1 | use crate::runtime::{context, scheduler, RuntimeFlavor}; |
2 | |
3 | /// Handle to the runtime. |
4 | /// |
5 | /// The handle is internally reference-counted and can be freely cloned. A handle can be |
6 | /// obtained using the [`Runtime::handle`] method. |
7 | /// |
8 | /// [`Runtime::handle`]: crate::runtime::Runtime::handle() |
9 | #[derive (Debug, Clone)] |
10 | // When the `rt` feature is *not* enabled, this type is still defined, but not |
11 | // included in the public API. |
12 | pub struct Handle { |
13 | pub(crate) inner: scheduler::Handle, |
14 | } |
15 | |
16 | use crate::runtime::task::JoinHandle; |
17 | use crate::util::error::{CONTEXT_MISSING_ERROR, THREAD_LOCAL_DESTROYED_ERROR}; |
18 | |
19 | use std::future::Future; |
20 | use std::marker::PhantomData; |
21 | use std::{error, fmt}; |
22 | |
23 | /// Runtime context guard. |
24 | /// |
25 | /// Returned by [`Runtime::enter`] and [`Handle::enter`], the context guard exits |
26 | /// the runtime context on drop. |
27 | /// |
28 | /// [`Runtime::enter`]: fn@crate::runtime::Runtime::enter |
29 | #[derive (Debug)] |
30 | #[must_use = "Creating and dropping a guard does nothing" ] |
31 | pub struct EnterGuard<'a> { |
32 | _guard: context::SetCurrentGuard, |
33 | _handle_lifetime: PhantomData<&'a Handle>, |
34 | } |
35 | |
36 | impl Handle { |
37 | /// Enters the runtime context. This allows you to construct types that must |
38 | /// have an executor available on creation such as [`Sleep`] or |
39 | /// [`TcpStream`]. It will also allow you to call methods such as |
40 | /// [`tokio::spawn`] and [`Handle::current`] without panicking. |
41 | /// |
42 | /// # Panics |
43 | /// |
44 | /// When calling `Handle::enter` multiple times, the returned guards |
45 | /// **must** be dropped in the reverse order that they were acquired. |
46 | /// Failure to do so will result in a panic and possible memory leaks. |
47 | /// |
48 | /// # Examples |
49 | /// |
50 | /// ``` |
51 | /// use tokio::runtime::Runtime; |
52 | /// |
53 | /// let rt = Runtime::new().unwrap(); |
54 | /// |
55 | /// let _guard = rt.enter(); |
56 | /// tokio::spawn(async { |
57 | /// println!("Hello world!" ); |
58 | /// }); |
59 | /// ``` |
60 | /// |
61 | /// Do **not** do the following, this shows a scenario that will result in a |
62 | /// panic and possible memory leak. |
63 | /// |
64 | /// ```should_panic |
65 | /// use tokio::runtime::Runtime; |
66 | /// |
67 | /// let rt1 = Runtime::new().unwrap(); |
68 | /// let rt2 = Runtime::new().unwrap(); |
69 | /// |
70 | /// let enter1 = rt1.enter(); |
71 | /// let enter2 = rt2.enter(); |
72 | /// |
73 | /// drop(enter1); |
74 | /// drop(enter2); |
75 | /// ``` |
76 | /// |
77 | /// [`Sleep`]: struct@crate::time::Sleep |
78 | /// [`TcpStream`]: struct@crate::net::TcpStream |
79 | /// [`tokio::spawn`]: fn@crate::spawn |
80 | pub fn enter(&self) -> EnterGuard<'_> { |
81 | EnterGuard { |
82 | _guard: match context::try_set_current(&self.inner) { |
83 | Some(guard) => guard, |
84 | None => panic!("{}" , crate::util::error::THREAD_LOCAL_DESTROYED_ERROR), |
85 | }, |
86 | _handle_lifetime: PhantomData, |
87 | } |
88 | } |
89 | |
90 | /// Returns a `Handle` view over the currently running `Runtime`. |
91 | /// |
92 | /// # Panics |
93 | /// |
94 | /// This will panic if called outside the context of a Tokio runtime. That means that you must |
95 | /// call this on one of the threads **being run by the runtime**, or from a thread with an active |
96 | /// `EnterGuard`. Calling this from within a thread created by `std::thread::spawn` (for example) |
97 | /// will cause a panic unless that thread has an active `EnterGuard`. |
98 | /// |
99 | /// # Examples |
100 | /// |
101 | /// This can be used to obtain the handle of the surrounding runtime from an async |
102 | /// block or function running on that runtime. |
103 | /// |
104 | /// ``` |
105 | /// # use std::thread; |
106 | /// # use tokio::runtime::Runtime; |
107 | /// # fn dox() { |
108 | /// # let rt = Runtime::new().unwrap(); |
109 | /// # rt.spawn(async { |
110 | /// use tokio::runtime::Handle; |
111 | /// |
112 | /// // Inside an async block or function. |
113 | /// let handle = Handle::current(); |
114 | /// handle.spawn(async { |
115 | /// println!("now running in the existing Runtime" ); |
116 | /// }); |
117 | /// |
118 | /// # let handle = |
119 | /// thread::spawn(move || { |
120 | /// // Notice that the handle is created outside of this thread and then moved in |
121 | /// handle.spawn(async { /* ... */ }); |
122 | /// // This next line would cause a panic because we haven't entered the runtime |
123 | /// // and created an EnterGuard |
124 | /// // let handle2 = Handle::current(); // panic |
125 | /// // So we create a guard here with Handle::enter(); |
126 | /// let _guard = handle.enter(); |
127 | /// // Now we can call Handle::current(); |
128 | /// let handle2 = Handle::current(); |
129 | /// }); |
130 | /// # handle.join().unwrap(); |
131 | /// # }); |
132 | /// # } |
133 | /// ``` |
134 | #[track_caller ] |
135 | pub fn current() -> Self { |
136 | Handle { |
137 | inner: scheduler::Handle::current(), |
138 | } |
139 | } |
140 | |
141 | /// Returns a Handle view over the currently running Runtime |
142 | /// |
143 | /// Returns an error if no Runtime has been started |
144 | /// |
145 | /// Contrary to `current`, this never panics |
146 | pub fn try_current() -> Result<Self, TryCurrentError> { |
147 | context::with_current(|inner| Handle { |
148 | inner: inner.clone(), |
149 | }) |
150 | } |
151 | |
152 | /// Spawns a future onto the Tokio runtime. |
153 | /// |
154 | /// This spawns the given future onto the runtime's executor, usually a |
155 | /// thread pool. The thread pool is then responsible for polling the future |
156 | /// until it completes. |
157 | /// |
158 | /// The provided future will start running in the background immediately |
159 | /// when `spawn` is called, even if you don't await the returned |
160 | /// `JoinHandle`. |
161 | /// |
162 | /// See [module level][mod] documentation for more details. |
163 | /// |
164 | /// [mod]: index.html |
165 | /// |
166 | /// # Examples |
167 | /// |
168 | /// ``` |
169 | /// use tokio::runtime::Runtime; |
170 | /// |
171 | /// # fn dox() { |
172 | /// // Create the runtime |
173 | /// let rt = Runtime::new().unwrap(); |
174 | /// // Get a handle from this runtime |
175 | /// let handle = rt.handle(); |
176 | /// |
177 | /// // Spawn a future onto the runtime using the handle |
178 | /// handle.spawn(async { |
179 | /// println!("now running on a worker thread" ); |
180 | /// }); |
181 | /// # } |
182 | /// ``` |
183 | #[track_caller ] |
184 | pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output> |
185 | where |
186 | F: Future + Send + 'static, |
187 | F::Output: Send + 'static, |
188 | { |
189 | self.spawn_named(future, None) |
190 | } |
191 | |
192 | /// Runs the provided function on an executor dedicated to blocking |
193 | /// operations. |
194 | /// |
195 | /// # Examples |
196 | /// |
197 | /// ``` |
198 | /// use tokio::runtime::Runtime; |
199 | /// |
200 | /// # fn dox() { |
201 | /// // Create the runtime |
202 | /// let rt = Runtime::new().unwrap(); |
203 | /// // Get a handle from this runtime |
204 | /// let handle = rt.handle(); |
205 | /// |
206 | /// // Spawn a blocking function onto the runtime using the handle |
207 | /// handle.spawn_blocking(|| { |
208 | /// println!("now running on a worker thread" ); |
209 | /// }); |
210 | /// # } |
211 | #[track_caller ] |
212 | pub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R> |
213 | where |
214 | F: FnOnce() -> R + Send + 'static, |
215 | R: Send + 'static, |
216 | { |
217 | self.inner.blocking_spawner().spawn_blocking(self, func) |
218 | } |
219 | |
220 | /// Runs a future to completion on this `Handle`'s associated `Runtime`. |
221 | /// |
222 | /// This runs the given future on the current thread, blocking until it is |
223 | /// complete, and yielding its resolved result. Any tasks or timers which |
224 | /// the future spawns internally will be executed on the runtime. |
225 | /// |
226 | /// When this is used on a `current_thread` runtime, only the |
227 | /// [`Runtime::block_on`] method can drive the IO and timer drivers, but the |
228 | /// `Handle::block_on` method cannot drive them. This means that, when using |
229 | /// this method on a current_thread runtime, anything that relies on IO or |
230 | /// timers will not work unless there is another thread currently calling |
231 | /// [`Runtime::block_on`] on the same runtime. |
232 | /// |
233 | /// # If the runtime has been shut down |
234 | /// |
235 | /// If the `Handle`'s associated `Runtime` has been shut down (through |
236 | /// [`Runtime::shutdown_background`], [`Runtime::shutdown_timeout`], or by |
237 | /// dropping it) and `Handle::block_on` is used it might return an error or |
238 | /// panic. Specifically IO resources will return an error and timers will |
239 | /// panic. Runtime independent futures will run as normal. |
240 | /// |
241 | /// # Panics |
242 | /// |
243 | /// This function panics if the provided future panics, if called within an |
244 | /// asynchronous execution context, or if a timer future is executed on a |
245 | /// runtime that has been shut down. |
246 | /// |
247 | /// # Examples |
248 | /// |
249 | /// ``` |
250 | /// use tokio::runtime::Runtime; |
251 | /// |
252 | /// // Create the runtime |
253 | /// let rt = Runtime::new().unwrap(); |
254 | /// |
255 | /// // Get a handle from this runtime |
256 | /// let handle = rt.handle(); |
257 | /// |
258 | /// // Execute the future, blocking the current thread until completion |
259 | /// handle.block_on(async { |
260 | /// println!("hello" ); |
261 | /// }); |
262 | /// ``` |
263 | /// |
264 | /// Or using `Handle::current`: |
265 | /// |
266 | /// ``` |
267 | /// use tokio::runtime::Handle; |
268 | /// |
269 | /// #[tokio::main] |
270 | /// async fn main () { |
271 | /// let handle = Handle::current(); |
272 | /// std::thread::spawn(move || { |
273 | /// // Using Handle::block_on to run async code in the new thread. |
274 | /// handle.block_on(async { |
275 | /// println!("hello" ); |
276 | /// }); |
277 | /// }); |
278 | /// } |
279 | /// ``` |
280 | /// |
281 | /// [`JoinError`]: struct@crate::task::JoinError |
282 | /// [`JoinHandle`]: struct@crate::task::JoinHandle |
283 | /// [`Runtime::block_on`]: fn@crate::runtime::Runtime::block_on |
284 | /// [`Runtime::shutdown_background`]: fn@crate::runtime::Runtime::shutdown_background |
285 | /// [`Runtime::shutdown_timeout`]: fn@crate::runtime::Runtime::shutdown_timeout |
286 | /// [`spawn_blocking`]: crate::task::spawn_blocking |
287 | /// [`tokio::fs`]: crate::fs |
288 | /// [`tokio::net`]: crate::net |
289 | /// [`tokio::time`]: crate::time |
290 | #[track_caller ] |
291 | pub fn block_on<F: Future>(&self, future: F) -> F::Output { |
292 | #[cfg (all( |
293 | tokio_unstable, |
294 | tokio_taskdump, |
295 | feature = "rt" , |
296 | target_os = "linux" , |
297 | any(target_arch = "aarch64" , target_arch = "x86" , target_arch = "x86_64" ) |
298 | ))] |
299 | let future = super::task::trace::Trace::root(future); |
300 | |
301 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
302 | let future = |
303 | crate::util::trace::task(future, "block_on" , None, super::task::Id::next().as_u64()); |
304 | |
305 | // Enter the runtime context. This sets the current driver handles and |
306 | // prevents blocking an existing runtime. |
307 | context::enter_runtime(&self.inner, true, |blocking| { |
308 | blocking.block_on(future).expect("failed to park thread" ) |
309 | }) |
310 | } |
311 | |
312 | #[track_caller ] |
313 | pub(crate) fn spawn_named<F>(&self, future: F, _name: Option<&str>) -> JoinHandle<F::Output> |
314 | where |
315 | F: Future + Send + 'static, |
316 | F::Output: Send + 'static, |
317 | { |
318 | let id = crate::runtime::task::Id::next(); |
319 | #[cfg (all( |
320 | tokio_unstable, |
321 | tokio_taskdump, |
322 | feature = "rt" , |
323 | target_os = "linux" , |
324 | any(target_arch = "aarch64" , target_arch = "x86" , target_arch = "x86_64" ) |
325 | ))] |
326 | let future = super::task::trace::Trace::root(future); |
327 | #[cfg (all(tokio_unstable, feature = "tracing" ))] |
328 | let future = crate::util::trace::task(future, "task" , _name, id.as_u64()); |
329 | self.inner.spawn(future, id) |
330 | } |
331 | |
332 | /// Returns the flavor of the current `Runtime`. |
333 | /// |
334 | /// # Examples |
335 | /// |
336 | /// ``` |
337 | /// use tokio::runtime::{Handle, RuntimeFlavor}; |
338 | /// |
339 | /// #[tokio::main(flavor = "current_thread" )] |
340 | /// async fn main() { |
341 | /// assert_eq!(RuntimeFlavor::CurrentThread, Handle::current().runtime_flavor()); |
342 | /// } |
343 | /// ``` |
344 | /// |
345 | /// ``` |
346 | /// use tokio::runtime::{Handle, RuntimeFlavor}; |
347 | /// |
348 | /// #[tokio::main(flavor = "multi_thread" , worker_threads = 4)] |
349 | /// async fn main() { |
350 | /// assert_eq!(RuntimeFlavor::MultiThread, Handle::current().runtime_flavor()); |
351 | /// } |
352 | /// ``` |
353 | pub fn runtime_flavor(&self) -> RuntimeFlavor { |
354 | match self.inner { |
355 | scheduler::Handle::CurrentThread(_) => RuntimeFlavor::CurrentThread, |
356 | #[cfg (all(feature = "rt-multi-thread" , not(tokio_wasi)))] |
357 | scheduler::Handle::MultiThread(_) => RuntimeFlavor::MultiThread, |
358 | } |
359 | } |
360 | } |
361 | |
362 | cfg_metrics! { |
363 | use crate::runtime::RuntimeMetrics; |
364 | |
365 | impl Handle { |
366 | /// Returns a view that lets you get information about how the runtime |
367 | /// is performing. |
368 | pub fn metrics(&self) -> RuntimeMetrics { |
369 | RuntimeMetrics::new(self.clone()) |
370 | } |
371 | } |
372 | } |
373 | |
374 | cfg_taskdump! { |
375 | impl Handle { |
376 | /// Captures a snapshot of the runtime's state. |
377 | /// |
378 | /// This functionality is experimental, and comes with a number of |
379 | /// requirements and limitations. |
380 | /// |
381 | /// # Examples |
382 | /// |
383 | /// This can be used to get call traces of each task in the runtime. |
384 | /// Calls to `Handle::dump` should usually be enclosed in a |
385 | /// [timeout][crate::time::timeout], so that dumping does not escalate a |
386 | /// single blocked runtime thread into an entirely blocked runtime. |
387 | /// |
388 | /// ``` |
389 | /// # use tokio::runtime::Runtime; |
390 | /// # fn dox() { |
391 | /// # let rt = Runtime::new().unwrap(); |
392 | /// # rt.spawn(async { |
393 | /// use tokio::runtime::Handle; |
394 | /// use tokio::time::{timeout, Duration}; |
395 | /// |
396 | /// // Inside an async block or function. |
397 | /// let handle = Handle::current(); |
398 | /// if let Ok(dump) = timeout(Duration::from_secs(2), handle.dump()).await { |
399 | /// for (i, task) in dump.tasks().iter().enumerate() { |
400 | /// let trace = task.trace(); |
401 | /// println!("TASK {i}:"); |
402 | /// println!("{trace}\n"); |
403 | /// } |
404 | /// } |
405 | /// # }); |
406 | /// # } |
407 | /// ``` |
408 | /// |
409 | /// This produces highly detailed traces of tasks; e.g.: |
410 | /// |
411 | /// ```plain |
412 | /// TASK 0: |
413 | /// ╼ dump::main::{{closure}}::a::{{closure}} at /tokio/examples/dump.rs:18:20 |
414 | /// └╼ dump::main::{{closure}}::b::{{closure}} at /tokio/examples/dump.rs:23:20 |
415 | /// └╼ dump::main::{{closure}}::c::{{closure}} at /tokio/examples/dump.rs:28:24 |
416 | /// └╼ tokio::sync::barrier::Barrier::wait::{{closure}} at /tokio/tokio/src/sync/barrier.rs:129:10 |
417 | /// └╼ <tokio::util::trace::InstrumentedAsyncOp<F> as core::future::future::Future>::poll at /tokio/tokio/src/util/trace.rs:77:46 |
418 | /// └╼ tokio::sync::barrier::Barrier::wait_internal::{{closure}} at /tokio/tokio/src/sync/barrier.rs:183:36 |
419 | /// └╼ tokio::sync::watch::Receiver<T>::changed::{{closure}} at /tokio/tokio/src/sync/watch.rs:604:55 |
420 | /// └╼ tokio::sync::watch::changed_impl::{{closure}} at /tokio/tokio/src/sync/watch.rs:755:18 |
421 | /// └╼ <tokio::sync::notify::Notified as core::future::future::Future>::poll at /tokio/tokio/src/sync/notify.rs:1103:9 |
422 | /// └╼ tokio::sync::notify::Notified::poll_notified at /tokio/tokio/src/sync/notify.rs:996:32 |
423 | /// ``` |
424 | /// |
425 | /// # Requirements |
426 | /// |
427 | /// ## Debug Info Must Be Available |
428 | /// |
429 | /// To produce task traces, the application must **not** be compiled |
430 | /// with split debuginfo. On Linux, including debuginfo within the |
431 | /// application binary is the (correct) default. You can further ensure |
432 | /// this behavior with the following directive in your `Cargo.toml`: |
433 | /// |
434 | /// ```toml |
435 | /// [profile.*] |
436 | /// split-debuginfo = "off" |
437 | /// ``` |
438 | /// |
439 | /// ## Unstable Features |
440 | /// |
441 | /// This functionality is **unstable**, and requires both the |
442 | /// `tokio_unstable` and `tokio_taskdump` cfg flags to be set. |
443 | /// |
444 | /// You can do this by setting the `RUSTFLAGS` environment variable |
445 | /// before invoking `cargo`; e.g.: |
446 | /// ```bash |
447 | /// RUSTFLAGS="--cfg tokio_unstable --cfg tokio_taskdump" cargo run --example dump |
448 | /// ``` |
449 | /// |
450 | /// Or by [configuring][cargo-config] `rustflags` in |
451 | /// `.cargo/config.toml`: |
452 | /// ```text |
453 | /// [build] |
454 | /// rustflags = ["--cfg tokio_unstable", "--cfg tokio_taskdump"] |
455 | /// ``` |
456 | /// |
457 | /// [cargo-config]: |
458 | /// https://doc.rust-lang.org/cargo/reference/config.html |
459 | /// |
460 | /// ## Platform Requirements |
461 | /// |
462 | /// Task dumps are supported on Linux atop aarch64, x86 and x86_64. |
463 | /// |
464 | /// ## Current Thread Runtime Requirements |
465 | /// |
466 | /// On the `current_thread` runtime, task dumps may only be requested |
467 | /// from *within* the context of the runtime being dumped. Do not, for |
468 | /// example, await `Handle::dump()` on a different runtime. |
469 | /// |
470 | /// # Limitations |
471 | /// |
472 | /// ## Performance |
473 | /// |
474 | /// Although enabling the `tokio_taskdump` feature imposes virtually no |
475 | /// additional runtime overhead, actually calling `Handle::dump` is |
476 | /// expensive. The runtime must synchronize and pause its workers, then |
477 | /// re-poll every task in a special tracing mode. Avoid requesting dumps |
478 | /// often. |
479 | /// |
480 | /// ## Local Executors |
481 | /// |
482 | /// Tasks managed by local executors (e.g., `FuturesUnordered` and |
483 | /// [`LocalSet`][crate::task::LocalSet]) may not appear in task dumps. |
484 | /// |
485 | /// ## Non-Termination When Workers Are Blocked |
486 | /// |
487 | /// The future produced by `Handle::dump` may never produce `Ready` if |
488 | /// another runtime worker is blocked for more than 250ms. This may |
489 | /// occur if a dump is requested during shutdown, or if another runtime |
490 | /// worker is infinite looping or synchronously deadlocked. For these |
491 | /// reasons, task dumping should usually be paired with an explicit |
492 | /// [timeout][crate::time::timeout]. |
493 | pub async fn dump(&self) -> crate::runtime::Dump { |
494 | match &self.inner { |
495 | scheduler::Handle::CurrentThread(handle) => handle.dump(), |
496 | #[cfg (all(feature = "rt-multi-thread" , not(tokio_wasi)))] |
497 | scheduler::Handle::MultiThread(handle) => { |
498 | // perform the trace in a separate thread so that the |
499 | // trace itself does not appear in the taskdump. |
500 | let handle = handle.clone(); |
501 | spawn_thread(async { |
502 | let handle = handle; |
503 | handle.dump().await |
504 | }).await |
505 | }, |
506 | } |
507 | } |
508 | } |
509 | |
510 | cfg_rt_multi_thread! { |
511 | /// Spawn a new thread and asynchronously await on its result. |
512 | async fn spawn_thread<F>(f: F) -> <F as Future>::Output |
513 | where |
514 | F: Future + Send + 'static, |
515 | <F as Future>::Output: Send + 'static |
516 | { |
517 | let (tx, rx) = crate::sync::oneshot::channel(); |
518 | crate::loom::thread::spawn(|| { |
519 | let rt = crate::runtime::Builder::new_current_thread().build().unwrap(); |
520 | rt.block_on(async { |
521 | let _ = tx.send(f.await); |
522 | }); |
523 | }); |
524 | rx.await.unwrap() |
525 | } |
526 | } |
527 | } |
528 | |
529 | /// Error returned by `try_current` when no Runtime has been started |
530 | #[derive (Debug)] |
531 | pub struct TryCurrentError { |
532 | kind: TryCurrentErrorKind, |
533 | } |
534 | |
535 | impl TryCurrentError { |
536 | pub(crate) fn new_no_context() -> Self { |
537 | Self { |
538 | kind: TryCurrentErrorKind::NoContext, |
539 | } |
540 | } |
541 | |
542 | pub(crate) fn new_thread_local_destroyed() -> Self { |
543 | Self { |
544 | kind: TryCurrentErrorKind::ThreadLocalDestroyed, |
545 | } |
546 | } |
547 | |
548 | /// Returns true if the call failed because there is currently no runtime in |
549 | /// the Tokio context. |
550 | pub fn is_missing_context(&self) -> bool { |
551 | matches!(self.kind, TryCurrentErrorKind::NoContext) |
552 | } |
553 | |
554 | /// Returns true if the call failed because the Tokio context thread-local |
555 | /// had been destroyed. This can usually only happen if in the destructor of |
556 | /// other thread-locals. |
557 | pub fn is_thread_local_destroyed(&self) -> bool { |
558 | matches!(self.kind, TryCurrentErrorKind::ThreadLocalDestroyed) |
559 | } |
560 | } |
561 | |
562 | enum TryCurrentErrorKind { |
563 | NoContext, |
564 | ThreadLocalDestroyed, |
565 | } |
566 | |
567 | impl fmt::Debug for TryCurrentErrorKind { |
568 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
569 | use TryCurrentErrorKind::*; |
570 | match self { |
571 | NoContext => f.write_str(data:"NoContext" ), |
572 | ThreadLocalDestroyed => f.write_str(data:"ThreadLocalDestroyed" ), |
573 | } |
574 | } |
575 | } |
576 | |
577 | impl fmt::Display for TryCurrentError { |
578 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
579 | use TryCurrentErrorKind::*; |
580 | match self.kind { |
581 | NoContext => f.write_str(CONTEXT_MISSING_ERROR), |
582 | ThreadLocalDestroyed => f.write_str(THREAD_LOCAL_DESTROYED_ERROR), |
583 | } |
584 | } |
585 | } |
586 | |
587 | impl error::Error for TryCurrentError {} |
588 | |