1 | // Copyright 2023 The Fuchsia Authors |
2 | // |
3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
6 | // This file may not be copied, modified, or distributed except according to |
7 | // those terms. |
8 | |
9 | use core::{ |
10 | cmp::Ordering, |
11 | fmt::{self, Debug, Display, Formatter}, |
12 | hash::Hash, |
13 | mem::{self, ManuallyDrop}, |
14 | ops::{Deref, DerefMut}, |
15 | ptr, |
16 | }; |
17 | |
18 | use super::*; |
19 | |
20 | /// A type with no alignment requirement. |
21 | /// |
22 | /// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>` |
23 | /// has the same size and bit validity as `T`, but not necessarily the same |
24 | /// alignment [or ABI]. This is useful if a type with an alignment requirement |
25 | /// needs to be read from a chunk of memory which provides no alignment |
26 | /// guarantees. |
27 | /// |
28 | /// Since `Unalign` has no alignment requirement, the inner `T` may not be |
29 | /// properly aligned in memory. There are five ways to access the inner `T`: |
30 | /// - by value, using [`get`] or [`into_inner`] |
31 | /// - by reference inside of a callback, using [`update`] |
32 | /// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can |
33 | /// fail if the `Unalign` does not satisfy `T`'s alignment requirement at |
34 | /// runtime |
35 | /// - unsafely by reference, using [`deref_unchecked`] or |
36 | /// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that |
37 | /// the `Unalign` satisfies `T`'s alignment requirement |
38 | /// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or |
39 | /// [`DerefMut::deref_mut`] |
40 | /// |
41 | /// [or ABI]: https://github.com/google/zerocopy/issues/164 |
42 | /// [`get`]: Unalign::get |
43 | /// [`into_inner`]: Unalign::into_inner |
44 | /// [`update`]: Unalign::update |
45 | /// [`try_deref`]: Unalign::try_deref |
46 | /// [`try_deref_mut`]: Unalign::try_deref_mut |
47 | /// [`deref_unchecked`]: Unalign::deref_unchecked |
48 | /// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked |
49 | // NOTE: This type is sound to use with types that need to be dropped. The |
50 | // reason is that the compiler-generated drop code automatically moves all |
51 | // values to aligned memory slots before dropping them in-place. This is not |
52 | // well-documented, but it's hinted at in places like [1] and [2]. However, this |
53 | // also means that `T` must be `Sized`; unless something changes, we can never |
54 | // support unsized `T`. [3] |
55 | // |
56 | // [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646 |
57 | // [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323 |
58 | // [3] https://github.com/google/zerocopy/issues/209 |
59 | #[allow (missing_debug_implementations)] |
60 | #[derive (Default, Copy)] |
61 | #[cfg_attr ( |
62 | any(feature = "derive" , test), |
63 | derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned) |
64 | )] |
65 | #[repr (C, packed)] |
66 | pub struct Unalign<T>(T); |
67 | |
68 | #[cfg (not(any(feature = "derive" , test)))] |
69 | impl_known_layout!(T => Unalign<T>); |
70 | |
71 | safety_comment! { |
72 | /// SAFETY: |
73 | /// - `Unalign<T>` is `repr(packed)`, so it is unaligned regardless of the |
74 | /// alignment of `T`, and so we don't require that `T: Unaligned` |
75 | /// - `Unalign<T>` has the same bit validity as `T`, and so it is |
76 | /// `FromZeroes`, `FromBytes`, or `AsBytes` exactly when `T` is as well. |
77 | impl_or_verify!(T => Unaligned for Unalign<T>); |
78 | impl_or_verify!(T: FromZeroes => FromZeroes for Unalign<T>); |
79 | impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>); |
80 | impl_or_verify!(T: AsBytes => AsBytes for Unalign<T>); |
81 | } |
82 | |
83 | // Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be |
84 | // aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound |
85 | // is not sufficient to implement `Clone` for `Unalign`. |
86 | impl<T: Copy> Clone for Unalign<T> { |
87 | #[inline (always)] |
88 | fn clone(&self) -> Unalign<T> { |
89 | *self |
90 | } |
91 | } |
92 | |
93 | impl<T> Unalign<T> { |
94 | /// Constructs a new `Unalign`. |
95 | #[inline (always)] |
96 | pub const fn new(val: T) -> Unalign<T> { |
97 | Unalign(val) |
98 | } |
99 | |
100 | /// Consumes `self`, returning the inner `T`. |
101 | #[inline (always)] |
102 | pub const fn into_inner(self) -> T { |
103 | // Use this instead of `mem::transmute` since the latter can't tell |
104 | // that `Unalign<T>` and `T` have the same size. |
105 | #[repr (C)] |
106 | union Transmute<T> { |
107 | u: ManuallyDrop<Unalign<T>>, |
108 | t: ManuallyDrop<T>, |
109 | } |
110 | |
111 | // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same |
112 | // layout as `T`. `ManuallyDrop<U>` is guaranteed to have the same |
113 | // layout as `U`, and so `ManuallyDrop<Unalign<T>>` has the same layout |
114 | // as `ManuallyDrop<T>`. Since `Transmute<T>` is `#[repr(C)]`, its `t` |
115 | // and `u` fields both start at the same offset (namely, 0) within the |
116 | // union. |
117 | // |
118 | // We do this instead of just destructuring in order to prevent |
119 | // `Unalign`'s `Drop::drop` from being run, since dropping is not |
120 | // supported in `const fn`s. |
121 | // |
122 | // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure |
123 | // instead of using unsafe. |
124 | unsafe { ManuallyDrop::into_inner(Transmute { u: ManuallyDrop::new(self) }.t) } |
125 | } |
126 | |
127 | /// Attempts to return a reference to the wrapped `T`, failing if `self` is |
128 | /// not properly aligned. |
129 | /// |
130 | /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to |
131 | /// return a reference to the wrapped `T`, and `try_deref` returns `None`. |
132 | /// |
133 | /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers |
134 | /// may prefer [`Deref::deref`], which is infallible. |
135 | #[inline (always)] |
136 | pub fn try_deref(&self) -> Option<&T> { |
137 | if !crate::util::aligned_to::<_, T>(self) { |
138 | return None; |
139 | } |
140 | |
141 | // SAFETY: `deref_unchecked`'s safety requirement is that `self` is |
142 | // aligned to `align_of::<T>()`, which we just checked. |
143 | unsafe { Some(self.deref_unchecked()) } |
144 | } |
145 | |
146 | /// Attempts to return a mutable reference to the wrapped `T`, failing if |
147 | /// `self` is not properly aligned. |
148 | /// |
149 | /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to |
150 | /// return a reference to the wrapped `T`, and `try_deref_mut` returns |
151 | /// `None`. |
152 | /// |
153 | /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and |
154 | /// callers may prefer [`DerefMut::deref_mut`], which is infallible. |
155 | #[inline (always)] |
156 | pub fn try_deref_mut(&mut self) -> Option<&mut T> { |
157 | if !crate::util::aligned_to::<_, T>(&*self) { |
158 | return None; |
159 | } |
160 | |
161 | // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is |
162 | // aligned to `align_of::<T>()`, which we just checked. |
163 | unsafe { Some(self.deref_mut_unchecked()) } |
164 | } |
165 | |
166 | /// Returns a reference to the wrapped `T` without checking alignment. |
167 | /// |
168 | /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers |
169 | /// may prefer [`Deref::deref`], which is safe. |
170 | /// |
171 | /// # Safety |
172 | /// |
173 | /// If `self` does not satisfy `mem::align_of::<T>()`, then |
174 | /// `self.deref_unchecked()` may cause undefined behavior. |
175 | #[inline (always)] |
176 | pub const unsafe fn deref_unchecked(&self) -> &T { |
177 | // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T` |
178 | // at the same memory location as `self`. It has no alignment guarantee, |
179 | // but the caller has promised that `self` is properly aligned, so we |
180 | // know that it is sound to create a reference to `T` at this memory |
181 | // location. |
182 | // |
183 | // We use `mem::transmute` instead of `&*self.get_ptr()` because |
184 | // dereferencing pointers is not stable in `const` on our current MSRV |
185 | // (1.56 as of this writing). |
186 | unsafe { mem::transmute(self) } |
187 | } |
188 | |
189 | /// Returns a mutable reference to the wrapped `T` without checking |
190 | /// alignment. |
191 | /// |
192 | /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and |
193 | /// callers may prefer [`DerefMut::deref_mut`], which is safe. |
194 | /// |
195 | /// # Safety |
196 | /// |
197 | /// If `self` does not satisfy `mem::align_of::<T>()`, then |
198 | /// `self.deref_mut_unchecked()` may cause undefined behavior. |
199 | #[inline (always)] |
200 | pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T { |
201 | // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at |
202 | // the same memory location as `self`. It has no alignment guarantee, |
203 | // but the caller has promised that `self` is properly aligned, so we |
204 | // know that the pointer itself is aligned, and thus that it is sound to |
205 | // create a reference to a `T` at this memory location. |
206 | unsafe { &mut *self.get_mut_ptr() } |
207 | } |
208 | |
209 | /// Gets an unaligned raw pointer to the inner `T`. |
210 | /// |
211 | /// # Safety |
212 | /// |
213 | /// The returned raw pointer is not necessarily aligned to |
214 | /// `align_of::<T>()`. Most functions which operate on raw pointers require |
215 | /// those pointers to be aligned, so calling those functions with the result |
216 | /// of `get_ptr` will be undefined behavior if alignment is not guaranteed |
217 | /// using some out-of-band mechanism. In general, the only functions which |
218 | /// are safe to call with this pointer are those which are explicitly |
219 | /// documented as being sound to use with an unaligned pointer, such as |
220 | /// [`read_unaligned`]. |
221 | /// |
222 | /// [`read_unaligned`]: core::ptr::read_unaligned |
223 | #[inline (always)] |
224 | pub const fn get_ptr(&self) -> *const T { |
225 | ptr::addr_of!(self.0) |
226 | } |
227 | |
228 | /// Gets an unaligned mutable raw pointer to the inner `T`. |
229 | /// |
230 | /// # Safety |
231 | /// |
232 | /// The returned raw pointer is not necessarily aligned to |
233 | /// `align_of::<T>()`. Most functions which operate on raw pointers require |
234 | /// those pointers to be aligned, so calling those functions with the result |
235 | /// of `get_ptr` will be undefined behavior if alignment is not guaranteed |
236 | /// using some out-of-band mechanism. In general, the only functions which |
237 | /// are safe to call with this pointer are those which are explicitly |
238 | /// documented as being sound to use with an unaligned pointer, such as |
239 | /// [`read_unaligned`]. |
240 | /// |
241 | /// [`read_unaligned`]: core::ptr::read_unaligned |
242 | // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. |
243 | #[inline (always)] |
244 | pub fn get_mut_ptr(&mut self) -> *mut T { |
245 | ptr::addr_of_mut!(self.0) |
246 | } |
247 | |
248 | /// Sets the inner `T`, dropping the previous value. |
249 | // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. |
250 | #[inline (always)] |
251 | pub fn set(&mut self, t: T) { |
252 | *self = Unalign::new(t); |
253 | } |
254 | |
255 | /// Updates the inner `T` by calling a function on it. |
256 | /// |
257 | /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that |
258 | /// impl should be preferred over this method when performing updates, as it |
259 | /// will usually be faster and more ergonomic. |
260 | /// |
261 | /// For large types, this method may be expensive, as it requires copying |
262 | /// `2 * size_of::<T>()` bytes. \[1\] |
263 | /// |
264 | /// \[1\] Since the inner `T` may not be aligned, it would not be sound to |
265 | /// invoke `f` on it directly. Instead, `update` moves it into a |
266 | /// properly-aligned location in the local stack frame, calls `f` on it, and |
267 | /// then moves it back to its original location in `self`. |
268 | /// |
269 | /// [`T: Unaligned`]: Unaligned |
270 | #[inline ] |
271 | pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O { |
272 | // On drop, this moves `copy` out of itself and uses `ptr::write` to |
273 | // overwrite `slf`. |
274 | struct WriteBackOnDrop<T> { |
275 | copy: ManuallyDrop<T>, |
276 | slf: *mut Unalign<T>, |
277 | } |
278 | |
279 | impl<T> Drop for WriteBackOnDrop<T> { |
280 | fn drop(&mut self) { |
281 | // SAFETY: We never use `copy` again as required by |
282 | // `ManuallyDrop::take`. |
283 | let copy = unsafe { ManuallyDrop::take(&mut self.copy) }; |
284 | // SAFETY: `slf` is the raw pointer value of `self`. We know it |
285 | // is valid for writes and properly aligned because `self` is a |
286 | // mutable reference, which guarantees both of these properties. |
287 | unsafe { ptr::write(self.slf, Unalign::new(copy)) }; |
288 | } |
289 | } |
290 | |
291 | // SAFETY: We know that `self` is valid for reads, properly aligned, and |
292 | // points to an initialized `Unalign<T>` because it is a mutable |
293 | // reference, which guarantees all of these properties. |
294 | // |
295 | // Since `T: !Copy`, it would be unsound in the general case to allow |
296 | // both the original `Unalign<T>` and the copy to be used by safe code. |
297 | // We guarantee that the copy is used to overwrite the original in the |
298 | // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is |
299 | // called before any other safe code executes, soundness is upheld. |
300 | // While this method can terminate in two ways (by returning normally or |
301 | // by unwinding due to a panic in `f`), in both cases, `write_back` is |
302 | // dropped - and its `drop` called - before any other safe code can |
303 | // execute. |
304 | let copy = unsafe { ptr::read(self) }.into_inner(); |
305 | let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self }; |
306 | |
307 | let ret = f(&mut write_back.copy); |
308 | |
309 | drop(write_back); |
310 | ret |
311 | } |
312 | } |
313 | |
314 | impl<T: Copy> Unalign<T> { |
315 | /// Gets a copy of the inner `T`. |
316 | // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. |
317 | #[inline (always)] |
318 | pub fn get(&self) -> T { |
319 | let Unalign(val: T) = *self; |
320 | val |
321 | } |
322 | } |
323 | |
324 | impl<T: Unaligned> Deref for Unalign<T> { |
325 | type Target = T; |
326 | |
327 | #[inline (always)] |
328 | fn deref(&self) -> &T { |
329 | // SAFETY: `deref_unchecked`'s safety requirement is that `self` is |
330 | // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that |
331 | // `align_of::<T>() == 1`, and all pointers are one-aligned because all |
332 | // addresses are divisible by 1. |
333 | unsafe { self.deref_unchecked() } |
334 | } |
335 | } |
336 | |
337 | impl<T: Unaligned> DerefMut for Unalign<T> { |
338 | #[inline (always)] |
339 | fn deref_mut(&mut self) -> &mut T { |
340 | // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is |
341 | // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that |
342 | // `align_of::<T>() == 1`, and all pointers are one-aligned because all |
343 | // addresses are divisible by 1. |
344 | unsafe { self.deref_mut_unchecked() } |
345 | } |
346 | } |
347 | |
348 | impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> { |
349 | #[inline (always)] |
350 | fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> { |
351 | PartialOrd::partial_cmp(self.deref(), other:other.deref()) |
352 | } |
353 | } |
354 | |
355 | impl<T: Unaligned + Ord> Ord for Unalign<T> { |
356 | #[inline (always)] |
357 | fn cmp(&self, other: &Unalign<T>) -> Ordering { |
358 | Ord::cmp(self.deref(), other:other.deref()) |
359 | } |
360 | } |
361 | |
362 | impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> { |
363 | #[inline (always)] |
364 | fn eq(&self, other: &Unalign<T>) -> bool { |
365 | PartialEq::eq(self.deref(), other:other.deref()) |
366 | } |
367 | } |
368 | |
369 | impl<T: Unaligned + Eq> Eq for Unalign<T> {} |
370 | |
371 | impl<T: Unaligned + Hash> Hash for Unalign<T> { |
372 | #[inline (always)] |
373 | fn hash<H>(&self, state: &mut H) |
374 | where |
375 | H: Hasher, |
376 | { |
377 | self.deref().hash(state); |
378 | } |
379 | } |
380 | |
381 | impl<T: Unaligned + Debug> Debug for Unalign<T> { |
382 | #[inline (always)] |
383 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
384 | Debug::fmt(self.deref(), f) |
385 | } |
386 | } |
387 | |
388 | impl<T: Unaligned + Display> Display for Unalign<T> { |
389 | #[inline (always)] |
390 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
391 | Display::fmt(self.deref(), f) |
392 | } |
393 | } |
394 | |
395 | #[cfg (test)] |
396 | mod tests { |
397 | use core::panic::AssertUnwindSafe; |
398 | |
399 | use super::*; |
400 | use crate::util::testutil::*; |
401 | |
402 | /// A `T` which is guaranteed not to satisfy `align_of::<A>()`. |
403 | /// |
404 | /// It must be the case that `align_of::<T>() < align_of::<A>()` in order |
405 | /// fot this type to work properly. |
406 | #[repr (C)] |
407 | struct ForceUnalign<T, A> { |
408 | // The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is |
409 | // placed at the minimum offset that guarantees its alignment. If |
410 | // `align_of::<T>() < align_of::<A>()`, then that offset will be |
411 | // guaranteed *not* to satisfy `align_of::<A>()`. |
412 | _u: u8, |
413 | t: T, |
414 | _a: [A; 0], |
415 | } |
416 | |
417 | impl<T, A> ForceUnalign<T, A> { |
418 | const fn new(t: T) -> ForceUnalign<T, A> { |
419 | ForceUnalign { _u: 0, t, _a: [] } |
420 | } |
421 | } |
422 | |
423 | #[test ] |
424 | fn test_unalign() { |
425 | // Test methods that don't depend on alignment. |
426 | let mut u = Unalign::new(AU64(123)); |
427 | assert_eq!(u.get(), AU64(123)); |
428 | assert_eq!(u.into_inner(), AU64(123)); |
429 | assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u)); |
430 | assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u)); |
431 | u.set(AU64(321)); |
432 | assert_eq!(u.get(), AU64(321)); |
433 | |
434 | // Test methods that depend on alignment (when alignment is satisfied). |
435 | let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); |
436 | assert_eq!(u.t.try_deref(), Some(&AU64(123))); |
437 | assert_eq!(u.t.try_deref_mut(), Some(&mut AU64(123))); |
438 | // SAFETY: The `Align<_, AU64>` guarantees proper alignment. |
439 | assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123)); |
440 | // SAFETY: The `Align<_, AU64>` guarantees proper alignment. |
441 | assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123)); |
442 | *u.t.try_deref_mut().unwrap() = AU64(321); |
443 | assert_eq!(u.t.get(), AU64(321)); |
444 | |
445 | // Test methods that depend on alignment (when alignment is not |
446 | // satisfied). |
447 | let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123))); |
448 | assert_eq!(u.t.try_deref(), None); |
449 | assert_eq!(u.t.try_deref_mut(), None); |
450 | |
451 | // Test methods that depend on `T: Unaligned`. |
452 | let mut u = Unalign::new(123u8); |
453 | assert_eq!(u.try_deref(), Some(&123)); |
454 | assert_eq!(u.try_deref_mut(), Some(&mut 123)); |
455 | assert_eq!(u.deref(), &123); |
456 | assert_eq!(u.deref_mut(), &mut 123); |
457 | *u = 21; |
458 | assert_eq!(u.get(), 21); |
459 | |
460 | // Test that some `Unalign` functions and methods are `const`. |
461 | const _UNALIGN: Unalign<u64> = Unalign::new(0); |
462 | const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr(); |
463 | const _U64: u64 = _UNALIGN.into_inner(); |
464 | // Make sure all code is considered "used". |
465 | // |
466 | // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this |
467 | // attribute. |
468 | #[allow (dead_code)] |
469 | const _: () = { |
470 | let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); |
471 | // Make sure that `deref_unchecked` is `const`. |
472 | // |
473 | // SAFETY: The `Align<_, AU64>` guarantees proper alignment. |
474 | let au64 = unsafe { x.t.deref_unchecked() }; |
475 | match au64 { |
476 | AU64(123) => {} |
477 | _ => unreachable!(), |
478 | } |
479 | }; |
480 | } |
481 | |
482 | #[test ] |
483 | fn test_unalign_update() { |
484 | let mut u = Unalign::new(AU64(123)); |
485 | u.update(|a| a.0 += 1); |
486 | assert_eq!(u.get(), AU64(124)); |
487 | |
488 | // Test that, even if the callback panics, the original is still |
489 | // correctly overwritten. Use a `Box` so that Miri is more likely to |
490 | // catch any unsoundness (which would likely result in two `Box`es for |
491 | // the same heap object, which is the sort of thing that Miri would |
492 | // probably catch). |
493 | let mut u = Unalign::new(Box::new(AU64(123))); |
494 | let res = std::panic::catch_unwind(AssertUnwindSafe(|| { |
495 | u.update(|a| { |
496 | a.0 += 1; |
497 | panic!(); |
498 | }) |
499 | })); |
500 | assert!(res.is_err()); |
501 | assert_eq!(u.into_inner(), Box::new(AU64(124))); |
502 | } |
503 | } |
504 | |