| 1 | use crate::{ |
| 2 | dfa::{ |
| 3 | accel, |
| 4 | automaton::{Automaton, OverlappingState}, |
| 5 | }, |
| 6 | util::{ |
| 7 | prefilter::Prefilter, |
| 8 | primitives::StateID, |
| 9 | search::{Anchored, HalfMatch, Input, Span}, |
| 10 | }, |
| 11 | MatchError, |
| 12 | }; |
| 13 | |
| 14 | #[inline (never)] |
| 15 | pub fn find_fwd<A: Automaton + ?Sized>( |
| 16 | dfa: &A, |
| 17 | input: &Input<'_>, |
| 18 | ) -> Result<Option<HalfMatch>, MatchError> { |
| 19 | if input.is_done() { |
| 20 | return Ok(None); |
| 21 | } |
| 22 | let pre = if input.get_anchored().is_anchored() { |
| 23 | None |
| 24 | } else { |
| 25 | dfa.get_prefilter() |
| 26 | }; |
| 27 | // Searching with a pattern ID is always anchored, so we should never use |
| 28 | // a prefilter. |
| 29 | if pre.is_some() { |
| 30 | if input.get_earliest() { |
| 31 | find_fwd_imp(dfa, input, pre, true) |
| 32 | } else { |
| 33 | find_fwd_imp(dfa, input, pre, false) |
| 34 | } |
| 35 | } else { |
| 36 | if input.get_earliest() { |
| 37 | find_fwd_imp(dfa, input, None, true) |
| 38 | } else { |
| 39 | find_fwd_imp(dfa, input, None, false) |
| 40 | } |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 45 | fn find_fwd_imp<A: Automaton + ?Sized>( |
| 46 | dfa: &A, |
| 47 | input: &Input<'_>, |
| 48 | pre: Option<&'_ Prefilter>, |
| 49 | earliest: bool, |
| 50 | ) -> Result<Option<HalfMatch>, MatchError> { |
| 51 | // See 'prefilter_restart' docs for explanation. |
| 52 | let universal_start = dfa.universal_start_state(Anchored::No).is_some(); |
| 53 | let mut mat = None; |
| 54 | let mut sid = init_fwd(dfa, input)?; |
| 55 | let mut at = input.start(); |
| 56 | // This could just be a closure, but then I think it would be unsound |
| 57 | // because it would need to be safe to invoke. This way, the lack of safety |
| 58 | // is clearer in the code below. |
| 59 | macro_rules! next_unchecked { |
| 60 | ($sid:expr, $at:expr) => {{ |
| 61 | let byte = *input.haystack().get_unchecked($at); |
| 62 | dfa.next_state_unchecked($sid, byte) |
| 63 | }}; |
| 64 | } |
| 65 | |
| 66 | if let Some(ref pre) = pre { |
| 67 | let span = Span::from(at..input.end()); |
| 68 | // If a prefilter doesn't report false positives, then we don't need to |
| 69 | // touch the DFA at all. However, since all matches include the pattern |
| 70 | // ID, and the prefilter infrastructure doesn't report pattern IDs, we |
| 71 | // limit this optimization to cases where there is exactly one pattern. |
| 72 | // In that case, any match must be the 0th pattern. |
| 73 | match pre.find(input.haystack(), span) { |
| 74 | None => return Ok(mat), |
| 75 | Some(ref span) => { |
| 76 | at = span.start; |
| 77 | if !universal_start { |
| 78 | sid = prefilter_restart(dfa, &input, at)?; |
| 79 | } |
| 80 | } |
| 81 | } |
| 82 | } |
| 83 | while at < input.end() { |
| 84 | // SAFETY: There are two safety invariants we need to uphold here in |
| 85 | // the loops below: that 'sid' and 'prev_sid' are valid state IDs |
| 86 | // for this DFA, and that 'at' is a valid index into 'haystack'. |
| 87 | // For the former, we rely on the invariant that next_state* and |
| 88 | // start_state_forward always returns a valid state ID (given a valid |
| 89 | // state ID in the former case). For the latter safety invariant, we |
| 90 | // always guard unchecked access with a check that 'at' is less than |
| 91 | // 'end', where 'end <= haystack.len()'. In the unrolled loop below, we |
| 92 | // ensure that 'at' is always in bounds. |
| 93 | // |
| 94 | // PERF: See a similar comment in src/hybrid/search.rs that justifies |
| 95 | // this extra work to make the search loop fast. The same reasoning and |
| 96 | // benchmarks apply here. |
| 97 | let mut prev_sid; |
| 98 | while at < input.end() { |
| 99 | prev_sid = unsafe { next_unchecked!(sid, at) }; |
| 100 | if dfa.is_special_state(prev_sid) || at + 3 >= input.end() { |
| 101 | core::mem::swap(&mut prev_sid, &mut sid); |
| 102 | break; |
| 103 | } |
| 104 | at += 1; |
| 105 | |
| 106 | sid = unsafe { next_unchecked!(prev_sid, at) }; |
| 107 | if dfa.is_special_state(sid) { |
| 108 | break; |
| 109 | } |
| 110 | at += 1; |
| 111 | |
| 112 | prev_sid = unsafe { next_unchecked!(sid, at) }; |
| 113 | if dfa.is_special_state(prev_sid) { |
| 114 | core::mem::swap(&mut prev_sid, &mut sid); |
| 115 | break; |
| 116 | } |
| 117 | at += 1; |
| 118 | |
| 119 | sid = unsafe { next_unchecked!(prev_sid, at) }; |
| 120 | if dfa.is_special_state(sid) { |
| 121 | break; |
| 122 | } |
| 123 | at += 1; |
| 124 | } |
| 125 | if dfa.is_special_state(sid) { |
| 126 | if dfa.is_start_state(sid) { |
| 127 | if let Some(ref pre) = pre { |
| 128 | let span = Span::from(at..input.end()); |
| 129 | match pre.find(input.haystack(), span) { |
| 130 | None => return Ok(mat), |
| 131 | Some(ref span) => { |
| 132 | // We want to skip any update to 'at' below |
| 133 | // at the end of this iteration and just |
| 134 | // jump immediately back to the next state |
| 135 | // transition at the leading position of the |
| 136 | // candidate match. |
| 137 | // |
| 138 | // ... but only if we actually made progress |
| 139 | // with our prefilter, otherwise if the start |
| 140 | // state has a self-loop, we can get stuck. |
| 141 | if span.start > at { |
| 142 | at = span.start; |
| 143 | if !universal_start { |
| 144 | sid = prefilter_restart(dfa, &input, at)?; |
| 145 | } |
| 146 | continue; |
| 147 | } |
| 148 | } |
| 149 | } |
| 150 | } else if dfa.is_accel_state(sid) { |
| 151 | let needles = dfa.accelerator(sid); |
| 152 | at = accel::find_fwd(needles, input.haystack(), at + 1) |
| 153 | .unwrap_or(input.end()); |
| 154 | continue; |
| 155 | } |
| 156 | } else if dfa.is_match_state(sid) { |
| 157 | let pattern = dfa.match_pattern(sid, 0); |
| 158 | mat = Some(HalfMatch::new(pattern, at)); |
| 159 | if earliest { |
| 160 | return Ok(mat); |
| 161 | } |
| 162 | if dfa.is_accel_state(sid) { |
| 163 | let needles = dfa.accelerator(sid); |
| 164 | at = accel::find_fwd(needles, input.haystack(), at + 1) |
| 165 | .unwrap_or(input.end()); |
| 166 | continue; |
| 167 | } |
| 168 | } else if dfa.is_accel_state(sid) { |
| 169 | let needs = dfa.accelerator(sid); |
| 170 | at = accel::find_fwd(needs, input.haystack(), at + 1) |
| 171 | .unwrap_or(input.end()); |
| 172 | continue; |
| 173 | } else if dfa.is_dead_state(sid) { |
| 174 | return Ok(mat); |
| 175 | } else { |
| 176 | // It's important that this is a debug_assert, since this can |
| 177 | // actually be tripped even if DFA::from_bytes succeeds and |
| 178 | // returns a supposedly valid DFA. |
| 179 | return Err(MatchError::quit(input.haystack()[at], at)); |
| 180 | } |
| 181 | } |
| 182 | at += 1; |
| 183 | } |
| 184 | eoi_fwd(dfa, input, &mut sid, &mut mat)?; |
| 185 | Ok(mat) |
| 186 | } |
| 187 | |
| 188 | #[inline (never)] |
| 189 | pub fn find_rev<A: Automaton + ?Sized>( |
| 190 | dfa: &A, |
| 191 | input: &Input<'_>, |
| 192 | ) -> Result<Option<HalfMatch>, MatchError> { |
| 193 | if input.is_done() { |
| 194 | return Ok(None); |
| 195 | } |
| 196 | if input.get_earliest() { |
| 197 | find_rev_imp(dfa, input, earliest:true) |
| 198 | } else { |
| 199 | find_rev_imp(dfa, input, earliest:false) |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 204 | fn find_rev_imp<A: Automaton + ?Sized>( |
| 205 | dfa: &A, |
| 206 | input: &Input<'_>, |
| 207 | earliest: bool, |
| 208 | ) -> Result<Option<HalfMatch>, MatchError> { |
| 209 | let mut mat = None; |
| 210 | let mut sid = init_rev(dfa, input)?; |
| 211 | // In reverse search, the loop below can't handle the case of searching an |
| 212 | // empty slice. Ideally we could write something congruent to the forward |
| 213 | // search, i.e., 'while at >= start', but 'start' might be 0. Since we use |
| 214 | // an unsigned offset, 'at >= 0' is trivially always true. We could avoid |
| 215 | // this extra case handling by using a signed offset, but Rust makes it |
| 216 | // annoying to do. So... We just handle the empty case separately. |
| 217 | if input.start() == input.end() { |
| 218 | eoi_rev(dfa, input, &mut sid, &mut mat)?; |
| 219 | return Ok(mat); |
| 220 | } |
| 221 | |
| 222 | let mut at = input.end() - 1; |
| 223 | macro_rules! next_unchecked { |
| 224 | ($sid:expr, $at:expr) => {{ |
| 225 | let byte = *input.haystack().get_unchecked($at); |
| 226 | dfa.next_state_unchecked($sid, byte) |
| 227 | }}; |
| 228 | } |
| 229 | loop { |
| 230 | // SAFETY: See comments in 'find_fwd' for a safety argument. |
| 231 | let mut prev_sid; |
| 232 | while at >= input.start() { |
| 233 | prev_sid = unsafe { next_unchecked!(sid, at) }; |
| 234 | if dfa.is_special_state(prev_sid) |
| 235 | || at <= input.start().saturating_add(3) |
| 236 | { |
| 237 | core::mem::swap(&mut prev_sid, &mut sid); |
| 238 | break; |
| 239 | } |
| 240 | at -= 1; |
| 241 | |
| 242 | sid = unsafe { next_unchecked!(prev_sid, at) }; |
| 243 | if dfa.is_special_state(sid) { |
| 244 | break; |
| 245 | } |
| 246 | at -= 1; |
| 247 | |
| 248 | prev_sid = unsafe { next_unchecked!(sid, at) }; |
| 249 | if dfa.is_special_state(prev_sid) { |
| 250 | core::mem::swap(&mut prev_sid, &mut sid); |
| 251 | break; |
| 252 | } |
| 253 | at -= 1; |
| 254 | |
| 255 | sid = unsafe { next_unchecked!(prev_sid, at) }; |
| 256 | if dfa.is_special_state(sid) { |
| 257 | break; |
| 258 | } |
| 259 | at -= 1; |
| 260 | } |
| 261 | if dfa.is_special_state(sid) { |
| 262 | if dfa.is_start_state(sid) { |
| 263 | if dfa.is_accel_state(sid) { |
| 264 | let needles = dfa.accelerator(sid); |
| 265 | at = accel::find_rev(needles, input.haystack(), at) |
| 266 | .map(|i| i + 1) |
| 267 | .unwrap_or(input.start()); |
| 268 | } |
| 269 | } else if dfa.is_match_state(sid) { |
| 270 | let pattern = dfa.match_pattern(sid, 0); |
| 271 | // Since reverse searches report the beginning of a match |
| 272 | // and the beginning is inclusive (not exclusive like the |
| 273 | // end of a match), we add 1 to make it inclusive. |
| 274 | mat = Some(HalfMatch::new(pattern, at + 1)); |
| 275 | if earliest { |
| 276 | return Ok(mat); |
| 277 | } |
| 278 | if dfa.is_accel_state(sid) { |
| 279 | let needles = dfa.accelerator(sid); |
| 280 | at = accel::find_rev(needles, input.haystack(), at) |
| 281 | .map(|i| i + 1) |
| 282 | .unwrap_or(input.start()); |
| 283 | } |
| 284 | } else if dfa.is_accel_state(sid) { |
| 285 | let needles = dfa.accelerator(sid); |
| 286 | // If the accelerator returns nothing, why don't we quit the |
| 287 | // search? Well, if the accelerator doesn't find anything, that |
| 288 | // doesn't mean we don't have a match. It just means that we |
| 289 | // can't leave the current state given one of the 255 possible |
| 290 | // byte values. However, there might be an EOI transition. So |
| 291 | // we set 'at' to the end of the haystack, which will cause |
| 292 | // this loop to stop and fall down into the EOI transition. |
| 293 | at = accel::find_rev(needles, input.haystack(), at) |
| 294 | .map(|i| i + 1) |
| 295 | .unwrap_or(input.start()); |
| 296 | } else if dfa.is_dead_state(sid) { |
| 297 | return Ok(mat); |
| 298 | } else { |
| 299 | return Err(MatchError::quit(input.haystack()[at], at)); |
| 300 | } |
| 301 | } |
| 302 | if at == input.start() { |
| 303 | break; |
| 304 | } |
| 305 | at -= 1; |
| 306 | } |
| 307 | eoi_rev(dfa, input, &mut sid, &mut mat)?; |
| 308 | Ok(mat) |
| 309 | } |
| 310 | |
| 311 | #[inline (never)] |
| 312 | pub fn find_overlapping_fwd<A: Automaton + ?Sized>( |
| 313 | dfa: &A, |
| 314 | input: &Input<'_>, |
| 315 | state: &mut OverlappingState, |
| 316 | ) -> Result<(), MatchError> { |
| 317 | state.mat = None; |
| 318 | if input.is_done() { |
| 319 | return Ok(()); |
| 320 | } |
| 321 | let pre: Option<&Prefilter> = if input.get_anchored().is_anchored() { |
| 322 | None |
| 323 | } else { |
| 324 | dfa.get_prefilter() |
| 325 | }; |
| 326 | if pre.is_some() { |
| 327 | find_overlapping_fwd_imp(dfa, input, pre, state) |
| 328 | } else { |
| 329 | find_overlapping_fwd_imp(dfa, input, pre:None, state) |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 334 | fn find_overlapping_fwd_imp<A: Automaton + ?Sized>( |
| 335 | dfa: &A, |
| 336 | input: &Input<'_>, |
| 337 | pre: Option<&'_ Prefilter>, |
| 338 | state: &mut OverlappingState, |
| 339 | ) -> Result<(), MatchError> { |
| 340 | // See 'prefilter_restart' docs for explanation. |
| 341 | let universal_start = dfa.universal_start_state(Anchored::No).is_some(); |
| 342 | let mut sid = match state.id { |
| 343 | None => { |
| 344 | state.at = input.start(); |
| 345 | init_fwd(dfa, input)? |
| 346 | } |
| 347 | Some(sid) => { |
| 348 | if let Some(match_index) = state.next_match_index { |
| 349 | let match_len = dfa.match_len(sid); |
| 350 | if match_index < match_len { |
| 351 | state.next_match_index = Some(match_index + 1); |
| 352 | let pattern = dfa.match_pattern(sid, match_index); |
| 353 | state.mat = Some(HalfMatch::new(pattern, state.at)); |
| 354 | return Ok(()); |
| 355 | } |
| 356 | } |
| 357 | // Once we've reported all matches at a given position, we need to |
| 358 | // advance the search to the next position. |
| 359 | state.at += 1; |
| 360 | if state.at > input.end() { |
| 361 | return Ok(()); |
| 362 | } |
| 363 | sid |
| 364 | } |
| 365 | }; |
| 366 | |
| 367 | // NOTE: We don't optimize the crap out of this routine primarily because |
| 368 | // it seems like most find_overlapping searches will have higher match |
| 369 | // counts, and thus, throughput is perhaps not as important. But if you |
| 370 | // have a use case for something faster, feel free to file an issue. |
| 371 | while state.at < input.end() { |
| 372 | sid = dfa.next_state(sid, input.haystack()[state.at]); |
| 373 | if dfa.is_special_state(sid) { |
| 374 | state.id = Some(sid); |
| 375 | if dfa.is_start_state(sid) { |
| 376 | if let Some(ref pre) = pre { |
| 377 | let span = Span::from(state.at..input.end()); |
| 378 | match pre.find(input.haystack(), span) { |
| 379 | None => return Ok(()), |
| 380 | Some(ref span) => { |
| 381 | if span.start > state.at { |
| 382 | state.at = span.start; |
| 383 | if !universal_start { |
| 384 | sid = prefilter_restart( |
| 385 | dfa, &input, state.at, |
| 386 | )?; |
| 387 | } |
| 388 | continue; |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | } else if dfa.is_accel_state(sid) { |
| 393 | let needles = dfa.accelerator(sid); |
| 394 | state.at = accel::find_fwd( |
| 395 | needles, |
| 396 | input.haystack(), |
| 397 | state.at + 1, |
| 398 | ) |
| 399 | .unwrap_or(input.end()); |
| 400 | continue; |
| 401 | } |
| 402 | } else if dfa.is_match_state(sid) { |
| 403 | state.next_match_index = Some(1); |
| 404 | let pattern = dfa.match_pattern(sid, 0); |
| 405 | state.mat = Some(HalfMatch::new(pattern, state.at)); |
| 406 | return Ok(()); |
| 407 | } else if dfa.is_accel_state(sid) { |
| 408 | let needs = dfa.accelerator(sid); |
| 409 | // If the accelerator returns nothing, why don't we quit the |
| 410 | // search? Well, if the accelerator doesn't find anything, that |
| 411 | // doesn't mean we don't have a match. It just means that we |
| 412 | // can't leave the current state given one of the 255 possible |
| 413 | // byte values. However, there might be an EOI transition. So |
| 414 | // we set 'at' to the end of the haystack, which will cause |
| 415 | // this loop to stop and fall down into the EOI transition. |
| 416 | state.at = |
| 417 | accel::find_fwd(needs, input.haystack(), state.at + 1) |
| 418 | .unwrap_or(input.end()); |
| 419 | continue; |
| 420 | } else if dfa.is_dead_state(sid) { |
| 421 | return Ok(()); |
| 422 | } else { |
| 423 | return Err(MatchError::quit( |
| 424 | input.haystack()[state.at], |
| 425 | state.at, |
| 426 | )); |
| 427 | } |
| 428 | } |
| 429 | state.at += 1; |
| 430 | } |
| 431 | |
| 432 | let result = eoi_fwd(dfa, input, &mut sid, &mut state.mat); |
| 433 | state.id = Some(sid); |
| 434 | if state.mat.is_some() { |
| 435 | // '1' is always correct here since if we get to this point, this |
| 436 | // always corresponds to the first (index '0') match discovered at |
| 437 | // this position. So the next match to report at this position (if |
| 438 | // it exists) is at index '1'. |
| 439 | state.next_match_index = Some(1); |
| 440 | } |
| 441 | result |
| 442 | } |
| 443 | |
| 444 | #[inline (never)] |
| 445 | pub(crate) fn find_overlapping_rev<A: Automaton + ?Sized>( |
| 446 | dfa: &A, |
| 447 | input: &Input<'_>, |
| 448 | state: &mut OverlappingState, |
| 449 | ) -> Result<(), MatchError> { |
| 450 | state.mat = None; |
| 451 | if input.is_done() { |
| 452 | return Ok(()); |
| 453 | } |
| 454 | let mut sid = match state.id { |
| 455 | None => { |
| 456 | let sid = init_rev(dfa, input)?; |
| 457 | state.id = Some(sid); |
| 458 | if input.start() == input.end() { |
| 459 | state.rev_eoi = true; |
| 460 | } else { |
| 461 | state.at = input.end() - 1; |
| 462 | } |
| 463 | sid |
| 464 | } |
| 465 | Some(sid) => { |
| 466 | if let Some(match_index) = state.next_match_index { |
| 467 | let match_len = dfa.match_len(sid); |
| 468 | if match_index < match_len { |
| 469 | state.next_match_index = Some(match_index + 1); |
| 470 | let pattern = dfa.match_pattern(sid, match_index); |
| 471 | state.mat = Some(HalfMatch::new(pattern, state.at)); |
| 472 | return Ok(()); |
| 473 | } |
| 474 | } |
| 475 | // Once we've reported all matches at a given position, we need |
| 476 | // to advance the search to the next position. However, if we've |
| 477 | // already followed the EOI transition, then we know we're done |
| 478 | // with the search and there cannot be any more matches to report. |
| 479 | if state.rev_eoi { |
| 480 | return Ok(()); |
| 481 | } else if state.at == input.start() { |
| 482 | // At this point, we should follow the EOI transition. This |
| 483 | // will cause us the skip the main loop below and fall through |
| 484 | // to the final 'eoi_rev' transition. |
| 485 | state.rev_eoi = true; |
| 486 | } else { |
| 487 | // We haven't hit the end of the search yet, so move on. |
| 488 | state.at -= 1; |
| 489 | } |
| 490 | sid |
| 491 | } |
| 492 | }; |
| 493 | while !state.rev_eoi { |
| 494 | sid = dfa.next_state(sid, input.haystack()[state.at]); |
| 495 | if dfa.is_special_state(sid) { |
| 496 | state.id = Some(sid); |
| 497 | if dfa.is_start_state(sid) { |
| 498 | if dfa.is_accel_state(sid) { |
| 499 | let needles = dfa.accelerator(sid); |
| 500 | state.at = |
| 501 | accel::find_rev(needles, input.haystack(), state.at) |
| 502 | .map(|i| i + 1) |
| 503 | .unwrap_or(input.start()); |
| 504 | } |
| 505 | } else if dfa.is_match_state(sid) { |
| 506 | state.next_match_index = Some(1); |
| 507 | let pattern = dfa.match_pattern(sid, 0); |
| 508 | state.mat = Some(HalfMatch::new(pattern, state.at + 1)); |
| 509 | return Ok(()); |
| 510 | } else if dfa.is_accel_state(sid) { |
| 511 | let needles = dfa.accelerator(sid); |
| 512 | // If the accelerator returns nothing, why don't we quit the |
| 513 | // search? Well, if the accelerator doesn't find anything, that |
| 514 | // doesn't mean we don't have a match. It just means that we |
| 515 | // can't leave the current state given one of the 255 possible |
| 516 | // byte values. However, there might be an EOI transition. So |
| 517 | // we set 'at' to the end of the haystack, which will cause |
| 518 | // this loop to stop and fall down into the EOI transition. |
| 519 | state.at = |
| 520 | accel::find_rev(needles, input.haystack(), state.at) |
| 521 | .map(|i| i + 1) |
| 522 | .unwrap_or(input.start()); |
| 523 | } else if dfa.is_dead_state(sid) { |
| 524 | return Ok(()); |
| 525 | } else { |
| 526 | return Err(MatchError::quit( |
| 527 | input.haystack()[state.at], |
| 528 | state.at, |
| 529 | )); |
| 530 | } |
| 531 | } |
| 532 | if state.at == input.start() { |
| 533 | break; |
| 534 | } |
| 535 | state.at -= 1; |
| 536 | } |
| 537 | |
| 538 | let result = eoi_rev(dfa, input, &mut sid, &mut state.mat); |
| 539 | state.rev_eoi = true; |
| 540 | state.id = Some(sid); |
| 541 | if state.mat.is_some() { |
| 542 | // '1' is always correct here since if we get to this point, this |
| 543 | // always corresponds to the first (index '0') match discovered at |
| 544 | // this position. So the next match to report at this position (if |
| 545 | // it exists) is at index '1'. |
| 546 | state.next_match_index = Some(1); |
| 547 | } |
| 548 | result |
| 549 | } |
| 550 | |
| 551 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 552 | fn init_fwd<A: Automaton + ?Sized>( |
| 553 | dfa: &A, |
| 554 | input: &Input<'_>, |
| 555 | ) -> Result<StateID, MatchError> { |
| 556 | let sid: StateID = dfa.start_state_forward(input)?; |
| 557 | // Start states can never be match states, since all matches are delayed |
| 558 | // by 1 byte. |
| 559 | debug_assert!(!dfa.is_match_state(sid)); |
| 560 | Ok(sid) |
| 561 | } |
| 562 | |
| 563 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 564 | fn init_rev<A: Automaton + ?Sized>( |
| 565 | dfa: &A, |
| 566 | input: &Input<'_>, |
| 567 | ) -> Result<StateID, MatchError> { |
| 568 | let sid: StateID = dfa.start_state_reverse(input)?; |
| 569 | // Start states can never be match states, since all matches are delayed |
| 570 | // by 1 byte. |
| 571 | debug_assert!(!dfa.is_match_state(sid)); |
| 572 | Ok(sid) |
| 573 | } |
| 574 | |
| 575 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 576 | fn eoi_fwd<A: Automaton + ?Sized>( |
| 577 | dfa: &A, |
| 578 | input: &Input<'_>, |
| 579 | sid: &mut StateID, |
| 580 | mat: &mut Option<HalfMatch>, |
| 581 | ) -> Result<(), MatchError> { |
| 582 | let sp: Span = input.get_span(); |
| 583 | match input.haystack().get(index:sp.end) { |
| 584 | Some(&b: u8) => { |
| 585 | *sid = dfa.next_state(*sid, input:b); |
| 586 | if dfa.is_match_state(*sid) { |
| 587 | let pattern: PatternID = dfa.match_pattern(*sid, index:0); |
| 588 | *mat = Some(HalfMatch::new(pattern, offset:sp.end)); |
| 589 | } else if dfa.is_quit_state(*sid) { |
| 590 | return Err(MatchError::quit(byte:b, offset:sp.end)); |
| 591 | } |
| 592 | } |
| 593 | None => { |
| 594 | *sid = dfa.next_eoi_state(*sid); |
| 595 | if dfa.is_match_state(*sid) { |
| 596 | let pattern: PatternID = dfa.match_pattern(*sid, index:0); |
| 597 | *mat = Some(HalfMatch::new(pattern, offset:input.haystack().len())); |
| 598 | } |
| 599 | } |
| 600 | } |
| 601 | Ok(()) |
| 602 | } |
| 603 | |
| 604 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 605 | fn eoi_rev<A: Automaton + ?Sized>( |
| 606 | dfa: &A, |
| 607 | input: &Input<'_>, |
| 608 | sid: &mut StateID, |
| 609 | mat: &mut Option<HalfMatch>, |
| 610 | ) -> Result<(), MatchError> { |
| 611 | let sp: Span = input.get_span(); |
| 612 | if sp.start > 0 { |
| 613 | let byte: u8 = input.haystack()[sp.start - 1]; |
| 614 | *sid = dfa.next_state(*sid, input:byte); |
| 615 | if dfa.is_match_state(*sid) { |
| 616 | let pattern: PatternID = dfa.match_pattern(*sid, index:0); |
| 617 | *mat = Some(HalfMatch::new(pattern, offset:sp.start)); |
| 618 | } else if dfa.is_quit_state(*sid) { |
| 619 | return Err(MatchError::quit(byte, offset:sp.start - 1)); |
| 620 | } |
| 621 | } else { |
| 622 | *sid = dfa.next_eoi_state(*sid); |
| 623 | if dfa.is_match_state(*sid) { |
| 624 | let pattern: PatternID = dfa.match_pattern(*sid, index:0); |
| 625 | *mat = Some(HalfMatch::new(pattern, offset:0)); |
| 626 | } |
| 627 | } |
| 628 | Ok(()) |
| 629 | } |
| 630 | |
| 631 | /// Re-compute the starting state that a DFA should be in after finding a |
| 632 | /// prefilter candidate match at the position `at`. |
| 633 | /// |
| 634 | /// The function with the same name has a bit more docs in hybrid/search.rs. |
| 635 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 636 | fn prefilter_restart<A: Automaton + ?Sized>( |
| 637 | dfa: &A, |
| 638 | input: &Input<'_>, |
| 639 | at: usize, |
| 640 | ) -> Result<StateID, MatchError> { |
| 641 | let mut input: Input<'_> = input.clone(); |
| 642 | input.set_start(at); |
| 643 | init_fwd(dfa, &input) |
| 644 | } |
| 645 | |