| 1 | // Copyright 2019 The Fuchsia Authors |
| 2 | // |
| 3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
| 4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| 5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| 6 | // This file may not be copied, modified, or distributed except according to |
| 7 | // those terms. |
| 8 | |
| 9 | //! Byte order-aware numeric primitives. |
| 10 | //! |
| 11 | //! This module contains equivalents of the native multi-byte integer types with |
| 12 | //! no alignment requirement and supporting byte order conversions. |
| 13 | //! |
| 14 | //! For each native multi-byte integer type - `u16`, `i16`, `u32`, etc - and |
| 15 | //! floating point type - `f32` and `f64` - an equivalent type is defined by |
| 16 | //! this module - [`U16`], [`I16`], [`U32`], [`F64`], etc. Unlike their native |
| 17 | //! counterparts, these types have alignment 1, and take a type parameter |
| 18 | //! specifying the byte order in which the bytes are stored in memory. Each type |
| 19 | //! implements the [`FromBytes`], [`AsBytes`], and [`Unaligned`] traits. |
| 20 | //! |
| 21 | //! These two properties, taken together, make these types useful for defining |
| 22 | //! data structures whose memory layout matches a wire format such as that of a |
| 23 | //! network protocol or a file format. Such formats often have multi-byte values |
| 24 | //! at offsets that do not respect the alignment requirements of the equivalent |
| 25 | //! native types, and stored in a byte order not necessarily the same as that of |
| 26 | //! the target platform. |
| 27 | //! |
| 28 | //! Type aliases are provided for common byte orders in the [`big_endian`], |
| 29 | //! [`little_endian`], [`network_endian`], and [`native_endian`] submodules. |
| 30 | //! |
| 31 | //! # Example |
| 32 | //! |
| 33 | //! One use of these types is for representing network packet formats, such as |
| 34 | //! UDP: |
| 35 | //! |
| 36 | //! ```rust,edition2021 |
| 37 | //! # #[cfg (feature = "derive" )] { // This example uses derives, and won't compile without them |
| 38 | //! use zerocopy::{AsBytes, ByteSlice, FromBytes, FromZeroes, Ref, Unaligned}; |
| 39 | //! use zerocopy::byteorder::network_endian::U16; |
| 40 | //! |
| 41 | //! #[derive(FromZeroes, FromBytes, AsBytes, Unaligned)] |
| 42 | //! #[repr(C)] |
| 43 | //! struct UdpHeader { |
| 44 | //! src_port: U16, |
| 45 | //! dst_port: U16, |
| 46 | //! length: U16, |
| 47 | //! checksum: U16, |
| 48 | //! } |
| 49 | //! |
| 50 | //! struct UdpPacket<B: ByteSlice> { |
| 51 | //! header: Ref<B, UdpHeader>, |
| 52 | //! body: B, |
| 53 | //! } |
| 54 | //! |
| 55 | //! impl<B: ByteSlice> UdpPacket<B> { |
| 56 | //! fn parse(bytes: B) -> Option<UdpPacket<B>> { |
| 57 | //! let (header, body) = Ref::new_from_prefix(bytes)?; |
| 58 | //! Some(UdpPacket { header, body }) |
| 59 | //! } |
| 60 | //! |
| 61 | //! fn src_port(&self) -> u16 { |
| 62 | //! self.header.src_port.get() |
| 63 | //! } |
| 64 | //! |
| 65 | //! // more getters... |
| 66 | //! } |
| 67 | //! # } |
| 68 | //! ``` |
| 69 | |
| 70 | use core::{ |
| 71 | convert::{TryFrom, TryInto}, |
| 72 | fmt::{self, Binary, Debug, Display, Formatter, LowerHex, Octal, UpperHex}, |
| 73 | marker::PhantomData, |
| 74 | num::TryFromIntError, |
| 75 | }; |
| 76 | |
| 77 | // We don't reexport `WriteBytesExt` or `ReadBytesExt` because those are only |
| 78 | // available with the `std` feature enabled, and zerocopy is `no_std` by |
| 79 | // default. |
| 80 | pub use ::byteorder::{BigEndian, ByteOrder, LittleEndian, NativeEndian, NetworkEndian, BE, LE}; |
| 81 | |
| 82 | use super::*; |
| 83 | |
| 84 | macro_rules! impl_fmt_trait { |
| 85 | ($name:ident, $native:ident, $trait:ident) => { |
| 86 | impl<O: ByteOrder> $trait for $name<O> { |
| 87 | #[inline(always)] |
| 88 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| 89 | $trait::fmt(&self.get(), f) |
| 90 | } |
| 91 | } |
| 92 | }; |
| 93 | } |
| 94 | |
| 95 | macro_rules! impl_fmt_traits { |
| 96 | ($name:ident, $native:ident, "floating point number" ) => { |
| 97 | impl_fmt_trait!($name, $native, Display); |
| 98 | }; |
| 99 | ($name:ident, $native:ident, "unsigned integer" ) => { |
| 100 | impl_fmt_traits!($name, $native, @all_types); |
| 101 | }; |
| 102 | ($name:ident, $native:ident, "signed integer" ) => { |
| 103 | impl_fmt_traits!($name, $native, @all_types); |
| 104 | }; |
| 105 | ($name:ident, $native:ident, @all_types) => { |
| 106 | impl_fmt_trait!($name, $native, Display); |
| 107 | impl_fmt_trait!($name, $native, Octal); |
| 108 | impl_fmt_trait!($name, $native, LowerHex); |
| 109 | impl_fmt_trait!($name, $native, UpperHex); |
| 110 | impl_fmt_trait!($name, $native, Binary); |
| 111 | }; |
| 112 | } |
| 113 | |
| 114 | macro_rules! impl_ops_traits { |
| 115 | ($name:ident, $native:ident, "floating point number" ) => { |
| 116 | impl_ops_traits!($name, $native, @all_types); |
| 117 | impl_ops_traits!($name, $native, @signed_integer_floating_point); |
| 118 | }; |
| 119 | ($name:ident, $native:ident, "unsigned integer" ) => { |
| 120 | impl_ops_traits!($name, $native, @signed_unsigned_integer); |
| 121 | impl_ops_traits!($name, $native, @all_types); |
| 122 | }; |
| 123 | ($name:ident, $native:ident, "signed integer" ) => { |
| 124 | impl_ops_traits!($name, $native, @signed_unsigned_integer); |
| 125 | impl_ops_traits!($name, $native, @signed_integer_floating_point); |
| 126 | impl_ops_traits!($name, $native, @all_types); |
| 127 | }; |
| 128 | ($name:ident, $native:ident, @signed_unsigned_integer) => { |
| 129 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitAnd, bitand, BitAndAssign, bitand_assign); |
| 130 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitOr, bitor, BitOrAssign, bitor_assign); |
| 131 | impl_ops_traits!(@without_byteorder_swap $name, $native, BitXor, bitxor, BitXorAssign, bitxor_assign); |
| 132 | impl_ops_traits!(@with_byteorder_swap $name, $native, Shl, shl, ShlAssign, shl_assign); |
| 133 | impl_ops_traits!(@with_byteorder_swap $name, $native, Shr, shr, ShrAssign, shr_assign); |
| 134 | |
| 135 | impl<O> core::ops::Not for $name<O> { |
| 136 | type Output = $name<O>; |
| 137 | |
| 138 | #[inline(always)] |
| 139 | fn not(self) -> $name<O> { |
| 140 | let self_native = $native::from_ne_bytes(self.0); |
| 141 | $name((!self_native).to_ne_bytes(), PhantomData) |
| 142 | } |
| 143 | } |
| 144 | }; |
| 145 | ($name:ident, $native:ident, @signed_integer_floating_point) => { |
| 146 | impl<O: ByteOrder> core::ops::Neg for $name<O> { |
| 147 | type Output = $name<O>; |
| 148 | |
| 149 | #[inline(always)] |
| 150 | fn neg(self) -> $name<O> { |
| 151 | let self_native: $native = self.get(); |
| 152 | #[allow(clippy::arithmetic_side_effects)] |
| 153 | $name::<O>::new(-self_native) |
| 154 | } |
| 155 | } |
| 156 | }; |
| 157 | ($name:ident, $native:ident, @all_types) => { |
| 158 | impl_ops_traits!(@with_byteorder_swap $name, $native, Add, add, AddAssign, add_assign); |
| 159 | impl_ops_traits!(@with_byteorder_swap $name, $native, Div, div, DivAssign, div_assign); |
| 160 | impl_ops_traits!(@with_byteorder_swap $name, $native, Mul, mul, MulAssign, mul_assign); |
| 161 | impl_ops_traits!(@with_byteorder_swap $name, $native, Rem, rem, RemAssign, rem_assign); |
| 162 | impl_ops_traits!(@with_byteorder_swap $name, $native, Sub, sub, SubAssign, sub_assign); |
| 163 | }; |
| 164 | (@with_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { |
| 165 | impl<O: ByteOrder> core::ops::$trait for $name<O> { |
| 166 | type Output = $name<O>; |
| 167 | |
| 168 | #[inline(always)] |
| 169 | fn $method(self, rhs: $name<O>) -> $name<O> { |
| 170 | let self_native: $native = self.get(); |
| 171 | let rhs_native: $native = rhs.get(); |
| 172 | let result_native = core::ops::$trait::$method(self_native, rhs_native); |
| 173 | $name::<O>::new(result_native) |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | impl<O: ByteOrder> core::ops::$trait_assign for $name<O> { |
| 178 | #[inline(always)] |
| 179 | fn $method_assign(&mut self, rhs: $name<O>) { |
| 180 | *self = core::ops::$trait::$method(*self, rhs); |
| 181 | } |
| 182 | } |
| 183 | }; |
| 184 | // Implement traits in terms of the same trait on the native type, but |
| 185 | // without performing a byte order swap. This only works for bitwise |
| 186 | // operations like `&`, `|`, etc. |
| 187 | (@without_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { |
| 188 | impl<O: ByteOrder> core::ops::$trait for $name<O> { |
| 189 | type Output = $name<O>; |
| 190 | |
| 191 | #[inline(always)] |
| 192 | fn $method(self, rhs: $name<O>) -> $name<O> { |
| 193 | let self_native = $native::from_ne_bytes(self.0); |
| 194 | let rhs_native = $native::from_ne_bytes(rhs.0); |
| 195 | let result_native = core::ops::$trait::$method(self_native, rhs_native); |
| 196 | $name(result_native.to_ne_bytes(), PhantomData) |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | impl<O: ByteOrder> core::ops::$trait_assign for $name<O> { |
| 201 | #[inline(always)] |
| 202 | fn $method_assign(&mut self, rhs: $name<O>) { |
| 203 | *self = core::ops::$trait::$method(*self, rhs); |
| 204 | } |
| 205 | } |
| 206 | }; |
| 207 | } |
| 208 | |
| 209 | macro_rules! doc_comment { |
| 210 | ($x:expr, $($tt:tt)*) => { |
| 211 | #[doc = $x] |
| 212 | $($tt)* |
| 213 | }; |
| 214 | } |
| 215 | |
| 216 | macro_rules! define_max_value_constant { |
| 217 | ($name:ident, $bytes:expr, "unsigned integer" ) => { |
| 218 | /// The maximum value. |
| 219 | /// |
| 220 | /// This constant should be preferred to constructing a new value using |
| 221 | /// `new`, as `new` may perform an endianness swap depending on the |
| 222 | /// endianness `O` and the endianness of the platform. |
| 223 | pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData); |
| 224 | }; |
| 225 | // We don't provide maximum and minimum value constants for signed values |
| 226 | // and floats because there's no way to do it generically - it would require |
| 227 | // a different value depending on the value of the `ByteOrder` type |
| 228 | // parameter. Currently, one workaround would be to provide implementations |
| 229 | // for concrete implementations of that trait. In the long term, if we are |
| 230 | // ever able to make the `new` constructor a const fn, we could use that |
| 231 | // instead. |
| 232 | ($name:ident, $bytes:expr, "signed integer" ) => {}; |
| 233 | ($name:ident, $bytes:expr, "floating point number" ) => {}; |
| 234 | } |
| 235 | |
| 236 | macro_rules! define_type { |
| 237 | ($article:ident, |
| 238 | $name:ident, |
| 239 | $native:ident, |
| 240 | $bits:expr, |
| 241 | $bytes:expr, |
| 242 | $read_method:ident, |
| 243 | $write_method:ident, |
| 244 | $number_kind:tt, |
| 245 | [$($larger_native:ty),*], |
| 246 | [$($larger_native_try:ty),*], |
| 247 | [$($larger_byteorder:ident),*], |
| 248 | [$($larger_byteorder_try:ident),*]) => { |
| 249 | doc_comment! { |
| 250 | concat!("A " , stringify!($bits), "-bit " , $number_kind, |
| 251 | " stored in a given byte order. |
| 252 | |
| 253 | `" , stringify!($name), "` is like the native `" , stringify!($native), "` type with |
| 254 | two major differences: First, it has no alignment requirement (its alignment is 1). |
| 255 | Second, the endianness of its memory layout is given by the type parameter `O`, |
| 256 | which can be any type which implements [`ByteOrder`]. In particular, this refers |
| 257 | to [`BigEndian`], [`LittleEndian`], [`NativeEndian`], and [`NetworkEndian`]. |
| 258 | |
| 259 | " , stringify!($article), " `" , stringify!($name), "` can be constructed using |
| 260 | the [`new`] method, and its contained value can be obtained as a native |
| 261 | `" ,stringify!($native), "` using the [`get`] method, or updated in place with |
| 262 | the [`set`] method. In all cases, if the endianness `O` is not the same as the |
| 263 | endianness of the current platform, an endianness swap will be performed in |
| 264 | order to uphold the invariants that a) the layout of `" , stringify!($name), "` |
| 265 | has endianness `O` and that, b) the layout of `" , stringify!($native), "` has |
| 266 | the platform's native endianness. |
| 267 | |
| 268 | `" , stringify!($name), "` implements [`FromBytes`], [`AsBytes`], and [`Unaligned`], |
| 269 | making it useful for parsing and serialization. See the module documentation for an |
| 270 | example of how it can be used for parsing UDP packets. |
| 271 | |
| 272 | [`new`]: crate::byteorder::" , stringify!($name), "::new |
| 273 | [`get`]: crate::byteorder::" , stringify!($name), "::get |
| 274 | [`set`]: crate::byteorder::" , stringify!($name), "::set |
| 275 | [`FromBytes`]: crate::FromBytes |
| 276 | [`AsBytes`]: crate::AsBytes |
| 277 | [`Unaligned`]: crate::Unaligned" ), |
| 278 | #[derive(Copy, Clone, Eq, PartialEq, Hash)] |
| 279 | #[cfg_attr(any(feature = "derive" , test), derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned))] |
| 280 | #[repr(transparent)] |
| 281 | pub struct $name<O>([u8; $bytes], PhantomData<O>); |
| 282 | } |
| 283 | |
| 284 | #[cfg(not(any(feature = "derive" , test)))] |
| 285 | impl_known_layout!(O => $name<O>); |
| 286 | |
| 287 | safety_comment! { |
| 288 | /// SAFETY: |
| 289 | /// `$name<O>` is `repr(transparent)`, and so it has the same layout |
| 290 | /// as its only non-zero field, which is a `u8` array. `u8` arrays |
| 291 | /// are `FromZeroes`, `FromBytes`, `AsBytes`, and `Unaligned`. |
| 292 | impl_or_verify!(O => FromZeroes for $name<O>); |
| 293 | impl_or_verify!(O => FromBytes for $name<O>); |
| 294 | impl_or_verify!(O => AsBytes for $name<O>); |
| 295 | impl_or_verify!(O => Unaligned for $name<O>); |
| 296 | } |
| 297 | |
| 298 | impl<O> Default for $name<O> { |
| 299 | #[inline(always)] |
| 300 | fn default() -> $name<O> { |
| 301 | $name::ZERO |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | impl<O> $name<O> { |
| 306 | /// The value zero. |
| 307 | /// |
| 308 | /// This constant should be preferred to constructing a new value |
| 309 | /// using `new`, as `new` may perform an endianness swap depending |
| 310 | /// on the endianness and platform. |
| 311 | pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData); |
| 312 | |
| 313 | define_max_value_constant!($name, $bytes, $number_kind); |
| 314 | |
| 315 | /// Constructs a new value from bytes which are already in the |
| 316 | /// endianness `O`. |
| 317 | #[inline(always)] |
| 318 | pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { |
| 319 | $name(bytes, PhantomData) |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | impl<O: ByteOrder> $name<O> { |
| 324 | // TODO(joshlf): Make these const fns if the `ByteOrder` methods |
| 325 | // ever become const fns. |
| 326 | |
| 327 | /// Constructs a new value, possibly performing an endianness swap |
| 328 | /// to guarantee that the returned value has endianness `O`. |
| 329 | #[inline(always)] |
| 330 | pub fn new(n: $native) -> $name<O> { |
| 331 | let mut out = $name::default(); |
| 332 | O::$write_method(&mut out.0[..], n); |
| 333 | out |
| 334 | } |
| 335 | |
| 336 | /// Returns the value as a primitive type, possibly performing an |
| 337 | /// endianness swap to guarantee that the return value has the |
| 338 | /// endianness of the native platform. |
| 339 | #[inline(always)] |
| 340 | pub fn get(self) -> $native { |
| 341 | O::$read_method(&self.0[..]) |
| 342 | } |
| 343 | |
| 344 | /// Updates the value in place as a primitive type, possibly |
| 345 | /// performing an endianness swap to guarantee that the stored value |
| 346 | /// has the endianness `O`. |
| 347 | #[inline(always)] |
| 348 | pub fn set(&mut self, n: $native) { |
| 349 | O::$write_method(&mut self.0[..], n); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | // The reasoning behind which traits to implement here is to only |
| 354 | // implement traits which won't cause inference issues. Notably, |
| 355 | // comparison traits like PartialEq and PartialOrd tend to cause |
| 356 | // inference issues. |
| 357 | |
| 358 | impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] { |
| 359 | #[inline(always)] |
| 360 | fn from(x: $name<O>) -> [u8; $bytes] { |
| 361 | x.0 |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> { |
| 366 | #[inline(always)] |
| 367 | fn from(bytes: [u8; $bytes]) -> $name<O> { |
| 368 | $name(bytes, PhantomData) |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | impl<O: ByteOrder> From<$name<O>> for $native { |
| 373 | #[inline(always)] |
| 374 | fn from(x: $name<O>) -> $native { |
| 375 | x.get() |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | impl<O: ByteOrder> From<$native> for $name<O> { |
| 380 | #[inline(always)] |
| 381 | fn from(x: $native) -> $name<O> { |
| 382 | $name::new(x) |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | $( |
| 387 | impl<O: ByteOrder> From<$name<O>> for $larger_native { |
| 388 | #[inline(always)] |
| 389 | fn from(x: $name<O>) -> $larger_native { |
| 390 | x.get().into() |
| 391 | } |
| 392 | } |
| 393 | )* |
| 394 | |
| 395 | $( |
| 396 | impl<O: ByteOrder> TryFrom<$larger_native_try> for $name<O> { |
| 397 | type Error = TryFromIntError; |
| 398 | #[inline(always)] |
| 399 | fn try_from(x: $larger_native_try) -> Result<$name<O>, TryFromIntError> { |
| 400 | $native::try_from(x).map($name::new) |
| 401 | } |
| 402 | } |
| 403 | )* |
| 404 | |
| 405 | $( |
| 406 | impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> { |
| 407 | #[inline(always)] |
| 408 | fn from(x: $name<O>) -> $larger_byteorder<P> { |
| 409 | $larger_byteorder::new(x.get().into()) |
| 410 | } |
| 411 | } |
| 412 | )* |
| 413 | |
| 414 | $( |
| 415 | impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder_try<P>> for $name<O> { |
| 416 | type Error = TryFromIntError; |
| 417 | #[inline(always)] |
| 418 | fn try_from(x: $larger_byteorder_try<P>) -> Result<$name<O>, TryFromIntError> { |
| 419 | x.get().try_into().map($name::new) |
| 420 | } |
| 421 | } |
| 422 | )* |
| 423 | |
| 424 | impl<O: ByteOrder> AsRef<[u8; $bytes]> for $name<O> { |
| 425 | #[inline(always)] |
| 426 | fn as_ref(&self) -> &[u8; $bytes] { |
| 427 | &self.0 |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | impl<O: ByteOrder> AsMut<[u8; $bytes]> for $name<O> { |
| 432 | #[inline(always)] |
| 433 | fn as_mut(&mut self) -> &mut [u8; $bytes] { |
| 434 | &mut self.0 |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | impl<O: ByteOrder> PartialEq<$name<O>> for [u8; $bytes] { |
| 439 | #[inline(always)] |
| 440 | fn eq(&self, other: &$name<O>) -> bool { |
| 441 | self.eq(&other.0) |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | impl<O: ByteOrder> PartialEq<[u8; $bytes]> for $name<O> { |
| 446 | #[inline(always)] |
| 447 | fn eq(&self, other: &[u8; $bytes]) -> bool { |
| 448 | self.0.eq(other) |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | impl_fmt_traits!($name, $native, $number_kind); |
| 453 | impl_ops_traits!($name, $native, $number_kind); |
| 454 | |
| 455 | impl<O: ByteOrder> Debug for $name<O> { |
| 456 | #[inline] |
| 457 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| 458 | // This results in a format like "U16(42)". |
| 459 | f.debug_tuple(stringify!($name)).field(&self.get()).finish() |
| 460 | } |
| 461 | } |
| 462 | }; |
| 463 | } |
| 464 | |
| 465 | define_type!( |
| 466 | A, |
| 467 | U16, |
| 468 | u16, |
| 469 | 16, |
| 470 | 2, |
| 471 | read_u16, |
| 472 | write_u16, |
| 473 | "unsigned integer" , |
| 474 | [u32, u64, u128, usize], |
| 475 | [u32, u64, u128, usize], |
| 476 | [U32, U64, U128], |
| 477 | [U32, U64, U128] |
| 478 | ); |
| 479 | define_type!( |
| 480 | A, |
| 481 | U32, |
| 482 | u32, |
| 483 | 32, |
| 484 | 4, |
| 485 | read_u32, |
| 486 | write_u32, |
| 487 | "unsigned integer" , |
| 488 | [u64, u128], |
| 489 | [u64, u128], |
| 490 | [U64, U128], |
| 491 | [U64, U128] |
| 492 | ); |
| 493 | define_type!( |
| 494 | A, |
| 495 | U64, |
| 496 | u64, |
| 497 | 64, |
| 498 | 8, |
| 499 | read_u64, |
| 500 | write_u64, |
| 501 | "unsigned integer" , |
| 502 | [u128], |
| 503 | [u128], |
| 504 | [U128], |
| 505 | [U128] |
| 506 | ); |
| 507 | define_type!(A, U128, u128, 128, 16, read_u128, write_u128, "unsigned integer" , [], [], [], []); |
| 508 | define_type!( |
| 509 | An, |
| 510 | I16, |
| 511 | i16, |
| 512 | 16, |
| 513 | 2, |
| 514 | read_i16, |
| 515 | write_i16, |
| 516 | "signed integer" , |
| 517 | [i32, i64, i128, isize], |
| 518 | [i32, i64, i128, isize], |
| 519 | [I32, I64, I128], |
| 520 | [I32, I64, I128] |
| 521 | ); |
| 522 | define_type!( |
| 523 | An, |
| 524 | I32, |
| 525 | i32, |
| 526 | 32, |
| 527 | 4, |
| 528 | read_i32, |
| 529 | write_i32, |
| 530 | "signed integer" , |
| 531 | [i64, i128], |
| 532 | [i64, i128], |
| 533 | [I64, I128], |
| 534 | [I64, I128] |
| 535 | ); |
| 536 | define_type!( |
| 537 | An, |
| 538 | I64, |
| 539 | i64, |
| 540 | 64, |
| 541 | 8, |
| 542 | read_i64, |
| 543 | write_i64, |
| 544 | "signed integer" , |
| 545 | [i128], |
| 546 | [i128], |
| 547 | [I128], |
| 548 | [I128] |
| 549 | ); |
| 550 | define_type!(An, I128, i128, 128, 16, read_i128, write_i128, "signed integer" , [], [], [], []); |
| 551 | define_type!( |
| 552 | An, |
| 553 | F32, |
| 554 | f32, |
| 555 | 32, |
| 556 | 4, |
| 557 | read_f32, |
| 558 | write_f32, |
| 559 | "floating point number" , |
| 560 | [f64], |
| 561 | [], |
| 562 | [F64], |
| 563 | [] |
| 564 | ); |
| 565 | define_type!(An, F64, f64, 64, 8, read_f64, write_f64, "floating point number" , [], [], [], []); |
| 566 | |
| 567 | macro_rules! module { |
| 568 | ($name:ident, $trait:ident, $endianness_str:expr) => { |
| 569 | /// Numeric primitives stored in |
| 570 | #[doc = $endianness_str] |
| 571 | /// byte order. |
| 572 | pub mod $name { |
| 573 | use byteorder::$trait; |
| 574 | |
| 575 | module!(@ty U16, $trait, "16-bit unsigned integer" , $endianness_str); |
| 576 | module!(@ty U32, $trait, "32-bit unsigned integer" , $endianness_str); |
| 577 | module!(@ty U64, $trait, "64-bit unsigned integer" , $endianness_str); |
| 578 | module!(@ty U128, $trait, "128-bit unsigned integer" , $endianness_str); |
| 579 | module!(@ty I16, $trait, "16-bit signed integer" , $endianness_str); |
| 580 | module!(@ty I32, $trait, "32-bit signed integer" , $endianness_str); |
| 581 | module!(@ty I64, $trait, "64-bit signed integer" , $endianness_str); |
| 582 | module!(@ty I128, $trait, "128-bit signed integer" , $endianness_str); |
| 583 | module!(@ty F32, $trait, "32-bit floating point number" , $endianness_str); |
| 584 | module!(@ty F64, $trait, "64-bit floating point number" , $endianness_str); |
| 585 | } |
| 586 | }; |
| 587 | (@ty $ty:ident, $trait:ident, $desc_str:expr, $endianness_str:expr) => { |
| 588 | /// A |
| 589 | #[doc = $desc_str] |
| 590 | /// stored in |
| 591 | #[doc = $endianness_str] |
| 592 | /// byte order. |
| 593 | pub type $ty = crate::byteorder::$ty<$trait>; |
| 594 | }; |
| 595 | } |
| 596 | |
| 597 | module!(big_endian, BigEndian, "big-endian" ); |
| 598 | module!(little_endian, LittleEndian, "little-endian" ); |
| 599 | module!(network_endian, NetworkEndian, "network-endian" ); |
| 600 | module!(native_endian, NativeEndian, "native-endian" ); |
| 601 | |
| 602 | #[cfg (any(test, kani))] |
| 603 | mod tests { |
| 604 | use ::byteorder::NativeEndian; |
| 605 | |
| 606 | use { |
| 607 | super::*, |
| 608 | crate::{AsBytes, FromBytes, Unaligned}, |
| 609 | }; |
| 610 | |
| 611 | #[cfg (not(kani))] |
| 612 | mod compatibility { |
| 613 | pub(super) use rand::{ |
| 614 | distributions::{Distribution, Standard}, |
| 615 | rngs::SmallRng, |
| 616 | Rng, SeedableRng, |
| 617 | }; |
| 618 | |
| 619 | pub(crate) trait Arbitrary {} |
| 620 | |
| 621 | impl<T> Arbitrary for T {} |
| 622 | } |
| 623 | |
| 624 | #[cfg (kani)] |
| 625 | mod compatibility { |
| 626 | pub(crate) use kani::Arbitrary; |
| 627 | |
| 628 | pub(crate) struct SmallRng; |
| 629 | |
| 630 | impl SmallRng { |
| 631 | pub(crate) fn seed_from_u64(_state: u64) -> Self { |
| 632 | Self |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | pub(crate) trait Rng { |
| 637 | fn sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T |
| 638 | where |
| 639 | T: Arbitrary, |
| 640 | { |
| 641 | kani::any() |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | impl Rng for SmallRng {} |
| 646 | |
| 647 | pub(crate) trait Distribution<T> {} |
| 648 | impl<T, U> Distribution<T> for U {} |
| 649 | |
| 650 | pub(crate) struct Standard; |
| 651 | } |
| 652 | |
| 653 | use compatibility::*; |
| 654 | |
| 655 | // A native integer type (u16, i32, etc). |
| 656 | #[cfg_attr (kani, allow(dead_code))] |
| 657 | trait Native: Arbitrary + FromBytes + AsBytes + Copy + PartialEq + Debug { |
| 658 | const ZERO: Self; |
| 659 | const MAX_VALUE: Self; |
| 660 | |
| 661 | type Distribution: Distribution<Self>; |
| 662 | const DIST: Self::Distribution; |
| 663 | |
| 664 | fn rand<R: Rng>(rng: &mut R) -> Self { |
| 665 | rng.sample(Self::DIST) |
| 666 | } |
| 667 | |
| 668 | fn checked_add(self, rhs: Self) -> Option<Self>; |
| 669 | fn checked_div(self, rhs: Self) -> Option<Self>; |
| 670 | fn checked_mul(self, rhs: Self) -> Option<Self>; |
| 671 | fn checked_rem(self, rhs: Self) -> Option<Self>; |
| 672 | fn checked_sub(self, rhs: Self) -> Option<Self>; |
| 673 | fn checked_shl(self, rhs: Self) -> Option<Self>; |
| 674 | fn checked_shr(self, rhs: Self) -> Option<Self>; |
| 675 | |
| 676 | fn is_nan(self) -> bool; |
| 677 | |
| 678 | /// For `f32` and `f64`, NaN values are not considered equal to |
| 679 | /// themselves. This method is like `assert_eq!`, but it treats NaN |
| 680 | /// values as equal. |
| 681 | fn assert_eq_or_nan(self, other: Self) { |
| 682 | let slf = (!self.is_nan()).then(|| self); |
| 683 | let other = (!other.is_nan()).then(|| other); |
| 684 | assert_eq!(slf, other); |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | trait ByteArray: |
| 689 | FromBytes + AsBytes + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq |
| 690 | { |
| 691 | /// Invert the order of the bytes in the array. |
| 692 | fn invert(self) -> Self; |
| 693 | } |
| 694 | |
| 695 | trait ByteOrderType: FromBytes + AsBytes + Unaligned + Copy + Eq + Debug { |
| 696 | type Native: Native; |
| 697 | type ByteArray: ByteArray; |
| 698 | |
| 699 | const ZERO: Self; |
| 700 | |
| 701 | fn new(native: Self::Native) -> Self; |
| 702 | fn get(self) -> Self::Native; |
| 703 | fn set(&mut self, native: Self::Native); |
| 704 | fn from_bytes(bytes: Self::ByteArray) -> Self; |
| 705 | fn into_bytes(self) -> Self::ByteArray; |
| 706 | |
| 707 | /// For `f32` and `f64`, NaN values are not considered equal to |
| 708 | /// themselves. This method is like `assert_eq!`, but it treats NaN |
| 709 | /// values as equal. |
| 710 | fn assert_eq_or_nan(self, other: Self) { |
| 711 | let slf = (!self.get().is_nan()).then(|| self); |
| 712 | let other = (!other.get().is_nan()).then(|| other); |
| 713 | assert_eq!(slf, other); |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | trait ByteOrderTypeUnsigned: ByteOrderType { |
| 718 | const MAX_VALUE: Self; |
| 719 | } |
| 720 | |
| 721 | macro_rules! impl_byte_array { |
| 722 | ($bytes:expr) => { |
| 723 | impl ByteArray for [u8; $bytes] { |
| 724 | fn invert(mut self) -> [u8; $bytes] { |
| 725 | self.reverse(); |
| 726 | self |
| 727 | } |
| 728 | } |
| 729 | }; |
| 730 | } |
| 731 | |
| 732 | impl_byte_array!(2); |
| 733 | impl_byte_array!(4); |
| 734 | impl_byte_array!(8); |
| 735 | impl_byte_array!(16); |
| 736 | |
| 737 | macro_rules! impl_byte_order_type_unsigned { |
| 738 | ($name:ident, unsigned) => { |
| 739 | impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> { |
| 740 | const MAX_VALUE: $name<O> = $name::MAX_VALUE; |
| 741 | } |
| 742 | }; |
| 743 | ($name:ident, signed) => {}; |
| 744 | } |
| 745 | |
| 746 | macro_rules! impl_traits { |
| 747 | ($name:ident, $native:ident, $bytes:expr, $sign:ident $(, @$float:ident)?) => { |
| 748 | impl Native for $native { |
| 749 | // For some types, `0 as $native` is required (for example, when |
| 750 | // `$native` is a floating-point type; `0` is an integer), but |
| 751 | // for other types, it's a trivial cast. In all cases, Clippy |
| 752 | // thinks it's dangerous. |
| 753 | #[allow(trivial_numeric_casts, clippy::as_conversions)] |
| 754 | const ZERO: $native = 0 as $native; |
| 755 | const MAX_VALUE: $native = $native::MAX; |
| 756 | |
| 757 | type Distribution = Standard; |
| 758 | const DIST: Standard = Standard; |
| 759 | |
| 760 | impl_traits!(@float_dependent_methods $(@$float)?); |
| 761 | } |
| 762 | |
| 763 | impl<O: ByteOrder> ByteOrderType for $name<O> { |
| 764 | type Native = $native; |
| 765 | type ByteArray = [u8; $bytes]; |
| 766 | |
| 767 | const ZERO: $name<O> = $name::ZERO; |
| 768 | |
| 769 | fn new(native: $native) -> $name<O> { |
| 770 | $name::new(native) |
| 771 | } |
| 772 | |
| 773 | fn get(self) -> $native { |
| 774 | $name::get(self) |
| 775 | } |
| 776 | |
| 777 | fn set(&mut self, native: $native) { |
| 778 | $name::set(self, native) |
| 779 | } |
| 780 | |
| 781 | fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { |
| 782 | $name::from(bytes) |
| 783 | } |
| 784 | |
| 785 | fn into_bytes(self) -> [u8; $bytes] { |
| 786 | <[u8; $bytes]>::from(self) |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | impl_byte_order_type_unsigned!($name, $sign); |
| 791 | }; |
| 792 | (@float_dependent_methods) => { |
| 793 | fn checked_add(self, rhs: Self) -> Option<Self> { self.checked_add(rhs) } |
| 794 | fn checked_div(self, rhs: Self) -> Option<Self> { self.checked_div(rhs) } |
| 795 | fn checked_mul(self, rhs: Self) -> Option<Self> { self.checked_mul(rhs) } |
| 796 | fn checked_rem(self, rhs: Self) -> Option<Self> { self.checked_rem(rhs) } |
| 797 | fn checked_sub(self, rhs: Self) -> Option<Self> { self.checked_sub(rhs) } |
| 798 | fn checked_shl(self, rhs: Self) -> Option<Self> { self.checked_shl(rhs.try_into().unwrap_or(u32::MAX)) } |
| 799 | fn checked_shr(self, rhs: Self) -> Option<Self> { self.checked_shr(rhs.try_into().unwrap_or(u32::MAX)) } |
| 800 | fn is_nan(self) -> bool { false } |
| 801 | }; |
| 802 | (@float_dependent_methods @float) => { |
| 803 | fn checked_add(self, rhs: Self) -> Option<Self> { Some(self + rhs) } |
| 804 | fn checked_div(self, rhs: Self) -> Option<Self> { Some(self / rhs) } |
| 805 | fn checked_mul(self, rhs: Self) -> Option<Self> { Some(self * rhs) } |
| 806 | fn checked_rem(self, rhs: Self) -> Option<Self> { Some(self % rhs) } |
| 807 | fn checked_sub(self, rhs: Self) -> Option<Self> { Some(self - rhs) } |
| 808 | fn checked_shl(self, _rhs: Self) -> Option<Self> { unimplemented!() } |
| 809 | fn checked_shr(self, _rhs: Self) -> Option<Self> { unimplemented!() } |
| 810 | fn is_nan(self) -> bool { self.is_nan() } |
| 811 | }; |
| 812 | } |
| 813 | |
| 814 | impl_traits!(U16, u16, 2, unsigned); |
| 815 | impl_traits!(U32, u32, 4, unsigned); |
| 816 | impl_traits!(U64, u64, 8, unsigned); |
| 817 | impl_traits!(U128, u128, 16, unsigned); |
| 818 | impl_traits!(I16, i16, 2, signed); |
| 819 | impl_traits!(I32, i32, 4, signed); |
| 820 | impl_traits!(I64, i64, 8, signed); |
| 821 | impl_traits!(I128, i128, 16, signed); |
| 822 | impl_traits!(F32, f32, 4, signed, @float); |
| 823 | impl_traits!(F64, f64, 8, signed, @float); |
| 824 | |
| 825 | macro_rules! call_for_unsigned_types { |
| 826 | ($fn:ident, $byteorder:ident) => { |
| 827 | $fn::<U16<$byteorder>>(); |
| 828 | $fn::<U32<$byteorder>>(); |
| 829 | $fn::<U64<$byteorder>>(); |
| 830 | $fn::<U128<$byteorder>>(); |
| 831 | }; |
| 832 | } |
| 833 | |
| 834 | macro_rules! call_for_signed_types { |
| 835 | ($fn:ident, $byteorder:ident) => { |
| 836 | $fn::<I16<$byteorder>>(); |
| 837 | $fn::<I32<$byteorder>>(); |
| 838 | $fn::<I64<$byteorder>>(); |
| 839 | $fn::<I128<$byteorder>>(); |
| 840 | }; |
| 841 | } |
| 842 | |
| 843 | macro_rules! call_for_float_types { |
| 844 | ($fn:ident, $byteorder:ident) => { |
| 845 | $fn::<F32<$byteorder>>(); |
| 846 | $fn::<F64<$byteorder>>(); |
| 847 | }; |
| 848 | } |
| 849 | |
| 850 | macro_rules! call_for_all_types { |
| 851 | ($fn:ident, $byteorder:ident) => { |
| 852 | call_for_unsigned_types!($fn, $byteorder); |
| 853 | call_for_signed_types!($fn, $byteorder); |
| 854 | call_for_float_types!($fn, $byteorder); |
| 855 | }; |
| 856 | } |
| 857 | |
| 858 | #[cfg (target_endian = "big" )] |
| 859 | type NonNativeEndian = LittleEndian; |
| 860 | #[cfg (target_endian = "little" )] |
| 861 | type NonNativeEndian = BigEndian; |
| 862 | |
| 863 | // We use a `u64` seed so that we can use `SeedableRng::seed_from_u64`. |
| 864 | // `SmallRng`'s `SeedableRng::Seed` differs by platform, so if we wanted to |
| 865 | // call `SeedableRng::from_seed`, which takes a `Seed`, we would need |
| 866 | // conditional compilation by `target_pointer_width`. |
| 867 | const RNG_SEED: u64 = 0x7A03CAE2F32B5B8F; |
| 868 | |
| 869 | const RAND_ITERS: usize = if cfg!(any(miri, kani)) { |
| 870 | // The tests below which use this constant used to take a very long time |
| 871 | // on Miri, which slows down local development and CI jobs. We're not |
| 872 | // using Miri to check for the correctness of our code, but rather its |
| 873 | // soundness, and at least in the context of these particular tests, a |
| 874 | // single loop iteration is just as good for surfacing UB as multiple |
| 875 | // iterations are. |
| 876 | // |
| 877 | // As of the writing of this comment, here's one set of measurements: |
| 878 | // |
| 879 | // $ # RAND_ITERS == 1 |
| 880 | // $ cargo miri test -- -Z unstable-options --report-time endian |
| 881 | // test byteorder::tests::test_native_endian ... ok <0.049s> |
| 882 | // test byteorder::tests::test_non_native_endian ... ok <0.061s> |
| 883 | // |
| 884 | // $ # RAND_ITERS == 1024 |
| 885 | // $ cargo miri test -- -Z unstable-options --report-time endian |
| 886 | // test byteorder::tests::test_native_endian ... ok <25.716s> |
| 887 | // test byteorder::tests::test_non_native_endian ... ok <38.127s> |
| 888 | 1 |
| 889 | } else { |
| 890 | 1024 |
| 891 | }; |
| 892 | |
| 893 | #[cfg_attr (test, test)] |
| 894 | #[cfg_attr (kani, kani::proof)] |
| 895 | fn test_zero() { |
| 896 | fn test_zero<T: ByteOrderType>() { |
| 897 | assert_eq!(T::ZERO.get(), T::Native::ZERO); |
| 898 | } |
| 899 | |
| 900 | call_for_all_types!(test_zero, NativeEndian); |
| 901 | call_for_all_types!(test_zero, NonNativeEndian); |
| 902 | } |
| 903 | |
| 904 | #[cfg_attr (test, test)] |
| 905 | #[cfg_attr (kani, kani::proof)] |
| 906 | fn test_max_value() { |
| 907 | fn test_max_value<T: ByteOrderTypeUnsigned>() { |
| 908 | assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE); |
| 909 | } |
| 910 | |
| 911 | call_for_unsigned_types!(test_max_value, NativeEndian); |
| 912 | call_for_unsigned_types!(test_max_value, NonNativeEndian); |
| 913 | } |
| 914 | |
| 915 | #[cfg_attr (test, test)] |
| 916 | #[cfg_attr (kani, kani::proof)] |
| 917 | fn test_endian() { |
| 918 | fn test<T: ByteOrderType>(invert: bool) { |
| 919 | let mut r = SmallRng::seed_from_u64(RNG_SEED); |
| 920 | for _ in 0..RAND_ITERS { |
| 921 | let native = T::Native::rand(&mut r); |
| 922 | let mut bytes = T::ByteArray::default(); |
| 923 | bytes.as_bytes_mut().copy_from_slice(native.as_bytes()); |
| 924 | if invert { |
| 925 | bytes = bytes.invert(); |
| 926 | } |
| 927 | let mut from_native = T::new(native); |
| 928 | let from_bytes = T::from_bytes(bytes); |
| 929 | |
| 930 | from_native.assert_eq_or_nan(from_bytes); |
| 931 | from_native.get().assert_eq_or_nan(native); |
| 932 | from_bytes.get().assert_eq_or_nan(native); |
| 933 | |
| 934 | assert_eq!(from_native.into_bytes(), bytes); |
| 935 | assert_eq!(from_bytes.into_bytes(), bytes); |
| 936 | |
| 937 | let updated = T::Native::rand(&mut r); |
| 938 | from_native.set(updated); |
| 939 | from_native.get().assert_eq_or_nan(updated); |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | fn test_native<T: ByteOrderType>() { |
| 944 | test ::<T>(false); |
| 945 | } |
| 946 | |
| 947 | fn test_non_native<T: ByteOrderType>() { |
| 948 | test ::<T>(true); |
| 949 | } |
| 950 | |
| 951 | call_for_all_types!(test_native, NativeEndian); |
| 952 | call_for_all_types!(test_non_native, NonNativeEndian); |
| 953 | } |
| 954 | |
| 955 | #[test ] |
| 956 | fn test_ops_impls() { |
| 957 | // Test implementations of traits in `core::ops`. Some of these are |
| 958 | // fairly banal, but some are optimized to perform the operation without |
| 959 | // swapping byte order (namely, bit-wise operations which are identical |
| 960 | // regardless of byte order). These are important to test, and while |
| 961 | // we're testing those anyway, it's trivial to test all of the impls. |
| 962 | |
| 963 | fn test<T, F, G, H>(op: F, op_native: G, op_native_checked: Option<H>) |
| 964 | where |
| 965 | T: ByteOrderType, |
| 966 | F: Fn(T, T) -> T, |
| 967 | G: Fn(T::Native, T::Native) -> T::Native, |
| 968 | H: Fn(T::Native, T::Native) -> Option<T::Native>, |
| 969 | { |
| 970 | let mut r = SmallRng::seed_from_u64(RNG_SEED); |
| 971 | for _ in 0..RAND_ITERS { |
| 972 | let n0 = T::Native::rand(&mut r); |
| 973 | let n1 = T::Native::rand(&mut r); |
| 974 | let t0 = T::new(n0); |
| 975 | let t1 = T::new(n1); |
| 976 | |
| 977 | // If this operation would overflow/underflow, skip it rather |
| 978 | // than attempt to catch and recover from panics. |
| 979 | if matches!(&op_native_checked, Some(checked) if checked(n0, n1).is_none()) { |
| 980 | continue; |
| 981 | } |
| 982 | |
| 983 | let n_res = op_native(n0, n1); |
| 984 | let t_res = op(t0, t1); |
| 985 | |
| 986 | // For `f32` and `f64`, NaN values are not considered equal to |
| 987 | // themselves. We store `Option<f32>`/`Option<f64>` and store |
| 988 | // NaN as `None` so they can still be compared. |
| 989 | let n_res = (!T::Native::is_nan(n_res)).then(|| n_res); |
| 990 | let t_res = (!T::Native::is_nan(t_res.get())).then(|| t_res.get()); |
| 991 | assert_eq!(n_res, t_res); |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | macro_rules! test { |
| 996 | (@binary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{ |
| 997 | test!( |
| 998 | @inner $trait, |
| 999 | core::ops::$trait::$method, |
| 1000 | core::ops::$trait::$method, |
| 1001 | { |
| 1002 | #[allow(unused_mut, unused_assignments)] |
| 1003 | let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>; |
| 1004 | $( |
| 1005 | op_native_checked = Some(T::Native::$checked_method); |
| 1006 | )? |
| 1007 | op_native_checked |
| 1008 | }, |
| 1009 | $($call_for_macros),* |
| 1010 | ); |
| 1011 | }}; |
| 1012 | (@unary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{ |
| 1013 | test!( |
| 1014 | @inner $trait, |
| 1015 | |slf, _rhs| core::ops::$trait::$method(slf), |
| 1016 | |slf, _rhs| core::ops::$trait::$method(slf), |
| 1017 | { |
| 1018 | #[allow(unused_mut, unused_assignments)] |
| 1019 | let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>; |
| 1020 | $( |
| 1021 | op_native_checked = Some(|slf, _rhs| T::Native::$checked_method(slf)); |
| 1022 | )? |
| 1023 | op_native_checked |
| 1024 | }, |
| 1025 | $($call_for_macros),* |
| 1026 | ); |
| 1027 | }}; |
| 1028 | (@inner $trait:ident, $op:expr, $op_native:expr, $op_native_checked:expr, $($call_for_macros:ident),*) => {{ |
| 1029 | fn t<T: ByteOrderType + core::ops::$trait<Output = T>>() |
| 1030 | where |
| 1031 | T::Native: core::ops::$trait<Output = T::Native>, |
| 1032 | { |
| 1033 | test::<T, _, _, _>( |
| 1034 | $op, |
| 1035 | $op_native, |
| 1036 | $op_native_checked, |
| 1037 | ); |
| 1038 | } |
| 1039 | |
| 1040 | $( |
| 1041 | $call_for_macros!(t, NativeEndian); |
| 1042 | $call_for_macros!(t, NonNativeEndian); |
| 1043 | )* |
| 1044 | }}; |
| 1045 | } |
| 1046 | |
| 1047 | test !(@binary Add, add[checked_add], call_for_all_types); |
| 1048 | test !(@binary Div, div[checked_div], call_for_all_types); |
| 1049 | test !(@binary Mul, mul[checked_mul], call_for_all_types); |
| 1050 | test !(@binary Rem, rem[checked_rem], call_for_all_types); |
| 1051 | test !(@binary Sub, sub[checked_sub], call_for_all_types); |
| 1052 | |
| 1053 | test !(@binary BitAnd, bitand, call_for_unsigned_types, call_for_signed_types); |
| 1054 | test !(@binary BitOr, bitor, call_for_unsigned_types, call_for_signed_types); |
| 1055 | test !(@binary BitXor, bitxor, call_for_unsigned_types, call_for_signed_types); |
| 1056 | test !(@binary Shl, shl[checked_shl], call_for_unsigned_types, call_for_signed_types); |
| 1057 | test !(@binary Shr, shr[checked_shr], call_for_unsigned_types, call_for_signed_types); |
| 1058 | |
| 1059 | test !(@unary Not, not, call_for_signed_types, call_for_unsigned_types); |
| 1060 | test !(@unary Neg, neg, call_for_signed_types, call_for_float_types); |
| 1061 | } |
| 1062 | |
| 1063 | #[test ] |
| 1064 | fn test_debug_impl() { |
| 1065 | // Ensure that Debug applies format options to the inner value. |
| 1066 | let val = U16::<LE>::new(10); |
| 1067 | assert_eq!(format!("{:?}" , val), "U16(10)" ); |
| 1068 | assert_eq!(format!("{:03?}" , val), "U16(010)" ); |
| 1069 | assert_eq!(format!("{:x?}" , val), "U16(a)" ); |
| 1070 | } |
| 1071 | } |
| 1072 | |