is `4 + (4 * #patterns)`, where |
| 3834 | /// the 4 comes from each of the 4 possibilities above. The first 4 represents |
| 3835 | /// the starting states for the entire DFA, which support searching for |
| 3836 | /// multiple patterns simultaneously (possibly unanchored). |
| 3837 | /// |
| 3838 | /// If individual start states are disabled, then this will only store 4 |
| 3839 | /// start states. Typically, individual start states are only enabled when |
| 3840 | /// constructing the reverse DFA for regex matching. But they are also useful |
| 3841 | /// for building DFAs that can search for a specific pattern or even to support |
| 3842 | /// both anchored and unanchored searches with the same DFA. |
| 3843 | /// |
| 3844 | /// Note though that while the start table always has either `4` or |
| 3845 | /// `4 + (4 * #patterns)` starting state *ids*, the total number of states |
| 3846 | /// might be considerably smaller. That is, many of the IDs may be duplicative. |
| 3847 | /// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no |
| 3848 | /// reason to generate a unique starting state for handling word boundaries. |
| 3849 | /// Similarly for start/end anchors.) |
| 3850 | #[derive (Clone)] |
| 3851 | pub(crate) struct StartTable<T> { |
| 3852 | /// The initial start state IDs. |
| 3853 | /// |
| 3854 | /// In practice, T is either `Vec<u32>` or `&[u32]`. |
| 3855 | /// |
| 3856 | /// The first `2 * stride` (currently always 8) entries always correspond |
| 3857 | /// to the starts states for the entire DFA, with the first 4 entries being |
| 3858 | /// for unanchored searches and the second 4 entries being for anchored |
| 3859 | /// searches. To keep things simple, we always use 8 entries even if the |
| 3860 | /// `StartKind` is not both. |
| 3861 | /// |
| 3862 | /// After that, there are `stride * patterns` state IDs, where `patterns` |
| 3863 | /// may be zero in the case of a DFA with no patterns or in the case where |
| 3864 | /// the DFA was built without enabling starting states for each pattern. |
| 3865 | table: T, |
| 3866 | /// The starting state configuration supported. When 'both', both |
| 3867 | /// unanchored and anchored searches work. When 'unanchored', anchored |
| 3868 | /// searches panic. When 'anchored', unanchored searches panic. |
| 3869 | kind: StartKind, |
| 3870 | /// The start state configuration for every possible byte. |
| 3871 | start_map: StartByteMap, |
| 3872 | /// The number of starting state IDs per pattern. |
| 3873 | stride: usize, |
| 3874 | /// The total number of patterns for which starting states are encoded. |
| 3875 | /// This is `None` for DFAs that were built without start states for each |
| 3876 | /// pattern. Thus, one cannot use this field to say how many patterns |
| 3877 | /// are in the DFA in all cases. It is specific to how many patterns are |
| 3878 | /// represented in this start table. |
| 3879 | pattern_len: Option<usize>, |
| 3880 | /// The universal starting state for unanchored searches. This is only |
| 3881 | /// present when the DFA supports unanchored searches and when all starting |
| 3882 | /// state IDs for an unanchored search are equivalent. |
| 3883 | universal_start_unanchored: Option<StateID>, |
| 3884 | /// The universal starting state for anchored searches. This is only |
| 3885 | /// present when the DFA supports anchored searches and when all starting |
| 3886 | /// state IDs for an anchored search are equivalent. |
| 3887 | universal_start_anchored: Option<StateID>, |
| 3888 | } |
| 3889 | |
| 3890 | #[cfg (feature = "dfa-build" )] |
| 3891 | impl StartTable<Vec<u32>> { |
| 3892 | /// Create a valid set of start states all pointing to the dead state. |
| 3893 | /// |
| 3894 | /// When the corresponding DFA is constructed with start states for each |
| 3895 | /// pattern, then `patterns` should be the number of patterns. Otherwise, |
| 3896 | /// it should be zero. |
| 3897 | /// |
| 3898 | /// If the total table size could exceed the allocatable limit, then this |
| 3899 | /// returns an error. In practice, this is unlikely to be able to occur, |
| 3900 | /// since it's likely that allocation would have failed long before it got |
| 3901 | /// to this point. |
| 3902 | fn dead( |
| 3903 | kind: StartKind, |
| 3904 | lookm: &LookMatcher, |
| 3905 | pattern_len: Option<usize>, |
| 3906 | ) -> Result<StartTable<Vec<u32>>, BuildError> { |
| 3907 | if let Some(len) = pattern_len { |
| 3908 | assert!(len <= PatternID::LIMIT); |
| 3909 | } |
| 3910 | let stride = Start::len(); |
| 3911 | // OK because 2*4 is never going to overflow anything. |
| 3912 | let starts_len = stride.checked_mul(2).unwrap(); |
| 3913 | let pattern_starts_len = |
| 3914 | match stride.checked_mul(pattern_len.unwrap_or(0)) { |
| 3915 | Some(x) => x, |
| 3916 | None => return Err(BuildError::too_many_start_states()), |
| 3917 | }; |
| 3918 | let table_len = match starts_len.checked_add(pattern_starts_len) { |
| 3919 | Some(x) => x, |
| 3920 | None => return Err(BuildError::too_many_start_states()), |
| 3921 | }; |
| 3922 | if let Err(_) = isize::try_from(table_len) { |
| 3923 | return Err(BuildError::too_many_start_states()); |
| 3924 | } |
| 3925 | let table = vec![DEAD.as_u32(); table_len]; |
| 3926 | let start_map = StartByteMap::new(lookm); |
| 3927 | Ok(StartTable { |
| 3928 | table, |
| 3929 | kind, |
| 3930 | start_map, |
| 3931 | stride, |
| 3932 | pattern_len, |
| 3933 | universal_start_unanchored: None, |
| 3934 | universal_start_anchored: None, |
| 3935 | }) |
| 3936 | } |
| 3937 | } |
| 3938 | |
| 3939 | impl<'a> StartTable<&'a [u32]> { |
| 3940 | /// Deserialize a table of start state IDs starting at the beginning of |
| 3941 | /// `slice`. Upon success, return the total number of bytes read along with |
| 3942 | /// the table of starting state IDs. |
| 3943 | /// |
| 3944 | /// If there was a problem deserializing any part of the starting IDs, |
| 3945 | /// then this returns an error. Notably, if the given slice does not have |
| 3946 | /// the same alignment as `StateID`, then this will return an error (among |
| 3947 | /// other possible errors). |
| 3948 | /// |
| 3949 | /// This is guaranteed to execute in constant time. |
| 3950 | /// |
| 3951 | /// # Safety |
| 3952 | /// |
| 3953 | /// This routine is not safe because it does not check the validity of the |
| 3954 | /// starting state IDs themselves. In particular, the number of starting |
| 3955 | /// IDs can be of variable length, so it's possible that checking their |
| 3956 | /// validity cannot be done in constant time. An invalid starting state |
| 3957 | /// ID is not safe because other code may rely on the starting IDs being |
| 3958 | /// correct (such as explicit bounds check elision). Therefore, an invalid |
| 3959 | /// start ID can lead to undefined behavior. |
| 3960 | /// |
| 3961 | /// Callers that use this function must either pass on the safety invariant |
| 3962 | /// or guarantee that the bytes given contain valid starting state IDs. |
| 3963 | /// This guarantee is upheld by the bytes written by `write_to`. |
| 3964 | unsafe fn from_bytes_unchecked( |
| 3965 | mut slice: &'a [u8], |
| 3966 | ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> { |
| 3967 | let slice_start = slice.as_ptr().as_usize(); |
| 3968 | |
| 3969 | let (kind, nr) = StartKind::from_bytes(slice)?; |
| 3970 | slice = &slice[nr..]; |
| 3971 | |
| 3972 | let (start_map, nr) = StartByteMap::from_bytes(slice)?; |
| 3973 | slice = &slice[nr..]; |
| 3974 | |
| 3975 | let (stride, nr) = |
| 3976 | wire::try_read_u32_as_usize(slice, "start table stride" )?; |
| 3977 | slice = &slice[nr..]; |
| 3978 | if stride != Start::len() { |
| 3979 | return Err(DeserializeError::generic( |
| 3980 | "invalid starting table stride" , |
| 3981 | )); |
| 3982 | } |
| 3983 | |
| 3984 | let (maybe_pattern_len, nr) = |
| 3985 | wire::try_read_u32_as_usize(slice, "start table patterns" )?; |
| 3986 | slice = &slice[nr..]; |
| 3987 | let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX { |
| 3988 | None |
| 3989 | } else { |
| 3990 | Some(maybe_pattern_len) |
| 3991 | }; |
| 3992 | if pattern_len.map_or(false, |len| len > PatternID::LIMIT) { |
| 3993 | return Err(DeserializeError::generic( |
| 3994 | "invalid number of patterns" , |
| 3995 | )); |
| 3996 | } |
| 3997 | |
| 3998 | let (universal_unanchored, nr) = |
| 3999 | wire::try_read_u32(slice, "universal unanchored start" )?; |
| 4000 | slice = &slice[nr..]; |
| 4001 | let universal_start_unanchored = if universal_unanchored == u32::MAX { |
| 4002 | None |
| 4003 | } else { |
| 4004 | Some(StateID::try_from(universal_unanchored).map_err(|e| { |
| 4005 | DeserializeError::state_id_error( |
| 4006 | e, |
| 4007 | "universal unanchored start" , |
| 4008 | ) |
| 4009 | })?) |
| 4010 | }; |
| 4011 | |
| 4012 | let (universal_anchored, nr) = |
| 4013 | wire::try_read_u32(slice, "universal anchored start" )?; |
| 4014 | slice = &slice[nr..]; |
| 4015 | let universal_start_anchored = if universal_anchored == u32::MAX { |
| 4016 | None |
| 4017 | } else { |
| 4018 | Some(StateID::try_from(universal_anchored).map_err(|e| { |
| 4019 | DeserializeError::state_id_error(e, "universal anchored start" ) |
| 4020 | })?) |
| 4021 | }; |
| 4022 | |
| 4023 | let pattern_table_size = wire::mul( |
| 4024 | stride, |
| 4025 | pattern_len.unwrap_or(0), |
| 4026 | "invalid pattern length" , |
| 4027 | )?; |
| 4028 | // Our start states always start with a two stride of start states for |
| 4029 | // the entire automaton. The first stride is for unanchored starting |
| 4030 | // states and the second stride is for anchored starting states. What |
| 4031 | // follows it are an optional set of start states for each pattern. |
| 4032 | let start_state_len = wire::add( |
| 4033 | wire::mul(2, stride, "start state stride too big" )?, |
| 4034 | pattern_table_size, |
| 4035 | "invalid 'any' pattern starts size" , |
| 4036 | )?; |
| 4037 | let table_bytes_len = wire::mul( |
| 4038 | start_state_len, |
| 4039 | StateID::SIZE, |
| 4040 | "pattern table bytes length" , |
| 4041 | )?; |
| 4042 | wire::check_slice_len(slice, table_bytes_len, "start ID table" )?; |
| 4043 | wire::check_alignment::<StateID>(slice)?; |
| 4044 | let table_bytes = &slice[..table_bytes_len]; |
| 4045 | slice = &slice[table_bytes_len..]; |
| 4046 | // SAFETY: Since StateID is always representable as a u32, all we need |
| 4047 | // to do is ensure that we have the proper length and alignment. We've |
| 4048 | // checked both above, so the cast below is safe. |
| 4049 | // |
| 4050 | // N.B. This is the only not-safe code in this function. |
| 4051 | let table = core::slice::from_raw_parts( |
| 4052 | table_bytes.as_ptr().cast::<u32>(), |
| 4053 | start_state_len, |
| 4054 | ); |
| 4055 | let st = StartTable { |
| 4056 | table, |
| 4057 | kind, |
| 4058 | start_map, |
| 4059 | stride, |
| 4060 | pattern_len, |
| 4061 | universal_start_unanchored, |
| 4062 | universal_start_anchored, |
| 4063 | }; |
| 4064 | Ok((st, slice.as_ptr().as_usize() - slice_start)) |
| 4065 | } |
| 4066 | } |
| 4067 | |
| 4068 | impl<T: AsRef<[u32]>> StartTable<T> { |
| 4069 | /// Writes a serialized form of this start table to the buffer given. If |
| 4070 | /// the buffer is too small, then an error is returned. To determine how |
| 4071 | /// big the buffer must be, use `write_to_len`. |
| 4072 | fn write_to<E: Endian>( |
| 4073 | &self, |
| 4074 | mut dst: &mut [u8], |
| 4075 | ) -> Result<usize, SerializeError> { |
| 4076 | let nwrite = self.write_to_len(); |
| 4077 | if dst.len() < nwrite { |
| 4078 | return Err(SerializeError::buffer_too_small( |
| 4079 | "starting table ids" , |
| 4080 | )); |
| 4081 | } |
| 4082 | dst = &mut dst[..nwrite]; |
| 4083 | |
| 4084 | // write start kind |
| 4085 | let nw = self.kind.write_to::<E>(dst)?; |
| 4086 | dst = &mut dst[nw..]; |
| 4087 | // write start byte map |
| 4088 | let nw = self.start_map.write_to(dst)?; |
| 4089 | dst = &mut dst[nw..]; |
| 4090 | // write stride |
| 4091 | // Unwrap is OK since the stride is always 4 (currently). |
| 4092 | E::write_u32(u32::try_from(self.stride).unwrap(), dst); |
| 4093 | dst = &mut dst[size_of::<u32>()..]; |
| 4094 | // write pattern length |
| 4095 | // Unwrap is OK since number of patterns is guaranteed to fit in a u32. |
| 4096 | E::write_u32( |
| 4097 | u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(), |
| 4098 | dst, |
| 4099 | ); |
| 4100 | dst = &mut dst[size_of::<u32>()..]; |
| 4101 | // write universal start unanchored state id, u32::MAX if absent |
| 4102 | E::write_u32( |
| 4103 | self.universal_start_unanchored |
| 4104 | .map_or(u32::MAX, |sid| sid.as_u32()), |
| 4105 | dst, |
| 4106 | ); |
| 4107 | dst = &mut dst[size_of::<u32>()..]; |
| 4108 | // write universal start anchored state id, u32::MAX if absent |
| 4109 | E::write_u32( |
| 4110 | self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()), |
| 4111 | dst, |
| 4112 | ); |
| 4113 | dst = &mut dst[size_of::<u32>()..]; |
| 4114 | // write start IDs |
| 4115 | for &sid in self.table() { |
| 4116 | let n = wire::write_state_id::<E>(sid, &mut dst); |
| 4117 | dst = &mut dst[n..]; |
| 4118 | } |
| 4119 | Ok(nwrite) |
| 4120 | } |
| 4121 | |
| 4122 | /// Returns the number of bytes the serialized form of this start ID table |
| 4123 | /// will use. |
| 4124 | fn write_to_len(&self) -> usize { |
| 4125 | self.kind.write_to_len() |
| 4126 | + self.start_map.write_to_len() |
| 4127 | + size_of::<u32>() // stride |
| 4128 | + size_of::<u32>() // # patterns |
| 4129 | + size_of::<u32>() // universal unanchored start |
| 4130 | + size_of::<u32>() // universal anchored start |
| 4131 | + (self.table().len() * StateID::SIZE) |
| 4132 | } |
| 4133 | |
| 4134 | /// Validates that every state ID in this start table is valid by checking |
| 4135 | /// it against the given transition table (which must be for the same DFA). |
| 4136 | /// |
| 4137 | /// That is, every state ID can be used to correctly index a state. |
| 4138 | fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> { |
| 4139 | let tt = &dfa.tt; |
| 4140 | if !self.universal_start_unanchored.map_or(true, |s| tt.is_valid(s)) { |
| 4141 | return Err(DeserializeError::generic( |
| 4142 | "found invalid universal unanchored starting state ID" , |
| 4143 | )); |
| 4144 | } |
| 4145 | if !self.universal_start_anchored.map_or(true, |s| tt.is_valid(s)) { |
| 4146 | return Err(DeserializeError::generic( |
| 4147 | "found invalid universal anchored starting state ID" , |
| 4148 | )); |
| 4149 | } |
| 4150 | for &id in self.table() { |
| 4151 | if !tt.is_valid(id) { |
| 4152 | return Err(DeserializeError::generic( |
| 4153 | "found invalid starting state ID" , |
| 4154 | )); |
| 4155 | } |
| 4156 | } |
| 4157 | Ok(()) |
| 4158 | } |
| 4159 | |
| 4160 | /// Converts this start list to a borrowed value. |
| 4161 | fn as_ref(&self) -> StartTable<&'_ [u32]> { |
| 4162 | StartTable { |
| 4163 | table: self.table.as_ref(), |
| 4164 | kind: self.kind, |
| 4165 | start_map: self.start_map.clone(), |
| 4166 | stride: self.stride, |
| 4167 | pattern_len: self.pattern_len, |
| 4168 | universal_start_unanchored: self.universal_start_unanchored, |
| 4169 | universal_start_anchored: self.universal_start_anchored, |
| 4170 | } |
| 4171 | } |
| 4172 | |
| 4173 | /// Converts this start list to an owned value. |
| 4174 | #[cfg (feature = "alloc" )] |
| 4175 | fn to_owned(&self) -> StartTable<alloc::vec::Vec<u32>> { |
| 4176 | StartTable { |
| 4177 | table: self.table.as_ref().to_vec(), |
| 4178 | kind: self.kind, |
| 4179 | start_map: self.start_map.clone(), |
| 4180 | stride: self.stride, |
| 4181 | pattern_len: self.pattern_len, |
| 4182 | universal_start_unanchored: self.universal_start_unanchored, |
| 4183 | universal_start_anchored: self.universal_start_anchored, |
| 4184 | } |
| 4185 | } |
| 4186 | |
| 4187 | /// Return the start state for the given input and starting configuration. |
| 4188 | /// This returns an error if the input configuration is not supported by |
| 4189 | /// this DFA. For example, requesting an unanchored search when the DFA was |
| 4190 | /// not built with unanchored starting states. Or asking for an anchored |
| 4191 | /// pattern search with an invalid pattern ID or on a DFA that was not |
| 4192 | /// built with start states for each pattern. |
| 4193 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 4194 | fn start( |
| 4195 | &self, |
| 4196 | anchored: Anchored, |
| 4197 | start: Start, |
| 4198 | ) -> Result<StateID, StartError> { |
| 4199 | let start_index = start.as_usize(); |
| 4200 | let index = match anchored { |
| 4201 | Anchored::No => { |
| 4202 | if !self.kind.has_unanchored() { |
| 4203 | return Err(StartError::unsupported_anchored(anchored)); |
| 4204 | } |
| 4205 | start_index |
| 4206 | } |
| 4207 | Anchored::Yes => { |
| 4208 | if !self.kind.has_anchored() { |
| 4209 | return Err(StartError::unsupported_anchored(anchored)); |
| 4210 | } |
| 4211 | self.stride + start_index |
| 4212 | } |
| 4213 | Anchored::Pattern(pid) => { |
| 4214 | let len = match self.pattern_len { |
| 4215 | None => { |
| 4216 | return Err(StartError::unsupported_anchored(anchored)) |
| 4217 | } |
| 4218 | Some(len) => len, |
| 4219 | }; |
| 4220 | if pid.as_usize() >= len { |
| 4221 | return Ok(DEAD); |
| 4222 | } |
| 4223 | (2 * self.stride) |
| 4224 | + (self.stride * pid.as_usize()) |
| 4225 | + start_index |
| 4226 | } |
| 4227 | }; |
| 4228 | Ok(self.table()[index]) |
| 4229 | } |
| 4230 | |
| 4231 | /// Returns an iterator over all start state IDs in this table. |
| 4232 | /// |
| 4233 | /// Each item is a triple of: start state ID, the start state type and the |
| 4234 | /// pattern ID (if any). |
| 4235 | fn iter(&self) -> StartStateIter<'_> { |
| 4236 | StartStateIter { st: self.as_ref(), i: 0 } |
| 4237 | } |
| 4238 | |
| 4239 | /// Returns the table as a slice of state IDs. |
| 4240 | fn table(&self) -> &[StateID] { |
| 4241 | wire::u32s_to_state_ids(self.table.as_ref()) |
| 4242 | } |
| 4243 | |
| 4244 | /// Return the memory usage, in bytes, of this start list. |
| 4245 | /// |
| 4246 | /// This does not include the size of a `StartList` value itself. |
| 4247 | fn memory_usage(&self) -> usize { |
| 4248 | self.table().len() * StateID::SIZE |
| 4249 | } |
| 4250 | } |
| 4251 | |
| 4252 | #[cfg (feature = "dfa-build" )] |
| 4253 | impl<T: AsMut<[u32]>> StartTable<T> { |
| 4254 | /// Set the start state for the given index and pattern. |
| 4255 | /// |
| 4256 | /// If the pattern ID or state ID are not valid, then this will panic. |
| 4257 | fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) { |
| 4258 | let start_index = start.as_usize(); |
| 4259 | let index = match anchored { |
| 4260 | Anchored::No => start_index, |
| 4261 | Anchored::Yes => self.stride + start_index, |
| 4262 | Anchored::Pattern(pid) => { |
| 4263 | let pid = pid.as_usize(); |
| 4264 | let len = self |
| 4265 | .pattern_len |
| 4266 | .expect("start states for each pattern enabled" ); |
| 4267 | assert!(pid < len, "invalid pattern ID {:?}" , pid); |
| 4268 | self.stride |
| 4269 | .checked_mul(pid) |
| 4270 | .unwrap() |
| 4271 | .checked_add(self.stride.checked_mul(2).unwrap()) |
| 4272 | .unwrap() |
| 4273 | .checked_add(start_index) |
| 4274 | .unwrap() |
| 4275 | } |
| 4276 | }; |
| 4277 | self.table_mut()[index] = id; |
| 4278 | } |
| 4279 | |
| 4280 | /// Returns the table as a mutable slice of state IDs. |
| 4281 | fn table_mut(&mut self) -> &mut [StateID] { |
| 4282 | wire::u32s_to_state_ids_mut(self.table.as_mut()) |
| 4283 | } |
| 4284 | } |
| 4285 | |
| 4286 | /// An iterator over start state IDs. |
| 4287 | /// |
| 4288 | /// This iterator yields a triple of start state ID, the anchored mode and the |
| 4289 | /// start state type. If a pattern ID is relevant, then the anchored mode will |
| 4290 | /// contain it. Start states with an anchored mode containing a pattern ID will |
| 4291 | /// only occur when the DFA was compiled with start states for each pattern |
| 4292 | /// (which is disabled by default). |
| 4293 | pub(crate) struct StartStateIter<'a> { |
| 4294 | st: StartTable<&'a [u32]>, |
| 4295 | i: usize, |
| 4296 | } |
| 4297 | |
| 4298 | impl<'a> Iterator for StartStateIter<'a> { |
| 4299 | type Item = (StateID, Anchored, Start); |
| 4300 | |
| 4301 | fn next(&mut self) -> Option<(StateID, Anchored, Start)> { |
| 4302 | let i = self.i; |
| 4303 | let table = self.st.table(); |
| 4304 | if i >= table.len() { |
| 4305 | return None; |
| 4306 | } |
| 4307 | self.i += 1; |
| 4308 | |
| 4309 | // This unwrap is okay since the stride of the starting state table |
| 4310 | // must always match the number of start state types. |
| 4311 | let start_type = Start::from_usize(i % self.st.stride).unwrap(); |
| 4312 | let anchored = if i < self.st.stride { |
| 4313 | Anchored::No |
| 4314 | } else if i < (2 * self.st.stride) { |
| 4315 | Anchored::Yes |
| 4316 | } else { |
| 4317 | let pid = (i - (2 * self.st.stride)) / self.st.stride; |
| 4318 | Anchored::Pattern(PatternID::new(pid).unwrap()) |
| 4319 | }; |
| 4320 | Some((table[i], anchored, start_type)) |
| 4321 | } |
| 4322 | } |
| 4323 | |
| 4324 | /// This type represents that patterns that should be reported whenever a DFA |
| 4325 | /// enters a match state. This structure exists to support DFAs that search for |
| 4326 | /// matches for multiple regexes. |
| 4327 | /// |
| 4328 | /// This structure relies on the fact that all match states in a DFA occur |
| 4329 | /// contiguously in the DFA's transition table. (See dfa/special.rs for a more |
| 4330 | /// detailed breakdown of the representation.) Namely, when a match occurs, we |
| 4331 | /// know its state ID. Since we know the start and end of the contiguous region |
| 4332 | /// of match states, we can use that to compute the position at which the match |
| 4333 | /// state occurs. That in turn is used as an offset into this structure. |
| 4334 | #[derive (Clone, Debug)] |
| 4335 | struct MatchStates<T> { |
| 4336 | /// Slices is a flattened sequence of pairs, where each pair points to a |
| 4337 | /// sub-slice of pattern_ids. The first element of the pair is an offset |
| 4338 | /// into pattern_ids and the second element of the pair is the number |
| 4339 | /// of 32-bit pattern IDs starting at that position. That is, each pair |
| 4340 | /// corresponds to a single DFA match state and its corresponding match |
| 4341 | /// IDs. The number of pairs always corresponds to the number of distinct |
| 4342 | /// DFA match states. |
| 4343 | /// |
| 4344 | /// In practice, T is either Vec<u32> or &[u32]. |
| 4345 | slices: T, |
| 4346 | /// A flattened sequence of pattern IDs for each DFA match state. The only |
| 4347 | /// way to correctly read this sequence is indirectly via `slices`. |
| 4348 | /// |
| 4349 | /// In practice, T is either Vec<u32> or &[u32]. |
| 4350 | pattern_ids: T, |
| 4351 | /// The total number of unique patterns represented by these match states. |
| 4352 | pattern_len: usize, |
| 4353 | } |
| 4354 | |
| 4355 | impl<'a> MatchStates<&'a [u32]> { |
| 4356 | unsafe fn from_bytes_unchecked( |
| 4357 | mut slice: &'a [u8], |
| 4358 | ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> { |
| 4359 | let slice_start = slice.as_ptr().as_usize(); |
| 4360 | |
| 4361 | // Read the total number of match states. |
| 4362 | let (state_len, nr) = |
| 4363 | wire::try_read_u32_as_usize(slice, "match state length" )?; |
| 4364 | slice = &slice[nr..]; |
| 4365 | |
| 4366 | // Read the slice start/length pairs. |
| 4367 | let pair_len = wire::mul(2, state_len, "match state offset pairs" )?; |
| 4368 | let slices_bytes_len = wire::mul( |
| 4369 | pair_len, |
| 4370 | PatternID::SIZE, |
| 4371 | "match state slice offset byte length" , |
| 4372 | )?; |
| 4373 | wire::check_slice_len(slice, slices_bytes_len, "match state slices" )?; |
| 4374 | wire::check_alignment::<PatternID>(slice)?; |
| 4375 | let slices_bytes = &slice[..slices_bytes_len]; |
| 4376 | slice = &slice[slices_bytes_len..]; |
| 4377 | // SAFETY: Since PatternID is always representable as a u32, all we |
| 4378 | // need to do is ensure that we have the proper length and alignment. |
| 4379 | // We've checked both above, so the cast below is safe. |
| 4380 | // |
| 4381 | // N.B. This is one of the few not-safe snippets in this function, |
| 4382 | // so we mark it explicitly to call it out. |
| 4383 | let slices = core::slice::from_raw_parts( |
| 4384 | slices_bytes.as_ptr().cast::<u32>(), |
| 4385 | pair_len, |
| 4386 | ); |
| 4387 | |
| 4388 | // Read the total number of unique pattern IDs (which is always 1 more |
| 4389 | // than the maximum pattern ID in this automaton, since pattern IDs are |
| 4390 | // handed out contiguously starting at 0). |
| 4391 | let (pattern_len, nr) = |
| 4392 | wire::try_read_u32_as_usize(slice, "pattern length" )?; |
| 4393 | slice = &slice[nr..]; |
| 4394 | |
| 4395 | // Now read the pattern ID length. We don't need to store this |
| 4396 | // explicitly, but we need it to know how many pattern IDs to read. |
| 4397 | let (idlen, nr) = |
| 4398 | wire::try_read_u32_as_usize(slice, "pattern ID length" )?; |
| 4399 | slice = &slice[nr..]; |
| 4400 | |
| 4401 | // Read the actual pattern IDs. |
| 4402 | let pattern_ids_len = |
| 4403 | wire::mul(idlen, PatternID::SIZE, "pattern ID byte length" )?; |
| 4404 | wire::check_slice_len(slice, pattern_ids_len, "match pattern IDs" )?; |
| 4405 | wire::check_alignment::<PatternID>(slice)?; |
| 4406 | let pattern_ids_bytes = &slice[..pattern_ids_len]; |
| 4407 | slice = &slice[pattern_ids_len..]; |
| 4408 | // SAFETY: Since PatternID is always representable as a u32, all we |
| 4409 | // need to do is ensure that we have the proper length and alignment. |
| 4410 | // We've checked both above, so the cast below is safe. |
| 4411 | // |
| 4412 | // N.B. This is one of the few not-safe snippets in this function, |
| 4413 | // so we mark it explicitly to call it out. |
| 4414 | let pattern_ids = core::slice::from_raw_parts( |
| 4415 | pattern_ids_bytes.as_ptr().cast::<u32>(), |
| 4416 | idlen, |
| 4417 | ); |
| 4418 | |
| 4419 | let ms = MatchStates { slices, pattern_ids, pattern_len }; |
| 4420 | Ok((ms, slice.as_ptr().as_usize() - slice_start)) |
| 4421 | } |
| 4422 | } |
| 4423 | |
| 4424 | #[cfg (feature = "dfa-build" )] |
| 4425 | impl MatchStates<Vec<u32>> { |
| 4426 | fn empty(pattern_len: usize) -> MatchStates<Vec<u32>> { |
| 4427 | assert!(pattern_len <= PatternID::LIMIT); |
| 4428 | MatchStates { slices: vec![], pattern_ids: vec![], pattern_len } |
| 4429 | } |
| 4430 | |
| 4431 | fn new( |
| 4432 | matches: &BTreeMap<StateID, Vec<PatternID>>, |
| 4433 | pattern_len: usize, |
| 4434 | ) -> Result<MatchStates<Vec<u32>>, BuildError> { |
| 4435 | let mut m = MatchStates::empty(pattern_len); |
| 4436 | for (_, pids) in matches.iter() { |
| 4437 | let start = PatternID::new(m.pattern_ids.len()) |
| 4438 | .map_err(|_| BuildError::too_many_match_pattern_ids())?; |
| 4439 | m.slices.push(start.as_u32()); |
| 4440 | // This is always correct since the number of patterns in a single |
| 4441 | // match state can never exceed maximum number of allowable |
| 4442 | // patterns. Why? Because a pattern can only appear once in a |
| 4443 | // particular match state, by construction. (And since our pattern |
| 4444 | // ID limit is one less than u32::MAX, we're guaranteed that the |
| 4445 | // length fits in a u32.) |
| 4446 | m.slices.push(u32::try_from(pids.len()).unwrap()); |
| 4447 | for &pid in pids { |
| 4448 | m.pattern_ids.push(pid.as_u32()); |
| 4449 | } |
| 4450 | } |
| 4451 | m.pattern_len = pattern_len; |
| 4452 | Ok(m) |
| 4453 | } |
| 4454 | |
| 4455 | fn new_with_map( |
| 4456 | &self, |
| 4457 | matches: &BTreeMap<StateID, Vec<PatternID>>, |
| 4458 | ) -> Result<MatchStates<Vec<u32>>, BuildError> { |
| 4459 | MatchStates::new(matches, self.pattern_len) |
| 4460 | } |
| 4461 | } |
| 4462 | |
| 4463 | impl<T: AsRef<[u32]>> MatchStates<T> { |
| 4464 | /// Writes a serialized form of these match states to the buffer given. If |
| 4465 | /// the buffer is too small, then an error is returned. To determine how |
| 4466 | /// big the buffer must be, use `write_to_len`. |
| 4467 | fn write_to<E: Endian>( |
| 4468 | &self, |
| 4469 | mut dst: &mut [u8], |
| 4470 | ) -> Result<usize, SerializeError> { |
| 4471 | let nwrite = self.write_to_len(); |
| 4472 | if dst.len() < nwrite { |
| 4473 | return Err(SerializeError::buffer_too_small("match states" )); |
| 4474 | } |
| 4475 | dst = &mut dst[..nwrite]; |
| 4476 | |
| 4477 | // write state ID length |
| 4478 | // Unwrap is OK since number of states is guaranteed to fit in a u32. |
| 4479 | E::write_u32(u32::try_from(self.len()).unwrap(), dst); |
| 4480 | dst = &mut dst[size_of::<u32>()..]; |
| 4481 | |
| 4482 | // write slice offset pairs |
| 4483 | for &pid in self.slices() { |
| 4484 | let n = wire::write_pattern_id::<E>(pid, &mut dst); |
| 4485 | dst = &mut dst[n..]; |
| 4486 | } |
| 4487 | |
| 4488 | // write unique pattern ID length |
| 4489 | // Unwrap is OK since number of patterns is guaranteed to fit in a u32. |
| 4490 | E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst); |
| 4491 | dst = &mut dst[size_of::<u32>()..]; |
| 4492 | |
| 4493 | // write pattern ID length |
| 4494 | // Unwrap is OK since we check at construction (and deserialization) |
| 4495 | // that the number of patterns is representable as a u32. |
| 4496 | E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst); |
| 4497 | dst = &mut dst[size_of::<u32>()..]; |
| 4498 | |
| 4499 | // write pattern IDs |
| 4500 | for &pid in self.pattern_ids() { |
| 4501 | let n = wire::write_pattern_id::<E>(pid, &mut dst); |
| 4502 | dst = &mut dst[n..]; |
| 4503 | } |
| 4504 | |
| 4505 | Ok(nwrite) |
| 4506 | } |
| 4507 | |
| 4508 | /// Returns the number of bytes the serialized form of these match states |
| 4509 | /// will use. |
| 4510 | fn write_to_len(&self) -> usize { |
| 4511 | size_of::<u32>() // match state length |
| 4512 | + (self.slices().len() * PatternID::SIZE) |
| 4513 | + size_of::<u32>() // unique pattern ID length |
| 4514 | + size_of::<u32>() // pattern ID length |
| 4515 | + (self.pattern_ids().len() * PatternID::SIZE) |
| 4516 | } |
| 4517 | |
| 4518 | /// Valides that the match state info is itself internally consistent and |
| 4519 | /// consistent with the recorded match state region in the given DFA. |
| 4520 | fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> { |
| 4521 | if self.len() != dfa.special.match_len(dfa.stride()) { |
| 4522 | return Err(DeserializeError::generic( |
| 4523 | "match state length mismatch" , |
| 4524 | )); |
| 4525 | } |
| 4526 | for si in 0..self.len() { |
| 4527 | let start = self.slices()[si * 2].as_usize(); |
| 4528 | let len = self.slices()[si * 2 + 1].as_usize(); |
| 4529 | if start >= self.pattern_ids().len() { |
| 4530 | return Err(DeserializeError::generic( |
| 4531 | "invalid pattern ID start offset" , |
| 4532 | )); |
| 4533 | } |
| 4534 | if start + len > self.pattern_ids().len() { |
| 4535 | return Err(DeserializeError::generic( |
| 4536 | "invalid pattern ID length" , |
| 4537 | )); |
| 4538 | } |
| 4539 | for mi in 0..len { |
| 4540 | let pid = self.pattern_id(si, mi); |
| 4541 | if pid.as_usize() >= self.pattern_len { |
| 4542 | return Err(DeserializeError::generic( |
| 4543 | "invalid pattern ID" , |
| 4544 | )); |
| 4545 | } |
| 4546 | } |
| 4547 | } |
| 4548 | Ok(()) |
| 4549 | } |
| 4550 | |
| 4551 | /// Converts these match states back into their map form. This is useful |
| 4552 | /// when shuffling states, as the normal MatchStates representation is not |
| 4553 | /// amenable to easy state swapping. But with this map, to swap id1 and |
| 4554 | /// id2, all you need to do is: |
| 4555 | /// |
| 4556 | /// if let Some(pids) = map.remove(&id1) { |
| 4557 | /// map.insert(id2, pids); |
| 4558 | /// } |
| 4559 | /// |
| 4560 | /// Once shuffling is done, use MatchStates::new to convert back. |
| 4561 | #[cfg (feature = "dfa-build" )] |
| 4562 | fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> { |
| 4563 | let mut map = BTreeMap::new(); |
| 4564 | for i in 0..self.len() { |
| 4565 | let mut pids = vec![]; |
| 4566 | for j in 0..self.pattern_len(i) { |
| 4567 | pids.push(self.pattern_id(i, j)); |
| 4568 | } |
| 4569 | map.insert(self.match_state_id(dfa, i), pids); |
| 4570 | } |
| 4571 | map |
| 4572 | } |
| 4573 | |
| 4574 | /// Converts these match states to a borrowed value. |
| 4575 | fn as_ref(&self) -> MatchStates<&'_ [u32]> { |
| 4576 | MatchStates { |
| 4577 | slices: self.slices.as_ref(), |
| 4578 | pattern_ids: self.pattern_ids.as_ref(), |
| 4579 | pattern_len: self.pattern_len, |
| 4580 | } |
| 4581 | } |
| 4582 | |
| 4583 | /// Converts these match states to an owned value. |
| 4584 | #[cfg (feature = "alloc" )] |
| 4585 | fn to_owned(&self) -> MatchStates<alloc::vec::Vec<u32>> { |
| 4586 | MatchStates { |
| 4587 | slices: self.slices.as_ref().to_vec(), |
| 4588 | pattern_ids: self.pattern_ids.as_ref().to_vec(), |
| 4589 | pattern_len: self.pattern_len, |
| 4590 | } |
| 4591 | } |
| 4592 | |
| 4593 | /// Returns the match state ID given the match state index. (Where the |
| 4594 | /// first match state corresponds to index 0.) |
| 4595 | /// |
| 4596 | /// This panics if there is no match state at the given index. |
| 4597 | fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID { |
| 4598 | assert!(dfa.special.matches(), "no match states to index" ); |
| 4599 | // This is one of the places where we rely on the fact that match |
| 4600 | // states are contiguous in the transition table. Namely, that the |
| 4601 | // first match state ID always corresponds to dfa.special.min_start. |
| 4602 | // From there, since we know the stride, we can compute the ID of any |
| 4603 | // match state given its index. |
| 4604 | let stride2 = u32::try_from(dfa.stride2()).unwrap(); |
| 4605 | let offset = index.checked_shl(stride2).unwrap(); |
| 4606 | let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap(); |
| 4607 | let sid = StateID::new(id).unwrap(); |
| 4608 | assert!(dfa.is_match_state(sid)); |
| 4609 | sid |
| 4610 | } |
| 4611 | |
| 4612 | /// Returns the pattern ID at the given match index for the given match |
| 4613 | /// state. |
| 4614 | /// |
| 4615 | /// The match state index is the state index minus the state index of the |
| 4616 | /// first match state in the DFA. |
| 4617 | /// |
| 4618 | /// The match index is the index of the pattern ID for the given state. |
| 4619 | /// The index must be less than `self.pattern_len(state_index)`. |
| 4620 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 4621 | fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID { |
| 4622 | self.pattern_id_slice(state_index)[match_index] |
| 4623 | } |
| 4624 | |
| 4625 | /// Returns the number of patterns in the given match state. |
| 4626 | /// |
| 4627 | /// The match state index is the state index minus the state index of the |
| 4628 | /// first match state in the DFA. |
| 4629 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 4630 | fn pattern_len(&self, state_index: usize) -> usize { |
| 4631 | self.slices()[state_index * 2 + 1].as_usize() |
| 4632 | } |
| 4633 | |
| 4634 | /// Returns all of the pattern IDs for the given match state index. |
| 4635 | /// |
| 4636 | /// The match state index is the state index minus the state index of the |
| 4637 | /// first match state in the DFA. |
| 4638 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 4639 | fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] { |
| 4640 | let start = self.slices()[state_index * 2].as_usize(); |
| 4641 | let len = self.pattern_len(state_index); |
| 4642 | &self.pattern_ids()[start..start + len] |
| 4643 | } |
| 4644 | |
| 4645 | /// Returns the pattern ID offset slice of u32 as a slice of PatternID. |
| 4646 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 4647 | fn slices(&self) -> &[PatternID] { |
| 4648 | wire::u32s_to_pattern_ids(self.slices.as_ref()) |
| 4649 | } |
| 4650 | |
| 4651 | /// Returns the total number of match states. |
| 4652 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 4653 | fn len(&self) -> usize { |
| 4654 | assert_eq!(0, self.slices().len() % 2); |
| 4655 | self.slices().len() / 2 |
| 4656 | } |
| 4657 | |
| 4658 | /// Returns the pattern ID slice of u32 as a slice of PatternID. |
| 4659 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 4660 | fn pattern_ids(&self) -> &[PatternID] { |
| 4661 | wire::u32s_to_pattern_ids(self.pattern_ids.as_ref()) |
| 4662 | } |
| 4663 | |
| 4664 | /// Return the memory usage, in bytes, of these match pairs. |
| 4665 | fn memory_usage(&self) -> usize { |
| 4666 | (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE |
| 4667 | } |
| 4668 | } |
| 4669 | |
| 4670 | /// A common set of flags for both dense and sparse DFAs. This primarily |
| 4671 | /// centralizes the serialization format of these flags at a bitset. |
| 4672 | #[derive (Clone, Copy, Debug)] |
| 4673 | pub(crate) struct Flags { |
| 4674 | /// Whether the DFA can match the empty string. When this is false, all |
| 4675 | /// matches returned by this DFA are guaranteed to have non-zero length. |
| 4676 | pub(crate) has_empty: bool, |
| 4677 | /// Whether the DFA should only produce matches with spans that correspond |
| 4678 | /// to valid UTF-8. This also includes omitting any zero-width matches that |
| 4679 | /// split the UTF-8 encoding of a codepoint. |
| 4680 | pub(crate) is_utf8: bool, |
| 4681 | /// Whether the DFA is always anchored or not, regardless of `Input` |
| 4682 | /// configuration. This is useful for avoiding a reverse scan even when |
| 4683 | /// executing unanchored searches. |
| 4684 | pub(crate) is_always_start_anchored: bool, |
| 4685 | } |
| 4686 | |
| 4687 | impl Flags { |
| 4688 | /// Creates a set of flags for a DFA from an NFA. |
| 4689 | /// |
| 4690 | /// N.B. This constructor was defined at the time of writing because all |
| 4691 | /// of the flags are derived directly from the NFA. If this changes in the |
| 4692 | /// future, we might be more thoughtful about how the `Flags` value is |
| 4693 | /// itself built. |
| 4694 | #[cfg (feature = "dfa-build" )] |
| 4695 | fn from_nfa(nfa: &thompson::NFA) -> Flags { |
| 4696 | Flags { |
| 4697 | has_empty: nfa.has_empty(), |
| 4698 | is_utf8: nfa.is_utf8(), |
| 4699 | is_always_start_anchored: nfa.is_always_start_anchored(), |
| 4700 | } |
| 4701 | } |
| 4702 | |
| 4703 | /// Deserializes the flags from the given slice. On success, this also |
| 4704 | /// returns the number of bytes read from the slice. |
| 4705 | pub(crate) fn from_bytes( |
| 4706 | slice: &[u8], |
| 4707 | ) -> Result<(Flags, usize), DeserializeError> { |
| 4708 | let (bits, nread) = wire::try_read_u32(slice, "flag bitset" )?; |
| 4709 | let flags = Flags { |
| 4710 | has_empty: bits & (1 << 0) != 0, |
| 4711 | is_utf8: bits & (1 << 1) != 0, |
| 4712 | is_always_start_anchored: bits & (1 << 2) != 0, |
| 4713 | }; |
| 4714 | Ok((flags, nread)) |
| 4715 | } |
| 4716 | |
| 4717 | /// Writes these flags to the given byte slice. If the buffer is too small, |
| 4718 | /// then an error is returned. To determine how big the buffer must be, |
| 4719 | /// use `write_to_len`. |
| 4720 | pub(crate) fn write_to<E: Endian>( |
| 4721 | &self, |
| 4722 | dst: &mut [u8], |
| 4723 | ) -> Result<usize, SerializeError> { |
| 4724 | fn bool_to_int(b: bool) -> u32 { |
| 4725 | if b { |
| 4726 | 1 |
| 4727 | } else { |
| 4728 | 0 |
| 4729 | } |
| 4730 | } |
| 4731 | |
| 4732 | let nwrite = self.write_to_len(); |
| 4733 | if dst.len() < nwrite { |
| 4734 | return Err(SerializeError::buffer_too_small("flag bitset" )); |
| 4735 | } |
| 4736 | let bits = (bool_to_int(self.has_empty) << 0) |
| 4737 | | (bool_to_int(self.is_utf8) << 1) |
| 4738 | | (bool_to_int(self.is_always_start_anchored) << 2); |
| 4739 | E::write_u32(bits, dst); |
| 4740 | Ok(nwrite) |
| 4741 | } |
| 4742 | |
| 4743 | /// Returns the number of bytes the serialized form of these flags |
| 4744 | /// will use. |
| 4745 | pub(crate) fn write_to_len(&self) -> usize { |
| 4746 | size_of::<u32>() |
| 4747 | } |
| 4748 | } |
| 4749 | |
| 4750 | /// An iterator over all states in a DFA. |
| 4751 | /// |
| 4752 | /// This iterator yields a tuple for each state. The first element of the |
| 4753 | /// tuple corresponds to a state's identifier, and the second element |
| 4754 | /// corresponds to the state itself (comprised of its transitions). |
| 4755 | /// |
| 4756 | /// `'a` corresponding to the lifetime of original DFA, `T` corresponds to |
| 4757 | /// the type of the transition table itself. |
| 4758 | pub(crate) struct StateIter<'a, T> { |
| 4759 | tt: &'a TransitionTable<T>, |
| 4760 | it: iter::Enumerate<slice::Chunks<'a, StateID>>, |
| 4761 | } |
| 4762 | |
| 4763 | impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> { |
| 4764 | type Item = State<'a>; |
| 4765 | |
| 4766 | fn next(&mut self) -> Option<State<'a>> { |
| 4767 | self.it.next().map(|(index: usize, _)| { |
| 4768 | let id: StateID = self.tt.to_state_id(index); |
| 4769 | self.tt.state(id) |
| 4770 | }) |
| 4771 | } |
| 4772 | } |
| 4773 | |
| 4774 | /// An immutable representation of a single DFA state. |
| 4775 | /// |
| 4776 | /// `'a` correspondings to the lifetime of a DFA's transition table. |
| 4777 | pub(crate) struct State<'a> { |
| 4778 | id: StateID, |
| 4779 | stride2: usize, |
| 4780 | transitions: &'a [StateID], |
| 4781 | } |
| 4782 | |
| 4783 | impl<'a> State<'a> { |
| 4784 | /// Return an iterator over all transitions in this state. This yields |
| 4785 | /// a number of transitions equivalent to the alphabet length of the |
| 4786 | /// corresponding DFA. |
| 4787 | /// |
| 4788 | /// Each transition is represented by a tuple. The first element is |
| 4789 | /// the input byte for that transition and the second element is the |
| 4790 | /// transitions itself. |
| 4791 | pub(crate) fn transitions(&self) -> StateTransitionIter<'_> { |
| 4792 | StateTransitionIter { |
| 4793 | len: self.transitions.len(), |
| 4794 | it: self.transitions.iter().enumerate(), |
| 4795 | } |
| 4796 | } |
| 4797 | |
| 4798 | /// Return an iterator over a sparse representation of the transitions in |
| 4799 | /// this state. Only non-dead transitions are returned. |
| 4800 | /// |
| 4801 | /// The "sparse" representation in this case corresponds to a sequence of |
| 4802 | /// triples. The first two elements of the triple comprise an inclusive |
| 4803 | /// byte range while the last element corresponds to the transition taken |
| 4804 | /// for all bytes in the range. |
| 4805 | /// |
| 4806 | /// This is somewhat more condensed than the classical sparse |
| 4807 | /// representation (where you have an element for every non-dead |
| 4808 | /// transition), but in practice, checking if a byte is in a range is very |
| 4809 | /// cheap and using ranges tends to conserve quite a bit more space. |
| 4810 | pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> { |
| 4811 | StateSparseTransitionIter { dense: self.transitions(), cur: None } |
| 4812 | } |
| 4813 | |
| 4814 | /// Returns the identifier for this state. |
| 4815 | pub(crate) fn id(&self) -> StateID { |
| 4816 | self.id |
| 4817 | } |
| 4818 | |
| 4819 | /// Analyzes this state to determine whether it can be accelerated. If so, |
| 4820 | /// it returns an accelerator that contains at least one byte. |
| 4821 | #[cfg (feature = "dfa-build" )] |
| 4822 | fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> { |
| 4823 | // We just try to add bytes to our accelerator. Once adding fails |
| 4824 | // (because we've added too many bytes), then give up. |
| 4825 | let mut accel = Accel::new(); |
| 4826 | for (class, id) in self.transitions() { |
| 4827 | if id == self.id() { |
| 4828 | continue; |
| 4829 | } |
| 4830 | for unit in classes.elements(class) { |
| 4831 | if let Some(byte) = unit.as_u8() { |
| 4832 | if !accel.add(byte) { |
| 4833 | return None; |
| 4834 | } |
| 4835 | } |
| 4836 | } |
| 4837 | } |
| 4838 | if accel.is_empty() { |
| 4839 | None |
| 4840 | } else { |
| 4841 | Some(accel) |
| 4842 | } |
| 4843 | } |
| 4844 | } |
| 4845 | |
| 4846 | impl<'a> fmt::Debug for State<'a> { |
| 4847 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 4848 | for (i: usize, (start: Unit, end: Unit, sid: StateID)) in self.sparse_transitions().enumerate() { |
| 4849 | let id: usize = if f.alternate() { |
| 4850 | sid.as_usize() |
| 4851 | } else { |
| 4852 | sid.as_usize() >> self.stride2 |
| 4853 | }; |
| 4854 | if i > 0 { |
| 4855 | write!(f, ", " )?; |
| 4856 | } |
| 4857 | if start == end { |
| 4858 | write!(f, " {:?} => {:?}" , start, id)?; |
| 4859 | } else { |
| 4860 | write!(f, " {:?}- {:?} => {:?}" , start, end, id)?; |
| 4861 | } |
| 4862 | } |
| 4863 | Ok(()) |
| 4864 | } |
| 4865 | } |
| 4866 | |
| 4867 | /// An iterator over all transitions in a single DFA state. This yields |
| 4868 | /// a number of transitions equivalent to the alphabet length of the |
| 4869 | /// corresponding DFA. |
| 4870 | /// |
| 4871 | /// Each transition is represented by a tuple. The first element is the input |
| 4872 | /// byte for that transition and the second element is the transition itself. |
| 4873 | #[derive (Debug)] |
| 4874 | pub(crate) struct StateTransitionIter<'a> { |
| 4875 | len: usize, |
| 4876 | it: iter::Enumerate<slice::Iter<'a, StateID>>, |
| 4877 | } |
| 4878 | |
| 4879 | impl<'a> Iterator for StateTransitionIter<'a> { |
| 4880 | type Item = (alphabet::Unit, StateID); |
| 4881 | |
| 4882 | fn next(&mut self) -> Option<(alphabet::Unit, StateID)> { |
| 4883 | self.it.next().map(|(i: usize, &id: StateID)| { |
| 4884 | let unit: Unit = if i + 1 == self.len { |
| 4885 | alphabet::Unit::eoi(num_byte_equiv_classes:i) |
| 4886 | } else { |
| 4887 | let b: u8 = u8::try_from(i) |
| 4888 | .expect(msg:"raw byte alphabet is never exceeded" ); |
| 4889 | alphabet::Unit::u8(byte:b) |
| 4890 | }; |
| 4891 | (unit, id) |
| 4892 | }) |
| 4893 | } |
| 4894 | } |
| 4895 | |
| 4896 | /// An iterator over all non-DEAD transitions in a single DFA state using a |
| 4897 | /// sparse representation. |
| 4898 | /// |
| 4899 | /// Each transition is represented by a triple. The first two elements of the |
| 4900 | /// triple comprise an inclusive byte range while the last element corresponds |
| 4901 | /// to the transition taken for all bytes in the range. |
| 4902 | /// |
| 4903 | /// As a convenience, this always returns `alphabet::Unit` values of the same |
| 4904 | /// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte, |
| 4905 | /// byte) and (EOI, EOI) values are yielded. |
| 4906 | #[derive (Debug)] |
| 4907 | pub(crate) struct StateSparseTransitionIter<'a> { |
| 4908 | dense: StateTransitionIter<'a>, |
| 4909 | cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>, |
| 4910 | } |
| 4911 | |
| 4912 | impl<'a> Iterator for StateSparseTransitionIter<'a> { |
| 4913 | type Item = (alphabet::Unit, alphabet::Unit, StateID); |
| 4914 | |
| 4915 | fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> { |
| 4916 | while let Some((unit, next)) = self.dense.next() { |
| 4917 | let (prev_start, prev_end, prev_next) = match self.cur { |
| 4918 | Some(t) => t, |
| 4919 | None => { |
| 4920 | self.cur = Some((unit, unit, next)); |
| 4921 | continue; |
| 4922 | } |
| 4923 | }; |
| 4924 | if prev_next == next && !unit.is_eoi() { |
| 4925 | self.cur = Some((prev_start, unit, prev_next)); |
| 4926 | } else { |
| 4927 | self.cur = Some((unit, unit, next)); |
| 4928 | if prev_next != DEAD { |
| 4929 | return Some((prev_start, prev_end, prev_next)); |
| 4930 | } |
| 4931 | } |
| 4932 | } |
| 4933 | if let Some((start, end, next)) = self.cur.take() { |
| 4934 | if next != DEAD { |
| 4935 | return Some((start, end, next)); |
| 4936 | } |
| 4937 | } |
| 4938 | None |
| 4939 | } |
| 4940 | } |
| 4941 | |
| 4942 | /// An error that occurred during the construction of a DFA. |
| 4943 | /// |
| 4944 | /// This error does not provide many introspection capabilities. There are |
| 4945 | /// generally only two things you can do with it: |
| 4946 | /// |
| 4947 | /// * Obtain a human readable message via its `std::fmt::Display` impl. |
| 4948 | /// * Access an underlying [`nfa::thompson::BuildError`](thompson::BuildError) |
| 4949 | /// type from its `source` method via the `std::error::Error` trait. This error |
| 4950 | /// only occurs when using convenience routines for building a DFA directly |
| 4951 | /// from a pattern string. |
| 4952 | /// |
| 4953 | /// When the `std` feature is enabled, this implements the `std::error::Error` |
| 4954 | /// trait. |
| 4955 | #[cfg (feature = "dfa-build" )] |
| 4956 | #[derive (Clone, Debug)] |
| 4957 | pub struct BuildError { |
| 4958 | kind: BuildErrorKind, |
| 4959 | } |
| 4960 | |
| 4961 | #[cfg (feature = "dfa-build" )] |
| 4962 | impl BuildError { |
| 4963 | /// Returns true if and only if this error corresponds to an error with DFA |
| 4964 | /// construction that occurred because of exceeding a size limit. |
| 4965 | /// |
| 4966 | /// While this can occur when size limits like [`Config::dfa_size_limit`] |
| 4967 | /// or [`Config::determinize_size_limit`] are exceeded, this can also occur |
| 4968 | /// when the number of states or patterns exceeds a hard-coded maximum. |
| 4969 | /// (Where these maximums are derived based on the values representable by |
| 4970 | /// [`StateID`] and [`PatternID`].) |
| 4971 | /// |
| 4972 | /// This predicate is useful in contexts where you want to distinguish |
| 4973 | /// between errors related to something provided by an end user (for |
| 4974 | /// example, an invalid regex pattern) and errors related to configured |
| 4975 | /// heuristics. For example, building a DFA might be an optimization that |
| 4976 | /// you want to skip if construction fails because of an exceeded size |
| 4977 | /// limit, but where you want to bubble up an error if it fails for some |
| 4978 | /// other reason. |
| 4979 | /// |
| 4980 | /// # Example |
| 4981 | /// |
| 4982 | /// ``` |
| 4983 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 4984 | /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039 |
| 4985 | /// use regex_automata::{dfa::{dense, Automaton}, Input}; |
| 4986 | /// |
| 4987 | /// let err = dense::Builder::new() |
| 4988 | /// .configure(dense::Config::new() |
| 4989 | /// .determinize_size_limit(Some(100_000)) |
| 4990 | /// ) |
| 4991 | /// .build(r"\w{20}") |
| 4992 | /// .unwrap_err(); |
| 4993 | /// // This error occurs because a size limit was exceeded. |
| 4994 | /// // But things are otherwise valid. |
| 4995 | /// assert!(err.is_size_limit_exceeded()); |
| 4996 | /// |
| 4997 | /// let err = dense::Builder::new() |
| 4998 | /// .build(r"\bxyz\b") |
| 4999 | /// .unwrap_err(); |
| 5000 | /// // This error occurs because a Unicode word boundary |
| 5001 | /// // was used without enabling heuristic support for it. |
| 5002 | /// // So... not related to size limits. |
| 5003 | /// assert!(!err.is_size_limit_exceeded()); |
| 5004 | /// |
| 5005 | /// let err = dense::Builder::new() |
| 5006 | /// .build(r"(xyz") |
| 5007 | /// .unwrap_err(); |
| 5008 | /// // This error occurs because the pattern is invalid. |
| 5009 | /// // So... not related to size limits. |
| 5010 | /// assert!(!err.is_size_limit_exceeded()); |
| 5011 | /// |
| 5012 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5013 | /// ``` |
| 5014 | #[inline ] |
| 5015 | pub fn is_size_limit_exceeded(&self) -> bool { |
| 5016 | use self::BuildErrorKind::*; |
| 5017 | |
| 5018 | match self.kind { |
| 5019 | NFA(_) | Unsupported(_) => false, |
| 5020 | TooManyStates |
| 5021 | | TooManyStartStates |
| 5022 | | TooManyMatchPatternIDs |
| 5023 | | DFAExceededSizeLimit { .. } |
| 5024 | | DeterminizeExceededSizeLimit { .. } => true, |
| 5025 | } |
| 5026 | } |
| 5027 | } |
| 5028 | |
| 5029 | /// The kind of error that occurred during the construction of a DFA. |
| 5030 | /// |
| 5031 | /// Note that this error is non-exhaustive. Adding new variants is not |
| 5032 | /// considered a breaking change. |
| 5033 | #[cfg (feature = "dfa-build" )] |
| 5034 | #[derive (Clone, Debug)] |
| 5035 | enum BuildErrorKind { |
| 5036 | /// An error that occurred while constructing an NFA as a precursor step |
| 5037 | /// before a DFA is compiled. |
| 5038 | NFA(thompson::BuildError), |
| 5039 | /// An error that occurred because an unsupported regex feature was used. |
| 5040 | /// The message string describes which unsupported feature was used. |
| 5041 | /// |
| 5042 | /// The primary regex feature that is unsupported by DFAs is the Unicode |
| 5043 | /// word boundary look-around assertion (`\b`). This can be worked around |
| 5044 | /// by either using an ASCII word boundary (`(?-u:\b)`) or by enabling |
| 5045 | /// Unicode word boundaries when building a DFA. |
| 5046 | Unsupported(&'static str), |
| 5047 | /// An error that occurs if too many states are produced while building a |
| 5048 | /// DFA. |
| 5049 | TooManyStates, |
| 5050 | /// An error that occurs if too many start states are needed while building |
| 5051 | /// a DFA. |
| 5052 | /// |
| 5053 | /// This is a kind of oddball error that occurs when building a DFA with |
| 5054 | /// start states enabled for each pattern and enough patterns to cause |
| 5055 | /// the table of start states to overflow `usize`. |
| 5056 | TooManyStartStates, |
| 5057 | /// This is another oddball error that can occur if there are too many |
| 5058 | /// patterns spread out across too many match states. |
| 5059 | TooManyMatchPatternIDs, |
| 5060 | /// An error that occurs if the DFA got too big during determinization. |
| 5061 | DFAExceededSizeLimit { limit: usize }, |
| 5062 | /// An error that occurs if auxiliary storage (not the DFA) used during |
| 5063 | /// determinization got too big. |
| 5064 | DeterminizeExceededSizeLimit { limit: usize }, |
| 5065 | } |
| 5066 | |
| 5067 | #[cfg (feature = "dfa-build" )] |
| 5068 | impl BuildError { |
| 5069 | /// Return the kind of this error. |
| 5070 | fn kind(&self) -> &BuildErrorKind { |
| 5071 | &self.kind |
| 5072 | } |
| 5073 | |
| 5074 | pub(crate) fn nfa(err: thompson::BuildError) -> BuildError { |
| 5075 | BuildError { kind: BuildErrorKind::NFA(err) } |
| 5076 | } |
| 5077 | |
| 5078 | pub(crate) fn unsupported_dfa_word_boundary_unicode() -> BuildError { |
| 5079 | let msg = "cannot build DFAs for regexes with Unicode word \ |
| 5080 | boundaries; switch to ASCII word boundaries, or \ |
| 5081 | heuristically enable Unicode word boundaries or use a \ |
| 5082 | different regex engine" ; |
| 5083 | BuildError { kind: BuildErrorKind::Unsupported(msg) } |
| 5084 | } |
| 5085 | |
| 5086 | pub(crate) fn too_many_states() -> BuildError { |
| 5087 | BuildError { kind: BuildErrorKind::TooManyStates } |
| 5088 | } |
| 5089 | |
| 5090 | pub(crate) fn too_many_start_states() -> BuildError { |
| 5091 | BuildError { kind: BuildErrorKind::TooManyStartStates } |
| 5092 | } |
| 5093 | |
| 5094 | pub(crate) fn too_many_match_pattern_ids() -> BuildError { |
| 5095 | BuildError { kind: BuildErrorKind::TooManyMatchPatternIDs } |
| 5096 | } |
| 5097 | |
| 5098 | pub(crate) fn dfa_exceeded_size_limit(limit: usize) -> BuildError { |
| 5099 | BuildError { kind: BuildErrorKind::DFAExceededSizeLimit { limit } } |
| 5100 | } |
| 5101 | |
| 5102 | pub(crate) fn determinize_exceeded_size_limit(limit: usize) -> BuildError { |
| 5103 | BuildError { |
| 5104 | kind: BuildErrorKind::DeterminizeExceededSizeLimit { limit }, |
| 5105 | } |
| 5106 | } |
| 5107 | } |
| 5108 | |
| 5109 | #[cfg (all(feature = "std" , feature = "dfa-build" ))] |
| 5110 | impl std::error::Error for BuildError { |
| 5111 | fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { |
| 5112 | match self.kind() { |
| 5113 | BuildErrorKind::NFA(ref err) => Some(err), |
| 5114 | _ => None, |
| 5115 | } |
| 5116 | } |
| 5117 | } |
| 5118 | |
| 5119 | #[cfg (feature = "dfa-build" )] |
| 5120 | impl core::fmt::Display for BuildError { |
| 5121 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 5122 | match self.kind() { |
| 5123 | BuildErrorKind::NFA(_) => write!(f, "error building NFA" ), |
| 5124 | BuildErrorKind::Unsupported(ref msg) => { |
| 5125 | write!(f, "unsupported regex feature for DFAs: {}" , msg) |
| 5126 | } |
| 5127 | BuildErrorKind::TooManyStates => write!( |
| 5128 | f, |
| 5129 | "number of DFA states exceeds limit of {}" , |
| 5130 | StateID::LIMIT, |
| 5131 | ), |
| 5132 | BuildErrorKind::TooManyStartStates => { |
| 5133 | let stride = Start::len(); |
| 5134 | // The start table has `stride` entries for starting states for |
| 5135 | // the entire DFA, and then `stride` entries for each pattern |
| 5136 | // if start states for each pattern are enabled (which is the |
| 5137 | // only way this error can occur). Thus, the total number of |
| 5138 | // patterns that can fit in the table is `stride` less than |
| 5139 | // what we can allocate. |
| 5140 | let max = usize::try_from(core::isize::MAX).unwrap(); |
| 5141 | let limit = (max - stride) / stride; |
| 5142 | write!( |
| 5143 | f, |
| 5144 | "compiling DFA with start states exceeds pattern \ |
| 5145 | pattern limit of {}" , |
| 5146 | limit, |
| 5147 | ) |
| 5148 | } |
| 5149 | BuildErrorKind::TooManyMatchPatternIDs => write!( |
| 5150 | f, |
| 5151 | "compiling DFA with total patterns in all match states \ |
| 5152 | exceeds limit of {}" , |
| 5153 | PatternID::LIMIT, |
| 5154 | ), |
| 5155 | BuildErrorKind::DFAExceededSizeLimit { limit } => write!( |
| 5156 | f, |
| 5157 | "DFA exceeded size limit of {:?} during determinization" , |
| 5158 | limit, |
| 5159 | ), |
| 5160 | BuildErrorKind::DeterminizeExceededSizeLimit { limit } => { |
| 5161 | write!(f, "determinization exceeded size limit of {:?}" , limit) |
| 5162 | } |
| 5163 | } |
| 5164 | } |
| 5165 | } |
| 5166 | |
| 5167 | #[cfg (all(test, feature = "syntax" , feature = "dfa-build" ))] |
| 5168 | mod tests { |
| 5169 | use crate::{Input, MatchError}; |
| 5170 | |
| 5171 | use super::*; |
| 5172 | |
| 5173 | #[test ] |
| 5174 | fn errors_with_unicode_word_boundary() { |
| 5175 | let pattern = r"\b" ; |
| 5176 | assert!(Builder::new().build(pattern).is_err()); |
| 5177 | } |
| 5178 | |
| 5179 | #[test ] |
| 5180 | fn roundtrip_never_match() { |
| 5181 | let dfa = DFA::never_match().unwrap(); |
| 5182 | let (buf, _) = dfa.to_bytes_native_endian(); |
| 5183 | let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0; |
| 5184 | |
| 5185 | assert_eq!(None, dfa.try_search_fwd(&Input::new("foo12345" )).unwrap()); |
| 5186 | } |
| 5187 | |
| 5188 | #[test ] |
| 5189 | fn roundtrip_always_match() { |
| 5190 | use crate::HalfMatch; |
| 5191 | |
| 5192 | let dfa = DFA::always_match().unwrap(); |
| 5193 | let (buf, _) = dfa.to_bytes_native_endian(); |
| 5194 | let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0; |
| 5195 | |
| 5196 | assert_eq!( |
| 5197 | Some(HalfMatch::must(0, 0)), |
| 5198 | dfa.try_search_fwd(&Input::new("foo12345" )).unwrap() |
| 5199 | ); |
| 5200 | } |
| 5201 | |
| 5202 | // See the analogous test in src/hybrid/dfa.rs. |
| 5203 | #[test ] |
| 5204 | fn heuristic_unicode_reverse() { |
| 5205 | let dfa = DFA::builder() |
| 5206 | .configure(DFA::config().unicode_word_boundary(true)) |
| 5207 | .thompson(thompson::Config::new().reverse(true)) |
| 5208 | .build(r"\b[0-9]+\b" ) |
| 5209 | .unwrap(); |
| 5210 | |
| 5211 | let input = Input::new("β123" ).range(2..); |
| 5212 | let expected = MatchError::quit(0xB2, 1); |
| 5213 | let got = dfa.try_search_rev(&input); |
| 5214 | assert_eq!(Err(expected), got); |
| 5215 | |
| 5216 | let input = Input::new("123β" ).range(..3); |
| 5217 | let expected = MatchError::quit(0xCE, 3); |
| 5218 | let got = dfa.try_search_rev(&input); |
| 5219 | assert_eq!(Err(expected), got); |
| 5220 | } |
| 5221 | } |
| 5222 | |