| 1 | /*! |
| 2 | This module provides APIs for dealing with the alphabets of finite state |
| 3 | machines. |
| 4 | |
| 5 | There are two principal types in this module, [`ByteClasses`] and [`Unit`]. |
| 6 | The former defines the alphabet of a finite state machine while the latter |
| 7 | represents an element of that alphabet. |
| 8 | |
| 9 | To a first approximation, the alphabet of all automata in this crate is just |
| 10 | a `u8`. Namely, every distinct byte value. All 256 of them. In practice, this |
| 11 | can be quite wasteful when building a transition table for a DFA, since it |
| 12 | requires storing a state identifier for each element in the alphabet. Instead, |
| 13 | we collapse the alphabet of an automaton down into equivalence classes, where |
| 14 | every byte in the same equivalence class never discriminates between a match or |
| 15 | a non-match from any other byte in the same class. For example, in the regex |
| 16 | `[a-z]+`, then you could consider it having an alphabet consisting of two |
| 17 | equivalence classes: `a-z` and everything else. In terms of the transitions on |
| 18 | an automaton, it doesn't actually require representing every distinct byte. |
| 19 | Just the equivalence classes. |
| 20 | |
| 21 | The downside of equivalence classes is that, of course, searching a haystack |
| 22 | deals with individual byte values. Those byte values need to be mapped to |
| 23 | their corresponding equivalence class. This is what `ByteClasses` does. In |
| 24 | practice, doing this for every state transition has negligible impact on modern |
| 25 | CPUs. Moreover, it helps make more efficient use of the CPU cache by (possibly |
| 26 | considerably) shrinking the size of the transition table. |
| 27 | |
| 28 | One last hiccup concerns `Unit`. Namely, because of look-around and how the |
| 29 | DFAs in this crate work, we need to add a sentinel value to our alphabet |
| 30 | of equivalence classes that represents the "end" of a search. We call that |
| 31 | sentinel [`Unit::eoi`] or "end of input." Thus, a `Unit` is either an |
| 32 | equivalence class corresponding to a set of bytes, or it is a special "end of |
| 33 | input" sentinel. |
| 34 | |
| 35 | In general, you should not expect to need either of these types unless you're |
| 36 | doing lower level shenanigans with DFAs, or even building your own DFAs. |
| 37 | (Although, you don't have to use these types to build your own DFAs of course.) |
| 38 | For example, if you're walking a DFA's state graph, it's probably useful to |
| 39 | make use of [`ByteClasses`] to visit each element in the DFA's alphabet instead |
| 40 | of just visiting every distinct `u8` value. The latter isn't necessarily wrong, |
| 41 | but it could be potentially very wasteful. |
| 42 | */ |
| 43 | use crate::util::{ |
| 44 | escape::DebugByte, |
| 45 | wire::{self, DeserializeError, SerializeError}, |
| 46 | }; |
| 47 | |
| 48 | /// Unit represents a single unit of haystack for DFA based regex engines. |
| 49 | /// |
| 50 | /// It is not expected for consumers of this crate to need to use this type |
| 51 | /// unless they are implementing their own DFA. And even then, it's not |
| 52 | /// required: implementors may use other techniques to handle haystack units. |
| 53 | /// |
| 54 | /// Typically, a single unit of haystack for a DFA would be a single byte. |
| 55 | /// However, for the DFAs in this crate, matches are delayed by a single byte |
| 56 | /// in order to handle look-ahead assertions (`\b`, `$` and `\z`). Thus, once |
| 57 | /// we have consumed the haystack, we must run the DFA through one additional |
| 58 | /// transition using a unit that indicates the haystack has ended. |
| 59 | /// |
| 60 | /// There is no way to represent a sentinel with a `u8` since all possible |
| 61 | /// values *may* be valid haystack units to a DFA, therefore this type |
| 62 | /// explicitly adds room for a sentinel value. |
| 63 | /// |
| 64 | /// The sentinel EOI value is always its own equivalence class and is |
| 65 | /// ultimately represented by adding 1 to the maximum equivalence class value. |
| 66 | /// So for example, the regex `^[a-z]+$` might be split into the following |
| 67 | /// equivalence classes: |
| 68 | /// |
| 69 | /// ```text |
| 70 | /// 0 => [\x00-`] |
| 71 | /// 1 => [a-z] |
| 72 | /// 2 => [{-\xFF] |
| 73 | /// 3 => [EOI] |
| 74 | /// ``` |
| 75 | /// |
| 76 | /// Where EOI is the special sentinel value that is always in its own |
| 77 | /// singleton equivalence class. |
| 78 | #[derive (Clone, Copy, Eq, PartialEq, PartialOrd, Ord)] |
| 79 | pub struct Unit(UnitKind); |
| 80 | |
| 81 | #[derive (Clone, Copy, Eq, PartialEq, PartialOrd, Ord)] |
| 82 | enum UnitKind { |
| 83 | /// Represents a byte value, or more typically, an equivalence class |
| 84 | /// represented as a byte value. |
| 85 | U8(u8), |
| 86 | /// Represents the "end of input" sentinel. We regretably use a `u16` |
| 87 | /// here since the maximum sentinel value is `256`. Thankfully, we don't |
| 88 | /// actually store a `Unit` anywhere, so this extra space shouldn't be too |
| 89 | /// bad. |
| 90 | EOI(u16), |
| 91 | } |
| 92 | |
| 93 | impl Unit { |
| 94 | /// Create a new haystack unit from a byte value. |
| 95 | /// |
| 96 | /// All possible byte values are legal. However, when creating a haystack |
| 97 | /// unit for a specific DFA, one should be careful to only construct units |
| 98 | /// that are in that DFA's alphabet. Namely, one way to compact a DFA's |
| 99 | /// in-memory representation is to collapse its transitions to a set of |
| 100 | /// equivalence classes into a set of all possible byte values. If a DFA |
| 101 | /// uses equivalence classes instead of byte values, then the byte given |
| 102 | /// here should be the equivalence class. |
| 103 | pub fn u8(byte: u8) -> Unit { |
| 104 | Unit(UnitKind::U8(byte)) |
| 105 | } |
| 106 | |
| 107 | /// Create a new "end of input" haystack unit. |
| 108 | /// |
| 109 | /// The value given is the sentinel value used by this unit to represent |
| 110 | /// the "end of input." The value should be the total number of equivalence |
| 111 | /// classes in the corresponding alphabet. Its maximum value is `256`, |
| 112 | /// which occurs when every byte is its own equivalence class. |
| 113 | /// |
| 114 | /// # Panics |
| 115 | /// |
| 116 | /// This panics when `num_byte_equiv_classes` is greater than `256`. |
| 117 | pub fn eoi(num_byte_equiv_classes: usize) -> Unit { |
| 118 | assert!( |
| 119 | num_byte_equiv_classes <= 256, |
| 120 | "max number of byte-based equivalent classes is 256, but got {}" , |
| 121 | num_byte_equiv_classes, |
| 122 | ); |
| 123 | Unit(UnitKind::EOI(u16::try_from(num_byte_equiv_classes).unwrap())) |
| 124 | } |
| 125 | |
| 126 | /// If this unit is not an "end of input" sentinel, then returns its |
| 127 | /// underlying byte value. Otherwise return `None`. |
| 128 | pub fn as_u8(self) -> Option<u8> { |
| 129 | match self.0 { |
| 130 | UnitKind::U8(b) => Some(b), |
| 131 | UnitKind::EOI(_) => None, |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | /// If this unit is an "end of input" sentinel, then return the underlying |
| 136 | /// sentinel value that was given to [`Unit::eoi`]. Otherwise return |
| 137 | /// `None`. |
| 138 | pub fn as_eoi(self) -> Option<u16> { |
| 139 | match self.0 { |
| 140 | UnitKind::U8(_) => None, |
| 141 | UnitKind::EOI(sentinel) => Some(sentinel), |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | /// Return this unit as a `usize`, regardless of whether it is a byte value |
| 146 | /// or an "end of input" sentinel. In the latter case, the underlying |
| 147 | /// sentinel value given to [`Unit::eoi`] is returned. |
| 148 | pub fn as_usize(self) -> usize { |
| 149 | match self.0 { |
| 150 | UnitKind::U8(b) => usize::from(b), |
| 151 | UnitKind::EOI(eoi) => usize::from(eoi), |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | /// Returns true if and only of this unit is a byte value equivalent to the |
| 156 | /// byte given. This always returns false when this is an "end of input" |
| 157 | /// sentinel. |
| 158 | pub fn is_byte(self, byte: u8) -> bool { |
| 159 | self.as_u8().map_or(false, |b| b == byte) |
| 160 | } |
| 161 | |
| 162 | /// Returns true when this unit represents an "end of input" sentinel. |
| 163 | pub fn is_eoi(self) -> bool { |
| 164 | self.as_eoi().is_some() |
| 165 | } |
| 166 | |
| 167 | /// Returns true when this unit corresponds to an ASCII word byte. |
| 168 | /// |
| 169 | /// This always returns false when this unit represents an "end of input" |
| 170 | /// sentinel. |
| 171 | pub fn is_word_byte(self) -> bool { |
| 172 | self.as_u8().map_or(false, crate::util::utf8::is_word_byte) |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | impl core::fmt::Debug for Unit { |
| 177 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 178 | match self.0 { |
| 179 | UnitKind::U8(b: u8) => write!(f, " {:?}" , DebugByte(b)), |
| 180 | UnitKind::EOI(_) => write!(f, "EOI" ), |
| 181 | } |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | /// A representation of byte oriented equivalence classes. |
| 186 | /// |
| 187 | /// This is used in a DFA to reduce the size of the transition table. This can |
| 188 | /// have a particularly large impact not only on the total size of a dense DFA, |
| 189 | /// but also on compile times. |
| 190 | /// |
| 191 | /// The essential idea here is that the alphabet of a DFA is shrunk from the |
| 192 | /// usual 256 distinct byte values down to a set of equivalence classes. The |
| 193 | /// guarantee you get is that any byte belonging to the same equivalence class |
| 194 | /// can be treated as if it were any other byte in the same class, and the |
| 195 | /// result of a search wouldn't change. |
| 196 | /// |
| 197 | /// # Example |
| 198 | /// |
| 199 | /// This example shows how to get byte classes from an |
| 200 | /// [`NFA`](crate::nfa::thompson::NFA) and ask for the class of various bytes. |
| 201 | /// |
| 202 | /// ``` |
| 203 | /// use regex_automata::nfa::thompson::NFA; |
| 204 | /// |
| 205 | /// let nfa = NFA::new("[a-z]+" )?; |
| 206 | /// let classes = nfa.byte_classes(); |
| 207 | /// // 'a' and 'z' are in the same class for this regex. |
| 208 | /// assert_eq!(classes.get(b'a' ), classes.get(b'z' )); |
| 209 | /// // But 'a' and 'A' are not. |
| 210 | /// assert_ne!(classes.get(b'a' ), classes.get(b'A' )); |
| 211 | /// |
| 212 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 213 | /// ``` |
| 214 | #[derive (Clone, Copy)] |
| 215 | pub struct ByteClasses([u8; 256]); |
| 216 | |
| 217 | impl ByteClasses { |
| 218 | /// Creates a new set of equivalence classes where all bytes are mapped to |
| 219 | /// the same class. |
| 220 | #[inline ] |
| 221 | pub fn empty() -> ByteClasses { |
| 222 | ByteClasses([0; 256]) |
| 223 | } |
| 224 | |
| 225 | /// Creates a new set of equivalence classes where each byte belongs to |
| 226 | /// its own equivalence class. |
| 227 | #[inline ] |
| 228 | pub fn singletons() -> ByteClasses { |
| 229 | let mut classes = ByteClasses::empty(); |
| 230 | for b in 0..=255 { |
| 231 | classes.set(b, b); |
| 232 | } |
| 233 | classes |
| 234 | } |
| 235 | |
| 236 | /// Deserializes a byte class map from the given slice. If the slice is of |
| 237 | /// insufficient length or otherwise contains an impossible mapping, then |
| 238 | /// an error is returned. Upon success, the number of bytes read along with |
| 239 | /// the map are returned. The number of bytes read is always a multiple of |
| 240 | /// 8. |
| 241 | pub(crate) fn from_bytes( |
| 242 | slice: &[u8], |
| 243 | ) -> Result<(ByteClasses, usize), DeserializeError> { |
| 244 | wire::check_slice_len(slice, 256, "byte class map" )?; |
| 245 | let mut classes = ByteClasses::empty(); |
| 246 | for (b, &class) in slice[..256].iter().enumerate() { |
| 247 | classes.set(u8::try_from(b).unwrap(), class); |
| 248 | } |
| 249 | // We specifically don't use 'classes.iter()' here because that |
| 250 | // iterator depends on 'classes.alphabet_len()' being correct. But that |
| 251 | // is precisely the thing we're trying to verify below! |
| 252 | for &b in classes.0.iter() { |
| 253 | if usize::from(b) >= classes.alphabet_len() { |
| 254 | return Err(DeserializeError::generic( |
| 255 | "found equivalence class greater than alphabet len" , |
| 256 | )); |
| 257 | } |
| 258 | } |
| 259 | Ok((classes, 256)) |
| 260 | } |
| 261 | |
| 262 | /// Writes this byte class map to the given byte buffer. if the given |
| 263 | /// buffer is too small, then an error is returned. Upon success, the total |
| 264 | /// number of bytes written is returned. The number of bytes written is |
| 265 | /// guaranteed to be a multiple of 8. |
| 266 | pub(crate) fn write_to( |
| 267 | &self, |
| 268 | mut dst: &mut [u8], |
| 269 | ) -> Result<usize, SerializeError> { |
| 270 | let nwrite = self.write_to_len(); |
| 271 | if dst.len() < nwrite { |
| 272 | return Err(SerializeError::buffer_too_small("byte class map" )); |
| 273 | } |
| 274 | for b in 0..=255 { |
| 275 | dst[0] = self.get(b); |
| 276 | dst = &mut dst[1..]; |
| 277 | } |
| 278 | Ok(nwrite) |
| 279 | } |
| 280 | |
| 281 | /// Returns the total number of bytes written by `write_to`. |
| 282 | pub(crate) fn write_to_len(&self) -> usize { |
| 283 | 256 |
| 284 | } |
| 285 | |
| 286 | /// Set the equivalence class for the given byte. |
| 287 | #[inline ] |
| 288 | pub fn set(&mut self, byte: u8, class: u8) { |
| 289 | self.0[usize::from(byte)] = class; |
| 290 | } |
| 291 | |
| 292 | /// Get the equivalence class for the given byte. |
| 293 | #[inline ] |
| 294 | pub fn get(&self, byte: u8) -> u8 { |
| 295 | self.0[usize::from(byte)] |
| 296 | } |
| 297 | |
| 298 | /// Get the equivalence class for the given haystack unit and return the |
| 299 | /// class as a `usize`. |
| 300 | #[inline ] |
| 301 | pub fn get_by_unit(&self, unit: Unit) -> usize { |
| 302 | match unit.0 { |
| 303 | UnitKind::U8(b) => usize::from(self.get(b)), |
| 304 | UnitKind::EOI(b) => usize::from(b), |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | /// Create a unit that represents the "end of input" sentinel based on the |
| 309 | /// number of equivalence classes. |
| 310 | #[inline ] |
| 311 | pub fn eoi(&self) -> Unit { |
| 312 | // The alphabet length already includes the EOI sentinel, hence why |
| 313 | // we subtract 1. |
| 314 | Unit::eoi(self.alphabet_len().checked_sub(1).unwrap()) |
| 315 | } |
| 316 | |
| 317 | /// Return the total number of elements in the alphabet represented by |
| 318 | /// these equivalence classes. Equivalently, this returns the total number |
| 319 | /// of equivalence classes. |
| 320 | #[inline ] |
| 321 | pub fn alphabet_len(&self) -> usize { |
| 322 | // Add one since the number of equivalence classes is one bigger than |
| 323 | // the last one. But add another to account for the final EOI class |
| 324 | // that isn't explicitly represented. |
| 325 | usize::from(self.0[255]) + 1 + 1 |
| 326 | } |
| 327 | |
| 328 | /// Returns the stride, as a base-2 exponent, required for these |
| 329 | /// equivalence classes. |
| 330 | /// |
| 331 | /// The stride is always the smallest power of 2 that is greater than or |
| 332 | /// equal to the alphabet length, and the `stride2` returned here is the |
| 333 | /// exponent applied to `2` to get the smallest power. This is done so that |
| 334 | /// converting between premultiplied state IDs and indices can be done with |
| 335 | /// shifts alone, which is much faster than integer division. |
| 336 | #[inline ] |
| 337 | pub fn stride2(&self) -> usize { |
| 338 | let zeros = self.alphabet_len().next_power_of_two().trailing_zeros(); |
| 339 | usize::try_from(zeros).unwrap() |
| 340 | } |
| 341 | |
| 342 | /// Returns true if and only if every byte in this class maps to its own |
| 343 | /// equivalence class. Equivalently, there are 257 equivalence classes |
| 344 | /// and each class contains either exactly one byte or corresponds to the |
| 345 | /// singleton class containing the "end of input" sentinel. |
| 346 | #[inline ] |
| 347 | pub fn is_singleton(&self) -> bool { |
| 348 | self.alphabet_len() == 257 |
| 349 | } |
| 350 | |
| 351 | /// Returns an iterator over all equivalence classes in this set. |
| 352 | #[inline ] |
| 353 | pub fn iter(&self) -> ByteClassIter<'_> { |
| 354 | ByteClassIter { classes: self, i: 0 } |
| 355 | } |
| 356 | |
| 357 | /// Returns an iterator over a sequence of representative bytes from each |
| 358 | /// equivalence class within the range of bytes given. |
| 359 | /// |
| 360 | /// When the given range is unbounded on both sides, the iterator yields |
| 361 | /// exactly N items, where N is equivalent to the number of equivalence |
| 362 | /// classes. Each item is an arbitrary byte drawn from each equivalence |
| 363 | /// class. |
| 364 | /// |
| 365 | /// This is useful when one is determinizing an NFA and the NFA's alphabet |
| 366 | /// hasn't been converted to equivalence classes. Picking an arbitrary byte |
| 367 | /// from each equivalence class then permits a full exploration of the NFA |
| 368 | /// instead of using every possible byte value and thus potentially saves |
| 369 | /// quite a lot of redundant work. |
| 370 | /// |
| 371 | /// # Example |
| 372 | /// |
| 373 | /// This shows an example of what a complete sequence of representatives |
| 374 | /// might look like from a real example. |
| 375 | /// |
| 376 | /// ``` |
| 377 | /// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit}; |
| 378 | /// |
| 379 | /// let nfa = NFA::new("[a-z]+" )?; |
| 380 | /// let classes = nfa.byte_classes(); |
| 381 | /// let reps: Vec<Unit> = classes.representatives(..).collect(); |
| 382 | /// // Note that the specific byte values yielded are not guaranteed! |
| 383 | /// let expected = vec![ |
| 384 | /// Unit::u8(b' \x00' ), |
| 385 | /// Unit::u8(b'a' ), |
| 386 | /// Unit::u8(b'{' ), |
| 387 | /// Unit::eoi(3), |
| 388 | /// ]; |
| 389 | /// assert_eq!(expected, reps); |
| 390 | /// |
| 391 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 392 | /// ``` |
| 393 | /// |
| 394 | /// Note though, that you can ask for an arbitrary range of bytes, and only |
| 395 | /// representatives for that range will be returned: |
| 396 | /// |
| 397 | /// ``` |
| 398 | /// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit}; |
| 399 | /// |
| 400 | /// let nfa = NFA::new("[a-z]+" )?; |
| 401 | /// let classes = nfa.byte_classes(); |
| 402 | /// let reps: Vec<Unit> = classes.representatives(b'A' ..=b'z' ).collect(); |
| 403 | /// // Note that the specific byte values yielded are not guaranteed! |
| 404 | /// let expected = vec![ |
| 405 | /// Unit::u8(b'A' ), |
| 406 | /// Unit::u8(b'a' ), |
| 407 | /// ]; |
| 408 | /// assert_eq!(expected, reps); |
| 409 | /// |
| 410 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 411 | /// ``` |
| 412 | pub fn representatives<R: core::ops::RangeBounds<u8>>( |
| 413 | &self, |
| 414 | range: R, |
| 415 | ) -> ByteClassRepresentatives<'_> { |
| 416 | use core::ops::Bound; |
| 417 | |
| 418 | let cur_byte = match range.start_bound() { |
| 419 | Bound::Included(&i) => usize::from(i), |
| 420 | Bound::Excluded(&i) => usize::from(i).checked_add(1).unwrap(), |
| 421 | Bound::Unbounded => 0, |
| 422 | }; |
| 423 | let end_byte = match range.end_bound() { |
| 424 | Bound::Included(&i) => { |
| 425 | Some(usize::from(i).checked_add(1).unwrap()) |
| 426 | } |
| 427 | Bound::Excluded(&i) => Some(usize::from(i)), |
| 428 | Bound::Unbounded => None, |
| 429 | }; |
| 430 | assert_ne!( |
| 431 | cur_byte, |
| 432 | usize::MAX, |
| 433 | "start range must be less than usize::MAX" , |
| 434 | ); |
| 435 | ByteClassRepresentatives { |
| 436 | classes: self, |
| 437 | cur_byte, |
| 438 | end_byte, |
| 439 | last_class: None, |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | /// Returns an iterator of the bytes in the given equivalence class. |
| 444 | /// |
| 445 | /// This is useful when one needs to know the actual bytes that belong to |
| 446 | /// an equivalence class. For example, conceptually speaking, accelerating |
| 447 | /// a DFA state occurs when a state only has a few outgoing transitions. |
| 448 | /// But in reality, what is required is that there are only a small |
| 449 | /// number of distinct bytes that can lead to an outgoing transition. The |
| 450 | /// difference is that any one transition can correspond to an equivalence |
| 451 | /// class which may contains many bytes. Therefore, DFA state acceleration |
| 452 | /// considers the actual elements in each equivalence class of each |
| 453 | /// outgoing transition. |
| 454 | /// |
| 455 | /// # Example |
| 456 | /// |
| 457 | /// This shows an example of how to get all of the elements in an |
| 458 | /// equivalence class. |
| 459 | /// |
| 460 | /// ``` |
| 461 | /// use regex_automata::{nfa::thompson::NFA, util::alphabet::Unit}; |
| 462 | /// |
| 463 | /// let nfa = NFA::new("[a-z]+" )?; |
| 464 | /// let classes = nfa.byte_classes(); |
| 465 | /// let elements: Vec<Unit> = classes.elements(Unit::u8(1)).collect(); |
| 466 | /// let expected: Vec<Unit> = (b'a' ..=b'z' ).map(Unit::u8).collect(); |
| 467 | /// assert_eq!(expected, elements); |
| 468 | /// |
| 469 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 470 | /// ``` |
| 471 | #[inline ] |
| 472 | pub fn elements(&self, class: Unit) -> ByteClassElements { |
| 473 | ByteClassElements { classes: self, class, byte: 0 } |
| 474 | } |
| 475 | |
| 476 | /// Returns an iterator of byte ranges in the given equivalence class. |
| 477 | /// |
| 478 | /// That is, a sequence of contiguous ranges are returned. Typically, every |
| 479 | /// class maps to a single contiguous range. |
| 480 | fn element_ranges(&self, class: Unit) -> ByteClassElementRanges { |
| 481 | ByteClassElementRanges { elements: self.elements(class), range: None } |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | impl Default for ByteClasses { |
| 486 | fn default() -> ByteClasses { |
| 487 | ByteClasses::singletons() |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | impl core::fmt::Debug for ByteClasses { |
| 492 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 493 | if self.is_singleton() { |
| 494 | write!(f, "ByteClasses( {{singletons }})" ) |
| 495 | } else { |
| 496 | write!(f, "ByteClasses(" )?; |
| 497 | for (i: usize, class: Unit) in self.iter().enumerate() { |
| 498 | if i > 0 { |
| 499 | write!(f, ", " )?; |
| 500 | } |
| 501 | write!(f, " {:?} => [" , class.as_usize())?; |
| 502 | for (start: Unit, end: Unit) in self.element_ranges(class) { |
| 503 | if start == end { |
| 504 | write!(f, " {:?}" , start)?; |
| 505 | } else { |
| 506 | write!(f, " {:?}- {:?}" , start, end)?; |
| 507 | } |
| 508 | } |
| 509 | write!(f, "]" )?; |
| 510 | } |
| 511 | write!(f, ")" ) |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | /// An iterator over each equivalence class. |
| 517 | /// |
| 518 | /// The last element in this iterator always corresponds to [`Unit::eoi`]. |
| 519 | /// |
| 520 | /// This is created by the [`ByteClasses::iter`] method. |
| 521 | /// |
| 522 | /// The lifetime `'a` refers to the lifetime of the byte classes that this |
| 523 | /// iterator was created from. |
| 524 | #[derive (Debug)] |
| 525 | pub struct ByteClassIter<'a> { |
| 526 | classes: &'a ByteClasses, |
| 527 | i: usize, |
| 528 | } |
| 529 | |
| 530 | impl<'a> Iterator for ByteClassIter<'a> { |
| 531 | type Item = Unit; |
| 532 | |
| 533 | fn next(&mut self) -> Option<Unit> { |
| 534 | if self.i + 1 == self.classes.alphabet_len() { |
| 535 | self.i += 1; |
| 536 | Some(self.classes.eoi()) |
| 537 | } else if self.i < self.classes.alphabet_len() { |
| 538 | let class: u8 = u8::try_from(self.i).unwrap(); |
| 539 | self.i += 1; |
| 540 | Some(Unit::u8(byte:class)) |
| 541 | } else { |
| 542 | None |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | /// An iterator over representative bytes from each equivalence class. |
| 548 | /// |
| 549 | /// This is created by the [`ByteClasses::representatives`] method. |
| 550 | /// |
| 551 | /// The lifetime `'a` refers to the lifetime of the byte classes that this |
| 552 | /// iterator was created from. |
| 553 | #[derive (Debug)] |
| 554 | pub struct ByteClassRepresentatives<'a> { |
| 555 | classes: &'a ByteClasses, |
| 556 | cur_byte: usize, |
| 557 | end_byte: Option<usize>, |
| 558 | last_class: Option<u8>, |
| 559 | } |
| 560 | |
| 561 | impl<'a> Iterator for ByteClassRepresentatives<'a> { |
| 562 | type Item = Unit; |
| 563 | |
| 564 | fn next(&mut self) -> Option<Unit> { |
| 565 | while self.cur_byte < self.end_byte.unwrap_or(256) { |
| 566 | let byte = u8::try_from(self.cur_byte).unwrap(); |
| 567 | let class = self.classes.get(byte); |
| 568 | self.cur_byte += 1; |
| 569 | |
| 570 | if self.last_class != Some(class) { |
| 571 | self.last_class = Some(class); |
| 572 | return Some(Unit::u8(byte)); |
| 573 | } |
| 574 | } |
| 575 | if self.cur_byte != usize::MAX && self.end_byte.is_none() { |
| 576 | // Using usize::MAX as a sentinel is OK because we ban usize::MAX |
| 577 | // from appearing as a start bound in iterator construction. But |
| 578 | // why do it this way? Well, we want to return the EOI class |
| 579 | // whenever the end of the given range is unbounded because EOI |
| 580 | // isn't really a "byte" per se, so the only way it should be |
| 581 | // excluded is if there is a bounded end to the range. Therefore, |
| 582 | // when the end is unbounded, we just need to know whether we've |
| 583 | // reported EOI or not. When we do, we set cur_byte to a value it |
| 584 | // can never otherwise be. |
| 585 | self.cur_byte = usize::MAX; |
| 586 | return Some(self.classes.eoi()); |
| 587 | } |
| 588 | None |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | /// An iterator over all elements in an equivalence class. |
| 593 | /// |
| 594 | /// This is created by the [`ByteClasses::elements`] method. |
| 595 | /// |
| 596 | /// The lifetime `'a` refers to the lifetime of the byte classes that this |
| 597 | /// iterator was created from. |
| 598 | #[derive (Debug)] |
| 599 | pub struct ByteClassElements<'a> { |
| 600 | classes: &'a ByteClasses, |
| 601 | class: Unit, |
| 602 | byte: usize, |
| 603 | } |
| 604 | |
| 605 | impl<'a> Iterator for ByteClassElements<'a> { |
| 606 | type Item = Unit; |
| 607 | |
| 608 | fn next(&mut self) -> Option<Unit> { |
| 609 | while self.byte < 256 { |
| 610 | let byte: u8 = u8::try_from(self.byte).unwrap(); |
| 611 | self.byte += 1; |
| 612 | if self.class.is_byte(self.classes.get(byte)) { |
| 613 | return Some(Unit::u8(byte)); |
| 614 | } |
| 615 | } |
| 616 | if self.byte < 257 { |
| 617 | self.byte += 1; |
| 618 | if self.class.is_eoi() { |
| 619 | return Some(Unit::eoi(num_byte_equiv_classes:256)); |
| 620 | } |
| 621 | } |
| 622 | None |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | /// An iterator over all elements in an equivalence class expressed as a |
| 627 | /// sequence of contiguous ranges. |
| 628 | #[derive (Debug)] |
| 629 | struct ByteClassElementRanges<'a> { |
| 630 | elements: ByteClassElements<'a>, |
| 631 | range: Option<(Unit, Unit)>, |
| 632 | } |
| 633 | |
| 634 | impl<'a> Iterator for ByteClassElementRanges<'a> { |
| 635 | type Item = (Unit, Unit); |
| 636 | |
| 637 | fn next(&mut self) -> Option<(Unit, Unit)> { |
| 638 | loop { |
| 639 | let element = match self.elements.next() { |
| 640 | None => return self.range.take(), |
| 641 | Some(element) => element, |
| 642 | }; |
| 643 | match self.range.take() { |
| 644 | None => { |
| 645 | self.range = Some((element, element)); |
| 646 | } |
| 647 | Some((start, end)) => { |
| 648 | if end.as_usize() + 1 != element.as_usize() |
| 649 | || element.is_eoi() |
| 650 | { |
| 651 | self.range = Some((element, element)); |
| 652 | return Some((start, end)); |
| 653 | } |
| 654 | self.range = Some((start, element)); |
| 655 | } |
| 656 | } |
| 657 | } |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | /// A partitioning of bytes into equivalence classes. |
| 662 | /// |
| 663 | /// A byte class set keeps track of an *approximation* of equivalence classes |
| 664 | /// of bytes during NFA construction. That is, every byte in an equivalence |
| 665 | /// class cannot discriminate between a match and a non-match. |
| 666 | /// |
| 667 | /// For example, in the regex `[ab]+`, the bytes `a` and `b` would be in the |
| 668 | /// same equivalence class because it never matters whether an `a` or a `b` is |
| 669 | /// seen, and no combination of `a`s and `b`s in the text can discriminate a |
| 670 | /// match. |
| 671 | /// |
| 672 | /// Note though that this does not compute the minimal set of equivalence |
| 673 | /// classes. For example, in the regex `[ac]+`, both `a` and `c` are in the |
| 674 | /// same equivalence class for the same reason that `a` and `b` are in the |
| 675 | /// same equivalence class in the aforementioned regex. However, in this |
| 676 | /// implementation, `a` and `c` are put into distinct equivalence classes. The |
| 677 | /// reason for this is implementation complexity. In the future, we should |
| 678 | /// endeavor to compute the minimal equivalence classes since they can have a |
| 679 | /// rather large impact on the size of the DFA. (Doing this will likely require |
| 680 | /// rethinking how equivalence classes are computed, including changing the |
| 681 | /// representation here, which is only able to group contiguous bytes into the |
| 682 | /// same equivalence class.) |
| 683 | #[cfg (feature = "alloc" )] |
| 684 | #[derive (Clone, Debug)] |
| 685 | pub(crate) struct ByteClassSet(ByteSet); |
| 686 | |
| 687 | #[cfg (feature = "alloc" )] |
| 688 | impl Default for ByteClassSet { |
| 689 | fn default() -> ByteClassSet { |
| 690 | ByteClassSet::empty() |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | #[cfg (feature = "alloc" )] |
| 695 | impl ByteClassSet { |
| 696 | /// Create a new set of byte classes where all bytes are part of the same |
| 697 | /// equivalence class. |
| 698 | pub(crate) fn empty() -> Self { |
| 699 | ByteClassSet(ByteSet::empty()) |
| 700 | } |
| 701 | |
| 702 | /// Indicate the range of byte given (inclusive) can discriminate a |
| 703 | /// match between it and all other bytes outside of the range. |
| 704 | pub(crate) fn set_range(&mut self, start: u8, end: u8) { |
| 705 | debug_assert!(start <= end); |
| 706 | if start > 0 { |
| 707 | self.0.add(start - 1); |
| 708 | } |
| 709 | self.0.add(end); |
| 710 | } |
| 711 | |
| 712 | /// Add the contiguous ranges in the set given to this byte class set. |
| 713 | pub(crate) fn add_set(&mut self, set: &ByteSet) { |
| 714 | for (start, end) in set.iter_ranges() { |
| 715 | self.set_range(start, end); |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | /// Convert this boolean set to a map that maps all byte values to their |
| 720 | /// corresponding equivalence class. The last mapping indicates the largest |
| 721 | /// equivalence class identifier (which is never bigger than 255). |
| 722 | pub(crate) fn byte_classes(&self) -> ByteClasses { |
| 723 | let mut classes = ByteClasses::empty(); |
| 724 | let mut class = 0u8; |
| 725 | let mut b = 0u8; |
| 726 | loop { |
| 727 | classes.set(b, class); |
| 728 | if b == 255 { |
| 729 | break; |
| 730 | } |
| 731 | if self.0.contains(b) { |
| 732 | class = class.checked_add(1).unwrap(); |
| 733 | } |
| 734 | b = b.checked_add(1).unwrap(); |
| 735 | } |
| 736 | classes |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | /// A simple set of bytes that is reasonably cheap to copy and allocation free. |
| 741 | #[derive (Clone, Copy, Debug, Default, Eq, PartialEq)] |
| 742 | pub(crate) struct ByteSet { |
| 743 | bits: BitSet, |
| 744 | } |
| 745 | |
| 746 | /// The representation of a byte set. Split out so that we can define a |
| 747 | /// convenient Debug impl for it while keeping "ByteSet" in the output. |
| 748 | #[derive (Clone, Copy, Default, Eq, PartialEq)] |
| 749 | struct BitSet([u128; 2]); |
| 750 | |
| 751 | impl ByteSet { |
| 752 | /// Create an empty set of bytes. |
| 753 | pub(crate) fn empty() -> ByteSet { |
| 754 | ByteSet { bits: BitSet([0; 2]) } |
| 755 | } |
| 756 | |
| 757 | /// Add a byte to this set. |
| 758 | /// |
| 759 | /// If the given byte already belongs to this set, then this is a no-op. |
| 760 | pub(crate) fn add(&mut self, byte: u8) { |
| 761 | let bucket = byte / 128; |
| 762 | let bit = byte % 128; |
| 763 | self.bits.0[usize::from(bucket)] |= 1 << bit; |
| 764 | } |
| 765 | |
| 766 | /// Remove a byte from this set. |
| 767 | /// |
| 768 | /// If the given byte is not in this set, then this is a no-op. |
| 769 | pub(crate) fn remove(&mut self, byte: u8) { |
| 770 | let bucket = byte / 128; |
| 771 | let bit = byte % 128; |
| 772 | self.bits.0[usize::from(bucket)] &= !(1 << bit); |
| 773 | } |
| 774 | |
| 775 | /// Return true if and only if the given byte is in this set. |
| 776 | pub(crate) fn contains(&self, byte: u8) -> bool { |
| 777 | let bucket = byte / 128; |
| 778 | let bit = byte % 128; |
| 779 | self.bits.0[usize::from(bucket)] & (1 << bit) > 0 |
| 780 | } |
| 781 | |
| 782 | /// Return true if and only if the given inclusive range of bytes is in |
| 783 | /// this set. |
| 784 | pub(crate) fn contains_range(&self, start: u8, end: u8) -> bool { |
| 785 | (start..=end).all(|b| self.contains(b)) |
| 786 | } |
| 787 | |
| 788 | /// Returns an iterator over all bytes in this set. |
| 789 | pub(crate) fn iter(&self) -> ByteSetIter { |
| 790 | ByteSetIter { set: self, b: 0 } |
| 791 | } |
| 792 | |
| 793 | /// Returns an iterator over all contiguous ranges of bytes in this set. |
| 794 | pub(crate) fn iter_ranges(&self) -> ByteSetRangeIter { |
| 795 | ByteSetRangeIter { set: self, b: 0 } |
| 796 | } |
| 797 | |
| 798 | /// Return true if and only if this set is empty. |
| 799 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 800 | pub(crate) fn is_empty(&self) -> bool { |
| 801 | self.bits.0 == [0, 0] |
| 802 | } |
| 803 | |
| 804 | /// Deserializes a byte set from the given slice. If the slice is of |
| 805 | /// incorrect length or is otherwise malformed, then an error is returned. |
| 806 | /// Upon success, the number of bytes read along with the set are returned. |
| 807 | /// The number of bytes read is always a multiple of 8. |
| 808 | pub(crate) fn from_bytes( |
| 809 | slice: &[u8], |
| 810 | ) -> Result<(ByteSet, usize), DeserializeError> { |
| 811 | use core::mem::size_of; |
| 812 | |
| 813 | wire::check_slice_len(slice, 2 * size_of::<u128>(), "byte set" )?; |
| 814 | let mut nread = 0; |
| 815 | let (low, nr) = wire::try_read_u128(slice, "byte set low bucket" )?; |
| 816 | nread += nr; |
| 817 | let (high, nr) = wire::try_read_u128(slice, "byte set high bucket" )?; |
| 818 | nread += nr; |
| 819 | Ok((ByteSet { bits: BitSet([low, high]) }, nread)) |
| 820 | } |
| 821 | |
| 822 | /// Writes this byte set to the given byte buffer. If the given buffer is |
| 823 | /// too small, then an error is returned. Upon success, the total number of |
| 824 | /// bytes written is returned. The number of bytes written is guaranteed to |
| 825 | /// be a multiple of 8. |
| 826 | pub(crate) fn write_to<E: crate::util::wire::Endian>( |
| 827 | &self, |
| 828 | dst: &mut [u8], |
| 829 | ) -> Result<usize, SerializeError> { |
| 830 | use core::mem::size_of; |
| 831 | |
| 832 | let nwrite = self.write_to_len(); |
| 833 | if dst.len() < nwrite { |
| 834 | return Err(SerializeError::buffer_too_small("byte set" )); |
| 835 | } |
| 836 | let mut nw = 0; |
| 837 | E::write_u128(self.bits.0[0], &mut dst[nw..]); |
| 838 | nw += size_of::<u128>(); |
| 839 | E::write_u128(self.bits.0[1], &mut dst[nw..]); |
| 840 | nw += size_of::<u128>(); |
| 841 | assert_eq!(nwrite, nw, "expected to write certain number of bytes" ,); |
| 842 | assert_eq!( |
| 843 | nw % 8, |
| 844 | 0, |
| 845 | "expected to write multiple of 8 bytes for byte set" , |
| 846 | ); |
| 847 | Ok(nw) |
| 848 | } |
| 849 | |
| 850 | /// Returns the total number of bytes written by `write_to`. |
| 851 | pub(crate) fn write_to_len(&self) -> usize { |
| 852 | 2 * core::mem::size_of::<u128>() |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | impl core::fmt::Debug for BitSet { |
| 857 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 858 | let mut fmtd: DebugSet<'_, '_> = f.debug_set(); |
| 859 | for b: u8 in 0u8..=255 { |
| 860 | if (ByteSet { bits: *self }).contains(byte:b) { |
| 861 | fmtd.entry(&b); |
| 862 | } |
| 863 | } |
| 864 | fmtd.finish() |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | #[derive (Debug)] |
| 869 | pub(crate) struct ByteSetIter<'a> { |
| 870 | set: &'a ByteSet, |
| 871 | b: usize, |
| 872 | } |
| 873 | |
| 874 | impl<'a> Iterator for ByteSetIter<'a> { |
| 875 | type Item = u8; |
| 876 | |
| 877 | fn next(&mut self) -> Option<u8> { |
| 878 | while self.b <= 255 { |
| 879 | let b: u8 = u8::try_from(self.b).unwrap(); |
| 880 | self.b += 1; |
| 881 | if self.set.contains(byte:b) { |
| 882 | return Some(b); |
| 883 | } |
| 884 | } |
| 885 | None |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | #[derive (Debug)] |
| 890 | pub(crate) struct ByteSetRangeIter<'a> { |
| 891 | set: &'a ByteSet, |
| 892 | b: usize, |
| 893 | } |
| 894 | |
| 895 | impl<'a> Iterator for ByteSetRangeIter<'a> { |
| 896 | type Item = (u8, u8); |
| 897 | |
| 898 | fn next(&mut self) -> Option<(u8, u8)> { |
| 899 | let asu8: impl Fn(usize) -> u8 = |n: usize| u8::try_from(n).unwrap(); |
| 900 | while self.b <= 255 { |
| 901 | let start: u8 = asu8(self.b); |
| 902 | self.b += 1; |
| 903 | if !self.set.contains(byte:start) { |
| 904 | continue; |
| 905 | } |
| 906 | |
| 907 | let mut end: u8 = start; |
| 908 | while self.b <= 255 && self.set.contains(byte:asu8(self.b)) { |
| 909 | end = asu8(self.b); |
| 910 | self.b += 1; |
| 911 | } |
| 912 | return Some((start, end)); |
| 913 | } |
| 914 | None |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | #[cfg (all(test, feature = "alloc" ))] |
| 919 | mod tests { |
| 920 | use alloc::{vec, vec::Vec}; |
| 921 | |
| 922 | use super::*; |
| 923 | |
| 924 | #[test ] |
| 925 | fn byte_classes() { |
| 926 | let mut set = ByteClassSet::empty(); |
| 927 | set.set_range(b'a' , b'z' ); |
| 928 | |
| 929 | let classes = set.byte_classes(); |
| 930 | assert_eq!(classes.get(0), 0); |
| 931 | assert_eq!(classes.get(1), 0); |
| 932 | assert_eq!(classes.get(2), 0); |
| 933 | assert_eq!(classes.get(b'a' - 1), 0); |
| 934 | assert_eq!(classes.get(b'a' ), 1); |
| 935 | assert_eq!(classes.get(b'm' ), 1); |
| 936 | assert_eq!(classes.get(b'z' ), 1); |
| 937 | assert_eq!(classes.get(b'z' + 1), 2); |
| 938 | assert_eq!(classes.get(254), 2); |
| 939 | assert_eq!(classes.get(255), 2); |
| 940 | |
| 941 | let mut set = ByteClassSet::empty(); |
| 942 | set.set_range(0, 2); |
| 943 | set.set_range(4, 6); |
| 944 | let classes = set.byte_classes(); |
| 945 | assert_eq!(classes.get(0), 0); |
| 946 | assert_eq!(classes.get(1), 0); |
| 947 | assert_eq!(classes.get(2), 0); |
| 948 | assert_eq!(classes.get(3), 1); |
| 949 | assert_eq!(classes.get(4), 2); |
| 950 | assert_eq!(classes.get(5), 2); |
| 951 | assert_eq!(classes.get(6), 2); |
| 952 | assert_eq!(classes.get(7), 3); |
| 953 | assert_eq!(classes.get(255), 3); |
| 954 | } |
| 955 | |
| 956 | #[test ] |
| 957 | fn full_byte_classes() { |
| 958 | let mut set = ByteClassSet::empty(); |
| 959 | for b in 0u8..=255 { |
| 960 | set.set_range(b, b); |
| 961 | } |
| 962 | assert_eq!(set.byte_classes().alphabet_len(), 257); |
| 963 | } |
| 964 | |
| 965 | #[test ] |
| 966 | fn elements_typical() { |
| 967 | let mut set = ByteClassSet::empty(); |
| 968 | set.set_range(b'b' , b'd' ); |
| 969 | set.set_range(b'g' , b'm' ); |
| 970 | set.set_range(b'z' , b'z' ); |
| 971 | let classes = set.byte_classes(); |
| 972 | // class 0: \x00-a |
| 973 | // class 1: b-d |
| 974 | // class 2: e-f |
| 975 | // class 3: g-m |
| 976 | // class 4: n-y |
| 977 | // class 5: z-z |
| 978 | // class 6: \x7B-\xFF |
| 979 | // class 7: EOI |
| 980 | assert_eq!(classes.alphabet_len(), 8); |
| 981 | |
| 982 | let elements = classes.elements(Unit::u8(0)).collect::<Vec<_>>(); |
| 983 | assert_eq!(elements.len(), 98); |
| 984 | assert_eq!(elements[0], Unit::u8(b' \x00' )); |
| 985 | assert_eq!(elements[97], Unit::u8(b'a' )); |
| 986 | |
| 987 | let elements = classes.elements(Unit::u8(1)).collect::<Vec<_>>(); |
| 988 | assert_eq!( |
| 989 | elements, |
| 990 | vec![Unit::u8(b'b' ), Unit::u8(b'c' ), Unit::u8(b'd' )], |
| 991 | ); |
| 992 | |
| 993 | let elements = classes.elements(Unit::u8(2)).collect::<Vec<_>>(); |
| 994 | assert_eq!(elements, vec![Unit::u8(b'e' ), Unit::u8(b'f' )],); |
| 995 | |
| 996 | let elements = classes.elements(Unit::u8(3)).collect::<Vec<_>>(); |
| 997 | assert_eq!( |
| 998 | elements, |
| 999 | vec![ |
| 1000 | Unit::u8(b'g' ), |
| 1001 | Unit::u8(b'h' ), |
| 1002 | Unit::u8(b'i' ), |
| 1003 | Unit::u8(b'j' ), |
| 1004 | Unit::u8(b'k' ), |
| 1005 | Unit::u8(b'l' ), |
| 1006 | Unit::u8(b'm' ), |
| 1007 | ], |
| 1008 | ); |
| 1009 | |
| 1010 | let elements = classes.elements(Unit::u8(4)).collect::<Vec<_>>(); |
| 1011 | assert_eq!(elements.len(), 12); |
| 1012 | assert_eq!(elements[0], Unit::u8(b'n' )); |
| 1013 | assert_eq!(elements[11], Unit::u8(b'y' )); |
| 1014 | |
| 1015 | let elements = classes.elements(Unit::u8(5)).collect::<Vec<_>>(); |
| 1016 | assert_eq!(elements, vec![Unit::u8(b'z' )]); |
| 1017 | |
| 1018 | let elements = classes.elements(Unit::u8(6)).collect::<Vec<_>>(); |
| 1019 | assert_eq!(elements.len(), 133); |
| 1020 | assert_eq!(elements[0], Unit::u8(b' \x7B' )); |
| 1021 | assert_eq!(elements[132], Unit::u8(b' \xFF' )); |
| 1022 | |
| 1023 | let elements = classes.elements(Unit::eoi(7)).collect::<Vec<_>>(); |
| 1024 | assert_eq!(elements, vec![Unit::eoi(256)]); |
| 1025 | } |
| 1026 | |
| 1027 | #[test ] |
| 1028 | fn elements_singletons() { |
| 1029 | let classes = ByteClasses::singletons(); |
| 1030 | assert_eq!(classes.alphabet_len(), 257); |
| 1031 | |
| 1032 | let elements = classes.elements(Unit::u8(b'a' )).collect::<Vec<_>>(); |
| 1033 | assert_eq!(elements, vec![Unit::u8(b'a' )]); |
| 1034 | |
| 1035 | let elements = classes.elements(Unit::eoi(5)).collect::<Vec<_>>(); |
| 1036 | assert_eq!(elements, vec![Unit::eoi(256)]); |
| 1037 | } |
| 1038 | |
| 1039 | #[test ] |
| 1040 | fn elements_empty() { |
| 1041 | let classes = ByteClasses::empty(); |
| 1042 | assert_eq!(classes.alphabet_len(), 2); |
| 1043 | |
| 1044 | let elements = classes.elements(Unit::u8(0)).collect::<Vec<_>>(); |
| 1045 | assert_eq!(elements.len(), 256); |
| 1046 | assert_eq!(elements[0], Unit::u8(b' \x00' )); |
| 1047 | assert_eq!(elements[255], Unit::u8(b' \xFF' )); |
| 1048 | |
| 1049 | let elements = classes.elements(Unit::eoi(1)).collect::<Vec<_>>(); |
| 1050 | assert_eq!(elements, vec![Unit::eoi(256)]); |
| 1051 | } |
| 1052 | |
| 1053 | #[test ] |
| 1054 | fn representatives() { |
| 1055 | let mut set = ByteClassSet::empty(); |
| 1056 | set.set_range(b'b' , b'd' ); |
| 1057 | set.set_range(b'g' , b'm' ); |
| 1058 | set.set_range(b'z' , b'z' ); |
| 1059 | let classes = set.byte_classes(); |
| 1060 | |
| 1061 | let got: Vec<Unit> = classes.representatives(..).collect(); |
| 1062 | let expected = vec![ |
| 1063 | Unit::u8(b' \x00' ), |
| 1064 | Unit::u8(b'b' ), |
| 1065 | Unit::u8(b'e' ), |
| 1066 | Unit::u8(b'g' ), |
| 1067 | Unit::u8(b'n' ), |
| 1068 | Unit::u8(b'z' ), |
| 1069 | Unit::u8(b' \x7B' ), |
| 1070 | Unit::eoi(7), |
| 1071 | ]; |
| 1072 | assert_eq!(expected, got); |
| 1073 | |
| 1074 | let got: Vec<Unit> = classes.representatives(..0).collect(); |
| 1075 | assert!(got.is_empty()); |
| 1076 | let got: Vec<Unit> = classes.representatives(1..1).collect(); |
| 1077 | assert!(got.is_empty()); |
| 1078 | let got: Vec<Unit> = classes.representatives(255..255).collect(); |
| 1079 | assert!(got.is_empty()); |
| 1080 | |
| 1081 | // A weird case that is the only guaranteed to way to get an iterator |
| 1082 | // of just the EOI class by excluding all possible byte values. |
| 1083 | let got: Vec<Unit> = classes |
| 1084 | .representatives(( |
| 1085 | core::ops::Bound::Excluded(255), |
| 1086 | core::ops::Bound::Unbounded, |
| 1087 | )) |
| 1088 | .collect(); |
| 1089 | let expected = vec![Unit::eoi(7)]; |
| 1090 | assert_eq!(expected, got); |
| 1091 | |
| 1092 | let got: Vec<Unit> = classes.representatives(..=255).collect(); |
| 1093 | let expected = vec![ |
| 1094 | Unit::u8(b' \x00' ), |
| 1095 | Unit::u8(b'b' ), |
| 1096 | Unit::u8(b'e' ), |
| 1097 | Unit::u8(b'g' ), |
| 1098 | Unit::u8(b'n' ), |
| 1099 | Unit::u8(b'z' ), |
| 1100 | Unit::u8(b' \x7B' ), |
| 1101 | ]; |
| 1102 | assert_eq!(expected, got); |
| 1103 | |
| 1104 | let got: Vec<Unit> = classes.representatives(b'b' ..=b'd' ).collect(); |
| 1105 | let expected = vec![Unit::u8(b'b' )]; |
| 1106 | assert_eq!(expected, got); |
| 1107 | |
| 1108 | let got: Vec<Unit> = classes.representatives(b'a' ..=b'd' ).collect(); |
| 1109 | let expected = vec![Unit::u8(b'a' ), Unit::u8(b'b' )]; |
| 1110 | assert_eq!(expected, got); |
| 1111 | |
| 1112 | let got: Vec<Unit> = classes.representatives(b'b' ..=b'e' ).collect(); |
| 1113 | let expected = vec![Unit::u8(b'b' ), Unit::u8(b'e' )]; |
| 1114 | assert_eq!(expected, got); |
| 1115 | |
| 1116 | let got: Vec<Unit> = classes.representatives(b'A' ..=b'Z' ).collect(); |
| 1117 | let expected = vec![Unit::u8(b'A' )]; |
| 1118 | assert_eq!(expected, got); |
| 1119 | |
| 1120 | let got: Vec<Unit> = classes.representatives(b'A' ..=b'z' ).collect(); |
| 1121 | let expected = vec![ |
| 1122 | Unit::u8(b'A' ), |
| 1123 | Unit::u8(b'b' ), |
| 1124 | Unit::u8(b'e' ), |
| 1125 | Unit::u8(b'g' ), |
| 1126 | Unit::u8(b'n' ), |
| 1127 | Unit::u8(b'z' ), |
| 1128 | ]; |
| 1129 | assert_eq!(expected, got); |
| 1130 | |
| 1131 | let got: Vec<Unit> = classes.representatives(b'z' ..).collect(); |
| 1132 | let expected = vec![Unit::u8(b'z' ), Unit::u8(b' \x7B' ), Unit::eoi(7)]; |
| 1133 | assert_eq!(expected, got); |
| 1134 | |
| 1135 | let got: Vec<Unit> = classes.representatives(b'z' ..=0xFF).collect(); |
| 1136 | let expected = vec![Unit::u8(b'z' ), Unit::u8(b' \x7B' )]; |
| 1137 | assert_eq!(expected, got); |
| 1138 | } |
| 1139 | } |
| 1140 | |