| 1 | /*! |
| 2 | Types and routines that support the wire format of finite automata. |
| 3 | |
| 4 | Currently, this module just exports a few error types and some small helpers |
| 5 | for deserializing [dense DFAs](crate::dfa::dense::DFA) using correct alignment. |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | A collection of helper functions, types and traits for serializing automata. |
| 10 | |
| 11 | This crate defines its own bespoke serialization mechanism for some structures |
| 12 | provided in the public API, namely, DFAs. A bespoke mechanism was developed |
| 13 | primarily because structures like automata demand a specific binary format. |
| 14 | Attempting to encode their rich structure in an existing serialization |
| 15 | format is just not feasible. Moreover, the format for each structure is |
| 16 | generally designed such that deserialization is cheap. More specifically, that |
| 17 | deserialization can be done in constant time. (The idea being that you can |
| 18 | embed it into your binary or mmap it, and then use it immediately.) |
| 19 | |
| 20 | In order to achieve this, the dense and sparse DFAs in this crate use an |
| 21 | in-memory representation that very closely corresponds to its binary serialized |
| 22 | form. This pervades and complicates everything, and in some cases, requires |
| 23 | dealing with alignment and reasoning about safety. |
| 24 | |
| 25 | This technique does have major advantages. In particular, it permits doing |
| 26 | the potentially costly work of compiling a finite state machine in an offline |
| 27 | manner, and then loading it at runtime not only without having to re-compile |
| 28 | the regex, but even without the code required to do the compilation. This, for |
| 29 | example, permits one to use a pre-compiled DFA not only in environments without |
| 30 | Rust's standard library, but also in environments without a heap. |
| 31 | |
| 32 | In the code below, whenever we insert some kind of padding, it's to enforce a |
| 33 | 4-byte alignment, unless otherwise noted. Namely, u32 is the only state ID type |
| 34 | supported. (In a previous version of this library, DFAs were generic over the |
| 35 | state ID representation.) |
| 36 | |
| 37 | Also, serialization generally requires the caller to specify endianness, |
| 38 | where as deserialization always assumes native endianness (otherwise cheap |
| 39 | deserialization would be impossible). This implies that serializing a structure |
| 40 | generally requires serializing both its big-endian and little-endian variants, |
| 41 | and then loading the correct one based on the target's endianness. |
| 42 | */ |
| 43 | |
| 44 | use core::{cmp, mem::size_of}; |
| 45 | |
| 46 | #[cfg (feature = "alloc" )] |
| 47 | use alloc::{vec, vec::Vec}; |
| 48 | |
| 49 | use crate::util::{ |
| 50 | int::Pointer, |
| 51 | primitives::{PatternID, PatternIDError, StateID, StateIDError}, |
| 52 | }; |
| 53 | |
| 54 | /// A hack to align a smaller type `B` with a bigger type `T`. |
| 55 | /// |
| 56 | /// The usual use of this is with `B = [u8]` and `T = u32`. That is, |
| 57 | /// it permits aligning a sequence of bytes on a 4-byte boundary. This |
| 58 | /// is useful in contexts where one wants to embed a serialized [dense |
| 59 | /// DFA](crate::dfa::dense::DFA) into a Rust a program while guaranteeing the |
| 60 | /// alignment required for the DFA. |
| 61 | /// |
| 62 | /// See [`dense::DFA::from_bytes`](crate::dfa::dense::DFA::from_bytes) for an |
| 63 | /// example of how to use this type. |
| 64 | #[repr (C)] |
| 65 | #[derive (Debug)] |
| 66 | pub struct AlignAs<B: ?Sized, T> { |
| 67 | /// A zero-sized field indicating the alignment we want. |
| 68 | pub _align: [T; 0], |
| 69 | /// A possibly non-sized field containing a sequence of bytes. |
| 70 | pub bytes: B, |
| 71 | } |
| 72 | |
| 73 | /// An error that occurs when serializing an object from this crate. |
| 74 | /// |
| 75 | /// Serialization, as used in this crate, universally refers to the process |
| 76 | /// of transforming a structure (like a DFA) into a custom binary format |
| 77 | /// represented by `&[u8]`. To this end, serialization is generally infallible. |
| 78 | /// However, it can fail when caller provided buffer sizes are too small. When |
| 79 | /// that occurs, a serialization error is reported. |
| 80 | /// |
| 81 | /// A `SerializeError` provides no introspection capabilities. Its only |
| 82 | /// supported operation is conversion to a human readable error message. |
| 83 | /// |
| 84 | /// This error type implements the `std::error::Error` trait only when the |
| 85 | /// `std` feature is enabled. Otherwise, this type is defined in all |
| 86 | /// configurations. |
| 87 | #[derive (Debug)] |
| 88 | pub struct SerializeError { |
| 89 | /// The name of the thing that a buffer is too small for. |
| 90 | /// |
| 91 | /// Currently, the only kind of serialization error is one that is |
| 92 | /// committed by a caller: providing a destination buffer that is too |
| 93 | /// small to fit the serialized object. This makes sense conceptually, |
| 94 | /// since every valid inhabitant of a type should be serializable. |
| 95 | /// |
| 96 | /// This is somewhat exposed in the public API of this crate. For example, |
| 97 | /// the `to_bytes_{big,little}_endian` APIs return a `Vec<u8>` and are |
| 98 | /// guaranteed to never panic or error. This is only possible because the |
| 99 | /// implementation guarantees that it will allocate a `Vec<u8>` that is |
| 100 | /// big enough. |
| 101 | /// |
| 102 | /// In summary, if a new serialization error kind needs to be added, then |
| 103 | /// it will need careful consideration. |
| 104 | what: &'static str, |
| 105 | } |
| 106 | |
| 107 | impl SerializeError { |
| 108 | pub(crate) fn buffer_too_small(what: &'static str) -> SerializeError { |
| 109 | SerializeError { what } |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | impl core::fmt::Display for SerializeError { |
| 114 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 115 | write!(f, "destination buffer is too small to write {}" , self.what) |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | #[cfg (feature = "std" )] |
| 120 | impl std::error::Error for SerializeError {} |
| 121 | |
| 122 | /// An error that occurs when deserializing an object defined in this crate. |
| 123 | /// |
| 124 | /// Serialization, as used in this crate, universally refers to the process |
| 125 | /// of transforming a structure (like a DFA) into a custom binary format |
| 126 | /// represented by `&[u8]`. Deserialization, then, refers to the process of |
| 127 | /// cheaply converting this binary format back to the object's in-memory |
| 128 | /// representation as defined in this crate. To the extent possible, |
| 129 | /// deserialization will report this error whenever this process fails. |
| 130 | /// |
| 131 | /// A `DeserializeError` provides no introspection capabilities. Its only |
| 132 | /// supported operation is conversion to a human readable error message. |
| 133 | /// |
| 134 | /// This error type implements the `std::error::Error` trait only when the |
| 135 | /// `std` feature is enabled. Otherwise, this type is defined in all |
| 136 | /// configurations. |
| 137 | #[derive (Debug)] |
| 138 | pub struct DeserializeError(DeserializeErrorKind); |
| 139 | |
| 140 | #[derive (Debug)] |
| 141 | enum DeserializeErrorKind { |
| 142 | Generic { msg: &'static str }, |
| 143 | BufferTooSmall { what: &'static str }, |
| 144 | InvalidUsize { what: &'static str }, |
| 145 | VersionMismatch { expected: u32, found: u32 }, |
| 146 | EndianMismatch { expected: u32, found: u32 }, |
| 147 | AlignmentMismatch { alignment: usize, address: usize }, |
| 148 | LabelMismatch { expected: &'static str }, |
| 149 | ArithmeticOverflow { what: &'static str }, |
| 150 | PatternID { err: PatternIDError, what: &'static str }, |
| 151 | StateID { err: StateIDError, what: &'static str }, |
| 152 | } |
| 153 | |
| 154 | impl DeserializeError { |
| 155 | pub(crate) fn generic(msg: &'static str) -> DeserializeError { |
| 156 | DeserializeError(DeserializeErrorKind::Generic { msg }) |
| 157 | } |
| 158 | |
| 159 | pub(crate) fn buffer_too_small(what: &'static str) -> DeserializeError { |
| 160 | DeserializeError(DeserializeErrorKind::BufferTooSmall { what }) |
| 161 | } |
| 162 | |
| 163 | fn invalid_usize(what: &'static str) -> DeserializeError { |
| 164 | DeserializeError(DeserializeErrorKind::InvalidUsize { what }) |
| 165 | } |
| 166 | |
| 167 | fn version_mismatch(expected: u32, found: u32) -> DeserializeError { |
| 168 | DeserializeError(DeserializeErrorKind::VersionMismatch { |
| 169 | expected, |
| 170 | found, |
| 171 | }) |
| 172 | } |
| 173 | |
| 174 | fn endian_mismatch(expected: u32, found: u32) -> DeserializeError { |
| 175 | DeserializeError(DeserializeErrorKind::EndianMismatch { |
| 176 | expected, |
| 177 | found, |
| 178 | }) |
| 179 | } |
| 180 | |
| 181 | fn alignment_mismatch( |
| 182 | alignment: usize, |
| 183 | address: usize, |
| 184 | ) -> DeserializeError { |
| 185 | DeserializeError(DeserializeErrorKind::AlignmentMismatch { |
| 186 | alignment, |
| 187 | address, |
| 188 | }) |
| 189 | } |
| 190 | |
| 191 | fn label_mismatch(expected: &'static str) -> DeserializeError { |
| 192 | DeserializeError(DeserializeErrorKind::LabelMismatch { expected }) |
| 193 | } |
| 194 | |
| 195 | fn arithmetic_overflow(what: &'static str) -> DeserializeError { |
| 196 | DeserializeError(DeserializeErrorKind::ArithmeticOverflow { what }) |
| 197 | } |
| 198 | |
| 199 | fn pattern_id_error( |
| 200 | err: PatternIDError, |
| 201 | what: &'static str, |
| 202 | ) -> DeserializeError { |
| 203 | DeserializeError(DeserializeErrorKind::PatternID { err, what }) |
| 204 | } |
| 205 | |
| 206 | pub(crate) fn state_id_error( |
| 207 | err: StateIDError, |
| 208 | what: &'static str, |
| 209 | ) -> DeserializeError { |
| 210 | DeserializeError(DeserializeErrorKind::StateID { err, what }) |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | #[cfg (feature = "std" )] |
| 215 | impl std::error::Error for DeserializeError {} |
| 216 | |
| 217 | impl core::fmt::Display for DeserializeError { |
| 218 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 219 | use self::DeserializeErrorKind::*; |
| 220 | |
| 221 | match self.0 { |
| 222 | Generic { msg } => write!(f, " {}" , msg), |
| 223 | BufferTooSmall { what } => { |
| 224 | write!(f, "buffer is too small to read {}" , what) |
| 225 | } |
| 226 | InvalidUsize { what } => { |
| 227 | write!(f, " {} is too big to fit in a usize" , what) |
| 228 | } |
| 229 | VersionMismatch { expected, found } => write!( |
| 230 | f, |
| 231 | "unsupported version: \ |
| 232 | expected version {} but found version {}" , |
| 233 | expected, found, |
| 234 | ), |
| 235 | EndianMismatch { expected, found } => write!( |
| 236 | f, |
| 237 | "endianness mismatch: expected 0x {:X} but got 0x {:X}. \ |
| 238 | (Are you trying to load an object serialized with a \ |
| 239 | different endianness?)" , |
| 240 | expected, found, |
| 241 | ), |
| 242 | AlignmentMismatch { alignment, address } => write!( |
| 243 | f, |
| 244 | "alignment mismatch: slice starts at address \ |
| 245 | 0x {:X}, which is not aligned to a {} byte boundary" , |
| 246 | address, alignment, |
| 247 | ), |
| 248 | LabelMismatch { expected } => write!( |
| 249 | f, |
| 250 | "label mismatch: start of serialized object should \ |
| 251 | contain a NUL terminated {:?} label, but a different \ |
| 252 | label was found" , |
| 253 | expected, |
| 254 | ), |
| 255 | ArithmeticOverflow { what } => { |
| 256 | write!(f, "arithmetic overflow for {}" , what) |
| 257 | } |
| 258 | PatternID { ref err, what } => { |
| 259 | write!(f, "failed to read pattern ID for {}: {}" , what, err) |
| 260 | } |
| 261 | StateID { ref err, what } => { |
| 262 | write!(f, "failed to read state ID for {}: {}" , what, err) |
| 263 | } |
| 264 | } |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | /// Safely converts a `&[u32]` to `&[StateID]` with zero cost. |
| 269 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 270 | pub(crate) fn u32s_to_state_ids(slice: &[u32]) -> &[StateID] { |
| 271 | // SAFETY: This is safe because StateID is defined to have the same memory |
| 272 | // representation as a u32 (it is repr(transparent)). While not every u32 |
| 273 | // is a "valid" StateID, callers are not permitted to rely on the validity |
| 274 | // of StateIDs for memory safety. It can only lead to logical errors. (This |
| 275 | // is why StateID::new_unchecked is safe.) |
| 276 | unsafe { |
| 277 | core::slice::from_raw_parts( |
| 278 | data:slice.as_ptr().cast::<StateID>(), |
| 279 | slice.len(), |
| 280 | ) |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | /// Safely converts a `&mut [u32]` to `&mut [StateID]` with zero cost. |
| 285 | pub(crate) fn u32s_to_state_ids_mut(slice: &mut [u32]) -> &mut [StateID] { |
| 286 | // SAFETY: This is safe because StateID is defined to have the same memory |
| 287 | // representation as a u32 (it is repr(transparent)). While not every u32 |
| 288 | // is a "valid" StateID, callers are not permitted to rely on the validity |
| 289 | // of StateIDs for memory safety. It can only lead to logical errors. (This |
| 290 | // is why StateID::new_unchecked is safe.) |
| 291 | unsafe { |
| 292 | core::slice::from_raw_parts_mut( |
| 293 | data:slice.as_mut_ptr().cast::<StateID>(), |
| 294 | slice.len(), |
| 295 | ) |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | /// Safely converts a `&[u32]` to `&[PatternID]` with zero cost. |
| 300 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 301 | pub(crate) fn u32s_to_pattern_ids(slice: &[u32]) -> &[PatternID] { |
| 302 | // SAFETY: This is safe because PatternID is defined to have the same |
| 303 | // memory representation as a u32 (it is repr(transparent)). While not |
| 304 | // every u32 is a "valid" PatternID, callers are not permitted to rely |
| 305 | // on the validity of PatternIDs for memory safety. It can only lead to |
| 306 | // logical errors. (This is why PatternID::new_unchecked is safe.) |
| 307 | unsafe { |
| 308 | core::slice::from_raw_parts( |
| 309 | data:slice.as_ptr().cast::<PatternID>(), |
| 310 | slice.len(), |
| 311 | ) |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | /// Checks that the given slice has an alignment that matches `T`. |
| 316 | /// |
| 317 | /// This is useful for checking that a slice has an appropriate alignment |
| 318 | /// before casting it to a &[T]. Note though that alignment is not itself |
| 319 | /// sufficient to perform the cast for any `T`. |
| 320 | pub(crate) fn check_alignment<T>( |
| 321 | slice: &[u8], |
| 322 | ) -> Result<(), DeserializeError> { |
| 323 | let alignment: usize = core::mem::align_of::<T>(); |
| 324 | let address: usize = slice.as_ptr().as_usize(); |
| 325 | if address % alignment == 0 { |
| 326 | return Ok(()); |
| 327 | } |
| 328 | Err(DeserializeError::alignment_mismatch(alignment, address)) |
| 329 | } |
| 330 | |
| 331 | /// Reads a possibly empty amount of padding, up to 7 bytes, from the beginning |
| 332 | /// of the given slice. All padding bytes must be NUL bytes. |
| 333 | /// |
| 334 | /// This is useful because it can be theoretically necessary to pad the |
| 335 | /// beginning of a serialized object with NUL bytes to ensure that it starts |
| 336 | /// at a correctly aligned address. These padding bytes should come immediately |
| 337 | /// before the label. |
| 338 | /// |
| 339 | /// This returns the number of bytes read from the given slice. |
| 340 | pub(crate) fn skip_initial_padding(slice: &[u8]) -> usize { |
| 341 | let mut nread: usize = 0; |
| 342 | while nread < 7 && nread < slice.len() && slice[nread] == 0 { |
| 343 | nread += 1; |
| 344 | } |
| 345 | nread |
| 346 | } |
| 347 | |
| 348 | /// Allocate a byte buffer of the given size, along with some initial padding |
| 349 | /// such that `buf[padding..]` has the same alignment as `T`, where the |
| 350 | /// alignment of `T` must be at most `8`. In particular, callers should treat |
| 351 | /// the first N bytes (second return value) as padding bytes that must not be |
| 352 | /// overwritten. In all cases, the following identity holds: |
| 353 | /// |
| 354 | /// ```ignore |
| 355 | /// let (buf, padding) = alloc_aligned_buffer::<StateID>(SIZE); |
| 356 | /// assert_eq!(SIZE, buf[padding..].len()); |
| 357 | /// ``` |
| 358 | /// |
| 359 | /// In practice, padding is often zero. |
| 360 | /// |
| 361 | /// The requirement for `8` as a maximum here is somewhat arbitrary. In |
| 362 | /// practice, we never need anything bigger in this crate, and so this function |
| 363 | /// does some sanity asserts under the assumption of a max alignment of `8`. |
| 364 | #[cfg (feature = "alloc" )] |
| 365 | pub(crate) fn alloc_aligned_buffer<T>(size: usize) -> (Vec<u8>, usize) { |
| 366 | // NOTE: This is a kludge because there's no easy way to allocate a Vec<u8> |
| 367 | // with an alignment guaranteed to be greater than 1. We could create a |
| 368 | // Vec<u32>, but this cannot be safely transmuted to a Vec<u8> without |
| 369 | // concern, since reallocing or dropping the Vec<u8> is UB (different |
| 370 | // alignment than the initial allocation). We could define a wrapper type |
| 371 | // to manage this for us, but it seems like more machinery than it's worth. |
| 372 | let buf = vec![0; size]; |
| 373 | let align = core::mem::align_of::<T>(); |
| 374 | let address = buf.as_ptr().as_usize(); |
| 375 | if address % align == 0 { |
| 376 | return (buf, 0); |
| 377 | } |
| 378 | // Let's try this again. We have to create a totally new alloc with |
| 379 | // the maximum amount of bytes we might need. We can't just extend our |
| 380 | // pre-existing 'buf' because that might create a new alloc with a |
| 381 | // different alignment. |
| 382 | let extra = align - 1; |
| 383 | let mut buf = vec![0; size + extra]; |
| 384 | let address = buf.as_ptr().as_usize(); |
| 385 | // The code below handles the case where 'address' is aligned to T, so if |
| 386 | // we got lucky and 'address' is now aligned to T (when it previously |
| 387 | // wasn't), then we're done. |
| 388 | if address % align == 0 { |
| 389 | buf.truncate(size); |
| 390 | return (buf, 0); |
| 391 | } |
| 392 | let padding = ((address & !(align - 1)).checked_add(align).unwrap()) |
| 393 | .checked_sub(address) |
| 394 | .unwrap(); |
| 395 | assert!(padding <= 7, "padding of {} is bigger than 7" , padding); |
| 396 | assert!( |
| 397 | padding <= extra, |
| 398 | "padding of {} is bigger than extra {} bytes" , |
| 399 | padding, |
| 400 | extra |
| 401 | ); |
| 402 | buf.truncate(size + padding); |
| 403 | assert_eq!(size + padding, buf.len()); |
| 404 | assert_eq!( |
| 405 | 0, |
| 406 | buf[padding..].as_ptr().as_usize() % align, |
| 407 | "expected end of initial padding to be aligned to {}" , |
| 408 | align, |
| 409 | ); |
| 410 | (buf, padding) |
| 411 | } |
| 412 | |
| 413 | /// Reads a NUL terminated label starting at the beginning of the given slice. |
| 414 | /// |
| 415 | /// If a NUL terminated label could not be found, then an error is returned. |
| 416 | /// Similarly, if a label is found but doesn't match the expected label, then |
| 417 | /// an error is returned. |
| 418 | /// |
| 419 | /// Upon success, the total number of bytes read (including padding bytes) is |
| 420 | /// returned. |
| 421 | pub(crate) fn read_label( |
| 422 | slice: &[u8], |
| 423 | expected_label: &'static str, |
| 424 | ) -> Result<usize, DeserializeError> { |
| 425 | // Set an upper bound on how many bytes we scan for a NUL. Since no label |
| 426 | // in this crate is longer than 256 bytes, if we can't find one within that |
| 427 | // range, then we have corrupted data. |
| 428 | let first_nul = |
| 429 | slice[..cmp::min(slice.len(), 256)].iter().position(|&b| b == 0); |
| 430 | let first_nul = match first_nul { |
| 431 | Some(first_nul) => first_nul, |
| 432 | None => { |
| 433 | return Err(DeserializeError::generic( |
| 434 | "could not find NUL terminated label \ |
| 435 | at start of serialized object" , |
| 436 | )); |
| 437 | } |
| 438 | }; |
| 439 | let len = first_nul + padding_len(first_nul); |
| 440 | if slice.len() < len { |
| 441 | return Err(DeserializeError::generic( |
| 442 | "could not find properly sized label at start of serialized object" |
| 443 | )); |
| 444 | } |
| 445 | if expected_label.as_bytes() != &slice[..first_nul] { |
| 446 | return Err(DeserializeError::label_mismatch(expected_label)); |
| 447 | } |
| 448 | Ok(len) |
| 449 | } |
| 450 | |
| 451 | /// Writes the given label to the buffer as a NUL terminated string. The label |
| 452 | /// given must not contain NUL, otherwise this will panic. Similarly, the label |
| 453 | /// must not be longer than 255 bytes, otherwise this will panic. |
| 454 | /// |
| 455 | /// Additional NUL bytes are written as necessary to ensure that the number of |
| 456 | /// bytes written is always a multiple of 4. |
| 457 | /// |
| 458 | /// Upon success, the total number of bytes written (including padding) is |
| 459 | /// returned. |
| 460 | pub(crate) fn write_label( |
| 461 | label: &str, |
| 462 | dst: &mut [u8], |
| 463 | ) -> Result<usize, SerializeError> { |
| 464 | let nwrite: usize = write_label_len(label); |
| 465 | if dst.len() < nwrite { |
| 466 | return Err(SerializeError::buffer_too_small(what:"label" )); |
| 467 | } |
| 468 | dst[..label.len()].copy_from_slice(src:label.as_bytes()); |
| 469 | for i: usize in 0..(nwrite - label.len()) { |
| 470 | dst[label.len() + i] = 0; |
| 471 | } |
| 472 | assert_eq!(nwrite % 4, 0); |
| 473 | Ok(nwrite) |
| 474 | } |
| 475 | |
| 476 | /// Returns the total number of bytes (including padding) that would be written |
| 477 | /// for the given label. This panics if the given label contains a NUL byte or |
| 478 | /// is longer than 255 bytes. (The size restriction exists so that searching |
| 479 | /// for a label during deserialization can be done in small bounded space.) |
| 480 | pub(crate) fn write_label_len(label: &str) -> usize { |
| 481 | if label.len() > 255 { |
| 482 | panic!("label must not be longer than 255 bytes" ); |
| 483 | } |
| 484 | if label.as_bytes().iter().position(|&b: u8| b == 0).is_some() { |
| 485 | panic!("label must not contain NUL bytes" ); |
| 486 | } |
| 487 | let label_len: usize = label.len() + 1; // +1 for the NUL terminator |
| 488 | label_len + padding_len(non_padding_len:label_len) |
| 489 | } |
| 490 | |
| 491 | /// Reads the endianness check from the beginning of the given slice and |
| 492 | /// confirms that the endianness of the serialized object matches the expected |
| 493 | /// endianness. If the slice is too small or if the endianness check fails, |
| 494 | /// this returns an error. |
| 495 | /// |
| 496 | /// Upon success, the total number of bytes read is returned. |
| 497 | pub(crate) fn read_endianness_check( |
| 498 | slice: &[u8], |
| 499 | ) -> Result<usize, DeserializeError> { |
| 500 | let (n: u32, nr: usize) = try_read_u32(slice, what:"endianness check" )?; |
| 501 | assert_eq!(nr, write_endianness_check_len()); |
| 502 | if n != 0xFEFF { |
| 503 | return Err(DeserializeError::endian_mismatch(expected:0xFEFF, found:n)); |
| 504 | } |
| 505 | Ok(nr) |
| 506 | } |
| 507 | |
| 508 | /// Writes 0xFEFF as an integer using the given endianness. |
| 509 | /// |
| 510 | /// This is useful for writing into the header of a serialized object. It can |
| 511 | /// be read during deserialization as a sanity check to ensure the proper |
| 512 | /// endianness is used. |
| 513 | /// |
| 514 | /// Upon success, the total number of bytes written is returned. |
| 515 | pub(crate) fn write_endianness_check<E: Endian>( |
| 516 | dst: &mut [u8], |
| 517 | ) -> Result<usize, SerializeError> { |
| 518 | let nwrite: usize = write_endianness_check_len(); |
| 519 | if dst.len() < nwrite { |
| 520 | return Err(SerializeError::buffer_too_small(what:"endianness check" )); |
| 521 | } |
| 522 | E::write_u32(n:0xFEFF, dst); |
| 523 | Ok(nwrite) |
| 524 | } |
| 525 | |
| 526 | /// Returns the number of bytes written by the endianness check. |
| 527 | pub(crate) fn write_endianness_check_len() -> usize { |
| 528 | size_of::<u32>() |
| 529 | } |
| 530 | |
| 531 | /// Reads a version number from the beginning of the given slice and confirms |
| 532 | /// that is matches the expected version number given. If the slice is too |
| 533 | /// small or if the version numbers aren't equivalent, this returns an error. |
| 534 | /// |
| 535 | /// Upon success, the total number of bytes read is returned. |
| 536 | /// |
| 537 | /// N.B. Currently, we require that the version number is exactly equivalent. |
| 538 | /// In the future, if we bump the version number without a semver bump, then |
| 539 | /// we'll need to relax this a bit and support older versions. |
| 540 | pub(crate) fn read_version( |
| 541 | slice: &[u8], |
| 542 | expected_version: u32, |
| 543 | ) -> Result<usize, DeserializeError> { |
| 544 | let (n: u32, nr: usize) = try_read_u32(slice, what:"version" )?; |
| 545 | assert_eq!(nr, write_version_len()); |
| 546 | if n != expected_version { |
| 547 | return Err(DeserializeError::version_mismatch(expected_version, found:n)); |
| 548 | } |
| 549 | Ok(nr) |
| 550 | } |
| 551 | |
| 552 | /// Writes the given version number to the beginning of the given slice. |
| 553 | /// |
| 554 | /// This is useful for writing into the header of a serialized object. It can |
| 555 | /// be read during deserialization as a sanity check to ensure that the library |
| 556 | /// code supports the format of the serialized object. |
| 557 | /// |
| 558 | /// Upon success, the total number of bytes written is returned. |
| 559 | pub(crate) fn write_version<E: Endian>( |
| 560 | version: u32, |
| 561 | dst: &mut [u8], |
| 562 | ) -> Result<usize, SerializeError> { |
| 563 | let nwrite: usize = write_version_len(); |
| 564 | if dst.len() < nwrite { |
| 565 | return Err(SerializeError::buffer_too_small(what:"version number" )); |
| 566 | } |
| 567 | E::write_u32(n:version, dst); |
| 568 | Ok(nwrite) |
| 569 | } |
| 570 | |
| 571 | /// Returns the number of bytes written by writing the version number. |
| 572 | pub(crate) fn write_version_len() -> usize { |
| 573 | size_of::<u32>() |
| 574 | } |
| 575 | |
| 576 | /// Reads a pattern ID from the given slice. If the slice has insufficient |
| 577 | /// length, then this panics. If the deserialized integer exceeds the pattern |
| 578 | /// ID limit for the current target, then this returns an error. |
| 579 | /// |
| 580 | /// Upon success, this also returns the number of bytes read. |
| 581 | pub(crate) fn read_pattern_id( |
| 582 | slice: &[u8], |
| 583 | what: &'static str, |
| 584 | ) -> Result<(PatternID, usize), DeserializeError> { |
| 585 | let bytes: [u8; PatternID::SIZE] = |
| 586 | slice[..PatternID::SIZE].try_into().unwrap(); |
| 587 | let pid: PatternID = PatternID::from_ne_bytes(bytes) |
| 588 | .map_err(|err: PatternIDError| DeserializeError::pattern_id_error(err, what))?; |
| 589 | Ok((pid, PatternID::SIZE)) |
| 590 | } |
| 591 | |
| 592 | /// Reads a pattern ID from the given slice. If the slice has insufficient |
| 593 | /// length, then this panics. Otherwise, the deserialized integer is assumed |
| 594 | /// to be a valid pattern ID. |
| 595 | /// |
| 596 | /// This also returns the number of bytes read. |
| 597 | pub(crate) fn read_pattern_id_unchecked(slice: &[u8]) -> (PatternID, usize) { |
| 598 | let pid: PatternID = PatternID::from_ne_bytes_unchecked( |
| 599 | bytes:slice[..PatternID::SIZE].try_into().unwrap(), |
| 600 | ); |
| 601 | (pid, PatternID::SIZE) |
| 602 | } |
| 603 | |
| 604 | /// Write the given pattern ID to the beginning of the given slice of bytes |
| 605 | /// using the specified endianness. The given slice must have length at least |
| 606 | /// `PatternID::SIZE`, or else this panics. Upon success, the total number of |
| 607 | /// bytes written is returned. |
| 608 | pub(crate) fn write_pattern_id<E: Endian>( |
| 609 | pid: PatternID, |
| 610 | dst: &mut [u8], |
| 611 | ) -> usize { |
| 612 | E::write_u32(n:pid.as_u32(), dst); |
| 613 | PatternID::SIZE |
| 614 | } |
| 615 | |
| 616 | /// Attempts to read a state ID from the given slice. If the slice has an |
| 617 | /// insufficient number of bytes or if the state ID exceeds the limit for |
| 618 | /// the current target, then this returns an error. |
| 619 | /// |
| 620 | /// Upon success, this also returns the number of bytes read. |
| 621 | pub(crate) fn try_read_state_id( |
| 622 | slice: &[u8], |
| 623 | what: &'static str, |
| 624 | ) -> Result<(StateID, usize), DeserializeError> { |
| 625 | if slice.len() < StateID::SIZE { |
| 626 | return Err(DeserializeError::buffer_too_small(what)); |
| 627 | } |
| 628 | read_state_id(slice, what) |
| 629 | } |
| 630 | |
| 631 | /// Reads a state ID from the given slice. If the slice has insufficient |
| 632 | /// length, then this panics. If the deserialized integer exceeds the state ID |
| 633 | /// limit for the current target, then this returns an error. |
| 634 | /// |
| 635 | /// Upon success, this also returns the number of bytes read. |
| 636 | pub(crate) fn read_state_id( |
| 637 | slice: &[u8], |
| 638 | what: &'static str, |
| 639 | ) -> Result<(StateID, usize), DeserializeError> { |
| 640 | let bytes: [u8; StateID::SIZE] = |
| 641 | slice[..StateID::SIZE].try_into().unwrap(); |
| 642 | let sid: StateID = StateID::from_ne_bytes(bytes) |
| 643 | .map_err(|err: StateIDError| DeserializeError::state_id_error(err, what))?; |
| 644 | Ok((sid, StateID::SIZE)) |
| 645 | } |
| 646 | |
| 647 | /// Reads a state ID from the given slice. If the slice has insufficient |
| 648 | /// length, then this panics. Otherwise, the deserialized integer is assumed |
| 649 | /// to be a valid state ID. |
| 650 | /// |
| 651 | /// This also returns the number of bytes read. |
| 652 | pub(crate) fn read_state_id_unchecked(slice: &[u8]) -> (StateID, usize) { |
| 653 | let sid: StateID = StateID::from_ne_bytes_unchecked( |
| 654 | bytes:slice[..StateID::SIZE].try_into().unwrap(), |
| 655 | ); |
| 656 | (sid, StateID::SIZE) |
| 657 | } |
| 658 | |
| 659 | /// Write the given state ID to the beginning of the given slice of bytes |
| 660 | /// using the specified endianness. The given slice must have length at least |
| 661 | /// `StateID::SIZE`, or else this panics. Upon success, the total number of |
| 662 | /// bytes written is returned. |
| 663 | pub(crate) fn write_state_id<E: Endian>( |
| 664 | sid: StateID, |
| 665 | dst: &mut [u8], |
| 666 | ) -> usize { |
| 667 | E::write_u32(n:sid.as_u32(), dst); |
| 668 | StateID::SIZE |
| 669 | } |
| 670 | |
| 671 | /// Try to read a u16 as a usize from the beginning of the given slice in |
| 672 | /// native endian format. If the slice has fewer than 2 bytes or if the |
| 673 | /// deserialized number cannot be represented by usize, then this returns an |
| 674 | /// error. The error message will include the `what` description of what is |
| 675 | /// being deserialized, for better error messages. `what` should be a noun in |
| 676 | /// singular form. |
| 677 | /// |
| 678 | /// Upon success, this also returns the number of bytes read. |
| 679 | pub(crate) fn try_read_u16_as_usize( |
| 680 | slice: &[u8], |
| 681 | what: &'static str, |
| 682 | ) -> Result<(usize, usize), DeserializeError> { |
| 683 | try_read_u16(slice, what).and_then(|(n: u16, nr: usize)| { |
| 684 | usize::try_from(n) |
| 685 | .map(|n| (n, nr)) |
| 686 | .map_err(|_| DeserializeError::invalid_usize(what)) |
| 687 | }) |
| 688 | } |
| 689 | |
| 690 | /// Try to read a u32 as a usize from the beginning of the given slice in |
| 691 | /// native endian format. If the slice has fewer than 4 bytes or if the |
| 692 | /// deserialized number cannot be represented by usize, then this returns an |
| 693 | /// error. The error message will include the `what` description of what is |
| 694 | /// being deserialized, for better error messages. `what` should be a noun in |
| 695 | /// singular form. |
| 696 | /// |
| 697 | /// Upon success, this also returns the number of bytes read. |
| 698 | pub(crate) fn try_read_u32_as_usize( |
| 699 | slice: &[u8], |
| 700 | what: &'static str, |
| 701 | ) -> Result<(usize, usize), DeserializeError> { |
| 702 | try_read_u32(slice, what).and_then(|(n: u32, nr: usize)| { |
| 703 | usize::try_from(n) |
| 704 | .map(|n| (n, nr)) |
| 705 | .map_err(|_| DeserializeError::invalid_usize(what)) |
| 706 | }) |
| 707 | } |
| 708 | |
| 709 | /// Try to read a u16 from the beginning of the given slice in native endian |
| 710 | /// format. If the slice has fewer than 2 bytes, then this returns an error. |
| 711 | /// The error message will include the `what` description of what is being |
| 712 | /// deserialized, for better error messages. `what` should be a noun in |
| 713 | /// singular form. |
| 714 | /// |
| 715 | /// Upon success, this also returns the number of bytes read. |
| 716 | pub(crate) fn try_read_u16( |
| 717 | slice: &[u8], |
| 718 | what: &'static str, |
| 719 | ) -> Result<(u16, usize), DeserializeError> { |
| 720 | check_slice_len(slice, at_least_len:size_of::<u16>(), what)?; |
| 721 | Ok((read_u16(slice), size_of::<u16>())) |
| 722 | } |
| 723 | |
| 724 | /// Try to read a u32 from the beginning of the given slice in native endian |
| 725 | /// format. If the slice has fewer than 4 bytes, then this returns an error. |
| 726 | /// The error message will include the `what` description of what is being |
| 727 | /// deserialized, for better error messages. `what` should be a noun in |
| 728 | /// singular form. |
| 729 | /// |
| 730 | /// Upon success, this also returns the number of bytes read. |
| 731 | pub(crate) fn try_read_u32( |
| 732 | slice: &[u8], |
| 733 | what: &'static str, |
| 734 | ) -> Result<(u32, usize), DeserializeError> { |
| 735 | check_slice_len(slice, at_least_len:size_of::<u32>(), what)?; |
| 736 | Ok((read_u32(slice), size_of::<u32>())) |
| 737 | } |
| 738 | |
| 739 | /// Try to read a u128 from the beginning of the given slice in native endian |
| 740 | /// format. If the slice has fewer than 16 bytes, then this returns an error. |
| 741 | /// The error message will include the `what` description of what is being |
| 742 | /// deserialized, for better error messages. `what` should be a noun in |
| 743 | /// singular form. |
| 744 | /// |
| 745 | /// Upon success, this also returns the number of bytes read. |
| 746 | pub(crate) fn try_read_u128( |
| 747 | slice: &[u8], |
| 748 | what: &'static str, |
| 749 | ) -> Result<(u128, usize), DeserializeError> { |
| 750 | check_slice_len(slice, at_least_len:size_of::<u128>(), what)?; |
| 751 | Ok((read_u128(slice), size_of::<u128>())) |
| 752 | } |
| 753 | |
| 754 | /// Read a u16 from the beginning of the given slice in native endian format. |
| 755 | /// If the slice has fewer than 2 bytes, then this panics. |
| 756 | /// |
| 757 | /// Marked as inline to speed up sparse searching which decodes integers from |
| 758 | /// its automaton at search time. |
| 759 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 760 | pub(crate) fn read_u16(slice: &[u8]) -> u16 { |
| 761 | let bytes: [u8; 2] = slice[..size_of::<u16>()].try_into().unwrap(); |
| 762 | u16::from_ne_bytes(bytes) |
| 763 | } |
| 764 | |
| 765 | /// Read a u32 from the beginning of the given slice in native endian format. |
| 766 | /// If the slice has fewer than 4 bytes, then this panics. |
| 767 | /// |
| 768 | /// Marked as inline to speed up sparse searching which decodes integers from |
| 769 | /// its automaton at search time. |
| 770 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 771 | pub(crate) fn read_u32(slice: &[u8]) -> u32 { |
| 772 | let bytes: [u8; 4] = slice[..size_of::<u32>()].try_into().unwrap(); |
| 773 | u32::from_ne_bytes(bytes) |
| 774 | } |
| 775 | |
| 776 | /// Read a u128 from the beginning of the given slice in native endian format. |
| 777 | /// If the slice has fewer than 16 bytes, then this panics. |
| 778 | pub(crate) fn read_u128(slice: &[u8]) -> u128 { |
| 779 | let bytes: [u8; 16] = slice[..size_of::<u128>()].try_into().unwrap(); |
| 780 | u128::from_ne_bytes(bytes) |
| 781 | } |
| 782 | |
| 783 | /// Checks that the given slice has some minimal length. If it's smaller than |
| 784 | /// the bound given, then a "buffer too small" error is returned with `what` |
| 785 | /// describing what the buffer represents. |
| 786 | pub(crate) fn check_slice_len<T>( |
| 787 | slice: &[T], |
| 788 | at_least_len: usize, |
| 789 | what: &'static str, |
| 790 | ) -> Result<(), DeserializeError> { |
| 791 | if slice.len() < at_least_len { |
| 792 | return Err(DeserializeError::buffer_too_small(what)); |
| 793 | } |
| 794 | Ok(()) |
| 795 | } |
| 796 | |
| 797 | /// Multiply the given numbers, and on overflow, return an error that includes |
| 798 | /// 'what' in the error message. |
| 799 | /// |
| 800 | /// This is useful when doing arithmetic with untrusted data. |
| 801 | pub(crate) fn mul( |
| 802 | a: usize, |
| 803 | b: usize, |
| 804 | what: &'static str, |
| 805 | ) -> Result<usize, DeserializeError> { |
| 806 | match a.checked_mul(b) { |
| 807 | Some(c: usize) => Ok(c), |
| 808 | None => Err(DeserializeError::arithmetic_overflow(what)), |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | /// Add the given numbers, and on overflow, return an error that includes |
| 813 | /// 'what' in the error message. |
| 814 | /// |
| 815 | /// This is useful when doing arithmetic with untrusted data. |
| 816 | pub(crate) fn add( |
| 817 | a: usize, |
| 818 | b: usize, |
| 819 | what: &'static str, |
| 820 | ) -> Result<usize, DeserializeError> { |
| 821 | match a.checked_add(b) { |
| 822 | Some(c: usize) => Ok(c), |
| 823 | None => Err(DeserializeError::arithmetic_overflow(what)), |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | /// Shift `a` left by `b`, and on overflow, return an error that includes |
| 828 | /// 'what' in the error message. |
| 829 | /// |
| 830 | /// This is useful when doing arithmetic with untrusted data. |
| 831 | pub(crate) fn shl( |
| 832 | a: usize, |
| 833 | b: usize, |
| 834 | what: &'static str, |
| 835 | ) -> Result<usize, DeserializeError> { |
| 836 | let amount: u32 = u32::try_from(b) |
| 837 | .map_err(|_| DeserializeError::arithmetic_overflow(what))?; |
| 838 | match a.checked_shl(amount) { |
| 839 | Some(c: usize) => Ok(c), |
| 840 | None => Err(DeserializeError::arithmetic_overflow(what)), |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | /// Returns the number of additional bytes required to add to the given length |
| 845 | /// in order to make the total length a multiple of 4. The return value is |
| 846 | /// always less than 4. |
| 847 | pub(crate) fn padding_len(non_padding_len: usize) -> usize { |
| 848 | (4 - (non_padding_len & 0b11)) & 0b11 |
| 849 | } |
| 850 | |
| 851 | /// A simple trait for writing code generic over endianness. |
| 852 | /// |
| 853 | /// This is similar to what byteorder provides, but we only need a very small |
| 854 | /// subset. |
| 855 | pub(crate) trait Endian { |
| 856 | /// Writes a u16 to the given destination buffer in a particular |
| 857 | /// endianness. If the destination buffer has a length smaller than 2, then |
| 858 | /// this panics. |
| 859 | fn write_u16(n: u16, dst: &mut [u8]); |
| 860 | |
| 861 | /// Writes a u32 to the given destination buffer in a particular |
| 862 | /// endianness. If the destination buffer has a length smaller than 4, then |
| 863 | /// this panics. |
| 864 | fn write_u32(n: u32, dst: &mut [u8]); |
| 865 | |
| 866 | /// Writes a u128 to the given destination buffer in a particular |
| 867 | /// endianness. If the destination buffer has a length smaller than 16, |
| 868 | /// then this panics. |
| 869 | fn write_u128(n: u128, dst: &mut [u8]); |
| 870 | } |
| 871 | |
| 872 | /// Little endian writing. |
| 873 | pub(crate) enum LE {} |
| 874 | /// Big endian writing. |
| 875 | pub(crate) enum BE {} |
| 876 | |
| 877 | #[cfg (target_endian = "little" )] |
| 878 | pub(crate) type NE = LE; |
| 879 | #[cfg (target_endian = "big" )] |
| 880 | pub(crate) type NE = BE; |
| 881 | |
| 882 | impl Endian for LE { |
| 883 | fn write_u16(n: u16, dst: &mut [u8]) { |
| 884 | dst[..2].copy_from_slice(&n.to_le_bytes()); |
| 885 | } |
| 886 | |
| 887 | fn write_u32(n: u32, dst: &mut [u8]) { |
| 888 | dst[..4].copy_from_slice(&n.to_le_bytes()); |
| 889 | } |
| 890 | |
| 891 | fn write_u128(n: u128, dst: &mut [u8]) { |
| 892 | dst[..16].copy_from_slice(&n.to_le_bytes()); |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | impl Endian for BE { |
| 897 | fn write_u16(n: u16, dst: &mut [u8]) { |
| 898 | dst[..2].copy_from_slice(&n.to_be_bytes()); |
| 899 | } |
| 900 | |
| 901 | fn write_u32(n: u32, dst: &mut [u8]) { |
| 902 | dst[..4].copy_from_slice(&n.to_be_bytes()); |
| 903 | } |
| 904 | |
| 905 | fn write_u128(n: u128, dst: &mut [u8]) { |
| 906 | dst[..16].copy_from_slice(&n.to_be_bytes()); |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | #[cfg (all(test, feature = "alloc" ))] |
| 911 | mod tests { |
| 912 | use super::*; |
| 913 | |
| 914 | #[test ] |
| 915 | fn labels() { |
| 916 | let mut buf = [0; 1024]; |
| 917 | |
| 918 | let nwrite = write_label("fooba" , &mut buf).unwrap(); |
| 919 | assert_eq!(nwrite, 8); |
| 920 | assert_eq!(&buf[..nwrite], b"fooba \x00\x00\x00" ); |
| 921 | |
| 922 | let nread = read_label(&buf, "fooba" ).unwrap(); |
| 923 | assert_eq!(nread, 8); |
| 924 | } |
| 925 | |
| 926 | #[test ] |
| 927 | #[should_panic ] |
| 928 | fn bad_label_interior_nul() { |
| 929 | // interior NULs are not allowed |
| 930 | write_label("foo \x00bar" , &mut [0; 1024]).unwrap(); |
| 931 | } |
| 932 | |
| 933 | #[test ] |
| 934 | fn bad_label_almost_too_long() { |
| 935 | // ok |
| 936 | write_label(&"z" .repeat(255), &mut [0; 1024]).unwrap(); |
| 937 | } |
| 938 | |
| 939 | #[test ] |
| 940 | #[should_panic ] |
| 941 | fn bad_label_too_long() { |
| 942 | // labels longer than 255 bytes are banned |
| 943 | write_label(&"z" .repeat(256), &mut [0; 1024]).unwrap(); |
| 944 | } |
| 945 | |
| 946 | #[test ] |
| 947 | fn padding() { |
| 948 | assert_eq!(0, padding_len(8)); |
| 949 | assert_eq!(3, padding_len(9)); |
| 950 | assert_eq!(2, padding_len(10)); |
| 951 | assert_eq!(1, padding_len(11)); |
| 952 | assert_eq!(0, padding_len(12)); |
| 953 | assert_eq!(3, padding_len(13)); |
| 954 | assert_eq!(2, padding_len(14)); |
| 955 | assert_eq!(1, padding_len(15)); |
| 956 | assert_eq!(0, padding_len(16)); |
| 957 | } |
| 958 | } |
| 959 | |