| 1 | use std::fmt; | 
| 2 |  | 
|---|
| 3 | use crate::ast::{self, Ast}; | 
|---|
| 4 |  | 
|---|
| 5 | /// A trait for visiting an abstract syntax tree (AST) in depth first order. | 
|---|
| 6 | /// | 
|---|
| 7 | /// The principle aim of this trait is to enable callers to perform case | 
|---|
| 8 | /// analysis on an abstract syntax tree without necessarily using recursion. | 
|---|
| 9 | /// In particular, this permits callers to do case analysis with constant stack | 
|---|
| 10 | /// usage, which can be important since the size of an abstract syntax tree | 
|---|
| 11 | /// may be proportional to end user input. | 
|---|
| 12 | /// | 
|---|
| 13 | /// Typical usage of this trait involves providing an implementation and then | 
|---|
| 14 | /// running it using the [`visit`](fn.visit.html) function. | 
|---|
| 15 | /// | 
|---|
| 16 | /// Note that the abstract syntax tree for a regular expression is quite | 
|---|
| 17 | /// complex. Unless you specifically need it, you might be able to use the | 
|---|
| 18 | /// much simpler | 
|---|
| 19 | /// [high-level intermediate representation](../hir/struct.Hir.html) | 
|---|
| 20 | /// and its | 
|---|
| 21 | /// [corresponding `Visitor` trait](../hir/trait.Visitor.html) | 
|---|
| 22 | /// instead. | 
|---|
| 23 | pub trait Visitor { | 
|---|
| 24 | /// The result of visiting an AST. | 
|---|
| 25 | type Output; | 
|---|
| 26 | /// An error that visiting an AST might return. | 
|---|
| 27 | type Err; | 
|---|
| 28 |  | 
|---|
| 29 | /// All implementors of `Visitor` must provide a `finish` method, which | 
|---|
| 30 | /// yields the result of visiting the AST or an error. | 
|---|
| 31 | fn finish(self) -> Result<Self::Output, Self::Err>; | 
|---|
| 32 |  | 
|---|
| 33 | /// This method is called before beginning traversal of the AST. | 
|---|
| 34 | fn start(&mut self) {} | 
|---|
| 35 |  | 
|---|
| 36 | /// This method is called on an `Ast` before descending into child `Ast` | 
|---|
| 37 | /// nodes. | 
|---|
| 38 | fn visit_pre(&mut self, _ast: &Ast) -> Result<(), Self::Err> { | 
|---|
| 39 | Ok(()) | 
|---|
| 40 | } | 
|---|
| 41 |  | 
|---|
| 42 | /// This method is called on an `Ast` after descending all of its child | 
|---|
| 43 | /// `Ast` nodes. | 
|---|
| 44 | fn visit_post(&mut self, _ast: &Ast) -> Result<(), Self::Err> { | 
|---|
| 45 | Ok(()) | 
|---|
| 46 | } | 
|---|
| 47 |  | 
|---|
| 48 | /// This method is called between child nodes of an | 
|---|
| 49 | /// [`Alternation`](struct.Alternation.html). | 
|---|
| 50 | fn visit_alternation_in(&mut self) -> Result<(), Self::Err> { | 
|---|
| 51 | Ok(()) | 
|---|
| 52 | } | 
|---|
| 53 |  | 
|---|
| 54 | /// This method is called on every | 
|---|
| 55 | /// [`ClassSetItem`](enum.ClassSetItem.html) | 
|---|
| 56 | /// before descending into child nodes. | 
|---|
| 57 | fn visit_class_set_item_pre( | 
|---|
| 58 | &mut self, | 
|---|
| 59 | _ast: &ast::ClassSetItem, | 
|---|
| 60 | ) -> Result<(), Self::Err> { | 
|---|
| 61 | Ok(()) | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | /// This method is called on every | 
|---|
| 65 | /// [`ClassSetItem`](enum.ClassSetItem.html) | 
|---|
| 66 | /// after descending into child nodes. | 
|---|
| 67 | fn visit_class_set_item_post( | 
|---|
| 68 | &mut self, | 
|---|
| 69 | _ast: &ast::ClassSetItem, | 
|---|
| 70 | ) -> Result<(), Self::Err> { | 
|---|
| 71 | Ok(()) | 
|---|
| 72 | } | 
|---|
| 73 |  | 
|---|
| 74 | /// This method is called on every | 
|---|
| 75 | /// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html) | 
|---|
| 76 | /// before descending into child nodes. | 
|---|
| 77 | fn visit_class_set_binary_op_pre( | 
|---|
| 78 | &mut self, | 
|---|
| 79 | _ast: &ast::ClassSetBinaryOp, | 
|---|
| 80 | ) -> Result<(), Self::Err> { | 
|---|
| 81 | Ok(()) | 
|---|
| 82 | } | 
|---|
| 83 |  | 
|---|
| 84 | /// This method is called on every | 
|---|
| 85 | /// [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html) | 
|---|
| 86 | /// after descending into child nodes. | 
|---|
| 87 | fn visit_class_set_binary_op_post( | 
|---|
| 88 | &mut self, | 
|---|
| 89 | _ast: &ast::ClassSetBinaryOp, | 
|---|
| 90 | ) -> Result<(), Self::Err> { | 
|---|
| 91 | Ok(()) | 
|---|
| 92 | } | 
|---|
| 93 |  | 
|---|
| 94 | /// This method is called between the left hand and right hand child nodes | 
|---|
| 95 | /// of a [`ClassSetBinaryOp`](struct.ClassSetBinaryOp.html). | 
|---|
| 96 | fn visit_class_set_binary_op_in( | 
|---|
| 97 | &mut self, | 
|---|
| 98 | _ast: &ast::ClassSetBinaryOp, | 
|---|
| 99 | ) -> Result<(), Self::Err> { | 
|---|
| 100 | Ok(()) | 
|---|
| 101 | } | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | /// Executes an implementation of `Visitor` in constant stack space. | 
|---|
| 105 | /// | 
|---|
| 106 | /// This function will visit every node in the given `Ast` while calling the | 
|---|
| 107 | /// appropriate methods provided by the | 
|---|
| 108 | /// [`Visitor`](trait.Visitor.html) trait. | 
|---|
| 109 | /// | 
|---|
| 110 | /// The primary use case for this method is when one wants to perform case | 
|---|
| 111 | /// analysis over an `Ast` without using a stack size proportional to the depth | 
|---|
| 112 | /// of the `Ast`. Namely, this method will instead use constant stack size, but | 
|---|
| 113 | /// will use heap space proportional to the size of the `Ast`. This may be | 
|---|
| 114 | /// desirable in cases where the size of `Ast` is proportional to end user | 
|---|
| 115 | /// input. | 
|---|
| 116 | /// | 
|---|
| 117 | /// If the visitor returns an error at any point, then visiting is stopped and | 
|---|
| 118 | /// the error is returned. | 
|---|
| 119 | pub fn visit<V: Visitor>(ast: &Ast, visitor: V) -> Result<V::Output, V::Err> { | 
|---|
| 120 | HeapVisitor::new().visit(ast, visitor) | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|
| 123 | /// HeapVisitor visits every item in an `Ast` recursively using constant stack | 
|---|
| 124 | /// size and a heap size proportional to the size of the `Ast`. | 
|---|
| 125 | struct HeapVisitor<'a> { | 
|---|
| 126 | /// A stack of `Ast` nodes. This is roughly analogous to the call stack | 
|---|
| 127 | /// used in a typical recursive visitor. | 
|---|
| 128 | stack: Vec<(&'a Ast, Frame<'a>)>, | 
|---|
| 129 | /// Similar to the `Ast` stack above, but is used only for character | 
|---|
| 130 | /// classes. In particular, character classes embed their own mini | 
|---|
| 131 | /// recursive syntax. | 
|---|
| 132 | stack_class: Vec<(ClassInduct<'a>, ClassFrame<'a>)>, | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | /// Represents a single stack frame while performing structural induction over | 
|---|
| 136 | /// an `Ast`. | 
|---|
| 137 | enum Frame<'a> { | 
|---|
| 138 | /// A stack frame allocated just before descending into a repetition | 
|---|
| 139 | /// operator's child node. | 
|---|
| 140 | Repetition(&'a ast::Repetition), | 
|---|
| 141 | /// A stack frame allocated just before descending into a group's child | 
|---|
| 142 | /// node. | 
|---|
| 143 | Group(&'a ast::Group), | 
|---|
| 144 | /// The stack frame used while visiting every child node of a concatenation | 
|---|
| 145 | /// of expressions. | 
|---|
| 146 | Concat { | 
|---|
| 147 | /// The child node we are currently visiting. | 
|---|
| 148 | head: &'a Ast, | 
|---|
| 149 | /// The remaining child nodes to visit (which may be empty). | 
|---|
| 150 | tail: &'a [Ast], | 
|---|
| 151 | }, | 
|---|
| 152 | /// The stack frame used while visiting every child node of an alternation | 
|---|
| 153 | /// of expressions. | 
|---|
| 154 | Alternation { | 
|---|
| 155 | /// The child node we are currently visiting. | 
|---|
| 156 | head: &'a Ast, | 
|---|
| 157 | /// The remaining child nodes to visit (which may be empty). | 
|---|
| 158 | tail: &'a [Ast], | 
|---|
| 159 | }, | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | /// Represents a single stack frame while performing structural induction over | 
|---|
| 163 | /// a character class. | 
|---|
| 164 | enum ClassFrame<'a> { | 
|---|
| 165 | /// The stack frame used while visiting every child node of a union of | 
|---|
| 166 | /// character class items. | 
|---|
| 167 | Union { | 
|---|
| 168 | /// The child node we are currently visiting. | 
|---|
| 169 | head: &'a ast::ClassSetItem, | 
|---|
| 170 | /// The remaining child nodes to visit (which may be empty). | 
|---|
| 171 | tail: &'a [ast::ClassSetItem], | 
|---|
| 172 | }, | 
|---|
| 173 | /// The stack frame used while a binary class operation. | 
|---|
| 174 | Binary { op: &'a ast::ClassSetBinaryOp }, | 
|---|
| 175 | /// A stack frame allocated just before descending into a binary operator's | 
|---|
| 176 | /// left hand child node. | 
|---|
| 177 | BinaryLHS { | 
|---|
| 178 | op: &'a ast::ClassSetBinaryOp, | 
|---|
| 179 | lhs: &'a ast::ClassSet, | 
|---|
| 180 | rhs: &'a ast::ClassSet, | 
|---|
| 181 | }, | 
|---|
| 182 | /// A stack frame allocated just before descending into a binary operator's | 
|---|
| 183 | /// right hand child node. | 
|---|
| 184 | BinaryRHS { op: &'a ast::ClassSetBinaryOp, rhs: &'a ast::ClassSet }, | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 | /// A representation of the inductive step when performing structural induction | 
|---|
| 188 | /// over a character class. | 
|---|
| 189 | /// | 
|---|
| 190 | /// Note that there is no analogous explicit type for the inductive step for | 
|---|
| 191 | /// `Ast` nodes because the inductive step is just an `Ast`. For character | 
|---|
| 192 | /// classes, the inductive step can produce one of two possible child nodes: | 
|---|
| 193 | /// an item or a binary operation. (An item cannot be a binary operation | 
|---|
| 194 | /// because that would imply binary operations can be unioned in the concrete | 
|---|
| 195 | /// syntax, which is not possible.) | 
|---|
| 196 | enum ClassInduct<'a> { | 
|---|
| 197 | Item(&'a ast::ClassSetItem), | 
|---|
| 198 | BinaryOp(&'a ast::ClassSetBinaryOp), | 
|---|
| 199 | } | 
|---|
| 200 |  | 
|---|
| 201 | impl<'a> HeapVisitor<'a> { | 
|---|
| 202 | fn new() -> HeapVisitor<'a> { | 
|---|
| 203 | HeapVisitor { stack: vec![], stack_class: vec![] } | 
|---|
| 204 | } | 
|---|
| 205 |  | 
|---|
| 206 | fn visit<V: Visitor>( | 
|---|
| 207 | &mut self, | 
|---|
| 208 | mut ast: &'a Ast, | 
|---|
| 209 | mut visitor: V, | 
|---|
| 210 | ) -> Result<V::Output, V::Err> { | 
|---|
| 211 | self.stack.clear(); | 
|---|
| 212 | self.stack_class.clear(); | 
|---|
| 213 |  | 
|---|
| 214 | visitor.start(); | 
|---|
| 215 | loop { | 
|---|
| 216 | visitor.visit_pre(ast)?; | 
|---|
| 217 | if let Some(x) = self.induct(ast, &mut visitor)? { | 
|---|
| 218 | let child = x.child(); | 
|---|
| 219 | self.stack.push((ast, x)); | 
|---|
| 220 | ast = child; | 
|---|
| 221 | continue; | 
|---|
| 222 | } | 
|---|
| 223 | // No induction means we have a base case, so we can post visit | 
|---|
| 224 | // it now. | 
|---|
| 225 | visitor.visit_post(ast)?; | 
|---|
| 226 |  | 
|---|
| 227 | // At this point, we now try to pop our call stack until it is | 
|---|
| 228 | // either empty or we hit another inductive case. | 
|---|
| 229 | loop { | 
|---|
| 230 | let (post_ast, frame) = match self.stack.pop() { | 
|---|
| 231 | None => return visitor.finish(), | 
|---|
| 232 | Some((post_ast, frame)) => (post_ast, frame), | 
|---|
| 233 | }; | 
|---|
| 234 | // If this is a concat/alternate, then we might have additional | 
|---|
| 235 | // inductive steps to process. | 
|---|
| 236 | if let Some(x) = self.pop(frame) { | 
|---|
| 237 | if let Frame::Alternation { .. } = x { | 
|---|
| 238 | visitor.visit_alternation_in()?; | 
|---|
| 239 | } | 
|---|
| 240 | ast = x.child(); | 
|---|
| 241 | self.stack.push((post_ast, x)); | 
|---|
| 242 | break; | 
|---|
| 243 | } | 
|---|
| 244 | // Otherwise, we've finished visiting all the child nodes for | 
|---|
| 245 | // this AST, so we can post visit it now. | 
|---|
| 246 | visitor.visit_post(post_ast)?; | 
|---|
| 247 | } | 
|---|
| 248 | } | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | /// Build a stack frame for the given AST if one is needed (which occurs if | 
|---|
| 252 | /// and only if there are child nodes in the AST). Otherwise, return None. | 
|---|
| 253 | /// | 
|---|
| 254 | /// If this visits a class, then the underlying visitor implementation may | 
|---|
| 255 | /// return an error which will be passed on here. | 
|---|
| 256 | fn induct<V: Visitor>( | 
|---|
| 257 | &mut self, | 
|---|
| 258 | ast: &'a Ast, | 
|---|
| 259 | visitor: &mut V, | 
|---|
| 260 | ) -> Result<Option<Frame<'a>>, V::Err> { | 
|---|
| 261 | Ok(match *ast { | 
|---|
| 262 | Ast::Class(ast::Class::Bracketed(ref x)) => { | 
|---|
| 263 | self.visit_class(x, visitor)?; | 
|---|
| 264 | None | 
|---|
| 265 | } | 
|---|
| 266 | Ast::Repetition(ref x) => Some(Frame::Repetition(x)), | 
|---|
| 267 | Ast::Group(ref x) => Some(Frame::Group(x)), | 
|---|
| 268 | Ast::Concat(ref x) if x.asts.is_empty() => None, | 
|---|
| 269 | Ast::Concat(ref x) => { | 
|---|
| 270 | Some(Frame::Concat { head: &x.asts[0], tail: &x.asts[1..] }) | 
|---|
| 271 | } | 
|---|
| 272 | Ast::Alternation(ref x) if x.asts.is_empty() => None, | 
|---|
| 273 | Ast::Alternation(ref x) => Some(Frame::Alternation { | 
|---|
| 274 | head: &x.asts[0], | 
|---|
| 275 | tail: &x.asts[1..], | 
|---|
| 276 | }), | 
|---|
| 277 | _ => None, | 
|---|
| 278 | }) | 
|---|
| 279 | } | 
|---|
| 280 |  | 
|---|
| 281 | /// Pops the given frame. If the frame has an additional inductive step, | 
|---|
| 282 | /// then return it, otherwise return `None`. | 
|---|
| 283 | fn pop(&self, induct: Frame<'a>) -> Option<Frame<'a>> { | 
|---|
| 284 | match induct { | 
|---|
| 285 | Frame::Repetition(_) => None, | 
|---|
| 286 | Frame::Group(_) => None, | 
|---|
| 287 | Frame::Concat { tail, .. } => { | 
|---|
| 288 | if tail.is_empty() { | 
|---|
| 289 | None | 
|---|
| 290 | } else { | 
|---|
| 291 | Some(Frame::Concat { head: &tail[0], tail: &tail[1..] }) | 
|---|
| 292 | } | 
|---|
| 293 | } | 
|---|
| 294 | Frame::Alternation { tail, .. } => { | 
|---|
| 295 | if tail.is_empty() { | 
|---|
| 296 | None | 
|---|
| 297 | } else { | 
|---|
| 298 | Some(Frame::Alternation { | 
|---|
| 299 | head: &tail[0], | 
|---|
| 300 | tail: &tail[1..], | 
|---|
| 301 | }) | 
|---|
| 302 | } | 
|---|
| 303 | } | 
|---|
| 304 | } | 
|---|
| 305 | } | 
|---|
| 306 |  | 
|---|
| 307 | fn visit_class<V: Visitor>( | 
|---|
| 308 | &mut self, | 
|---|
| 309 | ast: &'a ast::ClassBracketed, | 
|---|
| 310 | visitor: &mut V, | 
|---|
| 311 | ) -> Result<(), V::Err> { | 
|---|
| 312 | let mut ast = ClassInduct::from_bracketed(ast); | 
|---|
| 313 | loop { | 
|---|
| 314 | self.visit_class_pre(&ast, visitor)?; | 
|---|
| 315 | if let Some(x) = self.induct_class(&ast) { | 
|---|
| 316 | let child = x.child(); | 
|---|
| 317 | self.stack_class.push((ast, x)); | 
|---|
| 318 | ast = child; | 
|---|
| 319 | continue; | 
|---|
| 320 | } | 
|---|
| 321 | self.visit_class_post(&ast, visitor)?; | 
|---|
| 322 |  | 
|---|
| 323 | // At this point, we now try to pop our call stack until it is | 
|---|
| 324 | // either empty or we hit another inductive case. | 
|---|
| 325 | loop { | 
|---|
| 326 | let (post_ast, frame) = match self.stack_class.pop() { | 
|---|
| 327 | None => return Ok(()), | 
|---|
| 328 | Some((post_ast, frame)) => (post_ast, frame), | 
|---|
| 329 | }; | 
|---|
| 330 | // If this is a union or a binary op, then we might have | 
|---|
| 331 | // additional inductive steps to process. | 
|---|
| 332 | if let Some(x) = self.pop_class(frame) { | 
|---|
| 333 | if let ClassFrame::BinaryRHS { ref op, .. } = x { | 
|---|
| 334 | visitor.visit_class_set_binary_op_in(op)?; | 
|---|
| 335 | } | 
|---|
| 336 | ast = x.child(); | 
|---|
| 337 | self.stack_class.push((post_ast, x)); | 
|---|
| 338 | break; | 
|---|
| 339 | } | 
|---|
| 340 | // Otherwise, we've finished visiting all the child nodes for | 
|---|
| 341 | // this class node, so we can post visit it now. | 
|---|
| 342 | self.visit_class_post(&post_ast, visitor)?; | 
|---|
| 343 | } | 
|---|
| 344 | } | 
|---|
| 345 | } | 
|---|
| 346 |  | 
|---|
| 347 | /// Call the appropriate `Visitor` methods given an inductive step. | 
|---|
| 348 | fn visit_class_pre<V: Visitor>( | 
|---|
| 349 | &self, | 
|---|
| 350 | ast: &ClassInduct<'a>, | 
|---|
| 351 | visitor: &mut V, | 
|---|
| 352 | ) -> Result<(), V::Err> { | 
|---|
| 353 | match *ast { | 
|---|
| 354 | ClassInduct::Item(item) => { | 
|---|
| 355 | visitor.visit_class_set_item_pre(item)?; | 
|---|
| 356 | } | 
|---|
| 357 | ClassInduct::BinaryOp(op) => { | 
|---|
| 358 | visitor.visit_class_set_binary_op_pre(op)?; | 
|---|
| 359 | } | 
|---|
| 360 | } | 
|---|
| 361 | Ok(()) | 
|---|
| 362 | } | 
|---|
| 363 |  | 
|---|
| 364 | /// Call the appropriate `Visitor` methods given an inductive step. | 
|---|
| 365 | fn visit_class_post<V: Visitor>( | 
|---|
| 366 | &self, | 
|---|
| 367 | ast: &ClassInduct<'a>, | 
|---|
| 368 | visitor: &mut V, | 
|---|
| 369 | ) -> Result<(), V::Err> { | 
|---|
| 370 | match *ast { | 
|---|
| 371 | ClassInduct::Item(item) => { | 
|---|
| 372 | visitor.visit_class_set_item_post(item)?; | 
|---|
| 373 | } | 
|---|
| 374 | ClassInduct::BinaryOp(op) => { | 
|---|
| 375 | visitor.visit_class_set_binary_op_post(op)?; | 
|---|
| 376 | } | 
|---|
| 377 | } | 
|---|
| 378 | Ok(()) | 
|---|
| 379 | } | 
|---|
| 380 |  | 
|---|
| 381 | /// Build a stack frame for the given class node if one is needed (which | 
|---|
| 382 | /// occurs if and only if there are child nodes). Otherwise, return None. | 
|---|
| 383 | fn induct_class(&self, ast: &ClassInduct<'a>) -> Option<ClassFrame<'a>> { | 
|---|
| 384 | match *ast { | 
|---|
| 385 | ClassInduct::Item(&ast::ClassSetItem::Bracketed(ref x)) => { | 
|---|
| 386 | match x.kind { | 
|---|
| 387 | ast::ClassSet::Item(ref item) => { | 
|---|
| 388 | Some(ClassFrame::Union { head: item, tail: &[] }) | 
|---|
| 389 | } | 
|---|
| 390 | ast::ClassSet::BinaryOp(ref op) => { | 
|---|
| 391 | Some(ClassFrame::Binary { op }) | 
|---|
| 392 | } | 
|---|
| 393 | } | 
|---|
| 394 | } | 
|---|
| 395 | ClassInduct::Item(&ast::ClassSetItem::Union(ref x)) => { | 
|---|
| 396 | if x.items.is_empty() { | 
|---|
| 397 | None | 
|---|
| 398 | } else { | 
|---|
| 399 | Some(ClassFrame::Union { | 
|---|
| 400 | head: &x.items[0], | 
|---|
| 401 | tail: &x.items[1..], | 
|---|
| 402 | }) | 
|---|
| 403 | } | 
|---|
| 404 | } | 
|---|
| 405 | ClassInduct::BinaryOp(op) => { | 
|---|
| 406 | Some(ClassFrame::BinaryLHS { op, lhs: &op.lhs, rhs: &op.rhs }) | 
|---|
| 407 | } | 
|---|
| 408 | _ => None, | 
|---|
| 409 | } | 
|---|
| 410 | } | 
|---|
| 411 |  | 
|---|
| 412 | /// Pops the given frame. If the frame has an additional inductive step, | 
|---|
| 413 | /// then return it, otherwise return `None`. | 
|---|
| 414 | fn pop_class(&self, induct: ClassFrame<'a>) -> Option<ClassFrame<'a>> { | 
|---|
| 415 | match induct { | 
|---|
| 416 | ClassFrame::Union { tail, .. } => { | 
|---|
| 417 | if tail.is_empty() { | 
|---|
| 418 | None | 
|---|
| 419 | } else { | 
|---|
| 420 | Some(ClassFrame::Union { | 
|---|
| 421 | head: &tail[0], | 
|---|
| 422 | tail: &tail[1..], | 
|---|
| 423 | }) | 
|---|
| 424 | } | 
|---|
| 425 | } | 
|---|
| 426 | ClassFrame::Binary { .. } => None, | 
|---|
| 427 | ClassFrame::BinaryLHS { op, rhs, .. } => { | 
|---|
| 428 | Some(ClassFrame::BinaryRHS { op, rhs }) | 
|---|
| 429 | } | 
|---|
| 430 | ClassFrame::BinaryRHS { .. } => None, | 
|---|
| 431 | } | 
|---|
| 432 | } | 
|---|
| 433 | } | 
|---|
| 434 |  | 
|---|
| 435 | impl<'a> Frame<'a> { | 
|---|
| 436 | /// Perform the next inductive step on this frame and return the next | 
|---|
| 437 | /// child AST node to visit. | 
|---|
| 438 | fn child(&self) -> &'a Ast { | 
|---|
| 439 | match *self { | 
|---|
| 440 | Frame::Repetition(rep: &Repetition) => &rep.ast, | 
|---|
| 441 | Frame::Group(group: &Group) => &group.ast, | 
|---|
| 442 | Frame::Concat { head: &Ast, .. } => head, | 
|---|
| 443 | Frame::Alternation { head: &Ast, .. } => head, | 
|---|
| 444 | } | 
|---|
| 445 | } | 
|---|
| 446 | } | 
|---|
| 447 |  | 
|---|
| 448 | impl<'a> ClassFrame<'a> { | 
|---|
| 449 | /// Perform the next inductive step on this frame and return the next | 
|---|
| 450 | /// child class node to visit. | 
|---|
| 451 | fn child(&self) -> ClassInduct<'a> { | 
|---|
| 452 | match *self { | 
|---|
| 453 | ClassFrame::Union { head: &ClassSetItem, .. } => ClassInduct::Item(head), | 
|---|
| 454 | ClassFrame::Binary { op: &ClassSetBinaryOp, .. } => ClassInduct::BinaryOp(op), | 
|---|
| 455 | ClassFrame::BinaryLHS { ref lhs: &&ClassSet, .. } => { | 
|---|
| 456 | ClassInduct::from_set(ast:lhs) | 
|---|
| 457 | } | 
|---|
| 458 | ClassFrame::BinaryRHS { ref rhs: &&ClassSet, .. } => { | 
|---|
| 459 | ClassInduct::from_set(ast:rhs) | 
|---|
| 460 | } | 
|---|
| 461 | } | 
|---|
| 462 | } | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 | impl<'a> ClassInduct<'a> { | 
|---|
| 466 | fn from_bracketed(ast: &'a ast::ClassBracketed) -> ClassInduct<'a> { | 
|---|
| 467 | ClassInduct::from_set(&ast.kind) | 
|---|
| 468 | } | 
|---|
| 469 |  | 
|---|
| 470 | fn from_set(ast: &'a ast::ClassSet) -> ClassInduct<'a> { | 
|---|
| 471 | match *ast { | 
|---|
| 472 | ast::ClassSet::Item(ref item: &ClassSetItem) => ClassInduct::Item(item), | 
|---|
| 473 | ast::ClassSet::BinaryOp(ref op: &ClassSetBinaryOp) => ClassInduct::BinaryOp(op), | 
|---|
| 474 | } | 
|---|
| 475 | } | 
|---|
| 476 | } | 
|---|
| 477 |  | 
|---|
| 478 | impl<'a> fmt::Debug for ClassFrame<'a> { | 
|---|
| 479 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 480 | let x: &'static str = match *self { | 
|---|
| 481 | ClassFrame::Union { .. } => "Union", | 
|---|
| 482 | ClassFrame::Binary { .. } => "Binary", | 
|---|
| 483 | ClassFrame::BinaryLHS { .. } => "BinaryLHS", | 
|---|
| 484 | ClassFrame::BinaryRHS { .. } => "BinaryRHS", | 
|---|
| 485 | }; | 
|---|
| 486 | write!(f, "{} ", x) | 
|---|
| 487 | } | 
|---|
| 488 | } | 
|---|
| 489 |  | 
|---|
| 490 | impl<'a> fmt::Debug for ClassInduct<'a> { | 
|---|
| 491 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 492 | let x = match *self { | 
|---|
| 493 | ClassInduct::Item(it) => match *it { | 
|---|
| 494 | ast::ClassSetItem::Empty(_) => "Item(Empty)", | 
|---|
| 495 | ast::ClassSetItem::Literal(_) => "Item(Literal)", | 
|---|
| 496 | ast::ClassSetItem::Range(_) => "Item(Range)", | 
|---|
| 497 | ast::ClassSetItem::Ascii(_) => "Item(Ascii)", | 
|---|
| 498 | ast::ClassSetItem::Perl(_) => "Item(Perl)", | 
|---|
| 499 | ast::ClassSetItem::Unicode(_) => "Item(Unicode)", | 
|---|
| 500 | ast::ClassSetItem::Bracketed(_) => "Item(Bracketed)", | 
|---|
| 501 | ast::ClassSetItem::Union(_) => "Item(Union)", | 
|---|
| 502 | }, | 
|---|
| 503 | ClassInduct::BinaryOp(it) => match it.kind { | 
|---|
| 504 | ast::ClassSetBinaryOpKind::Intersection => { | 
|---|
| 505 | "BinaryOp(Intersection)" | 
|---|
| 506 | } | 
|---|
| 507 | ast::ClassSetBinaryOpKind::Difference => { | 
|---|
| 508 | "BinaryOp(Difference)" | 
|---|
| 509 | } | 
|---|
| 510 | ast::ClassSetBinaryOpKind::SymmetricDifference => { | 
|---|
| 511 | "BinaryOp(SymmetricDifference)" | 
|---|
| 512 | } | 
|---|
| 513 | }, | 
|---|
| 514 | }; | 
|---|
| 515 | write!(f, "{} ", x) | 
|---|
| 516 | } | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|