| 1 | /*! |
| 2 | This module defines two bespoke reverse DFA searching routines. (One for the |
| 3 | lazy DFA and one for the fully compiled DFA.) These routines differ from the |
| 4 | usual ones by permitting the caller to specify a minimum starting position. |
| 5 | That is, the search will begin at `input.end()` and will usually stop at |
| 6 | `input.start()`, unless `min_start > input.start()`, in which case, the search |
| 7 | will stop at `min_start`. |
| 8 | |
| 9 | In other words, this lets you say, "no, the search must not extend past this |
| 10 | point, even if it's within the bounds of the given `Input`." And if the search |
| 11 | *does* want to go past that point, it stops and returns a "may be quadratic" |
| 12 | error, which indicates that the caller should retry using some other technique. |
| 13 | |
| 14 | These routines specifically exist to protect against quadratic behavior when |
| 15 | employing the "reverse suffix" and "reverse inner" optimizations. Without the |
| 16 | backstop these routines provide, it is possible for parts of the haystack to |
| 17 | get re-scanned over and over again. The backstop not only prevents this, but |
| 18 | *tells you when it is happening* so that you can change the strategy. |
| 19 | |
| 20 | Why can't we just use the normal search routines? We could use the normal |
| 21 | search routines and just set the start bound on the provided `Input` to our |
| 22 | `min_start` position. The problem here is that it's impossible to distinguish |
| 23 | between "no match because we reached the end of input" and "determined there |
| 24 | was no match well before the end of input." The former case is what we care |
| 25 | about with respect to quadratic behavior. The latter case is totally fine. |
| 26 | |
| 27 | Why don't we modify the normal search routines to report the position at which |
| 28 | the search stops? I considered this, and I still wonder if it is indeed the |
| 29 | right thing to do. However, I think the straight-forward thing to do there |
| 30 | would be to complicate the return type signature of almost every search routine |
| 31 | in this crate, which I really do not want to do. It therefore might make more |
| 32 | sense to provide a richer way for search routines to report meta data, but that |
| 33 | was beyond my bandwidth to work on at the time of writing. |
| 34 | |
| 35 | See the 'opt/reverse-inner' and 'opt/reverse-suffix' benchmarks in rebar for a |
| 36 | real demonstration of how quadratic behavior is mitigated. |
| 37 | */ |
| 38 | |
| 39 | use crate::{ |
| 40 | meta::error::{RetryError, RetryQuadraticError}, |
| 41 | HalfMatch, Input, MatchError, |
| 42 | }; |
| 43 | |
| 44 | #[cfg (feature = "dfa-build" )] |
| 45 | pub(crate) fn dfa_try_search_half_rev( |
| 46 | dfa: &crate::dfa::dense::DFA<alloc::vec::Vec<u32>>, |
| 47 | input: &Input<'_>, |
| 48 | min_start: usize, |
| 49 | ) -> Result<Option<HalfMatch>, RetryError> { |
| 50 | use crate::dfa::Automaton; |
| 51 | |
| 52 | let mut mat = None; |
| 53 | let mut sid = dfa.start_state_reverse(input)?; |
| 54 | if input.start() == input.end() { |
| 55 | dfa_eoi_rev(dfa, input, &mut sid, &mut mat)?; |
| 56 | return Ok(mat); |
| 57 | } |
| 58 | let mut at = input.end() - 1; |
| 59 | loop { |
| 60 | sid = dfa.next_state(sid, input.haystack()[at]); |
| 61 | if dfa.is_special_state(sid) { |
| 62 | if dfa.is_match_state(sid) { |
| 63 | let pattern = dfa.match_pattern(sid, 0); |
| 64 | // Since reverse searches report the beginning of a |
| 65 | // match and the beginning is inclusive (not exclusive |
| 66 | // like the end of a match), we add 1 to make it |
| 67 | // inclusive. |
| 68 | mat = Some(HalfMatch::new(pattern, at + 1)); |
| 69 | } else if dfa.is_dead_state(sid) { |
| 70 | return Ok(mat); |
| 71 | } else if dfa.is_quit_state(sid) { |
| 72 | return Err(MatchError::quit(input.haystack()[at], at).into()); |
| 73 | } |
| 74 | } |
| 75 | if at == input.start() { |
| 76 | break; |
| 77 | } |
| 78 | at -= 1; |
| 79 | if at < min_start { |
| 80 | trace!( |
| 81 | "reached position {} which is before the previous literal \ |
| 82 | match, quitting to avoid quadratic behavior" , |
| 83 | at, |
| 84 | ); |
| 85 | return Err(RetryError::Quadratic(RetryQuadraticError::new())); |
| 86 | } |
| 87 | } |
| 88 | let was_dead = dfa.is_dead_state(sid); |
| 89 | dfa_eoi_rev(dfa, input, &mut sid, &mut mat)?; |
| 90 | // If we reach the beginning of the search and we could otherwise still |
| 91 | // potentially keep matching if there was more to match, then we actually |
| 92 | // return an error to indicate giving up on this optimization. Why? Because |
| 93 | // we can't prove that the real match begins at where we would report it. |
| 94 | // |
| 95 | // This only happens when all of the following are true: |
| 96 | // |
| 97 | // 1) We reach the starting point of our search span. |
| 98 | // 2) The match we found is before the starting point. |
| 99 | // 3) The FSM reports we could possibly find a longer match. |
| 100 | // |
| 101 | // We need (1) because otherwise the search stopped before the starting |
| 102 | // point and there is no possible way to find a more leftmost position. |
| 103 | // |
| 104 | // We need (2) because if the match found has an offset equal to the minimum |
| 105 | // possible offset, then there is no possible more leftmost match. |
| 106 | // |
| 107 | // We need (3) because if the FSM couldn't continue anyway (i.e., it's in |
| 108 | // a dead state), then we know we couldn't find anything more leftmost |
| 109 | // than what we have. (We have to check the state we were in prior to the |
| 110 | // EOI transition since the EOI transition will usually bring us to a dead |
| 111 | // state by virtue of it represents the end-of-input.) |
| 112 | if at == input.start() |
| 113 | && mat.map_or(false, |m| m.offset() > input.start()) |
| 114 | && !was_dead |
| 115 | { |
| 116 | trace!( |
| 117 | "reached beginning of search at offset {} without hitting \ |
| 118 | a dead state, quitting to avoid potential false positive match" , |
| 119 | at, |
| 120 | ); |
| 121 | return Err(RetryError::Quadratic(RetryQuadraticError::new())); |
| 122 | } |
| 123 | Ok(mat) |
| 124 | } |
| 125 | |
| 126 | #[cfg (feature = "hybrid" )] |
| 127 | pub(crate) fn hybrid_try_search_half_rev( |
| 128 | dfa: &crate::hybrid::dfa::DFA, |
| 129 | cache: &mut crate::hybrid::dfa::Cache, |
| 130 | input: &Input<'_>, |
| 131 | min_start: usize, |
| 132 | ) -> Result<Option<HalfMatch>, RetryError> { |
| 133 | let mut mat = None; |
| 134 | let mut sid = dfa.start_state_reverse(cache, input)?; |
| 135 | if input.start() == input.end() { |
| 136 | hybrid_eoi_rev(dfa, cache, input, &mut sid, &mut mat)?; |
| 137 | return Ok(mat); |
| 138 | } |
| 139 | let mut at = input.end() - 1; |
| 140 | loop { |
| 141 | sid = dfa |
| 142 | .next_state(cache, sid, input.haystack()[at]) |
| 143 | .map_err(|_| MatchError::gave_up(at))?; |
| 144 | if sid.is_tagged() { |
| 145 | if sid.is_match() { |
| 146 | let pattern = dfa.match_pattern(cache, sid, 0); |
| 147 | // Since reverse searches report the beginning of a |
| 148 | // match and the beginning is inclusive (not exclusive |
| 149 | // like the end of a match), we add 1 to make it |
| 150 | // inclusive. |
| 151 | mat = Some(HalfMatch::new(pattern, at + 1)); |
| 152 | } else if sid.is_dead() { |
| 153 | return Ok(mat); |
| 154 | } else if sid.is_quit() { |
| 155 | return Err(MatchError::quit(input.haystack()[at], at).into()); |
| 156 | } |
| 157 | } |
| 158 | if at == input.start() { |
| 159 | break; |
| 160 | } |
| 161 | at -= 1; |
| 162 | if at < min_start { |
| 163 | trace!( |
| 164 | "reached position {} which is before the previous literal \ |
| 165 | match, quitting to avoid quadratic behavior" , |
| 166 | at, |
| 167 | ); |
| 168 | return Err(RetryError::Quadratic(RetryQuadraticError::new())); |
| 169 | } |
| 170 | } |
| 171 | let was_dead = sid.is_dead(); |
| 172 | hybrid_eoi_rev(dfa, cache, input, &mut sid, &mut mat)?; |
| 173 | // See the comments in the full DFA routine above for why we need this. |
| 174 | if at == input.start() |
| 175 | && mat.map_or(false, |m| m.offset() > input.start()) |
| 176 | && !was_dead |
| 177 | { |
| 178 | trace!( |
| 179 | "reached beginning of search at offset {} without hitting \ |
| 180 | a dead state, quitting to avoid potential false positive match" , |
| 181 | at, |
| 182 | ); |
| 183 | return Err(RetryError::Quadratic(RetryQuadraticError::new())); |
| 184 | } |
| 185 | Ok(mat) |
| 186 | } |
| 187 | |
| 188 | #[cfg (feature = "dfa-build" )] |
| 189 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 190 | fn dfa_eoi_rev( |
| 191 | dfa: &crate::dfa::dense::DFA<alloc::vec::Vec<u32>>, |
| 192 | input: &Input<'_>, |
| 193 | sid: &mut crate::util::primitives::StateID, |
| 194 | mat: &mut Option<HalfMatch>, |
| 195 | ) -> Result<(), MatchError> { |
| 196 | use crate::dfa::Automaton; |
| 197 | |
| 198 | let sp = input.get_span(); |
| 199 | if sp.start > 0 { |
| 200 | let byte = input.haystack()[sp.start - 1]; |
| 201 | *sid = dfa.next_state(*sid, byte); |
| 202 | if dfa.is_match_state(*sid) { |
| 203 | let pattern = dfa.match_pattern(*sid, 0); |
| 204 | *mat = Some(HalfMatch::new(pattern, sp.start)); |
| 205 | } else if dfa.is_quit_state(*sid) { |
| 206 | return Err(MatchError::quit(byte, sp.start - 1)); |
| 207 | } |
| 208 | } else { |
| 209 | *sid = dfa.next_eoi_state(*sid); |
| 210 | if dfa.is_match_state(*sid) { |
| 211 | let pattern = dfa.match_pattern(*sid, 0); |
| 212 | *mat = Some(HalfMatch::new(pattern, 0)); |
| 213 | } |
| 214 | // N.B. We don't have to check 'is_quit' here because the EOI |
| 215 | // transition can never lead to a quit state. |
| 216 | debug_assert!(!dfa.is_quit_state(*sid)); |
| 217 | } |
| 218 | Ok(()) |
| 219 | } |
| 220 | |
| 221 | #[cfg (feature = "hybrid" )] |
| 222 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 223 | fn hybrid_eoi_rev( |
| 224 | dfa: &crate::hybrid::dfa::DFA, |
| 225 | cache: &mut crate::hybrid::dfa::Cache, |
| 226 | input: &Input<'_>, |
| 227 | sid: &mut crate::hybrid::LazyStateID, |
| 228 | mat: &mut Option<HalfMatch>, |
| 229 | ) -> Result<(), MatchError> { |
| 230 | let sp = input.get_span(); |
| 231 | if sp.start > 0 { |
| 232 | let byte = input.haystack()[sp.start - 1]; |
| 233 | *sid = dfa |
| 234 | .next_state(cache, *sid, byte) |
| 235 | .map_err(|_| MatchError::gave_up(sp.start))?; |
| 236 | if sid.is_match() { |
| 237 | let pattern = dfa.match_pattern(cache, *sid, 0); |
| 238 | *mat = Some(HalfMatch::new(pattern, sp.start)); |
| 239 | } else if sid.is_quit() { |
| 240 | return Err(MatchError::quit(byte, sp.start - 1)); |
| 241 | } |
| 242 | } else { |
| 243 | *sid = dfa |
| 244 | .next_eoi_state(cache, *sid) |
| 245 | .map_err(|_| MatchError::gave_up(sp.start))?; |
| 246 | if sid.is_match() { |
| 247 | let pattern = dfa.match_pattern(cache, *sid, 0); |
| 248 | *mat = Some(HalfMatch::new(pattern, 0)); |
| 249 | } |
| 250 | // N.B. We don't have to check 'is_quit' here because the EOI |
| 251 | // transition can never lead to a quit state. |
| 252 | debug_assert!(!sid.is_quit()); |
| 253 | } |
| 254 | Ok(()) |
| 255 | } |
| 256 | |