1 | use crate::runtime::handle::Handle; |
2 | use crate::runtime::{blocking, driver, Callback, HistogramBuilder, Runtime}; |
3 | use crate::util::rand::{RngSeed, RngSeedGenerator}; |
4 | |
5 | use std::fmt; |
6 | use std::io; |
7 | use std::time::Duration; |
8 | |
9 | /// Builds Tokio Runtime with custom configuration values. |
10 | /// |
11 | /// Methods can be chained in order to set the configuration values. The |
12 | /// Runtime is constructed by calling [`build`]. |
13 | /// |
14 | /// New instances of `Builder` are obtained via [`Builder::new_multi_thread`] |
15 | /// or [`Builder::new_current_thread`]. |
16 | /// |
17 | /// See function level documentation for details on the various configuration |
18 | /// settings. |
19 | /// |
20 | /// [`build`]: method@Self::build |
21 | /// [`Builder::new_multi_thread`]: method@Self::new_multi_thread |
22 | /// [`Builder::new_current_thread`]: method@Self::new_current_thread |
23 | /// |
24 | /// # Examples |
25 | /// |
26 | /// ``` |
27 | /// use tokio::runtime::Builder; |
28 | /// |
29 | /// fn main() { |
30 | /// // build runtime |
31 | /// let runtime = Builder::new_multi_thread() |
32 | /// .worker_threads(4) |
33 | /// .thread_name("my-custom-name" ) |
34 | /// .thread_stack_size(3 * 1024 * 1024) |
35 | /// .build() |
36 | /// .unwrap(); |
37 | /// |
38 | /// // use runtime ... |
39 | /// } |
40 | /// ``` |
41 | pub struct Builder { |
42 | /// Runtime type |
43 | kind: Kind, |
44 | |
45 | /// Whether or not to enable the I/O driver |
46 | enable_io: bool, |
47 | nevents: usize, |
48 | |
49 | /// Whether or not to enable the time driver |
50 | enable_time: bool, |
51 | |
52 | /// Whether or not the clock should start paused. |
53 | start_paused: bool, |
54 | |
55 | /// The number of worker threads, used by Runtime. |
56 | /// |
57 | /// Only used when not using the current-thread executor. |
58 | worker_threads: Option<usize>, |
59 | |
60 | /// Cap on thread usage. |
61 | max_blocking_threads: usize, |
62 | |
63 | /// Name fn used for threads spawned by the runtime. |
64 | pub(super) thread_name: ThreadNameFn, |
65 | |
66 | /// Stack size used for threads spawned by the runtime. |
67 | pub(super) thread_stack_size: Option<usize>, |
68 | |
69 | /// Callback to run after each thread starts. |
70 | pub(super) after_start: Option<Callback>, |
71 | |
72 | /// To run before each worker thread stops |
73 | pub(super) before_stop: Option<Callback>, |
74 | |
75 | /// To run before each worker thread is parked. |
76 | pub(super) before_park: Option<Callback>, |
77 | |
78 | /// To run after each thread is unparked. |
79 | pub(super) after_unpark: Option<Callback>, |
80 | |
81 | /// Customizable keep alive timeout for BlockingPool |
82 | pub(super) keep_alive: Option<Duration>, |
83 | |
84 | /// How many ticks before pulling a task from the global/remote queue? |
85 | /// |
86 | /// When `None`, the value is unspecified and behavior details are left to |
87 | /// the scheduler. Each scheduler flavor could choose to either pick its own |
88 | /// default value or use some other strategy to decide when to poll from the |
89 | /// global queue. For example, the multi-threaded scheduler uses a |
90 | /// self-tuning strategy based on mean task poll times. |
91 | pub(super) global_queue_interval: Option<u32>, |
92 | |
93 | /// How many ticks before yielding to the driver for timer and I/O events? |
94 | pub(super) event_interval: u32, |
95 | |
96 | /// When true, the multi-threade scheduler LIFO slot should not be used. |
97 | /// |
98 | /// This option should only be exposed as unstable. |
99 | pub(super) disable_lifo_slot: bool, |
100 | |
101 | /// Specify a random number generator seed to provide deterministic results |
102 | pub(super) seed_generator: RngSeedGenerator, |
103 | |
104 | /// When true, enables task poll count histogram instrumentation. |
105 | pub(super) metrics_poll_count_histogram_enable: bool, |
106 | |
107 | /// Configures the task poll count histogram |
108 | pub(super) metrics_poll_count_histogram: HistogramBuilder, |
109 | |
110 | #[cfg (tokio_unstable)] |
111 | pub(super) unhandled_panic: UnhandledPanic, |
112 | } |
113 | |
114 | cfg_unstable! { |
115 | /// How the runtime should respond to unhandled panics. |
116 | /// |
117 | /// Instances of `UnhandledPanic` are passed to `Builder::unhandled_panic` |
118 | /// to configure the runtime behavior when a spawned task panics. |
119 | /// |
120 | /// See [`Builder::unhandled_panic`] for more details. |
121 | #[derive (Debug, Clone)] |
122 | #[non_exhaustive ] |
123 | pub enum UnhandledPanic { |
124 | /// The runtime should ignore panics on spawned tasks. |
125 | /// |
126 | /// The panic is forwarded to the task's [`JoinHandle`] and all spawned |
127 | /// tasks continue running normally. |
128 | /// |
129 | /// This is the default behavior. |
130 | /// |
131 | /// # Examples |
132 | /// |
133 | /// ``` |
134 | /// use tokio::runtime::{self, UnhandledPanic}; |
135 | /// |
136 | /// # pub fn main() { |
137 | /// let rt = runtime::Builder::new_current_thread() |
138 | /// .unhandled_panic(UnhandledPanic::Ignore) |
139 | /// .build() |
140 | /// .unwrap(); |
141 | /// |
142 | /// let task1 = rt.spawn(async { panic!("boom"); }); |
143 | /// let task2 = rt.spawn(async { |
144 | /// // This task completes normally |
145 | /// "done" |
146 | /// }); |
147 | /// |
148 | /// rt.block_on(async { |
149 | /// // The panic on the first task is forwarded to the `JoinHandle` |
150 | /// assert!(task1.await.is_err()); |
151 | /// |
152 | /// // The second task completes normally |
153 | /// assert!(task2.await.is_ok()); |
154 | /// }) |
155 | /// # } |
156 | /// ``` |
157 | /// |
158 | /// [`JoinHandle`]: struct@crate::task::JoinHandle |
159 | Ignore, |
160 | |
161 | /// The runtime should immediately shutdown if a spawned task panics. |
162 | /// |
163 | /// The runtime will immediately shutdown even if the panicked task's |
164 | /// [`JoinHandle`] is still available. All further spawned tasks will be |
165 | /// immediately dropped and call to [`Runtime::block_on`] will panic. |
166 | /// |
167 | /// # Examples |
168 | /// |
169 | /// ```should_panic |
170 | /// use tokio::runtime::{self, UnhandledPanic}; |
171 | /// |
172 | /// # pub fn main() { |
173 | /// let rt = runtime::Builder::new_current_thread() |
174 | /// .unhandled_panic(UnhandledPanic::ShutdownRuntime) |
175 | /// .build() |
176 | /// .unwrap(); |
177 | /// |
178 | /// rt.spawn(async { panic!("boom"); }); |
179 | /// rt.spawn(async { |
180 | /// // This task never completes. |
181 | /// }); |
182 | /// |
183 | /// rt.block_on(async { |
184 | /// // Do some work |
185 | /// # loop { tokio::task::yield_now().await; } |
186 | /// }) |
187 | /// # } |
188 | /// ``` |
189 | /// |
190 | /// [`JoinHandle`]: struct@crate::task::JoinHandle |
191 | ShutdownRuntime, |
192 | } |
193 | } |
194 | |
195 | pub(crate) type ThreadNameFn = std::sync::Arc<dyn Fn() -> String + Send + Sync + 'static>; |
196 | |
197 | #[derive (Clone, Copy)] |
198 | pub(crate) enum Kind { |
199 | CurrentThread, |
200 | #[cfg (all(feature = "rt-multi-thread" , not(tokio_wasi)))] |
201 | MultiThread, |
202 | } |
203 | |
204 | impl Builder { |
205 | /// Returns a new builder with the current thread scheduler selected. |
206 | /// |
207 | /// Configuration methods can be chained on the return value. |
208 | /// |
209 | /// To spawn non-`Send` tasks on the resulting runtime, combine it with a |
210 | /// [`LocalSet`]. |
211 | /// |
212 | /// [`LocalSet`]: crate::task::LocalSet |
213 | pub fn new_current_thread() -> Builder { |
214 | #[cfg (loom)] |
215 | const EVENT_INTERVAL: u32 = 4; |
216 | // The number `61` is fairly arbitrary. I believe this value was copied from golang. |
217 | #[cfg (not(loom))] |
218 | const EVENT_INTERVAL: u32 = 61; |
219 | |
220 | Builder::new(Kind::CurrentThread, EVENT_INTERVAL) |
221 | } |
222 | |
223 | cfg_not_wasi! { |
224 | /// Returns a new builder with the multi thread scheduler selected. |
225 | /// |
226 | /// Configuration methods can be chained on the return value. |
227 | #[cfg (feature = "rt-multi-thread" )] |
228 | #[cfg_attr (docsrs, doc(cfg(feature = "rt-multi-thread" )))] |
229 | pub fn new_multi_thread() -> Builder { |
230 | // The number `61` is fairly arbitrary. I believe this value was copied from golang. |
231 | Builder::new(Kind::MultiThread, 61) |
232 | } |
233 | } |
234 | |
235 | /// Returns a new runtime builder initialized with default configuration |
236 | /// values. |
237 | /// |
238 | /// Configuration methods can be chained on the return value. |
239 | pub(crate) fn new(kind: Kind, event_interval: u32) -> Builder { |
240 | Builder { |
241 | kind, |
242 | |
243 | // I/O defaults to "off" |
244 | enable_io: false, |
245 | nevents: 1024, |
246 | |
247 | // Time defaults to "off" |
248 | enable_time: false, |
249 | |
250 | // The clock starts not-paused |
251 | start_paused: false, |
252 | |
253 | // Read from environment variable first in multi-threaded mode. |
254 | // Default to lazy auto-detection (one thread per CPU core) |
255 | worker_threads: None, |
256 | |
257 | max_blocking_threads: 512, |
258 | |
259 | // Default thread name |
260 | thread_name: std::sync::Arc::new(|| "tokio-runtime-worker" .into()), |
261 | |
262 | // Do not set a stack size by default |
263 | thread_stack_size: None, |
264 | |
265 | // No worker thread callbacks |
266 | after_start: None, |
267 | before_stop: None, |
268 | before_park: None, |
269 | after_unpark: None, |
270 | |
271 | keep_alive: None, |
272 | |
273 | // Defaults for these values depend on the scheduler kind, so we get them |
274 | // as parameters. |
275 | global_queue_interval: None, |
276 | event_interval, |
277 | |
278 | seed_generator: RngSeedGenerator::new(RngSeed::new()), |
279 | |
280 | #[cfg (tokio_unstable)] |
281 | unhandled_panic: UnhandledPanic::Ignore, |
282 | |
283 | metrics_poll_count_histogram_enable: false, |
284 | |
285 | metrics_poll_count_histogram: Default::default(), |
286 | |
287 | disable_lifo_slot: false, |
288 | } |
289 | } |
290 | |
291 | /// Enables both I/O and time drivers. |
292 | /// |
293 | /// Doing this is a shorthand for calling `enable_io` and `enable_time` |
294 | /// individually. If additional components are added to Tokio in the future, |
295 | /// `enable_all` will include these future components. |
296 | /// |
297 | /// # Examples |
298 | /// |
299 | /// ``` |
300 | /// use tokio::runtime; |
301 | /// |
302 | /// let rt = runtime::Builder::new_multi_thread() |
303 | /// .enable_all() |
304 | /// .build() |
305 | /// .unwrap(); |
306 | /// ``` |
307 | pub fn enable_all(&mut self) -> &mut Self { |
308 | #[cfg (any( |
309 | feature = "net" , |
310 | all(unix, feature = "process" ), |
311 | all(unix, feature = "signal" ) |
312 | ))] |
313 | self.enable_io(); |
314 | #[cfg (feature = "time" )] |
315 | self.enable_time(); |
316 | |
317 | self |
318 | } |
319 | |
320 | /// Sets the number of worker threads the `Runtime` will use. |
321 | /// |
322 | /// This can be any number above 0 though it is advised to keep this value |
323 | /// on the smaller side. |
324 | /// |
325 | /// This will override the value read from environment variable `TOKIO_WORKER_THREADS`. |
326 | /// |
327 | /// # Default |
328 | /// |
329 | /// The default value is the number of cores available to the system. |
330 | /// |
331 | /// When using the `current_thread` runtime this method has no effect. |
332 | /// |
333 | /// # Examples |
334 | /// |
335 | /// ## Multi threaded runtime with 4 threads |
336 | /// |
337 | /// ``` |
338 | /// use tokio::runtime; |
339 | /// |
340 | /// // This will spawn a work-stealing runtime with 4 worker threads. |
341 | /// let rt = runtime::Builder::new_multi_thread() |
342 | /// .worker_threads(4) |
343 | /// .build() |
344 | /// .unwrap(); |
345 | /// |
346 | /// rt.spawn(async move {}); |
347 | /// ``` |
348 | /// |
349 | /// ## Current thread runtime (will only run on the current thread via `Runtime::block_on`) |
350 | /// |
351 | /// ``` |
352 | /// use tokio::runtime; |
353 | /// |
354 | /// // Create a runtime that _must_ be driven from a call |
355 | /// // to `Runtime::block_on`. |
356 | /// let rt = runtime::Builder::new_current_thread() |
357 | /// .build() |
358 | /// .unwrap(); |
359 | /// |
360 | /// // This will run the runtime and future on the current thread |
361 | /// rt.block_on(async move {}); |
362 | /// ``` |
363 | /// |
364 | /// # Panics |
365 | /// |
366 | /// This will panic if `val` is not larger than `0`. |
367 | #[track_caller ] |
368 | pub fn worker_threads(&mut self, val: usize) -> &mut Self { |
369 | assert!(val > 0, "Worker threads cannot be set to 0" ); |
370 | self.worker_threads = Some(val); |
371 | self |
372 | } |
373 | |
374 | /// Specifies the limit for additional threads spawned by the Runtime. |
375 | /// |
376 | /// These threads are used for blocking operations like tasks spawned |
377 | /// through [`spawn_blocking`]. Unlike the [`worker_threads`], they are not |
378 | /// always active and will exit if left idle for too long. You can change |
379 | /// this timeout duration with [`thread_keep_alive`]. |
380 | /// |
381 | /// The default value is 512. |
382 | /// |
383 | /// # Panics |
384 | /// |
385 | /// This will panic if `val` is not larger than `0`. |
386 | /// |
387 | /// # Upgrading from 0.x |
388 | /// |
389 | /// In old versions `max_threads` limited both blocking and worker threads, but the |
390 | /// current `max_blocking_threads` does not include async worker threads in the count. |
391 | /// |
392 | /// [`spawn_blocking`]: fn@crate::task::spawn_blocking |
393 | /// [`worker_threads`]: Self::worker_threads |
394 | /// [`thread_keep_alive`]: Self::thread_keep_alive |
395 | #[track_caller ] |
396 | #[cfg_attr (docsrs, doc(alias = "max_threads" ))] |
397 | pub fn max_blocking_threads(&mut self, val: usize) -> &mut Self { |
398 | assert!(val > 0, "Max blocking threads cannot be set to 0" ); |
399 | self.max_blocking_threads = val; |
400 | self |
401 | } |
402 | |
403 | /// Sets name of threads spawned by the `Runtime`'s thread pool. |
404 | /// |
405 | /// The default name is "tokio-runtime-worker". |
406 | /// |
407 | /// # Examples |
408 | /// |
409 | /// ``` |
410 | /// # use tokio::runtime; |
411 | /// |
412 | /// # pub fn main() { |
413 | /// let rt = runtime::Builder::new_multi_thread() |
414 | /// .thread_name("my-pool" ) |
415 | /// .build(); |
416 | /// # } |
417 | /// ``` |
418 | pub fn thread_name(&mut self, val: impl Into<String>) -> &mut Self { |
419 | let val = val.into(); |
420 | self.thread_name = std::sync::Arc::new(move || val.clone()); |
421 | self |
422 | } |
423 | |
424 | /// Sets a function used to generate the name of threads spawned by the `Runtime`'s thread pool. |
425 | /// |
426 | /// The default name fn is `|| "tokio-runtime-worker".into()`. |
427 | /// |
428 | /// # Examples |
429 | /// |
430 | /// ``` |
431 | /// # use tokio::runtime; |
432 | /// # use std::sync::atomic::{AtomicUsize, Ordering}; |
433 | /// # pub fn main() { |
434 | /// let rt = runtime::Builder::new_multi_thread() |
435 | /// .thread_name_fn(|| { |
436 | /// static ATOMIC_ID: AtomicUsize = AtomicUsize::new(0); |
437 | /// let id = ATOMIC_ID.fetch_add(1, Ordering::SeqCst); |
438 | /// format!("my-pool-{}" , id) |
439 | /// }) |
440 | /// .build(); |
441 | /// # } |
442 | /// ``` |
443 | pub fn thread_name_fn<F>(&mut self, f: F) -> &mut Self |
444 | where |
445 | F: Fn() -> String + Send + Sync + 'static, |
446 | { |
447 | self.thread_name = std::sync::Arc::new(f); |
448 | self |
449 | } |
450 | |
451 | /// Sets the stack size (in bytes) for worker threads. |
452 | /// |
453 | /// The actual stack size may be greater than this value if the platform |
454 | /// specifies minimal stack size. |
455 | /// |
456 | /// The default stack size for spawned threads is 2 MiB, though this |
457 | /// particular stack size is subject to change in the future. |
458 | /// |
459 | /// # Examples |
460 | /// |
461 | /// ``` |
462 | /// # use tokio::runtime; |
463 | /// |
464 | /// # pub fn main() { |
465 | /// let rt = runtime::Builder::new_multi_thread() |
466 | /// .thread_stack_size(32 * 1024) |
467 | /// .build(); |
468 | /// # } |
469 | /// ``` |
470 | pub fn thread_stack_size(&mut self, val: usize) -> &mut Self { |
471 | self.thread_stack_size = Some(val); |
472 | self |
473 | } |
474 | |
475 | /// Executes function `f` after each thread is started but before it starts |
476 | /// doing work. |
477 | /// |
478 | /// This is intended for bookkeeping and monitoring use cases. |
479 | /// |
480 | /// # Examples |
481 | /// |
482 | /// ``` |
483 | /// # use tokio::runtime; |
484 | /// # pub fn main() { |
485 | /// let runtime = runtime::Builder::new_multi_thread() |
486 | /// .on_thread_start(|| { |
487 | /// println!("thread started" ); |
488 | /// }) |
489 | /// .build(); |
490 | /// # } |
491 | /// ``` |
492 | #[cfg (not(loom))] |
493 | pub fn on_thread_start<F>(&mut self, f: F) -> &mut Self |
494 | where |
495 | F: Fn() + Send + Sync + 'static, |
496 | { |
497 | self.after_start = Some(std::sync::Arc::new(f)); |
498 | self |
499 | } |
500 | |
501 | /// Executes function `f` before each thread stops. |
502 | /// |
503 | /// This is intended for bookkeeping and monitoring use cases. |
504 | /// |
505 | /// # Examples |
506 | /// |
507 | /// ``` |
508 | /// # use tokio::runtime; |
509 | /// # pub fn main() { |
510 | /// let runtime = runtime::Builder::new_multi_thread() |
511 | /// .on_thread_stop(|| { |
512 | /// println!("thread stopping" ); |
513 | /// }) |
514 | /// .build(); |
515 | /// # } |
516 | /// ``` |
517 | #[cfg (not(loom))] |
518 | pub fn on_thread_stop<F>(&mut self, f: F) -> &mut Self |
519 | where |
520 | F: Fn() + Send + Sync + 'static, |
521 | { |
522 | self.before_stop = Some(std::sync::Arc::new(f)); |
523 | self |
524 | } |
525 | |
526 | /// Executes function `f` just before a thread is parked (goes idle). |
527 | /// `f` is called within the Tokio context, so functions like [`tokio::spawn`](crate::spawn) |
528 | /// can be called, and may result in this thread being unparked immediately. |
529 | /// |
530 | /// This can be used to start work only when the executor is idle, or for bookkeeping |
531 | /// and monitoring purposes. |
532 | /// |
533 | /// Note: There can only be one park callback for a runtime; calling this function |
534 | /// more than once replaces the last callback defined, rather than adding to it. |
535 | /// |
536 | /// # Examples |
537 | /// |
538 | /// ## Multithreaded executor |
539 | /// ``` |
540 | /// # use std::sync::Arc; |
541 | /// # use std::sync::atomic::{AtomicBool, Ordering}; |
542 | /// # use tokio::runtime; |
543 | /// # use tokio::sync::Barrier; |
544 | /// # pub fn main() { |
545 | /// let once = AtomicBool::new(true); |
546 | /// let barrier = Arc::new(Barrier::new(2)); |
547 | /// |
548 | /// let runtime = runtime::Builder::new_multi_thread() |
549 | /// .worker_threads(1) |
550 | /// .on_thread_park({ |
551 | /// let barrier = barrier.clone(); |
552 | /// move || { |
553 | /// let barrier = barrier.clone(); |
554 | /// if once.swap(false, Ordering::Relaxed) { |
555 | /// tokio::spawn(async move { barrier.wait().await; }); |
556 | /// } |
557 | /// } |
558 | /// }) |
559 | /// .build() |
560 | /// .unwrap(); |
561 | /// |
562 | /// runtime.block_on(async { |
563 | /// barrier.wait().await; |
564 | /// }) |
565 | /// # } |
566 | /// ``` |
567 | /// ## Current thread executor |
568 | /// ``` |
569 | /// # use std::sync::Arc; |
570 | /// # use std::sync::atomic::{AtomicBool, Ordering}; |
571 | /// # use tokio::runtime; |
572 | /// # use tokio::sync::Barrier; |
573 | /// # pub fn main() { |
574 | /// let once = AtomicBool::new(true); |
575 | /// let barrier = Arc::new(Barrier::new(2)); |
576 | /// |
577 | /// let runtime = runtime::Builder::new_current_thread() |
578 | /// .on_thread_park({ |
579 | /// let barrier = barrier.clone(); |
580 | /// move || { |
581 | /// let barrier = barrier.clone(); |
582 | /// if once.swap(false, Ordering::Relaxed) { |
583 | /// tokio::spawn(async move { barrier.wait().await; }); |
584 | /// } |
585 | /// } |
586 | /// }) |
587 | /// .build() |
588 | /// .unwrap(); |
589 | /// |
590 | /// runtime.block_on(async { |
591 | /// barrier.wait().await; |
592 | /// }) |
593 | /// # } |
594 | /// ``` |
595 | #[cfg (not(loom))] |
596 | pub fn on_thread_park<F>(&mut self, f: F) -> &mut Self |
597 | where |
598 | F: Fn() + Send + Sync + 'static, |
599 | { |
600 | self.before_park = Some(std::sync::Arc::new(f)); |
601 | self |
602 | } |
603 | |
604 | /// Executes function `f` just after a thread unparks (starts executing tasks). |
605 | /// |
606 | /// This is intended for bookkeeping and monitoring use cases; note that work |
607 | /// in this callback will increase latencies when the application has allowed one or |
608 | /// more runtime threads to go idle. |
609 | /// |
610 | /// Note: There can only be one unpark callback for a runtime; calling this function |
611 | /// more than once replaces the last callback defined, rather than adding to it. |
612 | /// |
613 | /// # Examples |
614 | /// |
615 | /// ``` |
616 | /// # use tokio::runtime; |
617 | /// # pub fn main() { |
618 | /// let runtime = runtime::Builder::new_multi_thread() |
619 | /// .on_thread_unpark(|| { |
620 | /// println!("thread unparking" ); |
621 | /// }) |
622 | /// .build(); |
623 | /// |
624 | /// runtime.unwrap().block_on(async { |
625 | /// tokio::task::yield_now().await; |
626 | /// println!("Hello from Tokio!" ); |
627 | /// }) |
628 | /// # } |
629 | /// ``` |
630 | #[cfg (not(loom))] |
631 | pub fn on_thread_unpark<F>(&mut self, f: F) -> &mut Self |
632 | where |
633 | F: Fn() + Send + Sync + 'static, |
634 | { |
635 | self.after_unpark = Some(std::sync::Arc::new(f)); |
636 | self |
637 | } |
638 | |
639 | /// Creates the configured `Runtime`. |
640 | /// |
641 | /// The returned `Runtime` instance is ready to spawn tasks. |
642 | /// |
643 | /// # Examples |
644 | /// |
645 | /// ``` |
646 | /// use tokio::runtime::Builder; |
647 | /// |
648 | /// let rt = Builder::new_multi_thread().build().unwrap(); |
649 | /// |
650 | /// rt.block_on(async { |
651 | /// println!("Hello from the Tokio runtime" ); |
652 | /// }); |
653 | /// ``` |
654 | pub fn build(&mut self) -> io::Result<Runtime> { |
655 | match &self.kind { |
656 | Kind::CurrentThread => self.build_current_thread_runtime(), |
657 | #[cfg (all(feature = "rt-multi-thread" , not(tokio_wasi)))] |
658 | Kind::MultiThread => self.build_threaded_runtime(), |
659 | } |
660 | } |
661 | |
662 | fn get_cfg(&self) -> driver::Cfg { |
663 | driver::Cfg { |
664 | enable_pause_time: match self.kind { |
665 | Kind::CurrentThread => true, |
666 | #[cfg (all(feature = "rt-multi-thread" , not(tokio_wasi)))] |
667 | Kind::MultiThread => false, |
668 | }, |
669 | enable_io: self.enable_io, |
670 | enable_time: self.enable_time, |
671 | start_paused: self.start_paused, |
672 | nevents: self.nevents, |
673 | } |
674 | } |
675 | |
676 | /// Sets a custom timeout for a thread in the blocking pool. |
677 | /// |
678 | /// By default, the timeout for a thread is set to 10 seconds. This can |
679 | /// be overridden using .thread_keep_alive(). |
680 | /// |
681 | /// # Example |
682 | /// |
683 | /// ``` |
684 | /// # use tokio::runtime; |
685 | /// # use std::time::Duration; |
686 | /// # pub fn main() { |
687 | /// let rt = runtime::Builder::new_multi_thread() |
688 | /// .thread_keep_alive(Duration::from_millis(100)) |
689 | /// .build(); |
690 | /// # } |
691 | /// ``` |
692 | pub fn thread_keep_alive(&mut self, duration: Duration) -> &mut Self { |
693 | self.keep_alive = Some(duration); |
694 | self |
695 | } |
696 | |
697 | /// Sets the number of scheduler ticks after which the scheduler will poll the global |
698 | /// task queue. |
699 | /// |
700 | /// A scheduler "tick" roughly corresponds to one `poll` invocation on a task. |
701 | /// |
702 | /// By default the global queue interval is: |
703 | /// |
704 | /// * `31` for the current-thread scheduler. |
705 | /// * `61` for the multithreaded scheduler. |
706 | /// |
707 | /// Schedulers have a local queue of already-claimed tasks, and a global queue of incoming |
708 | /// tasks. Setting the interval to a smaller value increases the fairness of the scheduler, |
709 | /// at the cost of more synchronization overhead. That can be beneficial for prioritizing |
710 | /// getting started on new work, especially if tasks frequently yield rather than complete |
711 | /// or await on further I/O. Conversely, a higher value prioritizes existing work, and |
712 | /// is a good choice when most tasks quickly complete polling. |
713 | /// |
714 | /// # Examples |
715 | /// |
716 | /// ``` |
717 | /// # use tokio::runtime; |
718 | /// # pub fn main() { |
719 | /// let rt = runtime::Builder::new_multi_thread() |
720 | /// .global_queue_interval(31) |
721 | /// .build(); |
722 | /// # } |
723 | /// ``` |
724 | pub fn global_queue_interval(&mut self, val: u32) -> &mut Self { |
725 | self.global_queue_interval = Some(val); |
726 | self |
727 | } |
728 | |
729 | /// Sets the number of scheduler ticks after which the scheduler will poll for |
730 | /// external events (timers, I/O, and so on). |
731 | /// |
732 | /// A scheduler "tick" roughly corresponds to one `poll` invocation on a task. |
733 | /// |
734 | /// By default, the event interval is `61` for all scheduler types. |
735 | /// |
736 | /// Setting the event interval determines the effective "priority" of delivering |
737 | /// these external events (which may wake up additional tasks), compared to |
738 | /// executing tasks that are currently ready to run. A smaller value is useful |
739 | /// when tasks frequently spend a long time in polling, or frequently yield, |
740 | /// which can result in overly long delays picking up I/O events. Conversely, |
741 | /// picking up new events requires extra synchronization and syscall overhead, |
742 | /// so if tasks generally complete their polling quickly, a higher event interval |
743 | /// will minimize that overhead while still keeping the scheduler responsive to |
744 | /// events. |
745 | /// |
746 | /// # Examples |
747 | /// |
748 | /// ``` |
749 | /// # use tokio::runtime; |
750 | /// # pub fn main() { |
751 | /// let rt = runtime::Builder::new_multi_thread() |
752 | /// .event_interval(31) |
753 | /// .build(); |
754 | /// # } |
755 | /// ``` |
756 | pub fn event_interval(&mut self, val: u32) -> &mut Self { |
757 | self.event_interval = val; |
758 | self |
759 | } |
760 | |
761 | cfg_unstable! { |
762 | /// Configure how the runtime responds to an unhandled panic on a |
763 | /// spawned task. |
764 | /// |
765 | /// By default, an unhandled panic (i.e. a panic not caught by |
766 | /// [`std::panic::catch_unwind`]) has no impact on the runtime's |
767 | /// execution. The panic is error value is forwarded to the task's |
768 | /// [`JoinHandle`] and all other spawned tasks continue running. |
769 | /// |
770 | /// The `unhandled_panic` option enables configuring this behavior. |
771 | /// |
772 | /// * `UnhandledPanic::Ignore` is the default behavior. Panics on |
773 | /// spawned tasks have no impact on the runtime's execution. |
774 | /// * `UnhandledPanic::ShutdownRuntime` will force the runtime to |
775 | /// shutdown immediately when a spawned task panics even if that |
776 | /// task's `JoinHandle` has not been dropped. All other spawned tasks |
777 | /// will immediately terminate and further calls to |
778 | /// [`Runtime::block_on`] will panic. |
779 | /// |
780 | /// # Unstable |
781 | /// |
782 | /// This option is currently unstable and its implementation is |
783 | /// incomplete. The API may change or be removed in the future. See |
784 | /// tokio-rs/tokio#4516 for more details. |
785 | /// |
786 | /// # Examples |
787 | /// |
788 | /// The following demonstrates a runtime configured to shutdown on |
789 | /// panic. The first spawned task panics and results in the runtime |
790 | /// shutting down. The second spawned task never has a chance to |
791 | /// execute. The call to `block_on` will panic due to the runtime being |
792 | /// forcibly shutdown. |
793 | /// |
794 | /// ```should_panic |
795 | /// use tokio::runtime::{self, UnhandledPanic}; |
796 | /// |
797 | /// # pub fn main() { |
798 | /// let rt = runtime::Builder::new_current_thread() |
799 | /// .unhandled_panic(UnhandledPanic::ShutdownRuntime) |
800 | /// .build() |
801 | /// .unwrap(); |
802 | /// |
803 | /// rt.spawn(async { panic!("boom"); }); |
804 | /// rt.spawn(async { |
805 | /// // This task never completes. |
806 | /// }); |
807 | /// |
808 | /// rt.block_on(async { |
809 | /// // Do some work |
810 | /// # loop { tokio::task::yield_now().await; } |
811 | /// }) |
812 | /// # } |
813 | /// ``` |
814 | /// |
815 | /// [`JoinHandle`]: struct@crate::task::JoinHandle |
816 | pub fn unhandled_panic(&mut self, behavior: UnhandledPanic) -> &mut Self { |
817 | self.unhandled_panic = behavior; |
818 | self |
819 | } |
820 | |
821 | /// Disables the LIFO task scheduler heuristic. |
822 | /// |
823 | /// The multi-threaded scheduler includes a heuristic for optimizing |
824 | /// message-passing patterns. This heuristic results in the **last** |
825 | /// scheduled task being polled first. |
826 | /// |
827 | /// To implement this heuristic, each worker thread has a slot which |
828 | /// holds the task that should be polled next. However, this slot cannot |
829 | /// be stolen by other worker threads, which can result in lower total |
830 | /// throughput when tasks tend to have longer poll times. |
831 | /// |
832 | /// This configuration option will disable this heuristic resulting in |
833 | /// all scheduled tasks being pushed into the worker-local queue, which |
834 | /// is stealable. |
835 | /// |
836 | /// Consider trying this option when the task "scheduled" time is high |
837 | /// but the runtime is underutilized. Use tokio-rs/tokio-metrics to |
838 | /// collect this data. |
839 | /// |
840 | /// # Unstable |
841 | /// |
842 | /// This configuration option is considered a workaround for the LIFO |
843 | /// slot not being stealable. When the slot becomes stealable, we will |
844 | /// revisit whether or not this option is necessary. See |
845 | /// tokio-rs/tokio#4941. |
846 | /// |
847 | /// # Examples |
848 | /// |
849 | /// ``` |
850 | /// use tokio::runtime; |
851 | /// |
852 | /// let rt = runtime::Builder::new_multi_thread() |
853 | /// .disable_lifo_slot() |
854 | /// .build() |
855 | /// .unwrap(); |
856 | /// ``` |
857 | pub fn disable_lifo_slot(&mut self) -> &mut Self { |
858 | self.disable_lifo_slot = true; |
859 | self |
860 | } |
861 | |
862 | /// Specifies the random number generation seed to use within all |
863 | /// threads associated with the runtime being built. |
864 | /// |
865 | /// This option is intended to make certain parts of the runtime |
866 | /// deterministic (e.g. the [`tokio::select!`] macro). In the case of |
867 | /// [`tokio::select!`] it will ensure that the order that branches are |
868 | /// polled is deterministic. |
869 | /// |
870 | /// In addition to the code specifying `rng_seed` and interacting with |
871 | /// the runtime, the internals of Tokio and the Rust compiler may affect |
872 | /// the sequences of random numbers. In order to ensure repeatable |
873 | /// results, the version of Tokio, the versions of all other |
874 | /// dependencies that interact with Tokio, and the Rust compiler version |
875 | /// should also all remain constant. |
876 | /// |
877 | /// # Examples |
878 | /// |
879 | /// ``` |
880 | /// # use tokio::runtime::{self, RngSeed}; |
881 | /// # pub fn main() { |
882 | /// let seed = RngSeed::from_bytes(b"place your seed here"); |
883 | /// let rt = runtime::Builder::new_current_thread() |
884 | /// .rng_seed(seed) |
885 | /// .build(); |
886 | /// # } |
887 | /// ``` |
888 | /// |
889 | /// [`tokio::select!`]: crate::select |
890 | pub fn rng_seed(&mut self, seed: RngSeed) -> &mut Self { |
891 | self.seed_generator = RngSeedGenerator::new(seed); |
892 | self |
893 | } |
894 | } |
895 | |
896 | cfg_metrics! { |
897 | /// Enables tracking the distribution of task poll times. |
898 | /// |
899 | /// Task poll times are not instrumented by default as doing so requires |
900 | /// calling [`Instant::now()`] twice per task poll, which could add |
901 | /// measurable overhead. Use the [`Handle::metrics()`] to access the |
902 | /// metrics data. |
903 | /// |
904 | /// The histogram uses fixed bucket sizes. In other words, the histogram |
905 | /// buckets are not dynamic based on input values. Use the |
906 | /// `metrics_poll_count_histogram_` builder methods to configure the |
907 | /// histogram details. |
908 | /// |
909 | /// # Examples |
910 | /// |
911 | /// ``` |
912 | /// use tokio::runtime; |
913 | /// |
914 | /// let rt = runtime::Builder::new_multi_thread() |
915 | /// .enable_metrics_poll_count_histogram() |
916 | /// .build() |
917 | /// .unwrap(); |
918 | /// # // Test default values here |
919 | /// # fn us(n: u64) -> std::time::Duration { std::time::Duration::from_micros(n) } |
920 | /// # let m = rt.handle().metrics(); |
921 | /// # assert_eq!(m.poll_count_histogram_num_buckets(), 10); |
922 | /// # assert_eq!(m.poll_count_histogram_bucket_range(0), us(0)..us(100)); |
923 | /// # assert_eq!(m.poll_count_histogram_bucket_range(1), us(100)..us(200)); |
924 | /// ``` |
925 | /// |
926 | /// [`Handle::metrics()`]: crate::runtime::Handle::metrics |
927 | /// [`Instant::now()`]: std::time::Instant::now |
928 | pub fn enable_metrics_poll_count_histogram(&mut self) -> &mut Self { |
929 | self.metrics_poll_count_histogram_enable = true; |
930 | self |
931 | } |
932 | |
933 | /// Sets the histogram scale for tracking the distribution of task poll |
934 | /// times. |
935 | /// |
936 | /// Tracking the distribution of task poll times can be done using a |
937 | /// linear or log scale. When using linear scale, each histogram bucket |
938 | /// will represent the same range of poll times. When using log scale, |
939 | /// each histogram bucket will cover a range twice as big as the |
940 | /// previous bucket. |
941 | /// |
942 | /// **Default:** linear scale. |
943 | /// |
944 | /// # Examples |
945 | /// |
946 | /// ``` |
947 | /// use tokio::runtime::{self, HistogramScale}; |
948 | /// |
949 | /// let rt = runtime::Builder::new_multi_thread() |
950 | /// .enable_metrics_poll_count_histogram() |
951 | /// .metrics_poll_count_histogram_scale(HistogramScale::Log) |
952 | /// .build() |
953 | /// .unwrap(); |
954 | /// ``` |
955 | pub fn metrics_poll_count_histogram_scale(&mut self, histogram_scale: crate::runtime::HistogramScale) -> &mut Self { |
956 | self.metrics_poll_count_histogram.scale = histogram_scale; |
957 | self |
958 | } |
959 | |
960 | /// Sets the histogram resolution for tracking the distribution of task |
961 | /// poll times. |
962 | /// |
963 | /// The resolution is the histogram's first bucket's range. When using a |
964 | /// linear histogram scale, each bucket will cover the same range. When |
965 | /// using a log scale, each bucket will cover a range twice as big as |
966 | /// the previous bucket. In the log case, the resolution represents the |
967 | /// smallest bucket range. |
968 | /// |
969 | /// Note that, when using log scale, the resolution is rounded up to the |
970 | /// nearest power of 2 in nanoseconds. |
971 | /// |
972 | /// **Default:** 100 microseconds. |
973 | /// |
974 | /// # Examples |
975 | /// |
976 | /// ``` |
977 | /// use tokio::runtime; |
978 | /// use std::time::Duration; |
979 | /// |
980 | /// let rt = runtime::Builder::new_multi_thread() |
981 | /// .enable_metrics_poll_count_histogram() |
982 | /// .metrics_poll_count_histogram_resolution(Duration::from_micros(100)) |
983 | /// .build() |
984 | /// .unwrap(); |
985 | /// ``` |
986 | pub fn metrics_poll_count_histogram_resolution(&mut self, resolution: Duration) -> &mut Self { |
987 | assert!(resolution > Duration::from_secs(0)); |
988 | // Sanity check the argument and also make the cast below safe. |
989 | assert!(resolution <= Duration::from_secs(1)); |
990 | |
991 | let resolution = resolution.as_nanos() as u64; |
992 | self.metrics_poll_count_histogram.resolution = resolution; |
993 | self |
994 | } |
995 | |
996 | /// Sets the number of buckets for the histogram tracking the |
997 | /// distribution of task poll times. |
998 | /// |
999 | /// The last bucket tracks all greater values that fall out of other |
1000 | /// ranges. So, configuring the histogram using a linear scale, |
1001 | /// resolution of 50ms, and 10 buckets, the 10th bucket will track task |
1002 | /// polls that take more than 450ms to complete. |
1003 | /// |
1004 | /// **Default:** 10 |
1005 | /// |
1006 | /// # Examples |
1007 | /// |
1008 | /// ``` |
1009 | /// use tokio::runtime; |
1010 | /// |
1011 | /// let rt = runtime::Builder::new_multi_thread() |
1012 | /// .enable_metrics_poll_count_histogram() |
1013 | /// .metrics_poll_count_histogram_buckets(15) |
1014 | /// .build() |
1015 | /// .unwrap(); |
1016 | /// ``` |
1017 | pub fn metrics_poll_count_histogram_buckets(&mut self, buckets: usize) -> &mut Self { |
1018 | self.metrics_poll_count_histogram.num_buckets = buckets; |
1019 | self |
1020 | } |
1021 | } |
1022 | |
1023 | fn build_current_thread_runtime(&mut self) -> io::Result<Runtime> { |
1024 | use crate::runtime::scheduler::{self, CurrentThread}; |
1025 | use crate::runtime::{runtime::Scheduler, Config}; |
1026 | |
1027 | let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?; |
1028 | |
1029 | // Blocking pool |
1030 | let blocking_pool = blocking::create_blocking_pool(self, self.max_blocking_threads); |
1031 | let blocking_spawner = blocking_pool.spawner().clone(); |
1032 | |
1033 | // Generate a rng seed for this runtime. |
1034 | let seed_generator_1 = self.seed_generator.next_generator(); |
1035 | let seed_generator_2 = self.seed_generator.next_generator(); |
1036 | |
1037 | // And now put a single-threaded scheduler on top of the timer. When |
1038 | // there are no futures ready to do something, it'll let the timer or |
1039 | // the reactor to generate some new stimuli for the futures to continue |
1040 | // in their life. |
1041 | let (scheduler, handle) = CurrentThread::new( |
1042 | driver, |
1043 | driver_handle, |
1044 | blocking_spawner, |
1045 | seed_generator_2, |
1046 | Config { |
1047 | before_park: self.before_park.clone(), |
1048 | after_unpark: self.after_unpark.clone(), |
1049 | global_queue_interval: self.global_queue_interval, |
1050 | event_interval: self.event_interval, |
1051 | #[cfg (tokio_unstable)] |
1052 | unhandled_panic: self.unhandled_panic.clone(), |
1053 | disable_lifo_slot: self.disable_lifo_slot, |
1054 | seed_generator: seed_generator_1, |
1055 | metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(), |
1056 | }, |
1057 | ); |
1058 | |
1059 | let handle = Handle { |
1060 | inner: scheduler::Handle::CurrentThread(handle), |
1061 | }; |
1062 | |
1063 | Ok(Runtime::from_parts( |
1064 | Scheduler::CurrentThread(scheduler), |
1065 | handle, |
1066 | blocking_pool, |
1067 | )) |
1068 | } |
1069 | |
1070 | fn metrics_poll_count_histogram_builder(&self) -> Option<HistogramBuilder> { |
1071 | if self.metrics_poll_count_histogram_enable { |
1072 | Some(self.metrics_poll_count_histogram.clone()) |
1073 | } else { |
1074 | None |
1075 | } |
1076 | } |
1077 | } |
1078 | |
1079 | cfg_io_driver! { |
1080 | impl Builder { |
1081 | /// Enables the I/O driver. |
1082 | /// |
1083 | /// Doing this enables using net, process, signal, and some I/O types on |
1084 | /// the runtime. |
1085 | /// |
1086 | /// # Examples |
1087 | /// |
1088 | /// ``` |
1089 | /// use tokio::runtime; |
1090 | /// |
1091 | /// let rt = runtime::Builder::new_multi_thread() |
1092 | /// .enable_io() |
1093 | /// .build() |
1094 | /// .unwrap(); |
1095 | /// ``` |
1096 | pub fn enable_io(&mut self) -> &mut Self { |
1097 | self.enable_io = true; |
1098 | self |
1099 | } |
1100 | |
1101 | /// Enables the I/O driver and configures the max number of events to be |
1102 | /// processed per tick. |
1103 | /// |
1104 | /// # Examples |
1105 | /// |
1106 | /// ``` |
1107 | /// use tokio::runtime; |
1108 | /// |
1109 | /// let rt = runtime::Builder::new_current_thread() |
1110 | /// .enable_io() |
1111 | /// .max_io_events_per_tick(1024) |
1112 | /// .build() |
1113 | /// .unwrap(); |
1114 | /// ``` |
1115 | pub fn max_io_events_per_tick(&mut self, capacity: usize) -> &mut Self { |
1116 | self.nevents = capacity; |
1117 | self |
1118 | } |
1119 | } |
1120 | } |
1121 | |
1122 | cfg_time! { |
1123 | impl Builder { |
1124 | /// Enables the time driver. |
1125 | /// |
1126 | /// Doing this enables using `tokio::time` on the runtime. |
1127 | /// |
1128 | /// # Examples |
1129 | /// |
1130 | /// ``` |
1131 | /// use tokio::runtime; |
1132 | /// |
1133 | /// let rt = runtime::Builder::new_multi_thread() |
1134 | /// .enable_time() |
1135 | /// .build() |
1136 | /// .unwrap(); |
1137 | /// ``` |
1138 | pub fn enable_time(&mut self) -> &mut Self { |
1139 | self.enable_time = true; |
1140 | self |
1141 | } |
1142 | } |
1143 | } |
1144 | |
1145 | cfg_test_util! { |
1146 | impl Builder { |
1147 | /// Controls if the runtime's clock starts paused or advancing. |
1148 | /// |
1149 | /// Pausing time requires the current-thread runtime; construction of |
1150 | /// the runtime will panic otherwise. |
1151 | /// |
1152 | /// # Examples |
1153 | /// |
1154 | /// ``` |
1155 | /// use tokio::runtime; |
1156 | /// |
1157 | /// let rt = runtime::Builder::new_current_thread() |
1158 | /// .enable_time() |
1159 | /// .start_paused(true) |
1160 | /// .build() |
1161 | /// .unwrap(); |
1162 | /// ``` |
1163 | pub fn start_paused(&mut self, start_paused: bool) -> &mut Self { |
1164 | self.start_paused = start_paused; |
1165 | self |
1166 | } |
1167 | } |
1168 | } |
1169 | |
1170 | cfg_rt_multi_thread! { |
1171 | impl Builder { |
1172 | fn build_threaded_runtime(&mut self) -> io::Result<Runtime> { |
1173 | use crate::loom::sys::num_cpus; |
1174 | use crate::runtime::{Config, runtime::Scheduler}; |
1175 | use crate::runtime::scheduler::{self, MultiThread}; |
1176 | |
1177 | let core_threads = self.worker_threads.unwrap_or_else(num_cpus); |
1178 | |
1179 | let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?; |
1180 | |
1181 | // Create the blocking pool |
1182 | let blocking_pool = |
1183 | blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads); |
1184 | let blocking_spawner = blocking_pool.spawner().clone(); |
1185 | |
1186 | // Generate a rng seed for this runtime. |
1187 | let seed_generator_1 = self.seed_generator.next_generator(); |
1188 | let seed_generator_2 = self.seed_generator.next_generator(); |
1189 | |
1190 | let (scheduler, handle, launch) = MultiThread::new( |
1191 | core_threads, |
1192 | driver, |
1193 | driver_handle, |
1194 | blocking_spawner, |
1195 | seed_generator_2, |
1196 | Config { |
1197 | before_park: self.before_park.clone(), |
1198 | after_unpark: self.after_unpark.clone(), |
1199 | global_queue_interval: self.global_queue_interval, |
1200 | event_interval: self.event_interval, |
1201 | #[cfg (tokio_unstable)] |
1202 | unhandled_panic: self.unhandled_panic.clone(), |
1203 | disable_lifo_slot: self.disable_lifo_slot, |
1204 | seed_generator: seed_generator_1, |
1205 | metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(), |
1206 | }, |
1207 | ); |
1208 | |
1209 | let handle = Handle { inner: scheduler::Handle::MultiThread(handle) }; |
1210 | |
1211 | // Spawn the thread pool workers |
1212 | let _enter = handle.enter(); |
1213 | launch.launch(); |
1214 | |
1215 | Ok(Runtime::from_parts(Scheduler::MultiThread(scheduler), handle, blocking_pool)) |
1216 | } |
1217 | } |
1218 | } |
1219 | |
1220 | impl fmt::Debug for Builder { |
1221 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
1222 | fmt&mut DebugStruct<'_, '_>.debug_struct("Builder" ) |
1223 | .field("worker_threads" , &self.worker_threads) |
1224 | .field("max_blocking_threads" , &self.max_blocking_threads) |
1225 | .field( |
1226 | "thread_name" , |
1227 | &"<dyn Fn() -> String + Send + Sync + 'static>" , |
1228 | ) |
1229 | .field("thread_stack_size" , &self.thread_stack_size) |
1230 | .field("after_start" , &self.after_start.as_ref().map(|_| "..." )) |
1231 | .field("before_stop" , &self.before_stop.as_ref().map(|_| "..." )) |
1232 | .field("before_park" , &self.before_park.as_ref().map(|_| "..." )) |
1233 | .field(name:"after_unpark" , &self.after_unpark.as_ref().map(|_| "..." )) |
1234 | .finish() |
1235 | } |
1236 | } |
1237 | |