1 | // Copyright 2023 The Fuchsia Authors |
2 | // |
3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
6 | // This file may not be copied, modified, or distributed except according to |
7 | // those terms. |
8 | |
9 | #[path = "third_party/rust/layout.rs" ] |
10 | pub(crate) mod core_layout; |
11 | |
12 | use core::{mem, num::NonZeroUsize}; |
13 | |
14 | pub(crate) mod ptr { |
15 | use core::{ |
16 | fmt::{Debug, Formatter}, |
17 | marker::PhantomData, |
18 | ptr::NonNull, |
19 | }; |
20 | |
21 | use crate::{util::AsAddress, KnownLayout, _CastType}; |
22 | |
23 | /// A raw pointer with more restrictions. |
24 | /// |
25 | /// `Ptr<T>` is similar to `NonNull<T>`, but it is more restrictive in the |
26 | /// following ways: |
27 | /// - It must derive from a valid allocation |
28 | /// - It must reference a byte range which is contained inside the |
29 | /// allocation from which it derives |
30 | /// - As a consequence, the byte range it references must have a size |
31 | /// which does not overflow `isize` |
32 | /// - It must satisfy `T`'s alignment requirement |
33 | /// |
34 | /// Thanks to these restrictions, it is easier to prove the soundness of |
35 | /// some operations using `Ptr`s. |
36 | /// |
37 | /// `Ptr<'a, T>` is [covariant] in `'a` and `T`. |
38 | /// |
39 | /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html |
40 | pub struct Ptr<'a, T: 'a + ?Sized> { |
41 | // INVARIANTS: |
42 | // - `ptr` is derived from some valid Rust allocation, `A` |
43 | // - `ptr` has the same provenance as `A` |
44 | // - `ptr` addresses a byte range which is entirely contained in `A` |
45 | // - `ptr` addresses a byte range whose length fits in an `isize` |
46 | // - `ptr` addresses a byte range which does not wrap around the address |
47 | // space |
48 | // - `ptr` is validly-aligned for `T` |
49 | // - `A` is guaranteed to live for at least `'a` |
50 | // - `T: 'a` |
51 | ptr: NonNull<T>, |
52 | _lifetime: PhantomData<&'a ()>, |
53 | } |
54 | |
55 | impl<'a, T: ?Sized> Copy for Ptr<'a, T> {} |
56 | impl<'a, T: ?Sized> Clone for Ptr<'a, T> { |
57 | #[inline ] |
58 | fn clone(&self) -> Self { |
59 | *self |
60 | } |
61 | } |
62 | |
63 | impl<'a, T: ?Sized> Ptr<'a, T> { |
64 | /// Returns a shared reference to the value. |
65 | /// |
66 | /// # Safety |
67 | /// |
68 | /// For the duration of `'a`: |
69 | /// - The referenced memory must contain a validly-initialized `T` for |
70 | /// the duration of `'a`. |
71 | /// - The referenced memory must not also be referenced by any mutable |
72 | /// references. |
73 | /// - The referenced memory must not be mutated, even via an |
74 | /// [`UnsafeCell`]. |
75 | /// - There must not exist any references to the same memory region |
76 | /// which contain `UnsafeCell`s at byte ranges which are not identical |
77 | /// to the byte ranges at which `T` contains `UnsafeCell`s. |
78 | /// |
79 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
80 | // TODO(#429): The safety requirements are likely overly-restrictive. |
81 | // Notably, mutation via `UnsafeCell`s is probably fine. Once the rules |
82 | // are more clearly defined, we should relax the safety requirements. |
83 | // For an example of why this is subtle, see: |
84 | // https://github.com/rust-lang/unsafe-code-guidelines/issues/463#issuecomment-1736771593 |
85 | #[allow (unused)] |
86 | pub(crate) unsafe fn as_ref(&self) -> &'a T { |
87 | // SAFETY: |
88 | // - By invariant, `self.ptr` is properly-aligned for `T`. |
89 | // - By invariant, `self.ptr` is "dereferenceable" in that it points |
90 | // to a single allocation. |
91 | // - By invariant, the allocation is live for `'a`. |
92 | // - The caller promises that no mutable references exist to this |
93 | // region during `'a`. |
94 | // - The caller promises that `UnsafeCell`s match exactly. |
95 | // - The caller promises that no mutation will happen during `'a`, |
96 | // even via `UnsafeCell`s. |
97 | // - The caller promises that the memory region contains a |
98 | // validly-intialized `T`. |
99 | unsafe { self.ptr.as_ref() } |
100 | } |
101 | |
102 | /// Casts to a different (unsized) target type. |
103 | /// |
104 | /// # Safety |
105 | /// |
106 | /// The caller promises that |
107 | /// - `cast(p)` is implemented exactly as follows: `|p: *mut T| p as |
108 | /// *mut U`. |
109 | /// - The size of the object referenced by the resulting pointer is less |
110 | /// than or equal to the size of the object referenced by `self`. |
111 | /// - The alignment of `U` is less than or equal to the alignment of |
112 | /// `T`. |
113 | pub(crate) unsafe fn cast_unsized<U: 'a + ?Sized, F: FnOnce(*mut T) -> *mut U>( |
114 | self, |
115 | cast: F, |
116 | ) -> Ptr<'a, U> { |
117 | let ptr = cast(self.ptr.as_ptr()); |
118 | // SAFETY: Caller promises that `cast` is just an `as` cast. We call |
119 | // `cast` on `self.ptr.as_ptr()`, which is non-null by construction. |
120 | let ptr = unsafe { NonNull::new_unchecked(ptr) }; |
121 | // SAFETY: |
122 | // - By invariant, `self.ptr` is derived from some valid Rust |
123 | // allocation, and since `ptr` is just `self.ptr as *mut U`, so is |
124 | // `ptr`. |
125 | // - By invariant, `self.ptr` has the same provenance as `A`, and so |
126 | // the same is true of `ptr`. |
127 | // - By invariant, `self.ptr` addresses a byte range which is |
128 | // entirely contained in `A`, and so the same is true of `ptr`. |
129 | // - By invariant, `self.ptr` addresses a byte range whose length |
130 | // fits in an `isize`, and so the same is true of `ptr`. |
131 | // - By invariant, `self.ptr` addresses a byte range which does not |
132 | // wrap around the address space, and so the same is true of |
133 | // `ptr`. |
134 | // - By invariant, `self.ptr` is validly-aligned for `T`. Since |
135 | // `ptr` has the same address, and since the caller promises that |
136 | // the alignment of `U` is less than or equal to the alignment of |
137 | // `T`, `ptr` is validly-aligned for `U`. |
138 | // - By invariant, `A` is guaranteed to live for at least `'a`. |
139 | // - `U: 'a` |
140 | Ptr { ptr, _lifetime: PhantomData } |
141 | } |
142 | } |
143 | |
144 | impl<'a> Ptr<'a, [u8]> { |
145 | /// Attempts to cast `self` to a `U` using the given cast type. |
146 | /// |
147 | /// Returns `None` if the resulting `U` would be invalidly-aligned or if |
148 | /// no `U` can fit in `self`. On success, returns a pointer to the |
149 | /// largest-possible `U` which fits in `self`. |
150 | /// |
151 | /// # Safety |
152 | /// |
153 | /// The caller may assume that this implementation is correct, and may |
154 | /// rely on that assumption for the soundness of their code. In |
155 | /// particular, the caller may assume that, if `try_cast_into` returns |
156 | /// `Some((ptr, split_at))`, then: |
157 | /// - If this is a prefix cast, `ptr` refers to the byte range `[0, |
158 | /// split_at)` in `self`. |
159 | /// - If this is a suffix cast, `ptr` refers to the byte range |
160 | /// `[split_at, self.len())` in `self`. |
161 | /// |
162 | /// # Panics |
163 | /// |
164 | /// Panics if `U` is a DST whose trailing slice element is zero-sized. |
165 | pub(crate) fn try_cast_into<U: 'a + ?Sized + KnownLayout>( |
166 | &self, |
167 | cast_type: _CastType, |
168 | ) -> Option<(Ptr<'a, U>, usize)> { |
169 | // PANICS: By invariant, the byte range addressed by `self.ptr` does |
170 | // not wrap around the address space. This implies that the sum of |
171 | // the address (represented as a `usize`) and length do not overflow |
172 | // `usize`, as required by `validate_cast_and_convert_metadata`. |
173 | // Thus, this call to `validate_cast_and_convert_metadata` won't |
174 | // panic. |
175 | let (elems, split_at) = U::LAYOUT.validate_cast_and_convert_metadata( |
176 | AsAddress::addr(self.ptr.as_ptr()), |
177 | self.len(), |
178 | cast_type, |
179 | )?; |
180 | let offset = match cast_type { |
181 | _CastType::_Prefix => 0, |
182 | _CastType::_Suffix => split_at, |
183 | }; |
184 | |
185 | let ptr = self.ptr.cast::<u8>().as_ptr(); |
186 | // SAFETY: `offset` is either `0` or `split_at`. |
187 | // `validate_cast_and_convert_metadata` promises that `split_at` is |
188 | // in the range `[0, self.len()]`. Thus, in both cases, `offset` is |
189 | // in `[0, self.len()]`. Thus: |
190 | // - The resulting pointer is in or one byte past the end of the |
191 | // same byte range as `self.ptr`. Since, by invariant, `self.ptr` |
192 | // addresses a byte range entirely contained within a single |
193 | // allocation, the pointer resulting from this operation is within |
194 | // or one byte past the end of that same allocation. |
195 | // - By invariant, `self.len() <= isize::MAX`. Since `offset <= |
196 | // self.len()`, `offset <= isize::MAX`. |
197 | // - By invariant, `self.ptr` addresses a byte range which does not |
198 | // wrap around the address space. This means that the base pointer |
199 | // plus the `self.len()` does not overflow `usize`. Since `offset |
200 | // <= self.len()`, this addition does not overflow `usize`. |
201 | let base = unsafe { ptr.add(offset) }; |
202 | // SAFETY: Since `add` is not allowed to wrap around, the preceding line |
203 | // produces a pointer whose address is greater than or equal to that of |
204 | // `ptr`. Since `ptr` is a `NonNull`, `base` is also non-null. |
205 | let base = unsafe { NonNull::new_unchecked(base) }; |
206 | let ptr = U::raw_from_ptr_len(base, elems); |
207 | // SAFETY: |
208 | // - By invariant, `self.ptr` is derived from some valid Rust |
209 | // allocation, `A`, and has the same provenance as `A`. All |
210 | // operations performed on `self.ptr` and values derived from it |
211 | // in this method preserve provenance, so: |
212 | // - `ptr` is derived from a valid Rust allocation, `A`. |
213 | // - `ptr` has the same provenance as `A`. |
214 | // - `validate_cast_and_convert_metadata` promises that the object |
215 | // described by `elems` and `split_at` lives at a byte range which |
216 | // is a subset of the input byte range. Thus: |
217 | // - Since, by invariant, `self.ptr` addresses a byte range |
218 | // entirely contained in `A`, so does `ptr`. |
219 | // - Since, by invariant, `self.ptr` addresses a range whose |
220 | // length is not longer than `isize::MAX` bytes, so does `ptr`. |
221 | // - Since, by invariant, `self.ptr` addresses a range which does |
222 | // not wrap around the address space, so does `ptr`. |
223 | // - `validate_cast_and_convert_metadata` promises that the object |
224 | // described by `split_at` is validly-aligned for `U`. |
225 | // - By invariant on `self`, `A` is guaranteed to live for at least |
226 | // `'a`. |
227 | // - `U: 'a` by trait bound. |
228 | Some((Ptr { ptr, _lifetime: PhantomData }, split_at)) |
229 | } |
230 | |
231 | /// Attempts to cast `self` into a `U`, failing if all of the bytes of |
232 | /// `self` cannot be treated as a `U`. |
233 | /// |
234 | /// In particular, this method fails if `self` is not validly-aligned |
235 | /// for `U` or if `self`'s size is not a valid size for `U`. |
236 | /// |
237 | /// # Safety |
238 | /// |
239 | /// On success, the caller may assume that the returned pointer |
240 | /// references the same byte range as `self`. |
241 | #[allow (unused)] |
242 | #[inline (always)] |
243 | pub(crate) fn try_cast_into_no_leftover<U: 'a + ?Sized + KnownLayout>( |
244 | &self, |
245 | ) -> Option<Ptr<'a, U>> { |
246 | // TODO(#67): Remove this allow. See NonNulSlicelExt for more |
247 | // details. |
248 | #[allow (unstable_name_collisions)] |
249 | match self.try_cast_into(_CastType::_Prefix) { |
250 | Some((slf, split_at)) if split_at == self.len() => Some(slf), |
251 | Some(_) | None => None, |
252 | } |
253 | } |
254 | } |
255 | |
256 | impl<'a, T> Ptr<'a, [T]> { |
257 | /// The number of slice elements referenced by `self`. |
258 | fn len(&self) -> usize { |
259 | #[allow (clippy::as_conversions)] |
260 | let slc = self.ptr.as_ptr() as *const [()]; |
261 | // SAFETY: |
262 | // - `()` has alignment 1, so `slc` is trivially aligned. |
263 | // - `slc` was derived from a non-null pointer. |
264 | // - The size is 0 regardless of the length, so it is sound to |
265 | // materialize a reference regardless of location. |
266 | // - By invariant, `self.ptr` has valid provenance. |
267 | let slc = unsafe { &*slc }; |
268 | // This is correct because the preceding `as` cast preserves the |
269 | // number of slice elements. Per |
270 | // https://doc.rust-lang.org/nightly/reference/expressions/operator-expr.html#slice-dst-pointer-to-pointer-cast: |
271 | // |
272 | // For slice types like `[T]` and `[U]`, the raw pointer types |
273 | // `*const [T]`, `*mut [T]`, `*const [U]`, and `*mut [U]` encode |
274 | // the number of elements in this slice. Casts between these raw |
275 | // pointer types preserve the number of elements. Note that, as a |
276 | // consequence, such casts do *not* necessarily preserve the size |
277 | // of the pointer's referent (e.g., casting `*const [u16]` to |
278 | // `*const [u8]` will result in a raw pointer which refers to an |
279 | // object of half the size of the original). The same holds for |
280 | // `str` and any compound type whose unsized tail is a slice type, |
281 | // such as struct `Foo(i32, [u8])` or `(u64, Foo)`. |
282 | // |
283 | // TODO(#429), |
284 | // TODO(https://github.com/rust-lang/reference/pull/1417): Once this |
285 | // text is available on the Stable docs, cite those instead of the |
286 | // Nightly docs. |
287 | slc.len() |
288 | } |
289 | } |
290 | |
291 | impl<'a, T: 'a + ?Sized> From<&'a T> for Ptr<'a, T> { |
292 | #[inline (always)] |
293 | fn from(t: &'a T) -> Ptr<'a, T> { |
294 | // SAFETY: `t` points to a valid Rust allocation, `A`, by |
295 | // construction. Thus: |
296 | // - `ptr` is derived from `A` |
297 | // - Since we use `NonNull::from`, which preserves provenance, `ptr` |
298 | // has the same provenance as `A` |
299 | // - Since `NonNull::from` creates a pointer which addresses the |
300 | // same bytes as `t`, `ptr` addresses a byte range entirely |
301 | // contained in (in this case, identical to) `A` |
302 | // - Since `t: &T`, it addresses no more than `isize::MAX` bytes [1] |
303 | // - Since `t: &T`, it addresses a byte range which does not wrap |
304 | // around the address space [2] |
305 | // - Since it is constructed from a valid `&T`, `ptr` is |
306 | // validly-aligned for `T` |
307 | // - Since `t: &'a T`, the allocation `A` is guaranteed to live for |
308 | // at least `'a` |
309 | // - `T: 'a` by trait bound |
310 | // |
311 | // TODO(#429), |
312 | // TODO(https://github.com/rust-lang/rust/issues/116181): Once it's |
313 | // documented, reference the guarantee that `NonNull::from` |
314 | // preserves provenance. |
315 | // |
316 | // TODO(#429), |
317 | // TODO(https://github.com/rust-lang/unsafe-code-guidelines/issues/465): |
318 | // - [1] Where does the reference document that allocations fit in |
319 | // `isize`? |
320 | // - [2] Where does the reference document that allocations don't |
321 | // wrap around the address space? |
322 | Ptr { ptr: NonNull::from(t), _lifetime: PhantomData } |
323 | } |
324 | } |
325 | |
326 | impl<'a, T: 'a + ?Sized> Debug for Ptr<'a, T> { |
327 | #[inline ] |
328 | fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { |
329 | self.ptr.fmt(f) |
330 | } |
331 | } |
332 | |
333 | #[cfg (test)] |
334 | mod tests { |
335 | use core::mem::{self, MaybeUninit}; |
336 | |
337 | use super::*; |
338 | use crate::{util::testutil::AU64, FromBytes}; |
339 | |
340 | #[test ] |
341 | fn test_ptrtry_cast_into_soundness() { |
342 | // This test is designed so that if `Ptr::try_cast_into_xxx` are |
343 | // buggy, it will manifest as unsoundness that Miri can detect. |
344 | |
345 | // - If `size_of::<T>() == 0`, `N == 4` |
346 | // - Else, `N == 4 * size_of::<T>()` |
347 | fn test<const N: usize, T: ?Sized + KnownLayout + FromBytes>() { |
348 | let mut bytes = [MaybeUninit::<u8>::uninit(); N]; |
349 | let initialized = [MaybeUninit::new(0u8); N]; |
350 | for start in 0..=bytes.len() { |
351 | for end in start..=bytes.len() { |
352 | // Set all bytes to uninitialized other than those in |
353 | // the range we're going to pass to `try_cast_from`. |
354 | // This allows Miri to detect out-of-bounds reads |
355 | // because they read uninitialized memory. Without this, |
356 | // some out-of-bounds reads would still be in-bounds of |
357 | // `bytes`, and so might spuriously be accepted. |
358 | bytes = [MaybeUninit::<u8>::uninit(); N]; |
359 | let bytes = &mut bytes[start..end]; |
360 | // Initialize only the byte range we're going to pass to |
361 | // `try_cast_from`. |
362 | bytes.copy_from_slice(&initialized[start..end]); |
363 | |
364 | let bytes = { |
365 | let bytes: *const [MaybeUninit<u8>] = bytes; |
366 | #[allow (clippy::as_conversions)] |
367 | let bytes = bytes as *const [u8]; |
368 | // SAFETY: We just initialized these bytes to valid |
369 | // `u8`s. |
370 | unsafe { &*bytes } |
371 | }; |
372 | |
373 | /// # Safety |
374 | /// |
375 | /// - `slf` must reference a byte range which is |
376 | /// entirely initialized. |
377 | /// - `slf` must reference a byte range which is only |
378 | /// referenced by shared references which do not |
379 | /// contain `UnsafeCell`s during its lifetime. |
380 | unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>( |
381 | slf: Ptr<'_, T>, |
382 | ) -> usize { |
383 | // SAFETY: |
384 | // - Since all bytes in `slf` are initialized and |
385 | // `T: FromBytes`, `slf` contains a valid `T`. |
386 | // - The caller promises that the referenced memory |
387 | // is not also referenced by any mutable |
388 | // references. |
389 | // - The caller promises that the referenced memory |
390 | // is not also referenced as a type which contains |
391 | // `UnsafeCell`s. |
392 | let t = unsafe { slf.as_ref() }; |
393 | |
394 | let bytes = { |
395 | let len = mem::size_of_val(t); |
396 | let t: *const T = t; |
397 | // SAFETY: |
398 | // - We know `t`'s bytes are all initialized |
399 | // because we just read it from `slf`, which |
400 | // points to an initialized range of bytes. If |
401 | // there's a bug and this doesn't hold, then |
402 | // that's exactly what we're hoping Miri will |
403 | // catch! |
404 | // - Since `T: FromBytes`, `T` doesn't contain |
405 | // any `UnsafeCell`s, so it's okay for `t: T` |
406 | // and a `&[u8]` to the same memory to be |
407 | // alive concurrently. |
408 | unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) } |
409 | }; |
410 | |
411 | // This assertion ensures that `t`'s bytes are read |
412 | // and compared to another value, which in turn |
413 | // ensures that Miri gets a chance to notice if any |
414 | // of `t`'s bytes are uninitialized, which they |
415 | // shouldn't be (see the comment above). |
416 | assert_eq!(bytes, vec![0u8; bytes.len()]); |
417 | |
418 | mem::size_of_val(t) |
419 | } |
420 | |
421 | for cast_type in [_CastType::_Prefix, _CastType::_Suffix] { |
422 | if let Some((slf, split_at)) = |
423 | Ptr::from(bytes).try_cast_into::<T>(cast_type) |
424 | { |
425 | // SAFETY: All bytes in `bytes` have been |
426 | // initialized. |
427 | let len = unsafe { validate_and_get_len(slf) }; |
428 | match cast_type { |
429 | _CastType::_Prefix => assert_eq!(split_at, len), |
430 | _CastType::_Suffix => assert_eq!(split_at, bytes.len() - len), |
431 | } |
432 | } |
433 | } |
434 | |
435 | if let Some(slf) = Ptr::from(bytes).try_cast_into_no_leftover::<T>() { |
436 | // SAFETY: All bytes in `bytes` have been |
437 | // initialized. |
438 | let len = unsafe { validate_and_get_len(slf) }; |
439 | assert_eq!(len, bytes.len()); |
440 | } |
441 | } |
442 | } |
443 | } |
444 | |
445 | macro_rules! test { |
446 | ($($ty:ty),*) => { |
447 | $({ |
448 | const S: usize = core::mem::size_of::<$ty>(); |
449 | const N: usize = if S == 0 { 4 } else { S * 4 }; |
450 | test::<N, $ty>(); |
451 | // We don't support casting into DSTs whose trailing slice |
452 | // element is a ZST. |
453 | if S > 0 { |
454 | test::<N, [$ty]>(); |
455 | } |
456 | // TODO: Test with a slice DST once we have any that |
457 | // implement `KnownLayout + FromBytes`. |
458 | })* |
459 | }; |
460 | } |
461 | |
462 | test !(()); |
463 | test !(u8, u16, u32, u64, u128, usize, AU64); |
464 | test !(i8, i16, i32, i64, i128, isize); |
465 | test !(f32, f64); |
466 | } |
467 | } |
468 | } |
469 | |
470 | pub(crate) trait AsAddress { |
471 | fn addr(self) -> usize; |
472 | } |
473 | |
474 | impl<'a, T: ?Sized> AsAddress for &'a T { |
475 | #[inline (always)] |
476 | fn addr(self) -> usize { |
477 | let ptr: *const T = self; |
478 | AsAddress::addr(self:ptr) |
479 | } |
480 | } |
481 | |
482 | impl<'a, T: ?Sized> AsAddress for &'a mut T { |
483 | #[inline (always)] |
484 | fn addr(self) -> usize { |
485 | let ptr: *const T = self; |
486 | AsAddress::addr(self:ptr) |
487 | } |
488 | } |
489 | |
490 | impl<T: ?Sized> AsAddress for *const T { |
491 | #[inline (always)] |
492 | fn addr(self) -> usize { |
493 | // TODO(#181), TODO(https://github.com/rust-lang/rust/issues/95228): Use |
494 | // `.addr()` instead of `as usize` once it's stable, and get rid of this |
495 | // `allow`. Currently, `as usize` is the only way to accomplish this. |
496 | #[allow (clippy::as_conversions)] |
497 | #[cfg_attr (__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS, allow(lossy_provenance_casts))] |
498 | return self.cast::<()>() as usize; |
499 | } |
500 | } |
501 | |
502 | impl<T: ?Sized> AsAddress for *mut T { |
503 | #[inline (always)] |
504 | fn addr(self) -> usize { |
505 | let ptr: *const T = self; |
506 | AsAddress::addr(self:ptr) |
507 | } |
508 | } |
509 | |
510 | /// Is `t` aligned to `mem::align_of::<U>()`? |
511 | #[inline (always)] |
512 | pub(crate) fn aligned_to<T: AsAddress, U>(t: T) -> bool { |
513 | // `mem::align_of::<U>()` is guaranteed to return a non-zero value, which in |
514 | // turn guarantees that this mod operation will not panic. |
515 | #[allow (clippy::arithmetic_side_effects)] |
516 | let remainder: usize = t.addr() % mem::align_of::<U>(); |
517 | remainder == 0 |
518 | } |
519 | |
520 | /// Round `n` down to the largest value `m` such that `m <= n` and `m % align == |
521 | /// 0`. |
522 | /// |
523 | /// # Panics |
524 | /// |
525 | /// May panic if `align` is not a power of two. Even if it doesn't panic in this |
526 | /// case, it will produce nonsense results. |
527 | #[inline (always)] |
528 | pub(crate) const fn round_down_to_next_multiple_of_alignment( |
529 | n: usize, |
530 | align: NonZeroUsize, |
531 | ) -> usize { |
532 | let align: usize = align.get(); |
533 | debug_assert!(align.is_power_of_two()); |
534 | |
535 | // Subtraction can't underflow because `align.get() >= 1`. |
536 | #[allow (clippy::arithmetic_side_effects)] |
537 | let mask: usize = !(align - 1); |
538 | n & mask |
539 | } |
540 | |
541 | pub(crate) const fn max(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize { |
542 | if a.get() < b.get() { |
543 | b |
544 | } else { |
545 | a |
546 | } |
547 | } |
548 | |
549 | pub(crate) const fn min(a: NonZeroUsize, b: NonZeroUsize) -> NonZeroUsize { |
550 | if a.get() > b.get() { |
551 | b |
552 | } else { |
553 | a |
554 | } |
555 | } |
556 | |
557 | /// Since we support multiple versions of Rust, there are often features which |
558 | /// have been stabilized in the most recent stable release which do not yet |
559 | /// exist (stably) on our MSRV. This module provides polyfills for those |
560 | /// features so that we can write more "modern" code, and just remove the |
561 | /// polyfill once our MSRV supports the corresponding feature. Without this, |
562 | /// we'd have to write worse/more verbose code and leave TODO comments sprinkled |
563 | /// throughout the codebase to update to the new pattern once it's stabilized. |
564 | /// |
565 | /// Each trait is imported as `_` at the crate root; each polyfill should "just |
566 | /// work" at usage sites. |
567 | pub(crate) mod polyfills { |
568 | use core::ptr::{self, NonNull}; |
569 | |
570 | // A polyfill for `NonNull::slice_from_raw_parts` that we can use before our |
571 | // MSRV is 1.70, when that function was stabilized. |
572 | // |
573 | // TODO(#67): Once our MSRV is 1.70, remove this. |
574 | pub(crate) trait NonNullExt<T> { |
575 | fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]>; |
576 | } |
577 | |
578 | impl<T> NonNullExt<T> for NonNull<T> { |
579 | #[inline (always)] |
580 | fn slice_from_raw_parts(data: Self, len: usize) -> NonNull<[T]> { |
581 | let ptr: *mut [T] = ptr::slice_from_raw_parts_mut(data:data.as_ptr(), len); |
582 | // SAFETY: `ptr` is converted from `data`, which is non-null. |
583 | unsafe { NonNull::new_unchecked(ptr) } |
584 | } |
585 | } |
586 | } |
587 | |
588 | #[cfg (test)] |
589 | pub(crate) mod testutil { |
590 | use core::fmt::{self, Display, Formatter}; |
591 | |
592 | use crate::*; |
593 | |
594 | /// A `T` which is aligned to at least `align_of::<A>()`. |
595 | #[derive (Default)] |
596 | pub(crate) struct Align<T, A> { |
597 | pub(crate) t: T, |
598 | _a: [A; 0], |
599 | } |
600 | |
601 | impl<T: Default, A> Align<T, A> { |
602 | pub(crate) fn set_default(&mut self) { |
603 | self.t = T::default(); |
604 | } |
605 | } |
606 | |
607 | impl<T, A> Align<T, A> { |
608 | pub(crate) const fn new(t: T) -> Align<T, A> { |
609 | Align { t, _a: [] } |
610 | } |
611 | } |
612 | |
613 | // A `u64` with alignment 8. |
614 | // |
615 | // Though `u64` has alignment 8 on some platforms, it's not guaranteed. |
616 | // By contrast, `AU64` is guaranteed to have alignment 8. |
617 | #[derive ( |
618 | KnownLayout, |
619 | FromZeroes, |
620 | FromBytes, |
621 | AsBytes, |
622 | Eq, |
623 | PartialEq, |
624 | Ord, |
625 | PartialOrd, |
626 | Default, |
627 | Debug, |
628 | Copy, |
629 | Clone, |
630 | )] |
631 | #[repr (C, align(8))] |
632 | pub(crate) struct AU64(pub(crate) u64); |
633 | |
634 | impl AU64 { |
635 | // Converts this `AU64` to bytes using this platform's endianness. |
636 | pub(crate) fn to_bytes(self) -> [u8; 8] { |
637 | crate::transmute!(self) |
638 | } |
639 | } |
640 | |
641 | impl Display for AU64 { |
642 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
643 | Display::fmt(&self.0, f) |
644 | } |
645 | } |
646 | |
647 | #[derive ( |
648 | FromZeroes, FromBytes, Eq, PartialEq, Ord, PartialOrd, Default, Debug, Copy, Clone, |
649 | )] |
650 | #[repr (C)] |
651 | pub(crate) struct Nested<T, U: ?Sized> { |
652 | _t: T, |
653 | _u: U, |
654 | } |
655 | } |
656 | |
657 | #[cfg (test)] |
658 | mod tests { |
659 | use super::*; |
660 | |
661 | #[test ] |
662 | fn test_round_down_to_next_multiple_of_alignment() { |
663 | fn alt_impl(n: usize, align: NonZeroUsize) -> usize { |
664 | let mul = n / align.get(); |
665 | mul * align.get() |
666 | } |
667 | |
668 | for align in [1, 2, 4, 8, 16] { |
669 | for n in 0..256 { |
670 | let align = NonZeroUsize::new(align).unwrap(); |
671 | let want = alt_impl(n, align); |
672 | let got = round_down_to_next_multiple_of_alignment(n, align); |
673 | assert_eq!(got, want, "round_down_to_next_multiple_of_alignment( {n}, {align})" ); |
674 | } |
675 | } |
676 | } |
677 | } |
678 | |
679 | #[cfg (kani)] |
680 | mod proofs { |
681 | use super::*; |
682 | |
683 | #[kani::proof] |
684 | fn prove_round_down_to_next_multiple_of_alignment() { |
685 | fn model_impl(n: usize, align: NonZeroUsize) -> usize { |
686 | assert!(align.get().is_power_of_two()); |
687 | let mul = n / align.get(); |
688 | mul * align.get() |
689 | } |
690 | |
691 | let align: NonZeroUsize = kani::any(); |
692 | kani::assume(align.get().is_power_of_two()); |
693 | let n: usize = kani::any(); |
694 | |
695 | let expected = model_impl(n, align); |
696 | let actual = round_down_to_next_multiple_of_alignment(n, align); |
697 | assert_eq!(expected, actual, "round_down_to_next_multiple_of_alignment( {n}, {align})" ); |
698 | } |
699 | |
700 | // Restricted to nightly since we use the unstable `usize::next_multiple_of` |
701 | // in our model implementation. |
702 | #[cfg (__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)] |
703 | #[kani::proof] |
704 | fn prove_padding_needed_for() { |
705 | fn model_impl(len: usize, align: NonZeroUsize) -> usize { |
706 | let padded = len.next_multiple_of(align.get()); |
707 | let padding = padded - len; |
708 | padding |
709 | } |
710 | |
711 | let align: NonZeroUsize = kani::any(); |
712 | kani::assume(align.get().is_power_of_two()); |
713 | let len: usize = kani::any(); |
714 | // Constrain `len` to valid Rust lengths, since our model implementation |
715 | // isn't robust to overflow. |
716 | kani::assume(len <= isize::MAX as usize); |
717 | kani::assume(align.get() < 1 << 29); |
718 | |
719 | let expected = model_impl(len, align); |
720 | let actual = core_layout::padding_needed_for(len, align); |
721 | assert_eq!(expected, actual, "padding_needed_for( {len}, {align})" ); |
722 | |
723 | let padded_len = actual + len; |
724 | assert_eq!(padded_len % align, 0); |
725 | assert!(padded_len / align >= len / align); |
726 | } |
727 | } |
728 | |