| 1 | /*! |
| 2 | This module defines two bespoke forward DFA search routines. One for the lazy |
| 3 | DFA and one for the fully compiled DFA. These routines differ from the normal |
| 4 | ones by reporting the position at which the search terminates when a match |
| 5 | *isn't* found. |
| 6 | |
| 7 | This position at which a search terminates is useful in contexts where the meta |
| 8 | regex engine runs optimizations that could go quadratic if we aren't careful. |
| 9 | Namely, a regex search *could* scan to the end of the haystack only to report a |
| 10 | non-match. If the caller doesn't know that the search scanned to the end of the |
| 11 | haystack, it might restart the search at the next literal candidate it finds |
| 12 | and repeat the process. |
| 13 | |
| 14 | Providing the caller with the position at which the search stopped provides a |
| 15 | way for the caller to determine the point at which subsequent scans should not |
| 16 | pass. This is principally used in the "reverse inner" optimization, which works |
| 17 | like this: |
| 18 | |
| 19 | 1. Look for a match of an inner literal. Say, 'Z' in '\w+Z\d+'. |
| 20 | 2. At the spot where 'Z' matches, do a reverse anchored search from there for |
| 21 | '\w+'. |
| 22 | 3. If the reverse search matches, it corresponds to the start position of a |
| 23 | (possible) match. At this point, do a forward anchored search to find the end |
| 24 | position. If an end position is found, then we have a match and we know its |
| 25 | bounds. |
| 26 | |
| 27 | If the forward anchored search in (3) searches the entire rest of the haystack |
| 28 | but reports a non-match, then a naive implementation of the above will continue |
| 29 | back at step 1 looking for more candidates. There might still be a match to be |
| 30 | found! It's possible. But we already scanned the whole haystack. So if we keep |
| 31 | repeating the process, then we might wind up taking quadratic time in the size |
| 32 | of the haystack, which is not great. |
| 33 | |
| 34 | So if the forward anchored search in (3) reports the position at which it |
| 35 | stops, then we can detect whether quadratic behavior might be occurring in |
| 36 | steps (1) and (2). For (1), it occurs if the literal candidate found occurs |
| 37 | *before* the end of the previous search in (3), since that means we're now |
| 38 | going to look for another match in a place where the forward search has already |
| 39 | scanned. It is *correct* to do so, but our technique has become inefficient. |
| 40 | For (2), quadratic behavior occurs similarly when its reverse search extends |
| 41 | past the point where the previous forward search in (3) terminated. Indeed, to |
| 42 | implement (2), we use the sibling 'limited' module for ensuring our reverse |
| 43 | scan doesn't go further than we want. |
| 44 | |
| 45 | See the 'opt/reverse-inner' benchmarks in rebar for a real demonstration of |
| 46 | how quadratic behavior is mitigated. |
| 47 | */ |
| 48 | |
| 49 | use crate::{meta::error::RetryFailError, HalfMatch, Input, MatchError}; |
| 50 | |
| 51 | #[cfg (feature = "dfa-build" )] |
| 52 | pub(crate) fn dfa_try_search_half_fwd( |
| 53 | dfa: &crate::dfa::dense::DFA<alloc::vec::Vec<u32>>, |
| 54 | input: &Input<'_>, |
| 55 | ) -> Result<Result<HalfMatch, usize>, RetryFailError> { |
| 56 | use crate::dfa::{accel, Automaton}; |
| 57 | |
| 58 | let mut mat = None; |
| 59 | let mut sid = dfa.start_state_forward(input)?; |
| 60 | let mut at = input.start(); |
| 61 | while at < input.end() { |
| 62 | sid = dfa.next_state(sid, input.haystack()[at]); |
| 63 | if dfa.is_special_state(sid) { |
| 64 | if dfa.is_match_state(sid) { |
| 65 | let pattern = dfa.match_pattern(sid, 0); |
| 66 | mat = Some(HalfMatch::new(pattern, at)); |
| 67 | if input.get_earliest() { |
| 68 | return Ok(mat.ok_or(at)); |
| 69 | } |
| 70 | if dfa.is_accel_state(sid) { |
| 71 | let needs = dfa.accelerator(sid); |
| 72 | at = accel::find_fwd(needs, input.haystack(), at) |
| 73 | .unwrap_or(input.end()); |
| 74 | continue; |
| 75 | } |
| 76 | } else if dfa.is_accel_state(sid) { |
| 77 | let needs = dfa.accelerator(sid); |
| 78 | at = accel::find_fwd(needs, input.haystack(), at) |
| 79 | .unwrap_or(input.end()); |
| 80 | continue; |
| 81 | } else if dfa.is_dead_state(sid) { |
| 82 | return Ok(mat.ok_or(at)); |
| 83 | } else if dfa.is_quit_state(sid) { |
| 84 | return Err(MatchError::quit(input.haystack()[at], at).into()); |
| 85 | } else { |
| 86 | // Ideally we wouldn't use a DFA that specialized start states |
| 87 | // and thus 'is_start_state()' could never be true here, but in |
| 88 | // practice we reuse the DFA created for the full regex which |
| 89 | // will specialize start states whenever there is a prefilter. |
| 90 | debug_assert!(dfa.is_start_state(sid)); |
| 91 | } |
| 92 | } |
| 93 | at += 1; |
| 94 | } |
| 95 | dfa_eoi_fwd(dfa, input, &mut sid, &mut mat)?; |
| 96 | Ok(mat.ok_or(at)) |
| 97 | } |
| 98 | |
| 99 | #[cfg (feature = "hybrid" )] |
| 100 | pub(crate) fn hybrid_try_search_half_fwd( |
| 101 | dfa: &crate::hybrid::dfa::DFA, |
| 102 | cache: &mut crate::hybrid::dfa::Cache, |
| 103 | input: &Input<'_>, |
| 104 | ) -> Result<Result<HalfMatch, usize>, RetryFailError> { |
| 105 | let mut mat = None; |
| 106 | let mut sid = dfa.start_state_forward(cache, input)?; |
| 107 | let mut at = input.start(); |
| 108 | while at < input.end() { |
| 109 | sid = dfa |
| 110 | .next_state(cache, sid, input.haystack()[at]) |
| 111 | .map_err(|_| MatchError::gave_up(at))?; |
| 112 | if sid.is_tagged() { |
| 113 | if sid.is_match() { |
| 114 | let pattern = dfa.match_pattern(cache, sid, 0); |
| 115 | mat = Some(HalfMatch::new(pattern, at)); |
| 116 | if input.get_earliest() { |
| 117 | return Ok(mat.ok_or(at)); |
| 118 | } |
| 119 | } else if sid.is_dead() { |
| 120 | return Ok(mat.ok_or(at)); |
| 121 | } else if sid.is_quit() { |
| 122 | return Err(MatchError::quit(input.haystack()[at], at).into()); |
| 123 | } else { |
| 124 | // We should NEVER get an unknown state ID back from |
| 125 | // dfa.next_state(). |
| 126 | debug_assert!(!sid.is_unknown()); |
| 127 | // Ideally we wouldn't use a lazy DFA that specialized start |
| 128 | // states and thus 'sid.is_start()' could never be true here, |
| 129 | // but in practice we reuse the lazy DFA created for the full |
| 130 | // regex which will specialize start states whenever there is |
| 131 | // a prefilter. |
| 132 | debug_assert!(sid.is_start()); |
| 133 | } |
| 134 | } |
| 135 | at += 1; |
| 136 | } |
| 137 | hybrid_eoi_fwd(dfa, cache, input, &mut sid, &mut mat)?; |
| 138 | Ok(mat.ok_or(at)) |
| 139 | } |
| 140 | |
| 141 | #[cfg (feature = "dfa-build" )] |
| 142 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 143 | fn dfa_eoi_fwd( |
| 144 | dfa: &crate::dfa::dense::DFA<alloc::vec::Vec<u32>>, |
| 145 | input: &Input<'_>, |
| 146 | sid: &mut crate::util::primitives::StateID, |
| 147 | mat: &mut Option<HalfMatch>, |
| 148 | ) -> Result<(), MatchError> { |
| 149 | use crate::dfa::Automaton; |
| 150 | |
| 151 | let sp = input.get_span(); |
| 152 | match input.haystack().get(sp.end) { |
| 153 | Some(&b) => { |
| 154 | *sid = dfa.next_state(*sid, b); |
| 155 | if dfa.is_match_state(*sid) { |
| 156 | let pattern = dfa.match_pattern(*sid, 0); |
| 157 | *mat = Some(HalfMatch::new(pattern, sp.end)); |
| 158 | } else if dfa.is_quit_state(*sid) { |
| 159 | return Err(MatchError::quit(b, sp.end)); |
| 160 | } |
| 161 | } |
| 162 | None => { |
| 163 | *sid = dfa.next_eoi_state(*sid); |
| 164 | if dfa.is_match_state(*sid) { |
| 165 | let pattern = dfa.match_pattern(*sid, 0); |
| 166 | *mat = Some(HalfMatch::new(pattern, input.haystack().len())); |
| 167 | } |
| 168 | // N.B. We don't have to check 'is_quit' here because the EOI |
| 169 | // transition can never lead to a quit state. |
| 170 | debug_assert!(!dfa.is_quit_state(*sid)); |
| 171 | } |
| 172 | } |
| 173 | Ok(()) |
| 174 | } |
| 175 | |
| 176 | #[cfg (feature = "hybrid" )] |
| 177 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 178 | fn hybrid_eoi_fwd( |
| 179 | dfa: &crate::hybrid::dfa::DFA, |
| 180 | cache: &mut crate::hybrid::dfa::Cache, |
| 181 | input: &Input<'_>, |
| 182 | sid: &mut crate::hybrid::LazyStateID, |
| 183 | mat: &mut Option<HalfMatch>, |
| 184 | ) -> Result<(), MatchError> { |
| 185 | let sp = input.get_span(); |
| 186 | match input.haystack().get(sp.end) { |
| 187 | Some(&b) => { |
| 188 | *sid = dfa |
| 189 | .next_state(cache, *sid, b) |
| 190 | .map_err(|_| MatchError::gave_up(sp.end))?; |
| 191 | if sid.is_match() { |
| 192 | let pattern = dfa.match_pattern(cache, *sid, 0); |
| 193 | *mat = Some(HalfMatch::new(pattern, sp.end)); |
| 194 | } else if sid.is_quit() { |
| 195 | return Err(MatchError::quit(b, sp.end)); |
| 196 | } |
| 197 | } |
| 198 | None => { |
| 199 | *sid = dfa |
| 200 | .next_eoi_state(cache, *sid) |
| 201 | .map_err(|_| MatchError::gave_up(input.haystack().len()))?; |
| 202 | if sid.is_match() { |
| 203 | let pattern = dfa.match_pattern(cache, *sid, 0); |
| 204 | *mat = Some(HalfMatch::new(pattern, input.haystack().len())); |
| 205 | } |
| 206 | // N.B. We don't have to check 'is_quit' here because the EOI |
| 207 | // transition can never lead to a quit state. |
| 208 | debug_assert!(!sid.is_quit()); |
| 209 | } |
| 210 | } |
| 211 | Ok(()) |
| 212 | } |
| 213 | |