| 1 | // Copyright 2018 The Fuchsia Authors |
| 2 | // |
| 3 | // Licensed under the 2-Clause BSD License <LICENSE-BSD or |
| 4 | // https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0 |
| 5 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| 6 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| 7 | // This file may not be copied, modified, or distributed except according to |
| 8 | // those terms. |
| 9 | |
| 10 | // After updating the following doc comment, make sure to run the following |
| 11 | // command to update `README.md` based on its contents: |
| 12 | // |
| 13 | // ./generate-readme.sh > README.md |
| 14 | |
| 15 | //! *<span style="font-size: 100%; color:grey;">Want to help improve zerocopy? |
| 16 | //! Fill out our [user survey][user-survey]!</span>* |
| 17 | //! |
| 18 | //! ***<span style="font-size: 140%">Fast, safe, <span |
| 19 | //! style="color:red;">compile error</span>. Pick two.</span>*** |
| 20 | //! |
| 21 | //! Zerocopy makes zero-cost memory manipulation effortless. We write `unsafe` |
| 22 | //! so you don't have to. |
| 23 | //! |
| 24 | //! # Overview |
| 25 | //! |
| 26 | //! Zerocopy provides four core marker traits, each of which can be derived |
| 27 | //! (e.g., `#[derive(FromZeroes)]`): |
| 28 | //! - [`FromZeroes`] indicates that a sequence of zero bytes represents a valid |
| 29 | //! instance of a type |
| 30 | //! - [`FromBytes`] indicates that a type may safely be converted from an |
| 31 | //! arbitrary byte sequence |
| 32 | //! - [`AsBytes`] indicates that a type may safely be converted *to* a byte |
| 33 | //! sequence |
| 34 | //! - [`Unaligned`] indicates that a type's alignment requirement is 1 |
| 35 | //! |
| 36 | //! Types which implement a subset of these traits can then be converted to/from |
| 37 | //! byte sequences with little to no runtime overhead. |
| 38 | //! |
| 39 | //! Zerocopy also provides byte-order aware integer types that support these |
| 40 | //! conversions; see the [`byteorder`] module. These types are especially useful |
| 41 | //! for network parsing. |
| 42 | //! |
| 43 | //! [user-survey]: https://docs.google.com/forms/d/e/1FAIpQLSdzBNTN9tzwsmtyZxRFNL02K36IWCdHWW2ZBckyQS2xiO3i8Q/viewform?usp=published_options |
| 44 | //! |
| 45 | //! # Cargo Features |
| 46 | //! |
| 47 | //! - **`alloc`** |
| 48 | //! By default, `zerocopy` is `no_std`. When the `alloc` feature is enabled, |
| 49 | //! the `alloc` crate is added as a dependency, and some allocation-related |
| 50 | //! functionality is added. |
| 51 | //! |
| 52 | //! - **`byteorder`** (enabled by default) |
| 53 | //! Adds the [`byteorder`] module and a dependency on the `byteorder` crate. |
| 54 | //! The `byteorder` module provides byte order-aware equivalents of the |
| 55 | //! multi-byte primitive numerical types. Unlike their primitive equivalents, |
| 56 | //! the types in this module have no alignment requirement and support byte |
| 57 | //! order conversions. This can be useful in handling file formats, network |
| 58 | //! packet layouts, etc which don't provide alignment guarantees and which may |
| 59 | //! use a byte order different from that of the execution platform. |
| 60 | //! |
| 61 | //! - **`derive`** |
| 62 | //! Provides derives for the core marker traits via the `zerocopy-derive` |
| 63 | //! crate. These derives are re-exported from `zerocopy`, so it is not |
| 64 | //! necessary to depend on `zerocopy-derive` directly. |
| 65 | //! |
| 66 | //! However, you may experience better compile times if you instead directly |
| 67 | //! depend on both `zerocopy` and `zerocopy-derive` in your `Cargo.toml`, |
| 68 | //! since doing so will allow Rust to compile these crates in parallel. To do |
| 69 | //! so, do *not* enable the `derive` feature, and list both dependencies in |
| 70 | //! your `Cargo.toml` with the same leading non-zero version number; e.g: |
| 71 | //! |
| 72 | //! ```toml |
| 73 | //! [dependencies] |
| 74 | //! zerocopy = "0.X" |
| 75 | //! zerocopy-derive = "0.X" |
| 76 | //! ``` |
| 77 | //! |
| 78 | //! - **`simd`** |
| 79 | //! When the `simd` feature is enabled, `FromZeroes`, `FromBytes`, and |
| 80 | //! `AsBytes` impls are emitted for all stable SIMD types which exist on the |
| 81 | //! target platform. Note that the layout of SIMD types is not yet stabilized, |
| 82 | //! so these impls may be removed in the future if layout changes make them |
| 83 | //! invalid. For more information, see the Unsafe Code Guidelines Reference |
| 84 | //! page on the [layout of packed SIMD vectors][simd-layout]. |
| 85 | //! |
| 86 | //! - **`simd-nightly`** |
| 87 | //! Enables the `simd` feature and adds support for SIMD types which are only |
| 88 | //! available on nightly. Since these types are unstable, support for any type |
| 89 | //! may be removed at any point in the future. |
| 90 | //! |
| 91 | //! [simd-layout]: https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html |
| 92 | //! |
| 93 | //! # Security Ethos |
| 94 | //! |
| 95 | //! Zerocopy is expressly designed for use in security-critical contexts. We |
| 96 | //! strive to ensure that that zerocopy code is sound under Rust's current |
| 97 | //! memory model, and *any future memory model*. We ensure this by: |
| 98 | //! - **...not 'guessing' about Rust's semantics.** |
| 99 | //! We annotate `unsafe` code with a precise rationale for its soundness that |
| 100 | //! cites a relevant section of Rust's official documentation. When Rust's |
| 101 | //! documented semantics are unclear, we work with the Rust Operational |
| 102 | //! Semantics Team to clarify Rust's documentation. |
| 103 | //! - **...rigorously testing our implementation.** |
| 104 | //! We run tests using [Miri], ensuring that zerocopy is sound across a wide |
| 105 | //! array of supported target platforms of varying endianness and pointer |
| 106 | //! width, and across both current and experimental memory models of Rust. |
| 107 | //! - **...formally proving the correctness of our implementation.** |
| 108 | //! We apply formal verification tools like [Kani][kani] to prove zerocopy's |
| 109 | //! correctness. |
| 110 | //! |
| 111 | //! For more information, see our full [soundness policy]. |
| 112 | //! |
| 113 | //! [Miri]: https://github.com/rust-lang/miri |
| 114 | //! [Kani]: https://github.com/model-checking/kani |
| 115 | //! [soundness policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#soundness |
| 116 | //! |
| 117 | //! # Relationship to Project Safe Transmute |
| 118 | //! |
| 119 | //! [Project Safe Transmute] is an official initiative of the Rust Project to |
| 120 | //! develop language-level support for safer transmutation. The Project consults |
| 121 | //! with crates like zerocopy to identify aspects of safer transmutation that |
| 122 | //! would benefit from compiler support, and has developed an [experimental, |
| 123 | //! compiler-supported analysis][mcp-transmutability] which determines whether, |
| 124 | //! for a given type, any value of that type may be soundly transmuted into |
| 125 | //! another type. Once this functionality is sufficiently mature, zerocopy |
| 126 | //! intends to replace its internal transmutability analysis (implemented by our |
| 127 | //! custom derives) with the compiler-supported one. This change will likely be |
| 128 | //! an implementation detail that is invisible to zerocopy's users. |
| 129 | //! |
| 130 | //! Project Safe Transmute will not replace the need for most of zerocopy's |
| 131 | //! higher-level abstractions. The experimental compiler analysis is a tool for |
| 132 | //! checking the soundness of `unsafe` code, not a tool to avoid writing |
| 133 | //! `unsafe` code altogether. For the foreseeable future, crates like zerocopy |
| 134 | //! will still be required in order to provide higher-level abstractions on top |
| 135 | //! of the building block provided by Project Safe Transmute. |
| 136 | //! |
| 137 | //! [Project Safe Transmute]: https://rust-lang.github.io/rfcs/2835-project-safe-transmute.html |
| 138 | //! [mcp-transmutability]: https://github.com/rust-lang/compiler-team/issues/411 |
| 139 | //! |
| 140 | //! # MSRV |
| 141 | //! |
| 142 | //! See our [MSRV policy]. |
| 143 | //! |
| 144 | //! [MSRV policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#msrv |
| 145 | //! |
| 146 | //! # Changelog |
| 147 | //! |
| 148 | //! Zerocopy uses [GitHub Releases]. |
| 149 | //! |
| 150 | //! [GitHub Releases]: https://github.com/google/zerocopy/releases |
| 151 | |
| 152 | // Sometimes we want to use lints which were added after our MSRV. |
| 153 | // `unknown_lints` is `warn` by default and we deny warnings in CI, so without |
| 154 | // this attribute, any unknown lint would cause a CI failure when testing with |
| 155 | // our MSRV. |
| 156 | // |
| 157 | // TODO(#1201): Remove `unexpected_cfgs` |
| 158 | #![allow (unknown_lints, non_local_definitions, unexpected_cfgs)] |
| 159 | #![deny (renamed_and_removed_lints)] |
| 160 | #![deny ( |
| 161 | anonymous_parameters, |
| 162 | deprecated_in_future, |
| 163 | late_bound_lifetime_arguments, |
| 164 | missing_copy_implementations, |
| 165 | missing_debug_implementations, |
| 166 | missing_docs, |
| 167 | path_statements, |
| 168 | patterns_in_fns_without_body, |
| 169 | rust_2018_idioms, |
| 170 | trivial_numeric_casts, |
| 171 | unreachable_pub, |
| 172 | unsafe_op_in_unsafe_fn, |
| 173 | unused_extern_crates, |
| 174 | // We intentionally choose not to deny `unused_qualifications`. When items |
| 175 | // are added to the prelude (e.g., `core::mem::size_of`), this has the |
| 176 | // consequence of making some uses trigger this lint on the latest toolchain |
| 177 | // (e.g., `mem::size_of`), but fixing it (e.g. by replacing with `size_of`) |
| 178 | // does not work on older toolchains. |
| 179 | // |
| 180 | // We tested a more complicated fix in #1413, but ultimately decided that, |
| 181 | // since this lint is just a minor style lint, the complexity isn't worth it |
| 182 | // - it's fine to occasionally have unused qualifications slip through, |
| 183 | // especially since these do not affect our user-facing API in any way. |
| 184 | variant_size_differences |
| 185 | )] |
| 186 | #![cfg_attr ( |
| 187 | __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS, |
| 188 | deny(fuzzy_provenance_casts, lossy_provenance_casts) |
| 189 | )] |
| 190 | #![deny ( |
| 191 | clippy::all, |
| 192 | clippy::alloc_instead_of_core, |
| 193 | clippy::arithmetic_side_effects, |
| 194 | clippy::as_underscore, |
| 195 | clippy::assertions_on_result_states, |
| 196 | clippy::as_conversions, |
| 197 | clippy::correctness, |
| 198 | clippy::dbg_macro, |
| 199 | clippy::decimal_literal_representation, |
| 200 | clippy::get_unwrap, |
| 201 | clippy::indexing_slicing, |
| 202 | clippy::missing_inline_in_public_items, |
| 203 | clippy::missing_safety_doc, |
| 204 | clippy::obfuscated_if_else, |
| 205 | clippy::perf, |
| 206 | clippy::print_stdout, |
| 207 | clippy::std_instead_of_core, |
| 208 | clippy::style, |
| 209 | clippy::suspicious, |
| 210 | clippy::todo, |
| 211 | clippy::undocumented_unsafe_blocks, |
| 212 | clippy::unimplemented, |
| 213 | clippy::unnested_or_patterns, |
| 214 | clippy::unwrap_used, |
| 215 | clippy::use_debug |
| 216 | )] |
| 217 | #![deny ( |
| 218 | rustdoc::bare_urls, |
| 219 | rustdoc::broken_intra_doc_links, |
| 220 | rustdoc::invalid_codeblock_attributes, |
| 221 | rustdoc::invalid_html_tags, |
| 222 | rustdoc::invalid_rust_codeblocks, |
| 223 | rustdoc::missing_crate_level_docs, |
| 224 | rustdoc::private_intra_doc_links |
| 225 | )] |
| 226 | // In test code, it makes sense to weight more heavily towards concise, readable |
| 227 | // code over correct or debuggable code. |
| 228 | #![cfg_attr (any(test, kani), allow( |
| 229 | // In tests, you get line numbers and have access to source code, so panic |
| 230 | // messages are less important. You also often unwrap a lot, which would |
| 231 | // make expect'ing instead very verbose. |
| 232 | clippy::unwrap_used, |
| 233 | // In tests, there's no harm to "panic risks" - the worst that can happen is |
| 234 | // that your test will fail, and you'll fix it. By contrast, panic risks in |
| 235 | // production code introduce the possibly of code panicking unexpectedly "in |
| 236 | // the field". |
| 237 | clippy::arithmetic_side_effects, |
| 238 | clippy::indexing_slicing, |
| 239 | ))] |
| 240 | #![cfg_attr (not(test), no_std)] |
| 241 | #![cfg_attr ( |
| 242 | all(feature = "simd-nightly" , any(target_arch = "x86" , target_arch = "x86_64" )), |
| 243 | feature(stdarch_x86_avx512) |
| 244 | )] |
| 245 | #![cfg_attr ( |
| 246 | all(feature = "simd-nightly" , target_arch = "arm" ), |
| 247 | feature(stdarch_arm_dsp, stdarch_arm_neon_intrinsics) |
| 248 | )] |
| 249 | #![cfg_attr ( |
| 250 | all(feature = "simd-nightly" , any(target_arch = "powerpc" , target_arch = "powerpc64" )), |
| 251 | feature(stdarch_powerpc) |
| 252 | )] |
| 253 | #![cfg_attr (doc_cfg, feature(doc_cfg))] |
| 254 | #![cfg_attr ( |
| 255 | __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS, |
| 256 | feature(layout_for_ptr, strict_provenance) |
| 257 | )] |
| 258 | |
| 259 | // This is a hack to allow zerocopy-derive derives to work in this crate. They |
| 260 | // assume that zerocopy is linked as an extern crate, so they access items from |
| 261 | // it as `zerocopy::Xxx`. This makes that still work. |
| 262 | #[cfg (any(feature = "derive" , test))] |
| 263 | extern crate self as zerocopy; |
| 264 | |
| 265 | #[macro_use ] |
| 266 | mod macros; |
| 267 | |
| 268 | #[cfg (feature = "byteorder" )] |
| 269 | #[cfg_attr (doc_cfg, doc(cfg(feature = "byteorder" )))] |
| 270 | pub mod byteorder; |
| 271 | #[doc (hidden)] |
| 272 | pub mod macro_util; |
| 273 | mod post_monomorphization_compile_fail_tests; |
| 274 | mod util; |
| 275 | // TODO(#252): If we make this pub, come up with a better name. |
| 276 | mod wrappers; |
| 277 | |
| 278 | #[cfg (feature = "byteorder" )] |
| 279 | #[cfg_attr (doc_cfg, doc(cfg(feature = "byteorder" )))] |
| 280 | pub use crate::byteorder::*; |
| 281 | pub use crate::wrappers::*; |
| 282 | |
| 283 | #[cfg (any(feature = "derive" , test))] |
| 284 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
| 285 | pub use zerocopy_derive::Unaligned; |
| 286 | |
| 287 | // `pub use` separately here so that we can mark it `#[doc(hidden)]`. |
| 288 | // |
| 289 | // TODO(#29): Remove this or add a doc comment. |
| 290 | #[cfg (any(feature = "derive" , test))] |
| 291 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
| 292 | #[doc (hidden)] |
| 293 | pub use zerocopy_derive::KnownLayout; |
| 294 | |
| 295 | use core::{ |
| 296 | cell::{self, RefMut}, |
| 297 | cmp::Ordering, |
| 298 | fmt::{self, Debug, Display, Formatter}, |
| 299 | hash::Hasher, |
| 300 | marker::PhantomData, |
| 301 | mem::{self, ManuallyDrop, MaybeUninit}, |
| 302 | num::{ |
| 303 | NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, NonZeroU128, |
| 304 | NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize, Wrapping, |
| 305 | }, |
| 306 | ops::{Deref, DerefMut}, |
| 307 | ptr::{self, NonNull}, |
| 308 | slice, |
| 309 | }; |
| 310 | |
| 311 | #[cfg (feature = "alloc" )] |
| 312 | extern crate alloc; |
| 313 | #[cfg (feature = "alloc" )] |
| 314 | use alloc::{boxed::Box, vec::Vec}; |
| 315 | |
| 316 | #[cfg (any(feature = "alloc" , kani))] |
| 317 | use core::alloc::Layout; |
| 318 | |
| 319 | // Used by `TryFromBytes::is_bit_valid`. |
| 320 | #[doc (hidden)] |
| 321 | pub use crate::util::ptr::Ptr; |
| 322 | |
| 323 | // For each polyfill, as soon as the corresponding feature is stable, the |
| 324 | // polyfill import will be unused because method/function resolution will prefer |
| 325 | // the inherent method/function over a trait method/function. Thus, we suppress |
| 326 | // the `unused_imports` warning. |
| 327 | // |
| 328 | // See the documentation on `util::polyfills` for more information. |
| 329 | #[allow (unused_imports)] |
| 330 | use crate::util::polyfills::NonNullExt as _; |
| 331 | |
| 332 | #[rustversion::nightly] |
| 333 | #[cfg (all(test, not(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)))] |
| 334 | const _: () = { |
| 335 | #[deprecated = "some tests may be skipped due to missing RUSTFLAGS= \"--cfg __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS \"" ] |
| 336 | const _WARNING: () = (); |
| 337 | #[warn (deprecated)] |
| 338 | _WARNING |
| 339 | }; |
| 340 | |
| 341 | /// The target pointer width, counted in bits. |
| 342 | const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8; |
| 343 | |
| 344 | /// The layout of a type which might be dynamically-sized. |
| 345 | /// |
| 346 | /// `DstLayout` describes the layout of sized types, slice types, and "slice |
| 347 | /// DSTs" - ie, those that are known by the type system to have a trailing slice |
| 348 | /// (as distinguished from `dyn Trait` types - such types *might* have a |
| 349 | /// trailing slice type, but the type system isn't aware of it). |
| 350 | /// |
| 351 | /// # Safety |
| 352 | /// |
| 353 | /// Unlike [`core::alloc::Layout`], `DstLayout` is only used to describe full |
| 354 | /// Rust types - ie, those that satisfy the layout requirements outlined by |
| 355 | /// [the reference]. Callers may assume that an instance of `DstLayout` |
| 356 | /// satisfies any conditions imposed on Rust types by the reference. |
| 357 | /// |
| 358 | /// If `layout: DstLayout` describes a type, `T`, then it is guaranteed that: |
| 359 | /// - `layout.align` is equal to `T`'s alignment |
| 360 | /// - If `layout.size_info` is `SizeInfo::Sized { size }`, then `T: Sized` and |
| 361 | /// `size_of::<T>() == size` |
| 362 | /// - If `layout.size_info` is `SizeInfo::SliceDst(slice_layout)`, then |
| 363 | /// - `T` is a slice DST |
| 364 | /// - The `size` of an instance of `T` with `elems` trailing slice elements is |
| 365 | /// equal to `slice_layout.offset + slice_layout.elem_size * elems` rounded up |
| 366 | /// to the nearest multiple of `layout.align`. Any bytes in the range |
| 367 | /// `[slice_layout.offset + slice_layout.elem_size * elems, size)` are padding |
| 368 | /// and must not be assumed to be initialized. |
| 369 | /// |
| 370 | /// [the reference]: https://doc.rust-lang.org/reference/type-layout.html |
| 371 | #[doc (hidden)] |
| 372 | #[allow (missing_debug_implementations, missing_copy_implementations)] |
| 373 | #[cfg_attr (any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
| 374 | pub struct DstLayout { |
| 375 | align: NonZeroUsize, |
| 376 | size_info: SizeInfo, |
| 377 | } |
| 378 | |
| 379 | #[cfg_attr (any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
| 380 | enum SizeInfo<E = usize> { |
| 381 | Sized { _size: usize }, |
| 382 | SliceDst(TrailingSliceLayout<E>), |
| 383 | } |
| 384 | |
| 385 | #[cfg_attr (any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
| 386 | struct TrailingSliceLayout<E = usize> { |
| 387 | // The offset of the first byte of the trailing slice field. Note that this |
| 388 | // is NOT the same as the minimum size of the type. For example, consider |
| 389 | // the following type: |
| 390 | // |
| 391 | // struct Foo { |
| 392 | // a: u16, |
| 393 | // b: u8, |
| 394 | // c: [u8], |
| 395 | // } |
| 396 | // |
| 397 | // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed |
| 398 | // by a padding byte. |
| 399 | _offset: usize, |
| 400 | // The size of the element type of the trailing slice field. |
| 401 | _elem_size: E, |
| 402 | } |
| 403 | |
| 404 | impl SizeInfo { |
| 405 | /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a |
| 406 | /// `NonZeroUsize`. If `elem_size` is 0, returns `None`. |
| 407 | #[allow (unused)] |
| 408 | const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> { |
| 409 | Some(match *self { |
| 410 | SizeInfo::Sized { _size: usize } => SizeInfo::Sized { _size }, |
| 411 | SizeInfo::SliceDst(TrailingSliceLayout { _offset: usize, _elem_size: usize }) => { |
| 412 | if let Some(_elem_size: NonZero) = NonZeroUsize::new(_elem_size) { |
| 413 | SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) |
| 414 | } else { |
| 415 | return None; |
| 416 | } |
| 417 | } |
| 418 | }) |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | #[doc (hidden)] |
| 423 | #[derive (Copy, Clone)] |
| 424 | #[cfg_attr (test, derive(Debug))] |
| 425 | #[allow (missing_debug_implementations)] |
| 426 | pub enum _CastType { |
| 427 | _Prefix, |
| 428 | _Suffix, |
| 429 | } |
| 430 | |
| 431 | impl DstLayout { |
| 432 | /// The minimum possible alignment of a type. |
| 433 | const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) { |
| 434 | Some(min_align) => min_align, |
| 435 | None => unreachable!(), |
| 436 | }; |
| 437 | |
| 438 | /// The maximum theoretic possible alignment of a type. |
| 439 | /// |
| 440 | /// For compatibility with future Rust versions, this is defined as the |
| 441 | /// maximum power-of-two that fits into a `usize`. See also |
| 442 | /// [`DstLayout::CURRENT_MAX_ALIGN`]. |
| 443 | const THEORETICAL_MAX_ALIGN: NonZeroUsize = |
| 444 | match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) { |
| 445 | Some(max_align) => max_align, |
| 446 | None => unreachable!(), |
| 447 | }; |
| 448 | |
| 449 | /// The current, documented max alignment of a type \[1\]. |
| 450 | /// |
| 451 | /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>: |
| 452 | /// |
| 453 | /// The alignment value must be a power of two from 1 up to |
| 454 | /// 2<sup>29</sup>. |
| 455 | #[cfg (not(kani))] |
| 456 | const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) { |
| 457 | Some(max_align) => max_align, |
| 458 | None => unreachable!(), |
| 459 | }; |
| 460 | |
| 461 | /// Constructs a `DstLayout` for a zero-sized type with `repr_align` |
| 462 | /// alignment (or 1). If `repr_align` is provided, then it must be a power |
| 463 | /// of two. |
| 464 | /// |
| 465 | /// # Panics |
| 466 | /// |
| 467 | /// This function panics if the supplied `repr_align` is not a power of two. |
| 468 | /// |
| 469 | /// # Safety |
| 470 | /// |
| 471 | /// Unsafe code may assume that the contract of this function is satisfied. |
| 472 | #[doc (hidden)] |
| 473 | #[inline ] |
| 474 | pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout { |
| 475 | let align = match repr_align { |
| 476 | Some(align) => align, |
| 477 | None => Self::MIN_ALIGN, |
| 478 | }; |
| 479 | |
| 480 | assert!(align.is_power_of_two()); |
| 481 | |
| 482 | DstLayout { align, size_info: SizeInfo::Sized { _size: 0 } } |
| 483 | } |
| 484 | |
| 485 | /// Constructs a `DstLayout` which describes `T`. |
| 486 | /// |
| 487 | /// # Safety |
| 488 | /// |
| 489 | /// Unsafe code may assume that `DstLayout` is the correct layout for `T`. |
| 490 | #[doc (hidden)] |
| 491 | #[inline ] |
| 492 | pub const fn for_type<T>() -> DstLayout { |
| 493 | // SAFETY: `align` is correct by construction. `T: Sized`, and so it is |
| 494 | // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the |
| 495 | // `size` field is also correct by construction. |
| 496 | DstLayout { |
| 497 | align: match NonZeroUsize::new(mem::align_of::<T>()) { |
| 498 | Some(align) => align, |
| 499 | None => unreachable!(), |
| 500 | }, |
| 501 | size_info: SizeInfo::Sized { _size: mem::size_of::<T>() }, |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | /// Constructs a `DstLayout` which describes `[T]`. |
| 506 | /// |
| 507 | /// # Safety |
| 508 | /// |
| 509 | /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`. |
| 510 | const fn for_slice<T>() -> DstLayout { |
| 511 | // SAFETY: The alignment of a slice is equal to the alignment of its |
| 512 | // element type, and so `align` is initialized correctly. |
| 513 | // |
| 514 | // Since this is just a slice type, there is no offset between the |
| 515 | // beginning of the type and the beginning of the slice, so it is |
| 516 | // correct to set `offset: 0`. The `elem_size` is correct by |
| 517 | // construction. Since `[T]` is a (degenerate case of a) slice DST, it |
| 518 | // is correct to initialize `size_info` to `SizeInfo::SliceDst`. |
| 519 | DstLayout { |
| 520 | align: match NonZeroUsize::new(mem::align_of::<T>()) { |
| 521 | Some(align) => align, |
| 522 | None => unreachable!(), |
| 523 | }, |
| 524 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| 525 | _offset: 0, |
| 526 | _elem_size: mem::size_of::<T>(), |
| 527 | }), |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | /// Like `Layout::extend`, this creates a layout that describes a record |
| 532 | /// whose layout consists of `self` followed by `next` that includes the |
| 533 | /// necessary inter-field padding, but not any trailing padding. |
| 534 | /// |
| 535 | /// In order to match the layout of a `#[repr(C)]` struct, this method |
| 536 | /// should be invoked for each field in declaration order. To add trailing |
| 537 | /// padding, call `DstLayout::pad_to_align` after extending the layout for |
| 538 | /// all fields. If `self` corresponds to a type marked with |
| 539 | /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`, |
| 540 | /// otherwise `None`. |
| 541 | /// |
| 542 | /// This method cannot be used to match the layout of a record with the |
| 543 | /// default representation, as that representation is mostly unspecified. |
| 544 | /// |
| 545 | /// # Safety |
| 546 | /// |
| 547 | /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with |
| 548 | /// fields whose layout are `self`, and those fields are immediately |
| 549 | /// followed by a field whose layout is `field`, then unsafe code may rely |
| 550 | /// on `self.extend(field, repr_packed)` producing a layout that correctly |
| 551 | /// encompasses those two components. |
| 552 | /// |
| 553 | /// We make no guarantees to the behavior of this method if these fragments |
| 554 | /// cannot appear in a valid Rust type (e.g., the concatenation of the |
| 555 | /// layouts would lead to a size larger than `isize::MAX`). |
| 556 | #[doc (hidden)] |
| 557 | #[inline ] |
| 558 | pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self { |
| 559 | use util::{core_layout::padding_needed_for, max, min}; |
| 560 | |
| 561 | // If `repr_packed` is `None`, there are no alignment constraints, and |
| 562 | // the value can be defaulted to `THEORETICAL_MAX_ALIGN`. |
| 563 | let max_align = match repr_packed { |
| 564 | Some(max_align) => max_align, |
| 565 | None => Self::THEORETICAL_MAX_ALIGN, |
| 566 | }; |
| 567 | |
| 568 | assert!(max_align.is_power_of_two()); |
| 569 | |
| 570 | // We use Kani to prove that this method is robust to future increases |
| 571 | // in Rust's maximum allowed alignment. However, if such a change ever |
| 572 | // actually occurs, we'd like to be notified via assertion failures. |
| 573 | #[cfg (not(kani))] |
| 574 | { |
| 575 | debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| 576 | debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| 577 | if let Some(repr_packed) = repr_packed { |
| 578 | debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | // The field's alignment is clamped by `repr_packed` (i.e., the |
| 583 | // `repr(packed(N))` attribute, if any) [1]. |
| 584 | // |
| 585 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| 586 | // |
| 587 | // The alignments of each field, for the purpose of positioning |
| 588 | // fields, is the smaller of the specified alignment and the alignment |
| 589 | // of the field's type. |
| 590 | let field_align = min(field.align, max_align); |
| 591 | |
| 592 | // The struct's alignment is the maximum of its previous alignment and |
| 593 | // `field_align`. |
| 594 | let align = max(self.align, field_align); |
| 595 | |
| 596 | let size_info = match self.size_info { |
| 597 | // If the layout is already a DST, we panic; DSTs cannot be extended |
| 598 | // with additional fields. |
| 599 | SizeInfo::SliceDst(..) => panic!("Cannot extend a DST with additional fields." ), |
| 600 | |
| 601 | SizeInfo::Sized { _size: preceding_size } => { |
| 602 | // Compute the minimum amount of inter-field padding needed to |
| 603 | // satisfy the field's alignment, and offset of the trailing |
| 604 | // field. [1] |
| 605 | // |
| 606 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| 607 | // |
| 608 | // Inter-field padding is guaranteed to be the minimum |
| 609 | // required in order to satisfy each field's (possibly |
| 610 | // altered) alignment. |
| 611 | let padding = padding_needed_for(preceding_size, field_align); |
| 612 | |
| 613 | // This will not panic (and is proven to not panic, with Kani) |
| 614 | // if the layout components can correspond to a leading layout |
| 615 | // fragment of a valid Rust type, but may panic otherwise (e.g., |
| 616 | // combining or aligning the components would create a size |
| 617 | // exceeding `isize::MAX`). |
| 618 | let offset = match preceding_size.checked_add(padding) { |
| 619 | Some(offset) => offset, |
| 620 | None => panic!("Adding padding to `self`'s size overflows `usize`." ), |
| 621 | }; |
| 622 | |
| 623 | match field.size_info { |
| 624 | SizeInfo::Sized { _size: field_size } => { |
| 625 | // If the trailing field is sized, the resulting layout |
| 626 | // will be sized. Its size will be the sum of the |
| 627 | // preceeding layout, the size of the new field, and the |
| 628 | // size of inter-field padding between the two. |
| 629 | // |
| 630 | // This will not panic (and is proven with Kani to not |
| 631 | // panic) if the layout components can correspond to a |
| 632 | // leading layout fragment of a valid Rust type, but may |
| 633 | // panic otherwise (e.g., combining or aligning the |
| 634 | // components would create a size exceeding |
| 635 | // `usize::MAX`). |
| 636 | let size = match offset.checked_add(field_size) { |
| 637 | Some(size) => size, |
| 638 | None => panic!("`field` cannot be appended without the total size overflowing `usize`" ), |
| 639 | }; |
| 640 | SizeInfo::Sized { _size: size } |
| 641 | } |
| 642 | SizeInfo::SliceDst(TrailingSliceLayout { |
| 643 | _offset: trailing_offset, |
| 644 | _elem_size, |
| 645 | }) => { |
| 646 | // If the trailing field is dynamically sized, so too |
| 647 | // will the resulting layout. The offset of the trailing |
| 648 | // slice component is the sum of the offset of the |
| 649 | // trailing field and the trailing slice offset within |
| 650 | // that field. |
| 651 | // |
| 652 | // This will not panic (and is proven with Kani to not |
| 653 | // panic) if the layout components can correspond to a |
| 654 | // leading layout fragment of a valid Rust type, but may |
| 655 | // panic otherwise (e.g., combining or aligning the |
| 656 | // components would create a size exceeding |
| 657 | // `usize::MAX`). |
| 658 | let offset = match offset.checked_add(trailing_offset) { |
| 659 | Some(offset) => offset, |
| 660 | None => panic!("`field` cannot be appended without the total size overflowing `usize`" ), |
| 661 | }; |
| 662 | SizeInfo::SliceDst(TrailingSliceLayout { _offset: offset, _elem_size }) |
| 663 | } |
| 664 | } |
| 665 | } |
| 666 | }; |
| 667 | |
| 668 | DstLayout { align, size_info } |
| 669 | } |
| 670 | |
| 671 | /// Like `Layout::pad_to_align`, this routine rounds the size of this layout |
| 672 | /// up to the nearest multiple of this type's alignment or `repr_packed` |
| 673 | /// (whichever is less). This method leaves DST layouts unchanged, since the |
| 674 | /// trailing padding of DSTs is computed at runtime. |
| 675 | /// |
| 676 | /// In order to match the layout of a `#[repr(C)]` struct, this method |
| 677 | /// should be invoked after the invocations of [`DstLayout::extend`]. If |
| 678 | /// `self` corresponds to a type marked with `repr(packed(N))`, then |
| 679 | /// `repr_packed` should be set to `Some(N)`, otherwise `None`. |
| 680 | /// |
| 681 | /// This method cannot be used to match the layout of a record with the |
| 682 | /// default representation, as that representation is mostly unspecified. |
| 683 | /// |
| 684 | /// # Safety |
| 685 | /// |
| 686 | /// If a (potentially hypothetical) valid `repr(C)` type begins with fields |
| 687 | /// whose layout are `self` followed only by zero or more bytes of trailing |
| 688 | /// padding (not included in `self`), then unsafe code may rely on |
| 689 | /// `self.pad_to_align(repr_packed)` producing a layout that correctly |
| 690 | /// encapsulates the layout of that type. |
| 691 | /// |
| 692 | /// We make no guarantees to the behavior of this method if `self` cannot |
| 693 | /// appear in a valid Rust type (e.g., because the addition of trailing |
| 694 | /// padding would lead to a size larger than `isize::MAX`). |
| 695 | #[doc (hidden)] |
| 696 | #[inline ] |
| 697 | pub const fn pad_to_align(self) -> Self { |
| 698 | use util::core_layout::padding_needed_for; |
| 699 | |
| 700 | let size_info = match self.size_info { |
| 701 | // For sized layouts, we add the minimum amount of trailing padding |
| 702 | // needed to satisfy alignment. |
| 703 | SizeInfo::Sized { _size: unpadded_size } => { |
| 704 | let padding = padding_needed_for(unpadded_size, self.align); |
| 705 | let size = match unpadded_size.checked_add(padding) { |
| 706 | Some(size) => size, |
| 707 | None => panic!("Adding padding caused size to overflow `usize`." ), |
| 708 | }; |
| 709 | SizeInfo::Sized { _size: size } |
| 710 | } |
| 711 | // For DST layouts, trailing padding depends on the length of the |
| 712 | // trailing DST and is computed at runtime. This does not alter the |
| 713 | // offset or element size of the layout, so we leave `size_info` |
| 714 | // unchanged. |
| 715 | size_info @ SizeInfo::SliceDst(_) => size_info, |
| 716 | }; |
| 717 | |
| 718 | DstLayout { align: self.align, size_info } |
| 719 | } |
| 720 | |
| 721 | /// Validates that a cast is sound from a layout perspective. |
| 722 | /// |
| 723 | /// Validates that the size and alignment requirements of a type with the |
| 724 | /// layout described in `self` would not be violated by performing a |
| 725 | /// `cast_type` cast from a pointer with address `addr` which refers to a |
| 726 | /// memory region of size `bytes_len`. |
| 727 | /// |
| 728 | /// If the cast is valid, `validate_cast_and_convert_metadata` returns |
| 729 | /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then |
| 730 | /// `elems` is the maximum number of trailing slice elements for which a |
| 731 | /// cast would be valid (for sized types, `elem` is meaningless and should |
| 732 | /// be ignored). `split_at` is the index at which to split the memory region |
| 733 | /// in order for the prefix (suffix) to contain the result of the cast, and |
| 734 | /// in order for the remaining suffix (prefix) to contain the leftover |
| 735 | /// bytes. |
| 736 | /// |
| 737 | /// There are three conditions under which a cast can fail: |
| 738 | /// - The smallest possible value for the type is larger than the provided |
| 739 | /// memory region |
| 740 | /// - A prefix cast is requested, and `addr` does not satisfy `self`'s |
| 741 | /// alignment requirement |
| 742 | /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy |
| 743 | /// `self`'s alignment requirement (as a consequence, since all instances |
| 744 | /// of the type are a multiple of its alignment, no size for the type will |
| 745 | /// result in a starting address which is properly aligned) |
| 746 | /// |
| 747 | /// # Safety |
| 748 | /// |
| 749 | /// The caller may assume that this implementation is correct, and may rely |
| 750 | /// on that assumption for the soundness of their code. In particular, the |
| 751 | /// caller may assume that, if `validate_cast_and_convert_metadata` returns |
| 752 | /// `Some((elems, split_at))`, then: |
| 753 | /// - A pointer to the type (for dynamically sized types, this includes |
| 754 | /// `elems` as its pointer metadata) describes an object of size `size <= |
| 755 | /// bytes_len` |
| 756 | /// - If this is a prefix cast: |
| 757 | /// - `addr` satisfies `self`'s alignment |
| 758 | /// - `size == split_at` |
| 759 | /// - If this is a suffix cast: |
| 760 | /// - `split_at == bytes_len - size` |
| 761 | /// - `addr + split_at` satisfies `self`'s alignment |
| 762 | /// |
| 763 | /// Note that this method does *not* ensure that a pointer constructed from |
| 764 | /// its return values will be a valid pointer. In particular, this method |
| 765 | /// does not reason about `isize` overflow, which is a requirement of many |
| 766 | /// Rust pointer APIs, and may at some point be determined to be a validity |
| 767 | /// invariant of pointer types themselves. This should never be a problem so |
| 768 | /// long as the arguments to this method are derived from a known-valid |
| 769 | /// pointer (e.g., one derived from a safe Rust reference), but it is |
| 770 | /// nonetheless the caller's responsibility to justify that pointer |
| 771 | /// arithmetic will not overflow based on a safety argument *other than* the |
| 772 | /// mere fact that this method returned successfully. |
| 773 | /// |
| 774 | /// # Panics |
| 775 | /// |
| 776 | /// `validate_cast_and_convert_metadata` will panic if `self` describes a |
| 777 | /// DST whose trailing slice element is zero-sized. |
| 778 | /// |
| 779 | /// If `addr + bytes_len` overflows `usize`, |
| 780 | /// `validate_cast_and_convert_metadata` may panic, or it may return |
| 781 | /// incorrect results. No guarantees are made about when |
| 782 | /// `validate_cast_and_convert_metadata` will panic. The caller should not |
| 783 | /// rely on `validate_cast_and_convert_metadata` panicking in any particular |
| 784 | /// condition, even if `debug_assertions` are enabled. |
| 785 | #[allow (unused)] |
| 786 | const fn validate_cast_and_convert_metadata( |
| 787 | &self, |
| 788 | addr: usize, |
| 789 | bytes_len: usize, |
| 790 | cast_type: _CastType, |
| 791 | ) -> Option<(usize, usize)> { |
| 792 | // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`. |
| 793 | macro_rules! __debug_assert { |
| 794 | ($e:expr $(, $msg:expr)?) => { |
| 795 | debug_assert!({ |
| 796 | #[allow(clippy::arithmetic_side_effects)] |
| 797 | let e = $e; |
| 798 | e |
| 799 | } $(, $msg)?); |
| 800 | }; |
| 801 | } |
| 802 | |
| 803 | // Note that, in practice, `self` is always a compile-time constant. We |
| 804 | // do this check earlier than needed to ensure that we always panic as a |
| 805 | // result of bugs in the program (such as calling this function on an |
| 806 | // invalid type) instead of allowing this panic to be hidden if the cast |
| 807 | // would have failed anyway for runtime reasons (such as a too-small |
| 808 | // memory region). |
| 809 | // |
| 810 | // TODO(#67): Once our MSRV is 1.65, use let-else: |
| 811 | // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
| 812 | let size_info = match self.size_info.try_to_nonzero_elem_size() { |
| 813 | Some(size_info) => size_info, |
| 814 | None => panic!("attempted to cast to slice type with zero-sized element" ), |
| 815 | }; |
| 816 | |
| 817 | // Precondition |
| 818 | __debug_assert!(addr.checked_add(bytes_len).is_some(), "`addr` + `bytes_len` > usize::MAX" ); |
| 819 | |
| 820 | // Alignment checks go in their own block to avoid introducing variables |
| 821 | // into the top-level scope. |
| 822 | { |
| 823 | // We check alignment for `addr` (for prefix casts) or `addr + |
| 824 | // bytes_len` (for suffix casts). For a prefix cast, the correctness |
| 825 | // of this check is trivial - `addr` is the address the object will |
| 826 | // live at. |
| 827 | // |
| 828 | // For a suffix cast, we know that all valid sizes for the type are |
| 829 | // a multiple of the alignment (and by safety precondition, we know |
| 830 | // `DstLayout` may only describe valid Rust types). Thus, a |
| 831 | // validly-sized instance which lives at a validly-aligned address |
| 832 | // must also end at a validly-aligned address. Thus, if the end |
| 833 | // address for a suffix cast (`addr + bytes_len`) is not aligned, |
| 834 | // then no valid start address will be aligned either. |
| 835 | let offset = match cast_type { |
| 836 | _CastType::_Prefix => 0, |
| 837 | _CastType::_Suffix => bytes_len, |
| 838 | }; |
| 839 | |
| 840 | // Addition is guaranteed not to overflow because `offset <= |
| 841 | // bytes_len`, and `addr + bytes_len <= usize::MAX` is a |
| 842 | // precondition of this method. Modulus is guaranteed not to divide |
| 843 | // by 0 because `align` is non-zero. |
| 844 | #[allow (clippy::arithmetic_side_effects)] |
| 845 | if (addr + offset) % self.align.get() != 0 { |
| 846 | return None; |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | let (elems, self_bytes) = match size_info { |
| 851 | SizeInfo::Sized { _size: size } => { |
| 852 | if size > bytes_len { |
| 853 | return None; |
| 854 | } |
| 855 | (0, size) |
| 856 | } |
| 857 | SizeInfo::SliceDst(TrailingSliceLayout { _offset: offset, _elem_size: elem_size }) => { |
| 858 | // Calculate the maximum number of bytes that could be consumed |
| 859 | // - any number of bytes larger than this will either not be a |
| 860 | // multiple of the alignment, or will be larger than |
| 861 | // `bytes_len`. |
| 862 | let max_total_bytes = |
| 863 | util::round_down_to_next_multiple_of_alignment(bytes_len, self.align); |
| 864 | // Calculate the maximum number of bytes that could be consumed |
| 865 | // by the trailing slice. |
| 866 | // |
| 867 | // TODO(#67): Once our MSRV is 1.65, use let-else: |
| 868 | // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
| 869 | let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) { |
| 870 | Some(max) => max, |
| 871 | // `bytes_len` too small even for 0 trailing slice elements. |
| 872 | None => return None, |
| 873 | }; |
| 874 | |
| 875 | // Calculate the number of elements that fit in |
| 876 | // `max_slice_and_padding_bytes`; any remaining bytes will be |
| 877 | // considered padding. |
| 878 | // |
| 879 | // Guaranteed not to divide by zero: `elem_size` is non-zero. |
| 880 | #[allow (clippy::arithmetic_side_effects)] |
| 881 | let elems = max_slice_and_padding_bytes / elem_size.get(); |
| 882 | // Guaranteed not to overflow on multiplication: `usize::MAX >= |
| 883 | // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes / |
| 884 | // elem_size) * elem_size`. |
| 885 | // |
| 886 | // Guaranteed not to overflow on addition: |
| 887 | // - max_slice_and_padding_bytes == max_total_bytes - offset |
| 888 | // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset |
| 889 | // - elems * elem_size + offset <= max_total_bytes <= usize::MAX |
| 890 | #[allow (clippy::arithmetic_side_effects)] |
| 891 | let without_padding = offset + elems * elem_size.get(); |
| 892 | // `self_bytes` is equal to the offset bytes plus the bytes |
| 893 | // consumed by the trailing slice plus any padding bytes |
| 894 | // required to satisfy the alignment. Note that we have computed |
| 895 | // the maximum number of trailing slice elements that could fit |
| 896 | // in `self_bytes`, so any padding is guaranteed to be less than |
| 897 | // the size of an extra element. |
| 898 | // |
| 899 | // Guaranteed not to overflow: |
| 900 | // - By previous comment: without_padding == elems * elem_size + |
| 901 | // offset <= max_total_bytes |
| 902 | // - By construction, `max_total_bytes` is a multiple of |
| 903 | // `self.align`. |
| 904 | // - At most, adding padding needed to round `without_padding` |
| 905 | // up to the next multiple of the alignment will bring |
| 906 | // `self_bytes` up to `max_total_bytes`. |
| 907 | #[allow (clippy::arithmetic_side_effects)] |
| 908 | let self_bytes = without_padding |
| 909 | + util::core_layout::padding_needed_for(without_padding, self.align); |
| 910 | (elems, self_bytes) |
| 911 | } |
| 912 | }; |
| 913 | |
| 914 | __debug_assert!(self_bytes <= bytes_len); |
| 915 | |
| 916 | let split_at = match cast_type { |
| 917 | _CastType::_Prefix => self_bytes, |
| 918 | // Guaranteed not to underflow: |
| 919 | // - In the `Sized` branch, only returns `size` if `size <= |
| 920 | // bytes_len`. |
| 921 | // - In the `SliceDst` branch, calculates `self_bytes <= |
| 922 | // max_toatl_bytes`, which is upper-bounded by `bytes_len`. |
| 923 | #[allow (clippy::arithmetic_side_effects)] |
| 924 | _CastType::_Suffix => bytes_len - self_bytes, |
| 925 | }; |
| 926 | |
| 927 | Some((elems, split_at)) |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | /// A trait which carries information about a type's layout that is used by the |
| 932 | /// internals of this crate. |
| 933 | /// |
| 934 | /// This trait is not meant for consumption by code outside of this crate. While |
| 935 | /// the normal semver stability guarantees apply with respect to which types |
| 936 | /// implement this trait and which trait implementations are implied by this |
| 937 | /// trait, no semver stability guarantees are made regarding its internals; they |
| 938 | /// may change at any time, and code which makes use of them may break. |
| 939 | /// |
| 940 | /// # Safety |
| 941 | /// |
| 942 | /// This trait does not convey any safety guarantees to code outside this crate. |
| 943 | #[doc (hidden)] // TODO: Remove this once KnownLayout is used by other APIs |
| 944 | pub unsafe trait KnownLayout { |
| 945 | // The `Self: Sized` bound makes it so that `KnownLayout` can still be |
| 946 | // object safe. It's not currently object safe thanks to `const LAYOUT`, and |
| 947 | // it likely won't be in the future, but there's no reason not to be |
| 948 | // forwards-compatible with object safety. |
| 949 | #[doc (hidden)] |
| 950 | fn only_derive_is_allowed_to_implement_this_trait() |
| 951 | where |
| 952 | Self: Sized; |
| 953 | |
| 954 | #[doc (hidden)] |
| 955 | const LAYOUT: DstLayout; |
| 956 | |
| 957 | /// SAFETY: The returned pointer has the same address and provenance as |
| 958 | /// `bytes`. If `Self` is a DST, the returned pointer's referent has `elems` |
| 959 | /// elements in its trailing slice. If `Self` is sized, `elems` is ignored. |
| 960 | #[doc (hidden)] |
| 961 | fn raw_from_ptr_len(bytes: NonNull<u8>, elems: usize) -> NonNull<Self>; |
| 962 | } |
| 963 | |
| 964 | // SAFETY: Delegates safety to `DstLayout::for_slice`. |
| 965 | unsafe impl<T: KnownLayout> KnownLayout for [T] { |
| 966 | #[allow (clippy::missing_inline_in_public_items)] |
| 967 | fn only_derive_is_allowed_to_implement_this_trait() |
| 968 | where |
| 969 | Self: Sized, |
| 970 | { |
| 971 | } |
| 972 | const LAYOUT: DstLayout = DstLayout::for_slice::<T>(); |
| 973 | |
| 974 | // SAFETY: `.cast` preserves address and provenance. The returned pointer |
| 975 | // refers to an object with `elems` elements by construction. |
| 976 | #[inline (always)] |
| 977 | fn raw_from_ptr_len(data: NonNull<u8>, elems: usize) -> NonNull<Self> { |
| 978 | // TODO(#67): Remove this allow. See NonNullExt for more details. |
| 979 | #[allow (unstable_name_collisions)] |
| 980 | NonNull::slice_from_raw_parts(data.cast::<T>(), len:elems) |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | #[rustfmt::skip] |
| 985 | impl_known_layout!( |
| 986 | (), |
| 987 | u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64, |
| 988 | bool, char, |
| 989 | NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32, NonZeroI32, |
| 990 | NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128, NonZeroUsize, NonZeroIsize |
| 991 | ); |
| 992 | #[rustfmt::skip] |
| 993 | impl_known_layout!( |
| 994 | T => Option<T>, |
| 995 | T: ?Sized => PhantomData<T>, |
| 996 | T => Wrapping<T>, |
| 997 | T => MaybeUninit<T>, |
| 998 | T: ?Sized => *const T, |
| 999 | T: ?Sized => *mut T, |
| 1000 | ); |
| 1001 | impl_known_layout!(const N: usize, T => [T; N]); |
| 1002 | |
| 1003 | safety_comment! { |
| 1004 | /// SAFETY: |
| 1005 | /// `str` and `ManuallyDrop<[T]>` [1] have the same representations as |
| 1006 | /// `[u8]` and `[T]` repsectively. `str` has different bit validity than |
| 1007 | /// `[u8]`, but that doesn't affect the soundness of this impl. |
| 1008 | /// |
| 1009 | /// [1] Per https://doc.rust-lang.org/nightly/core/mem/struct.ManuallyDrop.html: |
| 1010 | /// |
| 1011 | /// `ManuallyDrop<T>` is guaranteed to have the same layout and bit |
| 1012 | /// validity as `T` |
| 1013 | /// |
| 1014 | /// TODO(#429): |
| 1015 | /// - Add quotes from docs. |
| 1016 | /// - Once [1] (added in |
| 1017 | /// https://github.com/rust-lang/rust/pull/115522) is available on stable, |
| 1018 | /// quote the stable docs instead of the nightly docs. |
| 1019 | unsafe_impl_known_layout!(#[repr([u8])] str); |
| 1020 | unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] ManuallyDrop<T>); |
| 1021 | } |
| 1022 | |
| 1023 | /// Analyzes whether a type is [`FromZeroes`]. |
| 1024 | /// |
| 1025 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
| 1026 | /// the [safety conditions] of `FromZeroes` and implements `FromZeroes` if it is |
| 1027 | /// sound to do so. This derive can be applied to structs, enums, and unions; |
| 1028 | /// e.g.: |
| 1029 | /// |
| 1030 | /// ``` |
| 1031 | /// # use zerocopy_derive::FromZeroes; |
| 1032 | /// #[derive(FromZeroes)] |
| 1033 | /// struct MyStruct { |
| 1034 | /// # /* |
| 1035 | /// ... |
| 1036 | /// # */ |
| 1037 | /// } |
| 1038 | /// |
| 1039 | /// #[derive(FromZeroes)] |
| 1040 | /// #[repr(u8)] |
| 1041 | /// enum MyEnum { |
| 1042 | /// # Variant0, |
| 1043 | /// # /* |
| 1044 | /// ... |
| 1045 | /// # */ |
| 1046 | /// } |
| 1047 | /// |
| 1048 | /// #[derive(FromZeroes)] |
| 1049 | /// union MyUnion { |
| 1050 | /// # variant: u8, |
| 1051 | /// # /* |
| 1052 | /// ... |
| 1053 | /// # */ |
| 1054 | /// } |
| 1055 | /// ``` |
| 1056 | /// |
| 1057 | /// [safety conditions]: trait@FromZeroes#safety |
| 1058 | /// |
| 1059 | /// # Analysis |
| 1060 | /// |
| 1061 | /// *This section describes, roughly, the analysis performed by this derive to |
| 1062 | /// determine whether it is sound to implement `FromZeroes` for a given type. |
| 1063 | /// Unless you are modifying the implementation of this derive, or attempting to |
| 1064 | /// manually implement `FromZeroes` for a type yourself, you don't need to read |
| 1065 | /// this section.* |
| 1066 | /// |
| 1067 | /// If a type has the following properties, then this derive can implement |
| 1068 | /// `FromZeroes` for that type: |
| 1069 | /// |
| 1070 | /// - If the type is a struct, all of its fields must be `FromZeroes`. |
| 1071 | /// - If the type is an enum, it must be C-like (meaning that all variants have |
| 1072 | /// no fields) and it must have a variant with a discriminant of `0`. See [the |
| 1073 | /// reference] for a description of how discriminant values are chosen. |
| 1074 | /// - The type must not contain any [`UnsafeCell`]s (this is required in order |
| 1075 | /// for it to be sound to construct a `&[u8]` and a `&T` to the same region of |
| 1076 | /// memory). The type may contain references or pointers to `UnsafeCell`s so |
| 1077 | /// long as those values can themselves be initialized from zeroes |
| 1078 | /// (`FromZeroes` is not currently implemented for, e.g., |
| 1079 | /// `Option<&UnsafeCell<_>>`, but it could be one day). |
| 1080 | /// |
| 1081 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
| 1082 | /// documented [safety conditions] of `FromZeroes`, and must *not* rely on the |
| 1083 | /// implementation details of this derive. |
| 1084 | /// |
| 1085 | /// [the reference]: https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations |
| 1086 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
| 1087 | /// |
| 1088 | /// ## Why isn't an explicit representation required for structs? |
| 1089 | /// |
| 1090 | /// Neither this derive, nor the [safety conditions] of `FromZeroes`, requires |
| 1091 | /// that structs are marked with `#[repr(C)]`. |
| 1092 | /// |
| 1093 | /// Per the [Rust reference](reference), |
| 1094 | /// |
| 1095 | /// > The representation of a type can change the padding between fields, but |
| 1096 | /// > does not change the layout of the fields themselves. |
| 1097 | /// |
| 1098 | /// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations |
| 1099 | /// |
| 1100 | /// Since the layout of structs only consists of padding bytes and field bytes, |
| 1101 | /// a struct is soundly `FromZeroes` if: |
| 1102 | /// 1. its padding is soundly `FromZeroes`, and |
| 1103 | /// 2. its fields are soundly `FromZeroes`. |
| 1104 | /// |
| 1105 | /// The answer to the first question is always yes: padding bytes do not have |
| 1106 | /// any validity constraints. A [discussion] of this question in the Unsafe Code |
| 1107 | /// Guidelines Working Group concluded that it would be virtually unimaginable |
| 1108 | /// for future versions of rustc to add validity constraints to padding bytes. |
| 1109 | /// |
| 1110 | /// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174 |
| 1111 | /// |
| 1112 | /// Whether a struct is soundly `FromZeroes` therefore solely depends on whether |
| 1113 | /// its fields are `FromZeroes`. |
| 1114 | // TODO(#146): Document why we don't require an enum to have an explicit `repr` |
| 1115 | // attribute. |
| 1116 | #[cfg (any(feature = "derive" , test))] |
| 1117 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
| 1118 | pub use zerocopy_derive::FromZeroes; |
| 1119 | |
| 1120 | /// Types whose validity can be checked at runtime, allowing them to be |
| 1121 | /// conditionally converted from byte slices. |
| 1122 | /// |
| 1123 | /// WARNING: Do not implement this trait yourself! Instead, use |
| 1124 | /// `#[derive(TryFromBytes)]`. |
| 1125 | /// |
| 1126 | /// `TryFromBytes` types can safely be deserialized from an untrusted sequence |
| 1127 | /// of bytes by performing a runtime check that the byte sequence contains a |
| 1128 | /// valid instance of `Self`. |
| 1129 | /// |
| 1130 | /// `TryFromBytes` is ignorant of byte order. For byte order-aware types, see |
| 1131 | /// the [`byteorder`] module. |
| 1132 | /// |
| 1133 | /// # What is a "valid instance"? |
| 1134 | /// |
| 1135 | /// In Rust, each type has *bit validity*, which refers to the set of bit |
| 1136 | /// patterns which may appear in an instance of that type. It is impossible for |
| 1137 | /// safe Rust code to produce values which violate bit validity (ie, values |
| 1138 | /// outside of the "valid" set of bit patterns). If `unsafe` code produces an |
| 1139 | /// invalid value, this is considered [undefined behavior]. |
| 1140 | /// |
| 1141 | /// Rust's bit validity rules are currently being decided, which means that some |
| 1142 | /// types have three classes of bit patterns: those which are definitely valid, |
| 1143 | /// and whose validity is documented in the language; those which may or may not |
| 1144 | /// be considered valid at some point in the future; and those which are |
| 1145 | /// definitely invalid. |
| 1146 | /// |
| 1147 | /// Zerocopy takes a conservative approach, and only considers a bit pattern to |
| 1148 | /// be valid if its validity is a documenteed guarantee provided by the |
| 1149 | /// language. |
| 1150 | /// |
| 1151 | /// For most use cases, Rust's current guarantees align with programmers' |
| 1152 | /// intuitions about what ought to be valid. As a result, zerocopy's |
| 1153 | /// conservatism should not affect most users. One notable exception is unions, |
| 1154 | /// whose bit validity is very up in the air; zerocopy does not permit |
| 1155 | /// implementing `TryFromBytes` for any union type. |
| 1156 | /// |
| 1157 | /// If you are negatively affected by lack of support for a particular type, |
| 1158 | /// we encourage you to let us know by [filing an issue][github-repo]. |
| 1159 | /// |
| 1160 | /// # Safety |
| 1161 | /// |
| 1162 | /// On its own, `T: TryFromBytes` does not make any guarantees about the layout |
| 1163 | /// or representation of `T`. It merely provides the ability to perform a |
| 1164 | /// validity check at runtime via methods like [`try_from_ref`]. |
| 1165 | /// |
| 1166 | /// Currently, it is not possible to stably implement `TryFromBytes` other than |
| 1167 | /// by using `#[derive(TryFromBytes)]`. While there are `#[doc(hidden)]` items |
| 1168 | /// on this trait that provide well-defined safety invariants, no stability |
| 1169 | /// guarantees are made with respect to these items. In particular, future |
| 1170 | /// releases of zerocopy may make backwards-breaking changes to these items, |
| 1171 | /// including changes that only affect soundness, which may cause code which |
| 1172 | /// uses those items to silently become unsound. |
| 1173 | /// |
| 1174 | /// [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html |
| 1175 | /// [github-repo]: https://github.com/google/zerocopy |
| 1176 | /// [`try_from_ref`]: TryFromBytes::try_from_ref |
| 1177 | // TODO(#5): Update `try_from_ref` doc link once it exists |
| 1178 | #[doc (hidden)] |
| 1179 | pub unsafe trait TryFromBytes { |
| 1180 | /// Does a given memory range contain a valid instance of `Self`? |
| 1181 | /// |
| 1182 | /// # Safety |
| 1183 | /// |
| 1184 | /// ## Preconditions |
| 1185 | /// |
| 1186 | /// The memory referenced by `candidate` may only be accessed via reads for |
| 1187 | /// the duration of this method call. This prohibits writes through mutable |
| 1188 | /// references and through [`UnsafeCell`]s. There may exist immutable |
| 1189 | /// references to the same memory which contain `UnsafeCell`s so long as: |
| 1190 | /// - Those `UnsafeCell`s exist at the same byte ranges as `UnsafeCell`s in |
| 1191 | /// `Self`. This is a bidirectional property: `Self` may not contain |
| 1192 | /// `UnsafeCell`s where other references to the same memory do not, and |
| 1193 | /// vice-versa. |
| 1194 | /// - Those `UnsafeCell`s are never used to perform mutation for the |
| 1195 | /// duration of this method call. |
| 1196 | /// |
| 1197 | /// The memory referenced by `candidate` may not be referenced by any |
| 1198 | /// mutable references even if these references are not used to perform |
| 1199 | /// mutation. |
| 1200 | /// |
| 1201 | /// `candidate` is not required to refer to a valid `Self`. However, it must |
| 1202 | /// satisfy the requirement that uninitialized bytes may only be present |
| 1203 | /// where it is possible for them to be present in `Self`. This is a dynamic |
| 1204 | /// property: if, at a particular byte offset, a valid enum discriminant is |
| 1205 | /// set, the subsequent bytes may only have uninitialized bytes as |
| 1206 | /// specificed by the corresponding enum. |
| 1207 | /// |
| 1208 | /// Formally, given `len = size_of_val_raw(candidate)`, at every byte |
| 1209 | /// offset, `b`, in the range `[0, len)`: |
| 1210 | /// - If, in all instances `s: Self` of length `len`, the byte at offset `b` |
| 1211 | /// in `s` is initialized, then the byte at offset `b` within `*candidate` |
| 1212 | /// must be initialized. |
| 1213 | /// - Let `c` be the contents of the byte range `[0, b)` in `*candidate`. |
| 1214 | /// Let `S` be the subset of valid instances of `Self` of length `len` |
| 1215 | /// which contain `c` in the offset range `[0, b)`. If, for all instances |
| 1216 | /// of `s: Self` in `S`, the byte at offset `b` in `s` is initialized, |
| 1217 | /// then the byte at offset `b` in `*candidate` must be initialized. |
| 1218 | /// |
| 1219 | /// Pragmatically, this means that if `*candidate` is guaranteed to |
| 1220 | /// contain an enum type at a particular offset, and the enum discriminant |
| 1221 | /// stored in `*candidate` corresponds to a valid variant of that enum |
| 1222 | /// type, then it is guaranteed that the appropriate bytes of `*candidate` |
| 1223 | /// are initialized as defined by that variant's bit validity (although |
| 1224 | /// note that the variant may contain another enum type, in which case the |
| 1225 | /// same rules apply depending on the state of its discriminant, and so on |
| 1226 | /// recursively). |
| 1227 | /// |
| 1228 | /// ## Postconditions |
| 1229 | /// |
| 1230 | /// Unsafe code may assume that, if `is_bit_valid(candidate)` returns true, |
| 1231 | /// `*candidate` contains a valid `Self`. |
| 1232 | /// |
| 1233 | /// # Panics |
| 1234 | /// |
| 1235 | /// `is_bit_valid` may panic. Callers are responsible for ensuring that any |
| 1236 | /// `unsafe` code remains sound even in the face of `is_bit_valid` |
| 1237 | /// panicking. (We support user-defined validation routines; so long as |
| 1238 | /// these routines are not required to be `unsafe`, there is no way to |
| 1239 | /// ensure that these do not generate panics.) |
| 1240 | /// |
| 1241 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
| 1242 | #[doc (hidden)] |
| 1243 | unsafe fn is_bit_valid(candidate: Ptr<'_, Self>) -> bool; |
| 1244 | |
| 1245 | /// Attempts to interpret a byte slice as a `Self`. |
| 1246 | /// |
| 1247 | /// `try_from_ref` validates that `bytes` contains a valid `Self`, and that |
| 1248 | /// it satisfies `Self`'s alignment requirement. If it does, then `bytes` is |
| 1249 | /// reinterpreted as a `Self`. |
| 1250 | /// |
| 1251 | /// Note that Rust's bit validity rules are still being decided. As such, |
| 1252 | /// there exist types whose bit validity is ambiguous. See the |
| 1253 | /// `TryFromBytes` docs for a discussion of how these cases are handled. |
| 1254 | // TODO(#251): In a future in which we distinguish between `FromBytes` and |
| 1255 | // `RefFromBytes`, this requires `where Self: RefFromBytes` to disallow |
| 1256 | // interior mutability. |
| 1257 | #[inline ] |
| 1258 | #[doc (hidden)] // TODO(#5): Finalize name before remove this attribute. |
| 1259 | fn try_from_ref(bytes: &[u8]) -> Option<&Self> |
| 1260 | where |
| 1261 | Self: KnownLayout, |
| 1262 | { |
| 1263 | let maybe_self = Ptr::from(bytes).try_cast_into_no_leftover::<Self>()?; |
| 1264 | |
| 1265 | // SAFETY: |
| 1266 | // - Since `bytes` is an immutable reference, we know that no mutable |
| 1267 | // references exist to this memory region. |
| 1268 | // - Since `[u8]` contains no `UnsafeCell`s, we know there are no |
| 1269 | // `&UnsafeCell` references to this memory region. |
| 1270 | // - Since we don't permit implementing `TryFromBytes` for types which |
| 1271 | // contain `UnsafeCell`s, there are no `UnsafeCell`s in `Self`, and so |
| 1272 | // the requirement that all references contain `UnsafeCell`s at the |
| 1273 | // same offsets is trivially satisfied. |
| 1274 | // - All bytes of `bytes` are initialized. |
| 1275 | // |
| 1276 | // This call may panic. If that happens, it doesn't cause any soundness |
| 1277 | // issues, as we have not generated any invalid state which we need to |
| 1278 | // fix before returning. |
| 1279 | if unsafe { !Self::is_bit_valid(maybe_self) } { |
| 1280 | return None; |
| 1281 | } |
| 1282 | |
| 1283 | // SAFETY: |
| 1284 | // - Preconditions for `as_ref`: |
| 1285 | // - `is_bit_valid` guarantees that `*maybe_self` contains a valid |
| 1286 | // `Self`. Since `&[u8]` does not permit interior mutation, this |
| 1287 | // cannot be invalidated after this method returns. |
| 1288 | // - Since the argument and return types are immutable references, |
| 1289 | // Rust will prevent the caller from producing any mutable |
| 1290 | // references to the same memory region. |
| 1291 | // - Since `Self` is not allowed to contain any `UnsafeCell`s and the |
| 1292 | // same is true of `[u8]`, interior mutation is not possible. Thus, |
| 1293 | // no mutation is possible. For the same reason, there is no |
| 1294 | // mismatch between the two types in terms of which byte ranges are |
| 1295 | // referenced as `UnsafeCell`s. |
| 1296 | // - Since interior mutation isn't possible within `Self`, there's no |
| 1297 | // way for the returned reference to be used to modify the byte range, |
| 1298 | // and thus there's no way for the returned reference to be used to |
| 1299 | // write an invalid `[u8]` which would be observable via the original |
| 1300 | // `&[u8]`. |
| 1301 | Some(unsafe { maybe_self.as_ref() }) |
| 1302 | } |
| 1303 | } |
| 1304 | |
| 1305 | /// Types for which a sequence of bytes all set to zero represents a valid |
| 1306 | /// instance of the type. |
| 1307 | /// |
| 1308 | /// Any memory region of the appropriate length which is guaranteed to contain |
| 1309 | /// only zero bytes can be viewed as any `FromZeroes` type with no runtime |
| 1310 | /// overhead. This is useful whenever memory is known to be in a zeroed state, |
| 1311 | /// such memory returned from some allocation routines. |
| 1312 | /// |
| 1313 | /// # Implementation |
| 1314 | /// |
| 1315 | /// **Do not implement this trait yourself!** Instead, use |
| 1316 | /// [`#[derive(FromZeroes)]`][derive] (requires the `derive` Cargo feature); |
| 1317 | /// e.g.: |
| 1318 | /// |
| 1319 | /// ``` |
| 1320 | /// # use zerocopy_derive::FromZeroes; |
| 1321 | /// #[derive(FromZeroes)] |
| 1322 | /// struct MyStruct { |
| 1323 | /// # /* |
| 1324 | /// ... |
| 1325 | /// # */ |
| 1326 | /// } |
| 1327 | /// |
| 1328 | /// #[derive(FromZeroes)] |
| 1329 | /// #[repr(u8)] |
| 1330 | /// enum MyEnum { |
| 1331 | /// # Variant0, |
| 1332 | /// # /* |
| 1333 | /// ... |
| 1334 | /// # */ |
| 1335 | /// } |
| 1336 | /// |
| 1337 | /// #[derive(FromZeroes)] |
| 1338 | /// union MyUnion { |
| 1339 | /// # variant: u8, |
| 1340 | /// # /* |
| 1341 | /// ... |
| 1342 | /// # */ |
| 1343 | /// } |
| 1344 | /// ``` |
| 1345 | /// |
| 1346 | /// This derive performs a sophisticated, compile-time safety analysis to |
| 1347 | /// determine whether a type is `FromZeroes`. |
| 1348 | /// |
| 1349 | /// # Safety |
| 1350 | /// |
| 1351 | /// *This section describes what is required in order for `T: FromZeroes`, and |
| 1352 | /// what unsafe code may assume of such types. If you don't plan on implementing |
| 1353 | /// `FromZeroes` manually, and you don't plan on writing unsafe code that |
| 1354 | /// operates on `FromZeroes` types, then you don't need to read this section.* |
| 1355 | /// |
| 1356 | /// If `T: FromZeroes`, then unsafe code may assume that: |
| 1357 | /// - It is sound to treat any initialized sequence of zero bytes of length |
| 1358 | /// `size_of::<T>()` as a `T`. |
| 1359 | /// - Given `b: &[u8]` where `b.len() == size_of::<T>()`, `b` is aligned to |
| 1360 | /// `align_of::<T>()`, and `b` contains only zero bytes, it is sound to |
| 1361 | /// construct a `t: &T` at the same address as `b`, and it is sound for both |
| 1362 | /// `b` and `t` to be live at the same time. |
| 1363 | /// |
| 1364 | /// If a type is marked as `FromZeroes` which violates this contract, it may |
| 1365 | /// cause undefined behavior. |
| 1366 | /// |
| 1367 | /// `#[derive(FromZeroes)]` only permits [types which satisfy these |
| 1368 | /// requirements][derive-analysis]. |
| 1369 | /// |
| 1370 | #[cfg_attr ( |
| 1371 | feature = "derive" , |
| 1372 | doc = "[derive]: zerocopy_derive::FromZeroes" , |
| 1373 | doc = "[derive-analysis]: zerocopy_derive::FromZeroes#analysis" |
| 1374 | )] |
| 1375 | #[cfg_attr ( |
| 1376 | not(feature = "derive" ), |
| 1377 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromZeroes.html" ), |
| 1378 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromZeroes.html#analysis" ), |
| 1379 | )] |
| 1380 | pub unsafe trait FromZeroes { |
| 1381 | // The `Self: Sized` bound makes it so that `FromZeroes` is still object |
| 1382 | // safe. |
| 1383 | #[doc (hidden)] |
| 1384 | fn only_derive_is_allowed_to_implement_this_trait() |
| 1385 | where |
| 1386 | Self: Sized; |
| 1387 | |
| 1388 | /// Overwrites `self` with zeroes. |
| 1389 | /// |
| 1390 | /// Sets every byte in `self` to 0. While this is similar to doing `*self = |
| 1391 | /// Self::new_zeroed()`, it differs in that `zero` does not semantically |
| 1392 | /// drop the current value and replace it with a new one - it simply |
| 1393 | /// modifies the bytes of the existing value. |
| 1394 | /// |
| 1395 | /// # Examples |
| 1396 | /// |
| 1397 | /// ``` |
| 1398 | /// # use zerocopy::FromZeroes; |
| 1399 | /// # use zerocopy_derive::*; |
| 1400 | /// # |
| 1401 | /// #[derive(FromZeroes)] |
| 1402 | /// #[repr(C)] |
| 1403 | /// struct PacketHeader { |
| 1404 | /// src_port: [u8; 2], |
| 1405 | /// dst_port: [u8; 2], |
| 1406 | /// length: [u8; 2], |
| 1407 | /// checksum: [u8; 2], |
| 1408 | /// } |
| 1409 | /// |
| 1410 | /// let mut header = PacketHeader { |
| 1411 | /// src_port: 100u16.to_be_bytes(), |
| 1412 | /// dst_port: 200u16.to_be_bytes(), |
| 1413 | /// length: 300u16.to_be_bytes(), |
| 1414 | /// checksum: 400u16.to_be_bytes(), |
| 1415 | /// }; |
| 1416 | /// |
| 1417 | /// header.zero(); |
| 1418 | /// |
| 1419 | /// assert_eq!(header.src_port, [0, 0]); |
| 1420 | /// assert_eq!(header.dst_port, [0, 0]); |
| 1421 | /// assert_eq!(header.length, [0, 0]); |
| 1422 | /// assert_eq!(header.checksum, [0, 0]); |
| 1423 | /// ``` |
| 1424 | #[inline (always)] |
| 1425 | fn zero(&mut self) { |
| 1426 | let slf: *mut Self = self; |
| 1427 | let len = mem::size_of_val(self); |
| 1428 | // SAFETY: |
| 1429 | // - `self` is guaranteed by the type system to be valid for writes of |
| 1430 | // size `size_of_val(self)`. |
| 1431 | // - `u8`'s alignment is 1, and thus `self` is guaranteed to be aligned |
| 1432 | // as required by `u8`. |
| 1433 | // - Since `Self: FromZeroes`, the all-zeroes instance is a valid |
| 1434 | // instance of `Self.` |
| 1435 | // |
| 1436 | // TODO(#429): Add references to docs and quotes. |
| 1437 | unsafe { ptr::write_bytes(slf.cast::<u8>(), 0, len) }; |
| 1438 | } |
| 1439 | |
| 1440 | /// Creates an instance of `Self` from zeroed bytes. |
| 1441 | /// |
| 1442 | /// # Examples |
| 1443 | /// |
| 1444 | /// ``` |
| 1445 | /// # use zerocopy::FromZeroes; |
| 1446 | /// # use zerocopy_derive::*; |
| 1447 | /// # |
| 1448 | /// #[derive(FromZeroes)] |
| 1449 | /// #[repr(C)] |
| 1450 | /// struct PacketHeader { |
| 1451 | /// src_port: [u8; 2], |
| 1452 | /// dst_port: [u8; 2], |
| 1453 | /// length: [u8; 2], |
| 1454 | /// checksum: [u8; 2], |
| 1455 | /// } |
| 1456 | /// |
| 1457 | /// let header: PacketHeader = FromZeroes::new_zeroed(); |
| 1458 | /// |
| 1459 | /// assert_eq!(header.src_port, [0, 0]); |
| 1460 | /// assert_eq!(header.dst_port, [0, 0]); |
| 1461 | /// assert_eq!(header.length, [0, 0]); |
| 1462 | /// assert_eq!(header.checksum, [0, 0]); |
| 1463 | /// ``` |
| 1464 | #[inline (always)] |
| 1465 | fn new_zeroed() -> Self |
| 1466 | where |
| 1467 | Self: Sized, |
| 1468 | { |
| 1469 | // SAFETY: `FromZeroes` says that the all-zeroes bit pattern is legal. |
| 1470 | unsafe { mem::zeroed() } |
| 1471 | } |
| 1472 | |
| 1473 | /// Creates a `Box<Self>` from zeroed bytes. |
| 1474 | /// |
| 1475 | /// This function is useful for allocating large values on the heap and |
| 1476 | /// zero-initializing them, without ever creating a temporary instance of |
| 1477 | /// `Self` on the stack. For example, `<[u8; 1048576]>::new_box_zeroed()` |
| 1478 | /// will allocate `[u8; 1048576]` directly on the heap; it does not require |
| 1479 | /// storing `[u8; 1048576]` in a temporary variable on the stack. |
| 1480 | /// |
| 1481 | /// On systems that use a heap implementation that supports allocating from |
| 1482 | /// pre-zeroed memory, using `new_box_zeroed` (or related functions) may |
| 1483 | /// have performance benefits. |
| 1484 | /// |
| 1485 | /// Note that `Box<Self>` can be converted to `Arc<Self>` and other |
| 1486 | /// container types without reallocation. |
| 1487 | /// |
| 1488 | /// # Panics |
| 1489 | /// |
| 1490 | /// Panics if allocation of `size_of::<Self>()` bytes fails. |
| 1491 | #[cfg (feature = "alloc" )] |
| 1492 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 1493 | #[inline ] |
| 1494 | fn new_box_zeroed() -> Box<Self> |
| 1495 | where |
| 1496 | Self: Sized, |
| 1497 | { |
| 1498 | // If `T` is a ZST, then return a proper boxed instance of it. There is |
| 1499 | // no allocation, but `Box` does require a correct dangling pointer. |
| 1500 | let layout = Layout::new::<Self>(); |
| 1501 | if layout.size() == 0 { |
| 1502 | return Box::new(Self::new_zeroed()); |
| 1503 | } |
| 1504 | |
| 1505 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 1506 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 1507 | let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() }; |
| 1508 | if ptr.is_null() { |
| 1509 | alloc::alloc::handle_alloc_error(layout); |
| 1510 | } |
| 1511 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 1512 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 1513 | unsafe { |
| 1514 | Box::from_raw(ptr) |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | /// Creates a `Box<[Self]>` (a boxed slice) from zeroed bytes. |
| 1519 | /// |
| 1520 | /// This function is useful for allocating large values of `[Self]` on the |
| 1521 | /// heap and zero-initializing them, without ever creating a temporary |
| 1522 | /// instance of `[Self; _]` on the stack. For example, |
| 1523 | /// `u8::new_box_slice_zeroed(1048576)` will allocate the slice directly on |
| 1524 | /// the heap; it does not require storing the slice on the stack. |
| 1525 | /// |
| 1526 | /// On systems that use a heap implementation that supports allocating from |
| 1527 | /// pre-zeroed memory, using `new_box_slice_zeroed` may have performance |
| 1528 | /// benefits. |
| 1529 | /// |
| 1530 | /// If `Self` is a zero-sized type, then this function will return a |
| 1531 | /// `Box<[Self]>` that has the correct `len`. Such a box cannot contain any |
| 1532 | /// actual information, but its `len()` property will report the correct |
| 1533 | /// value. |
| 1534 | /// |
| 1535 | /// # Panics |
| 1536 | /// |
| 1537 | /// * Panics if `size_of::<Self>() * len` overflows. |
| 1538 | /// * Panics if allocation of `size_of::<Self>() * len` bytes fails. |
| 1539 | #[cfg (feature = "alloc" )] |
| 1540 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 1541 | #[inline ] |
| 1542 | fn new_box_slice_zeroed(len: usize) -> Box<[Self]> |
| 1543 | where |
| 1544 | Self: Sized, |
| 1545 | { |
| 1546 | let size = mem::size_of::<Self>() |
| 1547 | .checked_mul(len) |
| 1548 | .expect("mem::size_of::<Self>() * len overflows `usize`" ); |
| 1549 | let align = mem::align_of::<Self>(); |
| 1550 | // On stable Rust versions <= 1.64.0, `Layout::from_size_align` has a |
| 1551 | // bug in which sufficiently-large allocations (those which, when |
| 1552 | // rounded up to the alignment, overflow `isize`) are not rejected, |
| 1553 | // which can cause undefined behavior. See #64 for details. |
| 1554 | // |
| 1555 | // TODO(#67): Once our MSRV is > 1.64.0, remove this assertion. |
| 1556 | #[allow (clippy::as_conversions)] |
| 1557 | let max_alloc = (isize::MAX as usize).saturating_sub(align); |
| 1558 | assert!(size <= max_alloc); |
| 1559 | // TODO(https://github.com/rust-lang/rust/issues/55724): Use |
| 1560 | // `Layout::repeat` once it's stabilized. |
| 1561 | let layout = |
| 1562 | Layout::from_size_align(size, align).expect("total allocation size overflows `isize`" ); |
| 1563 | |
| 1564 | let ptr = if layout.size() != 0 { |
| 1565 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 1566 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 1567 | let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() }; |
| 1568 | if ptr.is_null() { |
| 1569 | alloc::alloc::handle_alloc_error(layout); |
| 1570 | } |
| 1571 | ptr |
| 1572 | } else { |
| 1573 | // `Box<[T]>` does not allocate when `T` is zero-sized or when `len` |
| 1574 | // is zero, but it does require a non-null dangling pointer for its |
| 1575 | // allocation. |
| 1576 | NonNull::<Self>::dangling().as_ptr() |
| 1577 | }; |
| 1578 | |
| 1579 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 1580 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 1581 | unsafe { |
| 1582 | Box::from_raw(slice::from_raw_parts_mut(ptr, len)) |
| 1583 | } |
| 1584 | } |
| 1585 | |
| 1586 | /// Creates a `Vec<Self>` from zeroed bytes. |
| 1587 | /// |
| 1588 | /// This function is useful for allocating large values of `Vec`s and |
| 1589 | /// zero-initializing them, without ever creating a temporary instance of |
| 1590 | /// `[Self; _]` (or many temporary instances of `Self`) on the stack. For |
| 1591 | /// example, `u8::new_vec_zeroed(1048576)` will allocate directly on the |
| 1592 | /// heap; it does not require storing intermediate values on the stack. |
| 1593 | /// |
| 1594 | /// On systems that use a heap implementation that supports allocating from |
| 1595 | /// pre-zeroed memory, using `new_vec_zeroed` may have performance benefits. |
| 1596 | /// |
| 1597 | /// If `Self` is a zero-sized type, then this function will return a |
| 1598 | /// `Vec<Self>` that has the correct `len`. Such a `Vec` cannot contain any |
| 1599 | /// actual information, but its `len()` property will report the correct |
| 1600 | /// value. |
| 1601 | /// |
| 1602 | /// # Panics |
| 1603 | /// |
| 1604 | /// * Panics if `size_of::<Self>() * len` overflows. |
| 1605 | /// * Panics if allocation of `size_of::<Self>() * len` bytes fails. |
| 1606 | #[cfg (feature = "alloc" )] |
| 1607 | #[cfg_attr (doc_cfg, doc(cfg(feature = "new_vec_zeroed" )))] |
| 1608 | #[inline (always)] |
| 1609 | fn new_vec_zeroed(len: usize) -> Vec<Self> |
| 1610 | where |
| 1611 | Self: Sized, |
| 1612 | { |
| 1613 | Self::new_box_slice_zeroed(len).into() |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | /// Analyzes whether a type is [`FromBytes`]. |
| 1618 | /// |
| 1619 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
| 1620 | /// the [safety conditions] of `FromBytes` and implements `FromBytes` if it is |
| 1621 | /// sound to do so. This derive can be applied to structs, enums, and unions; |
| 1622 | /// e.g.: |
| 1623 | /// |
| 1624 | /// ``` |
| 1625 | /// # use zerocopy_derive::{FromBytes, FromZeroes}; |
| 1626 | /// #[derive(FromZeroes, FromBytes)] |
| 1627 | /// struct MyStruct { |
| 1628 | /// # /* |
| 1629 | /// ... |
| 1630 | /// # */ |
| 1631 | /// } |
| 1632 | /// |
| 1633 | /// #[derive(FromZeroes, FromBytes)] |
| 1634 | /// #[repr(u8)] |
| 1635 | /// enum MyEnum { |
| 1636 | /// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E, |
| 1637 | /// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D, |
| 1638 | /// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C, |
| 1639 | /// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B, |
| 1640 | /// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A, |
| 1641 | /// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, |
| 1642 | /// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68, |
| 1643 | /// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77, |
| 1644 | /// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86, |
| 1645 | /// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95, |
| 1646 | /// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4, |
| 1647 | /// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3, |
| 1648 | /// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2, |
| 1649 | /// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1, |
| 1650 | /// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0, |
| 1651 | /// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF, |
| 1652 | /// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE, |
| 1653 | /// # VFF, |
| 1654 | /// # /* |
| 1655 | /// ... |
| 1656 | /// # */ |
| 1657 | /// } |
| 1658 | /// |
| 1659 | /// #[derive(FromZeroes, FromBytes)] |
| 1660 | /// union MyUnion { |
| 1661 | /// # variant: u8, |
| 1662 | /// # /* |
| 1663 | /// ... |
| 1664 | /// # */ |
| 1665 | /// } |
| 1666 | /// ``` |
| 1667 | /// |
| 1668 | /// [safety conditions]: trait@FromBytes#safety |
| 1669 | /// |
| 1670 | /// # Analysis |
| 1671 | /// |
| 1672 | /// *This section describes, roughly, the analysis performed by this derive to |
| 1673 | /// determine whether it is sound to implement `FromBytes` for a given type. |
| 1674 | /// Unless you are modifying the implementation of this derive, or attempting to |
| 1675 | /// manually implement `FromBytes` for a type yourself, you don't need to read |
| 1676 | /// this section.* |
| 1677 | /// |
| 1678 | /// If a type has the following properties, then this derive can implement |
| 1679 | /// `FromBytes` for that type: |
| 1680 | /// |
| 1681 | /// - If the type is a struct, all of its fields must be `FromBytes`. |
| 1682 | /// - If the type is an enum: |
| 1683 | /// - It must be a C-like enum (meaning that all variants have no fields). |
| 1684 | /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
| 1685 | /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
| 1686 | /// - The maximum number of discriminants must be used (so that every possible |
| 1687 | /// bit pattern is a valid one). Be very careful when using the `C`, |
| 1688 | /// `usize`, or `isize` representations, as their size is |
| 1689 | /// platform-dependent. |
| 1690 | /// - The type must not contain any [`UnsafeCell`]s (this is required in order |
| 1691 | /// for it to be sound to construct a `&[u8]` and a `&T` to the same region of |
| 1692 | /// memory). The type may contain references or pointers to `UnsafeCell`s so |
| 1693 | /// long as those values can themselves be initialized from zeroes |
| 1694 | /// (`FromBytes` is not currently implemented for, e.g., `Option<*const |
| 1695 | /// UnsafeCell<_>>`, but it could be one day). |
| 1696 | /// |
| 1697 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
| 1698 | /// |
| 1699 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
| 1700 | /// documented [safety conditions] of `FromBytes`, and must *not* rely on the |
| 1701 | /// implementation details of this derive. |
| 1702 | /// |
| 1703 | /// ## Why isn't an explicit representation required for structs? |
| 1704 | /// |
| 1705 | /// Neither this derive, nor the [safety conditions] of `FromBytes`, requires |
| 1706 | /// that structs are marked with `#[repr(C)]`. |
| 1707 | /// |
| 1708 | /// Per the [Rust reference](reference), |
| 1709 | /// |
| 1710 | /// > The representation of a type can change the padding between fields, but |
| 1711 | /// > does not change the layout of the fields themselves. |
| 1712 | /// |
| 1713 | /// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations |
| 1714 | /// |
| 1715 | /// Since the layout of structs only consists of padding bytes and field bytes, |
| 1716 | /// a struct is soundly `FromBytes` if: |
| 1717 | /// 1. its padding is soundly `FromBytes`, and |
| 1718 | /// 2. its fields are soundly `FromBytes`. |
| 1719 | /// |
| 1720 | /// The answer to the first question is always yes: padding bytes do not have |
| 1721 | /// any validity constraints. A [discussion] of this question in the Unsafe Code |
| 1722 | /// Guidelines Working Group concluded that it would be virtually unimaginable |
| 1723 | /// for future versions of rustc to add validity constraints to padding bytes. |
| 1724 | /// |
| 1725 | /// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174 |
| 1726 | /// |
| 1727 | /// Whether a struct is soundly `FromBytes` therefore solely depends on whether |
| 1728 | /// its fields are `FromBytes`. |
| 1729 | // TODO(#146): Document why we don't require an enum to have an explicit `repr` |
| 1730 | // attribute. |
| 1731 | #[cfg (any(feature = "derive" , test))] |
| 1732 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
| 1733 | pub use zerocopy_derive::FromBytes; |
| 1734 | |
| 1735 | /// Types for which any bit pattern is valid. |
| 1736 | /// |
| 1737 | /// Any memory region of the appropriate length which contains initialized bytes |
| 1738 | /// can be viewed as any `FromBytes` type with no runtime overhead. This is |
| 1739 | /// useful for efficiently parsing bytes as structured data. |
| 1740 | /// |
| 1741 | /// # Implementation |
| 1742 | /// |
| 1743 | /// **Do not implement this trait yourself!** Instead, use |
| 1744 | /// [`#[derive(FromBytes)]`][derive] (requires the `derive` Cargo feature); |
| 1745 | /// e.g.: |
| 1746 | /// |
| 1747 | /// ``` |
| 1748 | /// # use zerocopy_derive::{FromBytes, FromZeroes}; |
| 1749 | /// #[derive(FromZeroes, FromBytes)] |
| 1750 | /// struct MyStruct { |
| 1751 | /// # /* |
| 1752 | /// ... |
| 1753 | /// # */ |
| 1754 | /// } |
| 1755 | /// |
| 1756 | /// #[derive(FromZeroes, FromBytes)] |
| 1757 | /// #[repr(u8)] |
| 1758 | /// enum MyEnum { |
| 1759 | /// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E, |
| 1760 | /// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D, |
| 1761 | /// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C, |
| 1762 | /// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B, |
| 1763 | /// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A, |
| 1764 | /// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, |
| 1765 | /// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68, |
| 1766 | /// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77, |
| 1767 | /// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86, |
| 1768 | /// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95, |
| 1769 | /// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4, |
| 1770 | /// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3, |
| 1771 | /// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2, |
| 1772 | /// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1, |
| 1773 | /// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0, |
| 1774 | /// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF, |
| 1775 | /// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE, |
| 1776 | /// # VFF, |
| 1777 | /// # /* |
| 1778 | /// ... |
| 1779 | /// # */ |
| 1780 | /// } |
| 1781 | /// |
| 1782 | /// #[derive(FromZeroes, FromBytes)] |
| 1783 | /// union MyUnion { |
| 1784 | /// # variant: u8, |
| 1785 | /// # /* |
| 1786 | /// ... |
| 1787 | /// # */ |
| 1788 | /// } |
| 1789 | /// ``` |
| 1790 | /// |
| 1791 | /// This derive performs a sophisticated, compile-time safety analysis to |
| 1792 | /// determine whether a type is `FromBytes`. |
| 1793 | /// |
| 1794 | /// # Safety |
| 1795 | /// |
| 1796 | /// *This section describes what is required in order for `T: FromBytes`, and |
| 1797 | /// what unsafe code may assume of such types. If you don't plan on implementing |
| 1798 | /// `FromBytes` manually, and you don't plan on writing unsafe code that |
| 1799 | /// operates on `FromBytes` types, then you don't need to read this section.* |
| 1800 | /// |
| 1801 | /// If `T: FromBytes`, then unsafe code may assume that: |
| 1802 | /// - It is sound to treat any initialized sequence of bytes of length |
| 1803 | /// `size_of::<T>()` as a `T`. |
| 1804 | /// - Given `b: &[u8]` where `b.len() == size_of::<T>()`, `b` is aligned to |
| 1805 | /// `align_of::<T>()` it is sound to construct a `t: &T` at the same address |
| 1806 | /// as `b`, and it is sound for both `b` and `t` to be live at the same time. |
| 1807 | /// |
| 1808 | /// If a type is marked as `FromBytes` which violates this contract, it may |
| 1809 | /// cause undefined behavior. |
| 1810 | /// |
| 1811 | /// `#[derive(FromBytes)]` only permits [types which satisfy these |
| 1812 | /// requirements][derive-analysis]. |
| 1813 | /// |
| 1814 | #[cfg_attr ( |
| 1815 | feature = "derive" , |
| 1816 | doc = "[derive]: zerocopy_derive::FromBytes" , |
| 1817 | doc = "[derive-analysis]: zerocopy_derive::FromBytes#analysis" |
| 1818 | )] |
| 1819 | #[cfg_attr ( |
| 1820 | not(feature = "derive" ), |
| 1821 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromBytes.html" ), |
| 1822 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromBytes.html#analysis" ), |
| 1823 | )] |
| 1824 | pub unsafe trait FromBytes: FromZeroes { |
| 1825 | // The `Self: Sized` bound makes it so that `FromBytes` is still object |
| 1826 | // safe. |
| 1827 | #[doc (hidden)] |
| 1828 | fn only_derive_is_allowed_to_implement_this_trait() |
| 1829 | where |
| 1830 | Self: Sized; |
| 1831 | |
| 1832 | /// Interprets the given `bytes` as a `&Self` without copying. |
| 1833 | /// |
| 1834 | /// If `bytes.len() != size_of::<Self>()` or `bytes` is not aligned to |
| 1835 | /// `align_of::<Self>()`, this returns `None`. |
| 1836 | /// |
| 1837 | /// # Examples |
| 1838 | /// |
| 1839 | /// ``` |
| 1840 | /// use zerocopy::FromBytes; |
| 1841 | /// # use zerocopy_derive::*; |
| 1842 | /// |
| 1843 | /// #[derive(FromZeroes, FromBytes)] |
| 1844 | /// #[repr(C)] |
| 1845 | /// struct PacketHeader { |
| 1846 | /// src_port: [u8; 2], |
| 1847 | /// dst_port: [u8; 2], |
| 1848 | /// length: [u8; 2], |
| 1849 | /// checksum: [u8; 2], |
| 1850 | /// } |
| 1851 | /// |
| 1852 | /// // These bytes encode a `PacketHeader`. |
| 1853 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice(); |
| 1854 | /// |
| 1855 | /// let header = PacketHeader::ref_from(bytes).unwrap(); |
| 1856 | /// |
| 1857 | /// assert_eq!(header.src_port, [0, 1]); |
| 1858 | /// assert_eq!(header.dst_port, [2, 3]); |
| 1859 | /// assert_eq!(header.length, [4, 5]); |
| 1860 | /// assert_eq!(header.checksum, [6, 7]); |
| 1861 | /// ``` |
| 1862 | #[inline ] |
| 1863 | fn ref_from(bytes: &[u8]) -> Option<&Self> |
| 1864 | where |
| 1865 | Self: Sized, |
| 1866 | { |
| 1867 | Ref::<&[u8], Self>::new(bytes).map(Ref::into_ref) |
| 1868 | } |
| 1869 | |
| 1870 | /// Interprets the prefix of the given `bytes` as a `&Self` without copying. |
| 1871 | /// |
| 1872 | /// `ref_from_prefix` returns a reference to the first `size_of::<Self>()` |
| 1873 | /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or `bytes` is not |
| 1874 | /// aligned to `align_of::<Self>()`, this returns `None`. |
| 1875 | /// |
| 1876 | /// To also access the prefix bytes, use [`Ref::new_from_prefix`]. Then, use |
| 1877 | /// [`Ref::into_ref`] to get a `&Self` with the same lifetime. |
| 1878 | /// |
| 1879 | /// # Examples |
| 1880 | /// |
| 1881 | /// ``` |
| 1882 | /// use zerocopy::FromBytes; |
| 1883 | /// # use zerocopy_derive::*; |
| 1884 | /// |
| 1885 | /// #[derive(FromZeroes, FromBytes)] |
| 1886 | /// #[repr(C)] |
| 1887 | /// struct PacketHeader { |
| 1888 | /// src_port: [u8; 2], |
| 1889 | /// dst_port: [u8; 2], |
| 1890 | /// length: [u8; 2], |
| 1891 | /// checksum: [u8; 2], |
| 1892 | /// } |
| 1893 | /// |
| 1894 | /// // These are more bytes than are needed to encode a `PacketHeader`. |
| 1895 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| 1896 | /// |
| 1897 | /// let header = PacketHeader::ref_from_prefix(bytes).unwrap(); |
| 1898 | /// |
| 1899 | /// assert_eq!(header.src_port, [0, 1]); |
| 1900 | /// assert_eq!(header.dst_port, [2, 3]); |
| 1901 | /// assert_eq!(header.length, [4, 5]); |
| 1902 | /// assert_eq!(header.checksum, [6, 7]); |
| 1903 | /// ``` |
| 1904 | #[inline ] |
| 1905 | fn ref_from_prefix(bytes: &[u8]) -> Option<&Self> |
| 1906 | where |
| 1907 | Self: Sized, |
| 1908 | { |
| 1909 | Ref::<&[u8], Self>::new_from_prefix(bytes).map(|(r, _)| r.into_ref()) |
| 1910 | } |
| 1911 | |
| 1912 | /// Interprets the suffix of the given `bytes` as a `&Self` without copying. |
| 1913 | /// |
| 1914 | /// `ref_from_suffix` returns a reference to the last `size_of::<Self>()` |
| 1915 | /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or the suffix of |
| 1916 | /// `bytes` is not aligned to `align_of::<Self>()`, this returns `None`. |
| 1917 | /// |
| 1918 | /// To also access the suffix bytes, use [`Ref::new_from_suffix`]. Then, use |
| 1919 | /// [`Ref::into_ref`] to get a `&Self` with the same lifetime. |
| 1920 | /// |
| 1921 | /// # Examples |
| 1922 | /// |
| 1923 | /// ``` |
| 1924 | /// use zerocopy::FromBytes; |
| 1925 | /// # use zerocopy_derive::*; |
| 1926 | /// |
| 1927 | /// #[derive(FromZeroes, FromBytes)] |
| 1928 | /// #[repr(C)] |
| 1929 | /// struct PacketTrailer { |
| 1930 | /// frame_check_sequence: [u8; 4], |
| 1931 | /// } |
| 1932 | /// |
| 1933 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
| 1934 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| 1935 | /// |
| 1936 | /// let trailer = PacketTrailer::ref_from_suffix(bytes).unwrap(); |
| 1937 | /// |
| 1938 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
| 1939 | /// ``` |
| 1940 | #[inline ] |
| 1941 | fn ref_from_suffix(bytes: &[u8]) -> Option<&Self> |
| 1942 | where |
| 1943 | Self: Sized, |
| 1944 | { |
| 1945 | Ref::<&[u8], Self>::new_from_suffix(bytes).map(|(_, r)| r.into_ref()) |
| 1946 | } |
| 1947 | |
| 1948 | /// Interprets the given `bytes` as a `&mut Self` without copying. |
| 1949 | /// |
| 1950 | /// If `bytes.len() != size_of::<Self>()` or `bytes` is not aligned to |
| 1951 | /// `align_of::<Self>()`, this returns `None`. |
| 1952 | /// |
| 1953 | /// # Examples |
| 1954 | /// |
| 1955 | /// ``` |
| 1956 | /// use zerocopy::FromBytes; |
| 1957 | /// # use zerocopy_derive::*; |
| 1958 | /// |
| 1959 | /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| 1960 | /// #[repr(C)] |
| 1961 | /// struct PacketHeader { |
| 1962 | /// src_port: [u8; 2], |
| 1963 | /// dst_port: [u8; 2], |
| 1964 | /// length: [u8; 2], |
| 1965 | /// checksum: [u8; 2], |
| 1966 | /// } |
| 1967 | /// |
| 1968 | /// // These bytes encode a `PacketHeader`. |
| 1969 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..]; |
| 1970 | /// |
| 1971 | /// let header = PacketHeader::mut_from(bytes).unwrap(); |
| 1972 | /// |
| 1973 | /// assert_eq!(header.src_port, [0, 1]); |
| 1974 | /// assert_eq!(header.dst_port, [2, 3]); |
| 1975 | /// assert_eq!(header.length, [4, 5]); |
| 1976 | /// assert_eq!(header.checksum, [6, 7]); |
| 1977 | /// |
| 1978 | /// header.checksum = [0, 0]; |
| 1979 | /// |
| 1980 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0]); |
| 1981 | /// ``` |
| 1982 | #[inline ] |
| 1983 | fn mut_from(bytes: &mut [u8]) -> Option<&mut Self> |
| 1984 | where |
| 1985 | Self: Sized + AsBytes, |
| 1986 | { |
| 1987 | Ref::<&mut [u8], Self>::new(bytes).map(Ref::into_mut) |
| 1988 | } |
| 1989 | |
| 1990 | /// Interprets the prefix of the given `bytes` as a `&mut Self` without |
| 1991 | /// copying. |
| 1992 | /// |
| 1993 | /// `mut_from_prefix` returns a reference to the first `size_of::<Self>()` |
| 1994 | /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or `bytes` is not |
| 1995 | /// aligned to `align_of::<Self>()`, this returns `None`. |
| 1996 | /// |
| 1997 | /// To also access the prefix bytes, use [`Ref::new_from_prefix`]. Then, use |
| 1998 | /// [`Ref::into_mut`] to get a `&mut Self` with the same lifetime. |
| 1999 | /// |
| 2000 | /// # Examples |
| 2001 | /// |
| 2002 | /// ``` |
| 2003 | /// use zerocopy::FromBytes; |
| 2004 | /// # use zerocopy_derive::*; |
| 2005 | /// |
| 2006 | /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| 2007 | /// #[repr(C)] |
| 2008 | /// struct PacketHeader { |
| 2009 | /// src_port: [u8; 2], |
| 2010 | /// dst_port: [u8; 2], |
| 2011 | /// length: [u8; 2], |
| 2012 | /// checksum: [u8; 2], |
| 2013 | /// } |
| 2014 | /// |
| 2015 | /// // These are more bytes than are needed to encode a `PacketHeader`. |
| 2016 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
| 2017 | /// |
| 2018 | /// let header = PacketHeader::mut_from_prefix(bytes).unwrap(); |
| 2019 | /// |
| 2020 | /// assert_eq!(header.src_port, [0, 1]); |
| 2021 | /// assert_eq!(header.dst_port, [2, 3]); |
| 2022 | /// assert_eq!(header.length, [4, 5]); |
| 2023 | /// assert_eq!(header.checksum, [6, 7]); |
| 2024 | /// |
| 2025 | /// header.checksum = [0, 0]; |
| 2026 | /// |
| 2027 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 8, 9]); |
| 2028 | /// ``` |
| 2029 | #[inline ] |
| 2030 | fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self> |
| 2031 | where |
| 2032 | Self: Sized + AsBytes, |
| 2033 | { |
| 2034 | Ref::<&mut [u8], Self>::new_from_prefix(bytes).map(|(r, _)| r.into_mut()) |
| 2035 | } |
| 2036 | |
| 2037 | /// Interprets the suffix of the given `bytes` as a `&mut Self` without copying. |
| 2038 | /// |
| 2039 | /// `mut_from_suffix` returns a reference to the last `size_of::<Self>()` |
| 2040 | /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or the suffix of |
| 2041 | /// `bytes` is not aligned to `align_of::<Self>()`, this returns `None`. |
| 2042 | /// |
| 2043 | /// To also access the suffix bytes, use [`Ref::new_from_suffix`]. Then, |
| 2044 | /// use [`Ref::into_mut`] to get a `&mut Self` with the same lifetime. |
| 2045 | /// |
| 2046 | /// # Examples |
| 2047 | /// |
| 2048 | /// ``` |
| 2049 | /// use zerocopy::FromBytes; |
| 2050 | /// # use zerocopy_derive::*; |
| 2051 | /// |
| 2052 | /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| 2053 | /// #[repr(C)] |
| 2054 | /// struct PacketTrailer { |
| 2055 | /// frame_check_sequence: [u8; 4], |
| 2056 | /// } |
| 2057 | /// |
| 2058 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
| 2059 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
| 2060 | /// |
| 2061 | /// let trailer = PacketTrailer::mut_from_suffix(bytes).unwrap(); |
| 2062 | /// |
| 2063 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
| 2064 | /// |
| 2065 | /// trailer.frame_check_sequence = [0, 0, 0, 0]; |
| 2066 | /// |
| 2067 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 0, 0]); |
| 2068 | /// ``` |
| 2069 | #[inline ] |
| 2070 | fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self> |
| 2071 | where |
| 2072 | Self: Sized + AsBytes, |
| 2073 | { |
| 2074 | Ref::<&mut [u8], Self>::new_from_suffix(bytes).map(|(_, r)| r.into_mut()) |
| 2075 | } |
| 2076 | |
| 2077 | /// Interprets the given `bytes` as a `&[Self]` without copying. |
| 2078 | /// |
| 2079 | /// If `bytes.len() % size_of::<Self>() != 0` or `bytes` is not aligned to |
| 2080 | /// `align_of::<Self>()`, this returns `None`. |
| 2081 | /// |
| 2082 | /// If you need to convert a specific number of slice elements, see |
| 2083 | /// [`slice_from_prefix`](FromBytes::slice_from_prefix) or |
| 2084 | /// [`slice_from_suffix`](FromBytes::slice_from_suffix). |
| 2085 | /// |
| 2086 | /// # Panics |
| 2087 | /// |
| 2088 | /// If `Self` is a zero-sized type. |
| 2089 | /// |
| 2090 | /// # Examples |
| 2091 | /// |
| 2092 | /// ``` |
| 2093 | /// use zerocopy::FromBytes; |
| 2094 | /// # use zerocopy_derive::*; |
| 2095 | /// |
| 2096 | /// # #[derive(Debug, PartialEq, Eq)] |
| 2097 | /// #[derive(FromZeroes, FromBytes)] |
| 2098 | /// #[repr(C)] |
| 2099 | /// struct Pixel { |
| 2100 | /// r: u8, |
| 2101 | /// g: u8, |
| 2102 | /// b: u8, |
| 2103 | /// a: u8, |
| 2104 | /// } |
| 2105 | /// |
| 2106 | /// // These bytes encode two `Pixel`s. |
| 2107 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice(); |
| 2108 | /// |
| 2109 | /// let pixels = Pixel::slice_from(bytes).unwrap(); |
| 2110 | /// |
| 2111 | /// assert_eq!(pixels, &[ |
| 2112 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
| 2113 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
| 2114 | /// ]); |
| 2115 | /// ``` |
| 2116 | #[inline ] |
| 2117 | fn slice_from(bytes: &[u8]) -> Option<&[Self]> |
| 2118 | where |
| 2119 | Self: Sized, |
| 2120 | { |
| 2121 | Ref::<_, [Self]>::new_slice(bytes).map(|r| r.into_slice()) |
| 2122 | } |
| 2123 | |
| 2124 | /// Interprets the prefix of the given `bytes` as a `&[Self]` with length |
| 2125 | /// equal to `count` without copying. |
| 2126 | /// |
| 2127 | /// This method verifies that `bytes.len() >= size_of::<T>() * count` |
| 2128 | /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| 2129 | /// first `size_of::<T>() * count` bytes from `bytes` to construct a |
| 2130 | /// `&[Self]`, and returns the remaining bytes to the caller. It also |
| 2131 | /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| 2132 | /// If any of the length, alignment, or overflow checks fail, it returns |
| 2133 | /// `None`. |
| 2134 | /// |
| 2135 | /// # Panics |
| 2136 | /// |
| 2137 | /// If `T` is a zero-sized type. |
| 2138 | /// |
| 2139 | /// # Examples |
| 2140 | /// |
| 2141 | /// ``` |
| 2142 | /// use zerocopy::FromBytes; |
| 2143 | /// # use zerocopy_derive::*; |
| 2144 | /// |
| 2145 | /// # #[derive(Debug, PartialEq, Eq)] |
| 2146 | /// #[derive(FromZeroes, FromBytes)] |
| 2147 | /// #[repr(C)] |
| 2148 | /// struct Pixel { |
| 2149 | /// r: u8, |
| 2150 | /// g: u8, |
| 2151 | /// b: u8, |
| 2152 | /// a: u8, |
| 2153 | /// } |
| 2154 | /// |
| 2155 | /// // These are more bytes than are needed to encode two `Pixel`s. |
| 2156 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| 2157 | /// |
| 2158 | /// let (pixels, rest) = Pixel::slice_from_prefix(bytes, 2).unwrap(); |
| 2159 | /// |
| 2160 | /// assert_eq!(pixels, &[ |
| 2161 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
| 2162 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
| 2163 | /// ]); |
| 2164 | /// |
| 2165 | /// assert_eq!(rest, &[8, 9]); |
| 2166 | /// ``` |
| 2167 | #[inline ] |
| 2168 | fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])> |
| 2169 | where |
| 2170 | Self: Sized, |
| 2171 | { |
| 2172 | Ref::<_, [Self]>::new_slice_from_prefix(bytes, count).map(|(r, b)| (r.into_slice(), b)) |
| 2173 | } |
| 2174 | |
| 2175 | /// Interprets the suffix of the given `bytes` as a `&[Self]` with length |
| 2176 | /// equal to `count` without copying. |
| 2177 | /// |
| 2178 | /// This method verifies that `bytes.len() >= size_of::<T>() * count` |
| 2179 | /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| 2180 | /// last `size_of::<T>() * count` bytes from `bytes` to construct a |
| 2181 | /// `&[Self]`, and returns the preceding bytes to the caller. It also |
| 2182 | /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| 2183 | /// If any of the length, alignment, or overflow checks fail, it returns |
| 2184 | /// `None`. |
| 2185 | /// |
| 2186 | /// # Panics |
| 2187 | /// |
| 2188 | /// If `T` is a zero-sized type. |
| 2189 | /// |
| 2190 | /// # Examples |
| 2191 | /// |
| 2192 | /// ``` |
| 2193 | /// use zerocopy::FromBytes; |
| 2194 | /// # use zerocopy_derive::*; |
| 2195 | /// |
| 2196 | /// # #[derive(Debug, PartialEq, Eq)] |
| 2197 | /// #[derive(FromZeroes, FromBytes)] |
| 2198 | /// #[repr(C)] |
| 2199 | /// struct Pixel { |
| 2200 | /// r: u8, |
| 2201 | /// g: u8, |
| 2202 | /// b: u8, |
| 2203 | /// a: u8, |
| 2204 | /// } |
| 2205 | /// |
| 2206 | /// // These are more bytes than are needed to encode two `Pixel`s. |
| 2207 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| 2208 | /// |
| 2209 | /// let (rest, pixels) = Pixel::slice_from_suffix(bytes, 2).unwrap(); |
| 2210 | /// |
| 2211 | /// assert_eq!(rest, &[0, 1]); |
| 2212 | /// |
| 2213 | /// assert_eq!(pixels, &[ |
| 2214 | /// Pixel { r: 2, g: 3, b: 4, a: 5 }, |
| 2215 | /// Pixel { r: 6, g: 7, b: 8, a: 9 }, |
| 2216 | /// ]); |
| 2217 | /// ``` |
| 2218 | #[inline ] |
| 2219 | fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])> |
| 2220 | where |
| 2221 | Self: Sized, |
| 2222 | { |
| 2223 | Ref::<_, [Self]>::new_slice_from_suffix(bytes, count).map(|(b, r)| (b, r.into_slice())) |
| 2224 | } |
| 2225 | |
| 2226 | /// Interprets the given `bytes` as a `&mut [Self]` without copying. |
| 2227 | /// |
| 2228 | /// If `bytes.len() % size_of::<T>() != 0` or `bytes` is not aligned to |
| 2229 | /// `align_of::<T>()`, this returns `None`. |
| 2230 | /// |
| 2231 | /// If you need to convert a specific number of slice elements, see |
| 2232 | /// [`mut_slice_from_prefix`](FromBytes::mut_slice_from_prefix) or |
| 2233 | /// [`mut_slice_from_suffix`](FromBytes::mut_slice_from_suffix). |
| 2234 | /// |
| 2235 | /// # Panics |
| 2236 | /// |
| 2237 | /// If `T` is a zero-sized type. |
| 2238 | /// |
| 2239 | /// # Examples |
| 2240 | /// |
| 2241 | /// ``` |
| 2242 | /// use zerocopy::FromBytes; |
| 2243 | /// # use zerocopy_derive::*; |
| 2244 | /// |
| 2245 | /// # #[derive(Debug, PartialEq, Eq)] |
| 2246 | /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| 2247 | /// #[repr(C)] |
| 2248 | /// struct Pixel { |
| 2249 | /// r: u8, |
| 2250 | /// g: u8, |
| 2251 | /// b: u8, |
| 2252 | /// a: u8, |
| 2253 | /// } |
| 2254 | /// |
| 2255 | /// // These bytes encode two `Pixel`s. |
| 2256 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..]; |
| 2257 | /// |
| 2258 | /// let pixels = Pixel::mut_slice_from(bytes).unwrap(); |
| 2259 | /// |
| 2260 | /// assert_eq!(pixels, &[ |
| 2261 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
| 2262 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
| 2263 | /// ]); |
| 2264 | /// |
| 2265 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
| 2266 | /// |
| 2267 | /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0]); |
| 2268 | /// ``` |
| 2269 | #[inline ] |
| 2270 | fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]> |
| 2271 | where |
| 2272 | Self: Sized + AsBytes, |
| 2273 | { |
| 2274 | Ref::<_, [Self]>::new_slice(bytes).map(|r| r.into_mut_slice()) |
| 2275 | } |
| 2276 | |
| 2277 | /// Interprets the prefix of the given `bytes` as a `&mut [Self]` with length |
| 2278 | /// equal to `count` without copying. |
| 2279 | /// |
| 2280 | /// This method verifies that `bytes.len() >= size_of::<T>() * count` |
| 2281 | /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| 2282 | /// first `size_of::<T>() * count` bytes from `bytes` to construct a |
| 2283 | /// `&[Self]`, and returns the remaining bytes to the caller. It also |
| 2284 | /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| 2285 | /// If any of the length, alignment, or overflow checks fail, it returns |
| 2286 | /// `None`. |
| 2287 | /// |
| 2288 | /// # Panics |
| 2289 | /// |
| 2290 | /// If `T` is a zero-sized type. |
| 2291 | /// |
| 2292 | /// # Examples |
| 2293 | /// |
| 2294 | /// ``` |
| 2295 | /// use zerocopy::FromBytes; |
| 2296 | /// # use zerocopy_derive::*; |
| 2297 | /// |
| 2298 | /// # #[derive(Debug, PartialEq, Eq)] |
| 2299 | /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| 2300 | /// #[repr(C)] |
| 2301 | /// struct Pixel { |
| 2302 | /// r: u8, |
| 2303 | /// g: u8, |
| 2304 | /// b: u8, |
| 2305 | /// a: u8, |
| 2306 | /// } |
| 2307 | /// |
| 2308 | /// // These are more bytes than are needed to encode two `Pixel`s. |
| 2309 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
| 2310 | /// |
| 2311 | /// let (pixels, rest) = Pixel::mut_slice_from_prefix(bytes, 2).unwrap(); |
| 2312 | /// |
| 2313 | /// assert_eq!(pixels, &[ |
| 2314 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
| 2315 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
| 2316 | /// ]); |
| 2317 | /// |
| 2318 | /// assert_eq!(rest, &[8, 9]); |
| 2319 | /// |
| 2320 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
| 2321 | /// |
| 2322 | /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0, 8, 9]); |
| 2323 | /// ``` |
| 2324 | #[inline ] |
| 2325 | fn mut_slice_from_prefix(bytes: &mut [u8], count: usize) -> Option<(&mut [Self], &mut [u8])> |
| 2326 | where |
| 2327 | Self: Sized + AsBytes, |
| 2328 | { |
| 2329 | Ref::<_, [Self]>::new_slice_from_prefix(bytes, count).map(|(r, b)| (r.into_mut_slice(), b)) |
| 2330 | } |
| 2331 | |
| 2332 | /// Interprets the suffix of the given `bytes` as a `&mut [Self]` with length |
| 2333 | /// equal to `count` without copying. |
| 2334 | /// |
| 2335 | /// This method verifies that `bytes.len() >= size_of::<T>() * count` |
| 2336 | /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| 2337 | /// last `size_of::<T>() * count` bytes from `bytes` to construct a |
| 2338 | /// `&[Self]`, and returns the preceding bytes to the caller. It also |
| 2339 | /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| 2340 | /// If any of the length, alignment, or overflow checks fail, it returns |
| 2341 | /// `None`. |
| 2342 | /// |
| 2343 | /// # Panics |
| 2344 | /// |
| 2345 | /// If `T` is a zero-sized type. |
| 2346 | /// |
| 2347 | /// # Examples |
| 2348 | /// |
| 2349 | /// ``` |
| 2350 | /// use zerocopy::FromBytes; |
| 2351 | /// # use zerocopy_derive::*; |
| 2352 | /// |
| 2353 | /// # #[derive(Debug, PartialEq, Eq)] |
| 2354 | /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| 2355 | /// #[repr(C)] |
| 2356 | /// struct Pixel { |
| 2357 | /// r: u8, |
| 2358 | /// g: u8, |
| 2359 | /// b: u8, |
| 2360 | /// a: u8, |
| 2361 | /// } |
| 2362 | /// |
| 2363 | /// // These are more bytes than are needed to encode two `Pixel`s. |
| 2364 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
| 2365 | /// |
| 2366 | /// let (rest, pixels) = Pixel::mut_slice_from_suffix(bytes, 2).unwrap(); |
| 2367 | /// |
| 2368 | /// assert_eq!(rest, &[0, 1]); |
| 2369 | /// |
| 2370 | /// assert_eq!(pixels, &[ |
| 2371 | /// Pixel { r: 2, g: 3, b: 4, a: 5 }, |
| 2372 | /// Pixel { r: 6, g: 7, b: 8, a: 9 }, |
| 2373 | /// ]); |
| 2374 | /// |
| 2375 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
| 2376 | /// |
| 2377 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 0, 0]); |
| 2378 | /// ``` |
| 2379 | #[inline ] |
| 2380 | fn mut_slice_from_suffix(bytes: &mut [u8], count: usize) -> Option<(&mut [u8], &mut [Self])> |
| 2381 | where |
| 2382 | Self: Sized + AsBytes, |
| 2383 | { |
| 2384 | Ref::<_, [Self]>::new_slice_from_suffix(bytes, count).map(|(b, r)| (b, r.into_mut_slice())) |
| 2385 | } |
| 2386 | |
| 2387 | /// Reads a copy of `Self` from `bytes`. |
| 2388 | /// |
| 2389 | /// If `bytes.len() != size_of::<Self>()`, `read_from` returns `None`. |
| 2390 | /// |
| 2391 | /// # Examples |
| 2392 | /// |
| 2393 | /// ``` |
| 2394 | /// use zerocopy::FromBytes; |
| 2395 | /// # use zerocopy_derive::*; |
| 2396 | /// |
| 2397 | /// #[derive(FromZeroes, FromBytes)] |
| 2398 | /// #[repr(C)] |
| 2399 | /// struct PacketHeader { |
| 2400 | /// src_port: [u8; 2], |
| 2401 | /// dst_port: [u8; 2], |
| 2402 | /// length: [u8; 2], |
| 2403 | /// checksum: [u8; 2], |
| 2404 | /// } |
| 2405 | /// |
| 2406 | /// // These bytes encode a `PacketHeader`. |
| 2407 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice(); |
| 2408 | /// |
| 2409 | /// let header = PacketHeader::read_from(bytes).unwrap(); |
| 2410 | /// |
| 2411 | /// assert_eq!(header.src_port, [0, 1]); |
| 2412 | /// assert_eq!(header.dst_port, [2, 3]); |
| 2413 | /// assert_eq!(header.length, [4, 5]); |
| 2414 | /// assert_eq!(header.checksum, [6, 7]); |
| 2415 | /// ``` |
| 2416 | #[inline ] |
| 2417 | fn read_from(bytes: &[u8]) -> Option<Self> |
| 2418 | where |
| 2419 | Self: Sized, |
| 2420 | { |
| 2421 | Ref::<_, Unalign<Self>>::new_unaligned(bytes).map(|r| r.read().into_inner()) |
| 2422 | } |
| 2423 | |
| 2424 | /// Reads a copy of `Self` from the prefix of `bytes`. |
| 2425 | /// |
| 2426 | /// `read_from_prefix` reads a `Self` from the first `size_of::<Self>()` |
| 2427 | /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns |
| 2428 | /// `None`. |
| 2429 | /// |
| 2430 | /// # Examples |
| 2431 | /// |
| 2432 | /// ``` |
| 2433 | /// use zerocopy::FromBytes; |
| 2434 | /// # use zerocopy_derive::*; |
| 2435 | /// |
| 2436 | /// #[derive(FromZeroes, FromBytes)] |
| 2437 | /// #[repr(C)] |
| 2438 | /// struct PacketHeader { |
| 2439 | /// src_port: [u8; 2], |
| 2440 | /// dst_port: [u8; 2], |
| 2441 | /// length: [u8; 2], |
| 2442 | /// checksum: [u8; 2], |
| 2443 | /// } |
| 2444 | /// |
| 2445 | /// // These are more bytes than are needed to encode a `PacketHeader`. |
| 2446 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| 2447 | /// |
| 2448 | /// let header = PacketHeader::read_from_prefix(bytes).unwrap(); |
| 2449 | /// |
| 2450 | /// assert_eq!(header.src_port, [0, 1]); |
| 2451 | /// assert_eq!(header.dst_port, [2, 3]); |
| 2452 | /// assert_eq!(header.length, [4, 5]); |
| 2453 | /// assert_eq!(header.checksum, [6, 7]); |
| 2454 | /// ``` |
| 2455 | #[inline ] |
| 2456 | fn read_from_prefix(bytes: &[u8]) -> Option<Self> |
| 2457 | where |
| 2458 | Self: Sized, |
| 2459 | { |
| 2460 | Ref::<_, Unalign<Self>>::new_unaligned_from_prefix(bytes) |
| 2461 | .map(|(r, _)| r.read().into_inner()) |
| 2462 | } |
| 2463 | |
| 2464 | /// Reads a copy of `Self` from the suffix of `bytes`. |
| 2465 | /// |
| 2466 | /// `read_from_suffix` reads a `Self` from the last `size_of::<Self>()` |
| 2467 | /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns |
| 2468 | /// `None`. |
| 2469 | /// |
| 2470 | /// # Examples |
| 2471 | /// |
| 2472 | /// ``` |
| 2473 | /// use zerocopy::FromBytes; |
| 2474 | /// # use zerocopy_derive::*; |
| 2475 | /// |
| 2476 | /// #[derive(FromZeroes, FromBytes)] |
| 2477 | /// #[repr(C)] |
| 2478 | /// struct PacketTrailer { |
| 2479 | /// frame_check_sequence: [u8; 4], |
| 2480 | /// } |
| 2481 | /// |
| 2482 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
| 2483 | /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| 2484 | /// |
| 2485 | /// let trailer = PacketTrailer::read_from_suffix(bytes).unwrap(); |
| 2486 | /// |
| 2487 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
| 2488 | /// ``` |
| 2489 | #[inline ] |
| 2490 | fn read_from_suffix(bytes: &[u8]) -> Option<Self> |
| 2491 | where |
| 2492 | Self: Sized, |
| 2493 | { |
| 2494 | Ref::<_, Unalign<Self>>::new_unaligned_from_suffix(bytes) |
| 2495 | .map(|(_, r)| r.read().into_inner()) |
| 2496 | } |
| 2497 | } |
| 2498 | |
| 2499 | /// Analyzes whether a type is [`AsBytes`]. |
| 2500 | /// |
| 2501 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
| 2502 | /// the [safety conditions] of `AsBytes` and implements `AsBytes` if it is |
| 2503 | /// sound to do so. This derive can be applied to structs, enums, and unions; |
| 2504 | /// e.g.: |
| 2505 | /// |
| 2506 | /// ``` |
| 2507 | /// # use zerocopy_derive::{AsBytes}; |
| 2508 | /// #[derive(AsBytes)] |
| 2509 | /// #[repr(C)] |
| 2510 | /// struct MyStruct { |
| 2511 | /// # /* |
| 2512 | /// ... |
| 2513 | /// # */ |
| 2514 | /// } |
| 2515 | /// |
| 2516 | /// #[derive(AsBytes)] |
| 2517 | /// #[repr(u8)] |
| 2518 | /// enum MyEnum { |
| 2519 | /// # Variant, |
| 2520 | /// # /* |
| 2521 | /// ... |
| 2522 | /// # */ |
| 2523 | /// } |
| 2524 | /// |
| 2525 | /// #[derive(AsBytes)] |
| 2526 | /// #[repr(C)] |
| 2527 | /// union MyUnion { |
| 2528 | /// # variant: u8, |
| 2529 | /// # /* |
| 2530 | /// ... |
| 2531 | /// # */ |
| 2532 | /// } |
| 2533 | /// ``` |
| 2534 | /// |
| 2535 | /// [safety conditions]: trait@AsBytes#safety |
| 2536 | /// |
| 2537 | /// # Error Messages |
| 2538 | /// |
| 2539 | /// Due to the way that the custom derive for `AsBytes` is implemented, you may |
| 2540 | /// get an error like this: |
| 2541 | /// |
| 2542 | /// ```text |
| 2543 | /// error[E0277]: the trait bound `HasPadding<Foo, true>: ShouldBe<false>` is not satisfied |
| 2544 | /// --> lib.rs:23:10 |
| 2545 | /// | |
| 2546 | /// 1 | #[derive(AsBytes)] |
| 2547 | /// | ^^^^^^^ the trait `ShouldBe<false>` is not implemented for `HasPadding<Foo, true>` |
| 2548 | /// | |
| 2549 | /// = help: the trait `ShouldBe<VALUE>` is implemented for `HasPadding<T, VALUE>` |
| 2550 | /// ``` |
| 2551 | /// |
| 2552 | /// This error indicates that the type being annotated has padding bytes, which |
| 2553 | /// is illegal for `AsBytes` types. Consider reducing the alignment of some |
| 2554 | /// fields by using types in the [`byteorder`] module, adding explicit struct |
| 2555 | /// fields where those padding bytes would be, or using `#[repr(packed)]`. See |
| 2556 | /// the Rust Reference's page on [type layout] for more information |
| 2557 | /// about type layout and padding. |
| 2558 | /// |
| 2559 | /// [type layout]: https://doc.rust-lang.org/reference/type-layout.html |
| 2560 | /// |
| 2561 | /// # Analysis |
| 2562 | /// |
| 2563 | /// *This section describes, roughly, the analysis performed by this derive to |
| 2564 | /// determine whether it is sound to implement `AsBytes` for a given type. |
| 2565 | /// Unless you are modifying the implementation of this derive, or attempting to |
| 2566 | /// manually implement `AsBytes` for a type yourself, you don't need to read |
| 2567 | /// this section.* |
| 2568 | /// |
| 2569 | /// If a type has the following properties, then this derive can implement |
| 2570 | /// `AsBytes` for that type: |
| 2571 | /// |
| 2572 | /// - If the type is a struct: |
| 2573 | /// - It must have a defined representation (`repr(C)`, `repr(transparent)`, |
| 2574 | /// or `repr(packed)`). |
| 2575 | /// - All of its fields must be `AsBytes`. |
| 2576 | /// - Its layout must have no padding. This is always true for |
| 2577 | /// `repr(transparent)` and `repr(packed)`. For `repr(C)`, see the layout |
| 2578 | /// algorithm described in the [Rust Reference]. |
| 2579 | /// - If the type is an enum: |
| 2580 | /// - It must be a C-like enum (meaning that all variants have no fields). |
| 2581 | /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
| 2582 | /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
| 2583 | /// - The type must not contain any [`UnsafeCell`]s (this is required in order |
| 2584 | /// for it to be sound to construct a `&[u8]` and a `&T` to the same region of |
| 2585 | /// memory). The type may contain references or pointers to `UnsafeCell`s so |
| 2586 | /// long as those values can themselves be initialized from zeroes (`AsBytes` |
| 2587 | /// is not currently implemented for, e.g., `Option<&UnsafeCell<_>>`, but it |
| 2588 | /// could be one day). |
| 2589 | /// |
| 2590 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
| 2591 | /// |
| 2592 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
| 2593 | /// documented [safety conditions] of `FromBytes`, and must *not* rely on the |
| 2594 | /// implementation details of this derive. |
| 2595 | /// |
| 2596 | /// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html |
| 2597 | #[cfg (any(feature = "derive" , test))] |
| 2598 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
| 2599 | pub use zerocopy_derive::AsBytes; |
| 2600 | |
| 2601 | /// Types that can be viewed as an immutable slice of initialized bytes. |
| 2602 | /// |
| 2603 | /// Any `AsBytes` type can be viewed as a slice of initialized bytes of the same |
| 2604 | /// size. This is useful for efficiently serializing structured data as raw |
| 2605 | /// bytes. |
| 2606 | /// |
| 2607 | /// # Implementation |
| 2608 | /// |
| 2609 | /// **Do not implement this trait yourself!** Instead, use |
| 2610 | /// [`#[derive(AsBytes)]`][derive] (requires the `derive` Cargo feature); e.g.: |
| 2611 | /// |
| 2612 | /// ``` |
| 2613 | /// # use zerocopy_derive::AsBytes; |
| 2614 | /// #[derive(AsBytes)] |
| 2615 | /// #[repr(C)] |
| 2616 | /// struct MyStruct { |
| 2617 | /// # /* |
| 2618 | /// ... |
| 2619 | /// # */ |
| 2620 | /// } |
| 2621 | /// |
| 2622 | /// #[derive(AsBytes)] |
| 2623 | /// #[repr(u8)] |
| 2624 | /// enum MyEnum { |
| 2625 | /// # Variant0, |
| 2626 | /// # /* |
| 2627 | /// ... |
| 2628 | /// # */ |
| 2629 | /// } |
| 2630 | /// |
| 2631 | /// #[derive(AsBytes)] |
| 2632 | /// #[repr(C)] |
| 2633 | /// union MyUnion { |
| 2634 | /// # variant: u8, |
| 2635 | /// # /* |
| 2636 | /// ... |
| 2637 | /// # */ |
| 2638 | /// } |
| 2639 | /// ``` |
| 2640 | /// |
| 2641 | /// This derive performs a sophisticated, compile-time safety analysis to |
| 2642 | /// determine whether a type is `AsBytes`. See the [derive |
| 2643 | /// documentation][derive] for guidance on how to interpret error messages |
| 2644 | /// produced by the derive's analysis. |
| 2645 | /// |
| 2646 | /// # Safety |
| 2647 | /// |
| 2648 | /// *This section describes what is required in order for `T: AsBytes`, and |
| 2649 | /// what unsafe code may assume of such types. If you don't plan on implementing |
| 2650 | /// `AsBytes` manually, and you don't plan on writing unsafe code that |
| 2651 | /// operates on `AsBytes` types, then you don't need to read this section.* |
| 2652 | /// |
| 2653 | /// If `T: AsBytes`, then unsafe code may assume that: |
| 2654 | /// - It is sound to treat any `t: T` as an immutable `[u8]` of length |
| 2655 | /// `size_of_val(t)`. |
| 2656 | /// - Given `t: &T`, it is sound to construct a `b: &[u8]` where `b.len() == |
| 2657 | /// size_of_val(t)` at the same address as `t`, and it is sound for both `b` |
| 2658 | /// and `t` to be live at the same time. |
| 2659 | /// |
| 2660 | /// If a type is marked as `AsBytes` which violates this contract, it may cause |
| 2661 | /// undefined behavior. |
| 2662 | /// |
| 2663 | /// `#[derive(AsBytes)]` only permits [types which satisfy these |
| 2664 | /// requirements][derive-analysis]. |
| 2665 | /// |
| 2666 | #[cfg_attr ( |
| 2667 | feature = "derive" , |
| 2668 | doc = "[derive]: zerocopy_derive::AsBytes" , |
| 2669 | doc = "[derive-analysis]: zerocopy_derive::AsBytes#analysis" |
| 2670 | )] |
| 2671 | #[cfg_attr ( |
| 2672 | not(feature = "derive" ), |
| 2673 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.AsBytes.html" ), |
| 2674 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.AsBytes.html#analysis" ), |
| 2675 | )] |
| 2676 | pub unsafe trait AsBytes { |
| 2677 | // The `Self: Sized` bound makes it so that this function doesn't prevent |
| 2678 | // `AsBytes` from being object safe. Note that other `AsBytes` methods |
| 2679 | // prevent object safety, but those provide a benefit in exchange for object |
| 2680 | // safety. If at some point we remove those methods, change their type |
| 2681 | // signatures, or move them out of this trait so that `AsBytes` is object |
| 2682 | // safe again, it's important that this function not prevent object safety. |
| 2683 | #[doc (hidden)] |
| 2684 | fn only_derive_is_allowed_to_implement_this_trait() |
| 2685 | where |
| 2686 | Self: Sized; |
| 2687 | |
| 2688 | /// Gets the bytes of this value. |
| 2689 | /// |
| 2690 | /// `as_bytes` provides access to the bytes of this value as an immutable |
| 2691 | /// byte slice. |
| 2692 | /// |
| 2693 | /// # Examples |
| 2694 | /// |
| 2695 | /// ``` |
| 2696 | /// use zerocopy::AsBytes; |
| 2697 | /// # use zerocopy_derive::*; |
| 2698 | /// |
| 2699 | /// #[derive(AsBytes)] |
| 2700 | /// #[repr(C)] |
| 2701 | /// struct PacketHeader { |
| 2702 | /// src_port: [u8; 2], |
| 2703 | /// dst_port: [u8; 2], |
| 2704 | /// length: [u8; 2], |
| 2705 | /// checksum: [u8; 2], |
| 2706 | /// } |
| 2707 | /// |
| 2708 | /// let header = PacketHeader { |
| 2709 | /// src_port: [0, 1], |
| 2710 | /// dst_port: [2, 3], |
| 2711 | /// length: [4, 5], |
| 2712 | /// checksum: [6, 7], |
| 2713 | /// }; |
| 2714 | /// |
| 2715 | /// let bytes = header.as_bytes(); |
| 2716 | /// |
| 2717 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 2718 | /// ``` |
| 2719 | #[inline (always)] |
| 2720 | fn as_bytes(&self) -> &[u8] { |
| 2721 | // Note that this method does not have a `Self: Sized` bound; |
| 2722 | // `size_of_val` works for unsized values too. |
| 2723 | let len = mem::size_of_val(self); |
| 2724 | let slf: *const Self = self; |
| 2725 | |
| 2726 | // SAFETY: |
| 2727 | // - `slf.cast::<u8>()` is valid for reads for `len * |
| 2728 | // mem::size_of::<u8>()` many bytes because... |
| 2729 | // - `slf` is the same pointer as `self`, and `self` is a reference |
| 2730 | // which points to an object whose size is `len`. Thus... |
| 2731 | // - The entire region of `len` bytes starting at `slf` is contained |
| 2732 | // within a single allocation. |
| 2733 | // - `slf` is non-null. |
| 2734 | // - `slf` is trivially aligned to `align_of::<u8>() == 1`. |
| 2735 | // - `Self: AsBytes` ensures that all of the bytes of `slf` are |
| 2736 | // initialized. |
| 2737 | // - Since `slf` is derived from `self`, and `self` is an immutable |
| 2738 | // reference, the only other references to this memory region that |
| 2739 | // could exist are other immutable references, and those don't allow |
| 2740 | // mutation. `AsBytes` prohibits types which contain `UnsafeCell`s, |
| 2741 | // which are the only types for which this rule wouldn't be sufficient. |
| 2742 | // - The total size of the resulting slice is no larger than |
| 2743 | // `isize::MAX` because no allocation produced by safe code can be |
| 2744 | // larger than `isize::MAX`. |
| 2745 | // |
| 2746 | // TODO(#429): Add references to docs and quotes. |
| 2747 | unsafe { slice::from_raw_parts(slf.cast::<u8>(), len) } |
| 2748 | } |
| 2749 | |
| 2750 | /// Gets the bytes of this value mutably. |
| 2751 | /// |
| 2752 | /// `as_bytes_mut` provides access to the bytes of this value as a mutable |
| 2753 | /// byte slice. |
| 2754 | /// |
| 2755 | /// # Examples |
| 2756 | /// |
| 2757 | /// ``` |
| 2758 | /// use zerocopy::AsBytes; |
| 2759 | /// # use zerocopy_derive::*; |
| 2760 | /// |
| 2761 | /// # #[derive(Eq, PartialEq, Debug)] |
| 2762 | /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| 2763 | /// #[repr(C)] |
| 2764 | /// struct PacketHeader { |
| 2765 | /// src_port: [u8; 2], |
| 2766 | /// dst_port: [u8; 2], |
| 2767 | /// length: [u8; 2], |
| 2768 | /// checksum: [u8; 2], |
| 2769 | /// } |
| 2770 | /// |
| 2771 | /// let mut header = PacketHeader { |
| 2772 | /// src_port: [0, 1], |
| 2773 | /// dst_port: [2, 3], |
| 2774 | /// length: [4, 5], |
| 2775 | /// checksum: [6, 7], |
| 2776 | /// }; |
| 2777 | /// |
| 2778 | /// let bytes = header.as_bytes_mut(); |
| 2779 | /// |
| 2780 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 2781 | /// |
| 2782 | /// bytes.reverse(); |
| 2783 | /// |
| 2784 | /// assert_eq!(header, PacketHeader { |
| 2785 | /// src_port: [7, 6], |
| 2786 | /// dst_port: [5, 4], |
| 2787 | /// length: [3, 2], |
| 2788 | /// checksum: [1, 0], |
| 2789 | /// }); |
| 2790 | /// ``` |
| 2791 | #[inline (always)] |
| 2792 | fn as_bytes_mut(&mut self) -> &mut [u8] |
| 2793 | where |
| 2794 | Self: FromBytes, |
| 2795 | { |
| 2796 | // Note that this method does not have a `Self: Sized` bound; |
| 2797 | // `size_of_val` works for unsized values too. |
| 2798 | let len = mem::size_of_val(self); |
| 2799 | let slf: *mut Self = self; |
| 2800 | |
| 2801 | // SAFETY: |
| 2802 | // - `slf.cast::<u8>()` is valid for reads and writes for `len * |
| 2803 | // mem::size_of::<u8>()` many bytes because... |
| 2804 | // - `slf` is the same pointer as `self`, and `self` is a reference |
| 2805 | // which points to an object whose size is `len`. Thus... |
| 2806 | // - The entire region of `len` bytes starting at `slf` is contained |
| 2807 | // within a single allocation. |
| 2808 | // - `slf` is non-null. |
| 2809 | // - `slf` is trivially aligned to `align_of::<u8>() == 1`. |
| 2810 | // - `Self: AsBytes` ensures that all of the bytes of `slf` are |
| 2811 | // initialized. |
| 2812 | // - `Self: FromBytes` ensures that no write to this memory region |
| 2813 | // could result in it containing an invalid `Self`. |
| 2814 | // - Since `slf` is derived from `self`, and `self` is a mutable |
| 2815 | // reference, no other references to this memory region can exist. |
| 2816 | // - The total size of the resulting slice is no larger than |
| 2817 | // `isize::MAX` because no allocation produced by safe code can be |
| 2818 | // larger than `isize::MAX`. |
| 2819 | // |
| 2820 | // TODO(#429): Add references to docs and quotes. |
| 2821 | unsafe { slice::from_raw_parts_mut(slf.cast::<u8>(), len) } |
| 2822 | } |
| 2823 | |
| 2824 | /// Writes a copy of `self` to `bytes`. |
| 2825 | /// |
| 2826 | /// If `bytes.len() != size_of_val(self)`, `write_to` returns `None`. |
| 2827 | /// |
| 2828 | /// # Examples |
| 2829 | /// |
| 2830 | /// ``` |
| 2831 | /// use zerocopy::AsBytes; |
| 2832 | /// # use zerocopy_derive::*; |
| 2833 | /// |
| 2834 | /// #[derive(AsBytes)] |
| 2835 | /// #[repr(C)] |
| 2836 | /// struct PacketHeader { |
| 2837 | /// src_port: [u8; 2], |
| 2838 | /// dst_port: [u8; 2], |
| 2839 | /// length: [u8; 2], |
| 2840 | /// checksum: [u8; 2], |
| 2841 | /// } |
| 2842 | /// |
| 2843 | /// let header = PacketHeader { |
| 2844 | /// src_port: [0, 1], |
| 2845 | /// dst_port: [2, 3], |
| 2846 | /// length: [4, 5], |
| 2847 | /// checksum: [6, 7], |
| 2848 | /// }; |
| 2849 | /// |
| 2850 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0]; |
| 2851 | /// |
| 2852 | /// header.write_to(&mut bytes[..]); |
| 2853 | /// |
| 2854 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 2855 | /// ``` |
| 2856 | /// |
| 2857 | /// If too many or too few target bytes are provided, `write_to` returns |
| 2858 | /// `None` and leaves the target bytes unmodified: |
| 2859 | /// |
| 2860 | /// ``` |
| 2861 | /// # use zerocopy::AsBytes; |
| 2862 | /// # let header = u128::MAX; |
| 2863 | /// let mut excessive_bytes = &mut [0u8; 128][..]; |
| 2864 | /// |
| 2865 | /// let write_result = header.write_to(excessive_bytes); |
| 2866 | /// |
| 2867 | /// assert!(write_result.is_none()); |
| 2868 | /// assert_eq!(excessive_bytes, [0u8; 128]); |
| 2869 | /// ``` |
| 2870 | #[inline ] |
| 2871 | fn write_to(&self, bytes: &mut [u8]) -> Option<()> { |
| 2872 | if bytes.len() != mem::size_of_val(self) { |
| 2873 | return None; |
| 2874 | } |
| 2875 | |
| 2876 | bytes.copy_from_slice(self.as_bytes()); |
| 2877 | Some(()) |
| 2878 | } |
| 2879 | |
| 2880 | /// Writes a copy of `self` to the prefix of `bytes`. |
| 2881 | /// |
| 2882 | /// `write_to_prefix` writes `self` to the first `size_of_val(self)` bytes |
| 2883 | /// of `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`. |
| 2884 | /// |
| 2885 | /// # Examples |
| 2886 | /// |
| 2887 | /// ``` |
| 2888 | /// use zerocopy::AsBytes; |
| 2889 | /// # use zerocopy_derive::*; |
| 2890 | /// |
| 2891 | /// #[derive(AsBytes)] |
| 2892 | /// #[repr(C)] |
| 2893 | /// struct PacketHeader { |
| 2894 | /// src_port: [u8; 2], |
| 2895 | /// dst_port: [u8; 2], |
| 2896 | /// length: [u8; 2], |
| 2897 | /// checksum: [u8; 2], |
| 2898 | /// } |
| 2899 | /// |
| 2900 | /// let header = PacketHeader { |
| 2901 | /// src_port: [0, 1], |
| 2902 | /// dst_port: [2, 3], |
| 2903 | /// length: [4, 5], |
| 2904 | /// checksum: [6, 7], |
| 2905 | /// }; |
| 2906 | /// |
| 2907 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
| 2908 | /// |
| 2909 | /// header.write_to_prefix(&mut bytes[..]); |
| 2910 | /// |
| 2911 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7, 0, 0]); |
| 2912 | /// ``` |
| 2913 | /// |
| 2914 | /// If insufficient target bytes are provided, `write_to_prefix` returns |
| 2915 | /// `None` and leaves the target bytes unmodified: |
| 2916 | /// |
| 2917 | /// ``` |
| 2918 | /// # use zerocopy::AsBytes; |
| 2919 | /// # let header = u128::MAX; |
| 2920 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
| 2921 | /// |
| 2922 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
| 2923 | /// |
| 2924 | /// assert!(write_result.is_none()); |
| 2925 | /// assert_eq!(insufficent_bytes, [0, 0]); |
| 2926 | /// ``` |
| 2927 | #[inline ] |
| 2928 | fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()> { |
| 2929 | let size = mem::size_of_val(self); |
| 2930 | bytes.get_mut(..size)?.copy_from_slice(self.as_bytes()); |
| 2931 | Some(()) |
| 2932 | } |
| 2933 | |
| 2934 | /// Writes a copy of `self` to the suffix of `bytes`. |
| 2935 | /// |
| 2936 | /// `write_to_suffix` writes `self` to the last `size_of_val(self)` bytes of |
| 2937 | /// `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`. |
| 2938 | /// |
| 2939 | /// # Examples |
| 2940 | /// |
| 2941 | /// ``` |
| 2942 | /// use zerocopy::AsBytes; |
| 2943 | /// # use zerocopy_derive::*; |
| 2944 | /// |
| 2945 | /// #[derive(AsBytes)] |
| 2946 | /// #[repr(C)] |
| 2947 | /// struct PacketHeader { |
| 2948 | /// src_port: [u8; 2], |
| 2949 | /// dst_port: [u8; 2], |
| 2950 | /// length: [u8; 2], |
| 2951 | /// checksum: [u8; 2], |
| 2952 | /// } |
| 2953 | /// |
| 2954 | /// let header = PacketHeader { |
| 2955 | /// src_port: [0, 1], |
| 2956 | /// dst_port: [2, 3], |
| 2957 | /// length: [4, 5], |
| 2958 | /// checksum: [6, 7], |
| 2959 | /// }; |
| 2960 | /// |
| 2961 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
| 2962 | /// |
| 2963 | /// header.write_to_suffix(&mut bytes[..]); |
| 2964 | /// |
| 2965 | /// assert_eq!(bytes, [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]); |
| 2966 | /// |
| 2967 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
| 2968 | /// |
| 2969 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
| 2970 | /// |
| 2971 | /// assert!(write_result.is_none()); |
| 2972 | /// assert_eq!(insufficent_bytes, [0, 0]); |
| 2973 | /// ``` |
| 2974 | /// |
| 2975 | /// If insufficient target bytes are provided, `write_to_suffix` returns |
| 2976 | /// `None` and leaves the target bytes unmodified: |
| 2977 | /// |
| 2978 | /// ``` |
| 2979 | /// # use zerocopy::AsBytes; |
| 2980 | /// # let header = u128::MAX; |
| 2981 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
| 2982 | /// |
| 2983 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
| 2984 | /// |
| 2985 | /// assert!(write_result.is_none()); |
| 2986 | /// assert_eq!(insufficent_bytes, [0, 0]); |
| 2987 | /// ``` |
| 2988 | #[inline ] |
| 2989 | fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()> { |
| 2990 | let start = bytes.len().checked_sub(mem::size_of_val(self))?; |
| 2991 | bytes |
| 2992 | .get_mut(start..) |
| 2993 | .expect("`start` should be in-bounds of `bytes`" ) |
| 2994 | .copy_from_slice(self.as_bytes()); |
| 2995 | Some(()) |
| 2996 | } |
| 2997 | } |
| 2998 | |
| 2999 | /// Types with no alignment requirement. |
| 3000 | /// |
| 3001 | /// WARNING: Do not implement this trait yourself! Instead, use |
| 3002 | /// `#[derive(Unaligned)]` (requires the `derive` Cargo feature). |
| 3003 | /// |
| 3004 | /// If `T: Unaligned`, then `align_of::<T>() == 1`. |
| 3005 | /// |
| 3006 | /// # Safety |
| 3007 | /// |
| 3008 | /// *This section describes what is required in order for `T: Unaligned`, and |
| 3009 | /// what unsafe code may assume of such types. `#[derive(Unaligned)]` only |
| 3010 | /// permits types which satisfy these requirements. If you don't plan on |
| 3011 | /// implementing `Unaligned` manually, and you don't plan on writing unsafe code |
| 3012 | /// that operates on `Unaligned` types, then you don't need to read this |
| 3013 | /// section.* |
| 3014 | /// |
| 3015 | /// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a |
| 3016 | /// reference to `T` at any memory location regardless of alignment. If a type |
| 3017 | /// is marked as `Unaligned` which violates this contract, it may cause |
| 3018 | /// undefined behavior. |
| 3019 | pub unsafe trait Unaligned { |
| 3020 | // The `Self: Sized` bound makes it so that `Unaligned` is still object |
| 3021 | // safe. |
| 3022 | #[doc (hidden)] |
| 3023 | fn only_derive_is_allowed_to_implement_this_trait() |
| 3024 | where |
| 3025 | Self: Sized; |
| 3026 | } |
| 3027 | |
| 3028 | safety_comment! { |
| 3029 | /// SAFETY: |
| 3030 | /// Per the reference [1], "the unit tuple (`()`) ... is guaranteed as a |
| 3031 | /// zero-sized type to have a size of 0 and an alignment of 1." |
| 3032 | /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: There |
| 3033 | /// is only one possible sequence of 0 bytes, and `()` is inhabited. |
| 3034 | /// - `AsBytes`: Since `()` has size 0, it contains no padding bytes. |
| 3035 | /// - `Unaligned`: `()` has alignment 1. |
| 3036 | /// |
| 3037 | /// [1] https://doc.rust-lang.org/reference/type-layout.html#tuple-layout |
| 3038 | unsafe_impl!((): TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 3039 | assert_unaligned!(()); |
| 3040 | } |
| 3041 | |
| 3042 | safety_comment! { |
| 3043 | /// SAFETY: |
| 3044 | /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: all bit |
| 3045 | /// patterns are valid for numeric types [1] |
| 3046 | /// - `AsBytes`: numeric types have no padding bytes [1] |
| 3047 | /// - `Unaligned` (`u8` and `i8` only): The reference [2] specifies the size |
| 3048 | /// of `u8` and `i8` as 1 byte. We also know that: |
| 3049 | /// - Alignment is >= 1 [3] |
| 3050 | /// - Size is an integer multiple of alignment [4] |
| 3051 | /// - The only value >= 1 for which 1 is an integer multiple is 1 |
| 3052 | /// Therefore, the only possible alignment for `u8` and `i8` is 1. |
| 3053 | /// |
| 3054 | /// [1] Per https://doc.rust-lang.org/beta/reference/types/numeric.html#bit-validity: |
| 3055 | /// |
| 3056 | /// For every numeric type, `T`, the bit validity of `T` is equivalent to |
| 3057 | /// the bit validity of `[u8; size_of::<T>()]`. An uninitialized byte is |
| 3058 | /// not a valid `u8`. |
| 3059 | /// |
| 3060 | /// TODO(https://github.com/rust-lang/reference/pull/1392): Once this text |
| 3061 | /// is available on the Stable docs, cite those instead. |
| 3062 | /// |
| 3063 | /// [2] https://doc.rust-lang.org/reference/type-layout.html#primitive-data-layout |
| 3064 | /// |
| 3065 | /// [3] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment: |
| 3066 | /// |
| 3067 | /// Alignment is measured in bytes, and must be at least 1. |
| 3068 | /// |
| 3069 | /// [4] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment: |
| 3070 | /// |
| 3071 | /// The size of a value is always a multiple of its alignment. |
| 3072 | /// |
| 3073 | /// TODO(#278): Once we've updated the trait docs to refer to `u8`s rather |
| 3074 | /// than bits or bytes, update this comment, especially the reference to |
| 3075 | /// [1]. |
| 3076 | unsafe_impl!(u8: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 3077 | unsafe_impl!(i8: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 3078 | assert_unaligned!(u8, i8); |
| 3079 | unsafe_impl!(u16: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3080 | unsafe_impl!(i16: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3081 | unsafe_impl!(u32: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3082 | unsafe_impl!(i32: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3083 | unsafe_impl!(u64: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3084 | unsafe_impl!(i64: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3085 | unsafe_impl!(u128: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3086 | unsafe_impl!(i128: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3087 | unsafe_impl!(usize: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3088 | unsafe_impl!(isize: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3089 | unsafe_impl!(f32: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3090 | unsafe_impl!(f64: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3091 | } |
| 3092 | |
| 3093 | safety_comment! { |
| 3094 | /// SAFETY: |
| 3095 | /// - `FromZeroes`: Valid since "[t]he value false has the bit pattern |
| 3096 | /// 0x00" [1]. |
| 3097 | /// - `AsBytes`: Since "the boolean type has a size and alignment of 1 each" |
| 3098 | /// and "The value false has the bit pattern 0x00 and the value true has |
| 3099 | /// the bit pattern 0x01" [1]. Thus, the only byte of the bool is always |
| 3100 | /// initialized. |
| 3101 | /// - `Unaligned`: Per the reference [1], "[a]n object with the boolean type |
| 3102 | /// has a size and alignment of 1 each." |
| 3103 | /// |
| 3104 | /// [1] https://doc.rust-lang.org/reference/types/boolean.html |
| 3105 | unsafe_impl!(bool: FromZeroes, AsBytes, Unaligned); |
| 3106 | assert_unaligned!(bool); |
| 3107 | /// SAFETY: |
| 3108 | /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid` |
| 3109 | /// closure: |
| 3110 | /// - Given `t: *mut bool` and `let r = *mut u8`, `r` refers to an object |
| 3111 | /// of the same size as that referred to by `t`. This is true because |
| 3112 | /// `bool` and `u8` have the same size (1 byte) [1]. |
| 3113 | /// - Since the closure takes a `&u8` argument, given a `Ptr<'a, bool>` |
| 3114 | /// which satisfies the preconditions of |
| 3115 | /// `TryFromBytes::<bool>::is_bit_valid`, it must be guaranteed that the |
| 3116 | /// memory referenced by that `Ptr` always contains a valid `u8`. Since |
| 3117 | /// `bool`'s single byte is always initialized, `is_bit_valid`'s |
| 3118 | /// precondition requires that the same is true of its argument. Since |
| 3119 | /// `u8`'s only bit validity invariant is that its single byte must be |
| 3120 | /// initialized, this memory is guaranteed to contain a valid `u8`. |
| 3121 | /// - The alignment of `bool` is equal to the alignment of `u8`. [1] [2] |
| 3122 | /// - The impl must only return `true` for its argument if the original |
| 3123 | /// `Ptr<bool>` refers to a valid `bool`. We only return true if the |
| 3124 | /// `u8` value is 0 or 1, and both of these are valid values for `bool`. |
| 3125 | /// [3] |
| 3126 | /// |
| 3127 | /// [1] Per https://doc.rust-lang.org/reference/type-layout.html#primitive-data-layout: |
| 3128 | /// |
| 3129 | /// The size of most primitives is given in this table. |
| 3130 | /// |
| 3131 | /// | Type | `size_of::<Type>() ` | |
| 3132 | /// |-----------|----------------------| |
| 3133 | /// | `bool` | 1 | |
| 3134 | /// | `u8`/`i8` | 1 | |
| 3135 | /// |
| 3136 | /// [2] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment: |
| 3137 | /// |
| 3138 | /// The size of a value is always a multiple of its alignment. |
| 3139 | /// |
| 3140 | /// [3] Per https://doc.rust-lang.org/reference/types/boolean.html: |
| 3141 | /// |
| 3142 | /// The value false has the bit pattern 0x00 and the value true has the |
| 3143 | /// bit pattern 0x01. |
| 3144 | unsafe_impl!(bool: TryFromBytes; |byte: &u8| *byte < 2); |
| 3145 | } |
| 3146 | safety_comment! { |
| 3147 | /// SAFETY: |
| 3148 | /// - `FromZeroes`: Per reference [1], "[a] value of type char is a Unicode |
| 3149 | /// scalar value (i.e. a code point that is not a surrogate), represented |
| 3150 | /// as a 32-bit unsigned word in the 0x0000 to 0xD7FF or 0xE000 to |
| 3151 | /// 0x10FFFF range" which contains 0x0000. |
| 3152 | /// - `AsBytes`: `char` is per reference [1] "represented as a 32-bit |
| 3153 | /// unsigned word" (`u32`) which is `AsBytes`. Note that unlike `u32`, not |
| 3154 | /// all bit patterns are valid for `char`. |
| 3155 | /// |
| 3156 | /// [1] https://doc.rust-lang.org/reference/types/textual.html |
| 3157 | unsafe_impl!(char: FromZeroes, AsBytes); |
| 3158 | /// SAFETY: |
| 3159 | /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid` |
| 3160 | /// closure: |
| 3161 | /// - Given `t: *mut char` and `let r = *mut u32`, `r` refers to an object |
| 3162 | /// of the same size as that referred to by `t`. This is true because |
| 3163 | /// `char` and `u32` have the same size [1]. |
| 3164 | /// - Since the closure takes a `&u32` argument, given a `Ptr<'a, char>` |
| 3165 | /// which satisfies the preconditions of |
| 3166 | /// `TryFromBytes::<char>::is_bit_valid`, it must be guaranteed that the |
| 3167 | /// memory referenced by that `Ptr` always contains a valid `u32`. Since |
| 3168 | /// `char`'s bytes are always initialized [2], `is_bit_valid`'s |
| 3169 | /// precondition requires that the same is true of its argument. Since |
| 3170 | /// `u32`'s only bit validity invariant is that its bytes must be |
| 3171 | /// initialized, this memory is guaranteed to contain a valid `u32`. |
| 3172 | /// - The alignment of `char` is equal to the alignment of `u32`. [1] |
| 3173 | /// - The impl must only return `true` for its argument if the original |
| 3174 | /// `Ptr<char>` refers to a valid `char`. `char::from_u32` guarantees |
| 3175 | /// that it returns `None` if its input is not a valid `char`. [3] |
| 3176 | /// |
| 3177 | /// [1] Per https://doc.rust-lang.org/nightly/reference/types/textual.html#layout-and-bit-validity: |
| 3178 | /// |
| 3179 | /// `char` is guaranteed to have the same size and alignment as `u32` on |
| 3180 | /// all platforms. |
| 3181 | /// |
| 3182 | /// [2] Per https://doc.rust-lang.org/core/primitive.char.html#method.from_u32: |
| 3183 | /// |
| 3184 | /// Every byte of a `char` is guaranteed to be initialized. |
| 3185 | /// |
| 3186 | /// [3] Per https://doc.rust-lang.org/core/primitive.char.html#method.from_u32: |
| 3187 | /// |
| 3188 | /// `from_u32()` will return `None` if the input is not a valid value for |
| 3189 | /// a `char`. |
| 3190 | unsafe_impl!(char: TryFromBytes; |candidate: &u32| char::from_u32(*candidate).is_some()); |
| 3191 | } |
| 3192 | safety_comment! { |
| 3193 | /// SAFETY: |
| 3194 | /// - `FromZeroes`, `AsBytes`, `Unaligned`: Per the reference [1], `str` |
| 3195 | /// has the same layout as `[u8]`, and `[u8]` is `FromZeroes`, `AsBytes`, |
| 3196 | /// and `Unaligned`. |
| 3197 | /// |
| 3198 | /// Note that we don't `assert_unaligned!(str)` because `assert_unaligned!` |
| 3199 | /// uses `align_of`, which only works for `Sized` types. |
| 3200 | /// |
| 3201 | /// TODO(#429): Add quotes from documentation. |
| 3202 | /// |
| 3203 | /// [1] https://doc.rust-lang.org/reference/type-layout.html#str-layout |
| 3204 | unsafe_impl!(str: FromZeroes, AsBytes, Unaligned); |
| 3205 | /// SAFETY: |
| 3206 | /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid` |
| 3207 | /// closure: |
| 3208 | /// - Given `t: *mut str` and `let r = *mut [u8]`, `r` refers to an object |
| 3209 | /// of the same size as that referred to by `t`. This is true because |
| 3210 | /// `str` and `[u8]` have the same representation. [1] |
| 3211 | /// - Since the closure takes a `&[u8]` argument, given a `Ptr<'a, str>` |
| 3212 | /// which satisfies the preconditions of |
| 3213 | /// `TryFromBytes::<str>::is_bit_valid`, it must be guaranteed that the |
| 3214 | /// memory referenced by that `Ptr` always contains a valid `[u8]`. |
| 3215 | /// Since `str`'s bytes are always initialized [1], `is_bit_valid`'s |
| 3216 | /// precondition requires that the same is true of its argument. Since |
| 3217 | /// `[u8]`'s only bit validity invariant is that its bytes must be |
| 3218 | /// initialized, this memory is guaranteed to contain a valid `[u8]`. |
| 3219 | /// - The alignment of `str` is equal to the alignment of `[u8]`. [1] |
| 3220 | /// - The impl must only return `true` for its argument if the original |
| 3221 | /// `Ptr<str>` refers to a valid `str`. `str::from_utf8` guarantees that |
| 3222 | /// it returns `Err` if its input is not a valid `str`. [2] |
| 3223 | /// |
| 3224 | /// [1] Per https://doc.rust-lang.org/reference/types/textual.html: |
| 3225 | /// |
| 3226 | /// A value of type `str` is represented the same was as `[u8]`. |
| 3227 | /// |
| 3228 | /// [2] Per https://doc.rust-lang.org/core/str/fn.from_utf8.html#errors: |
| 3229 | /// |
| 3230 | /// Returns `Err` if the slice is not UTF-8. |
| 3231 | unsafe_impl!(str: TryFromBytes; |candidate: &[u8]| core::str::from_utf8(candidate).is_ok()); |
| 3232 | } |
| 3233 | |
| 3234 | safety_comment! { |
| 3235 | // `NonZeroXxx` is `AsBytes`, but not `FromZeroes` or `FromBytes`. |
| 3236 | // |
| 3237 | /// SAFETY: |
| 3238 | /// - `AsBytes`: `NonZeroXxx` has the same layout as its associated |
| 3239 | /// primitive. Since it is the same size, this guarantees it has no |
| 3240 | /// padding - integers have no padding, and there's no room for padding |
| 3241 | /// if it can represent all of the same values except 0. |
| 3242 | /// - `Unaligned`: `NonZeroU8` and `NonZeroI8` document that |
| 3243 | /// `Option<NonZeroU8>` and `Option<NonZeroI8>` both have size 1. [1] [2] |
| 3244 | /// This is worded in a way that makes it unclear whether it's meant as a |
| 3245 | /// guarantee, but given the purpose of those types, it's virtually |
| 3246 | /// unthinkable that that would ever change. `Option` cannot be smaller |
| 3247 | /// than its contained type, which implies that, and `NonZeroX8` are of |
| 3248 | /// size 1 or 0. `NonZeroX8` can represent multiple states, so they cannot |
| 3249 | /// be 0 bytes, which means that they must be 1 byte. The only valid |
| 3250 | /// alignment for a 1-byte type is 1. |
| 3251 | /// |
| 3252 | /// TODO(#429): Add quotes from documentation. |
| 3253 | /// |
| 3254 | /// [1] https://doc.rust-lang.org/stable/std/num/struct.NonZeroU8.html |
| 3255 | /// [2] https://doc.rust-lang.org/stable/std/num/struct.NonZeroI8.html |
| 3256 | /// TODO(https://github.com/rust-lang/rust/pull/104082): Cite documentation |
| 3257 | /// that layout is the same as primitive layout. |
| 3258 | unsafe_impl!(NonZeroU8: AsBytes, Unaligned); |
| 3259 | unsafe_impl!(NonZeroI8: AsBytes, Unaligned); |
| 3260 | assert_unaligned!(NonZeroU8, NonZeroI8); |
| 3261 | unsafe_impl!(NonZeroU16: AsBytes); |
| 3262 | unsafe_impl!(NonZeroI16: AsBytes); |
| 3263 | unsafe_impl!(NonZeroU32: AsBytes); |
| 3264 | unsafe_impl!(NonZeroI32: AsBytes); |
| 3265 | unsafe_impl!(NonZeroU64: AsBytes); |
| 3266 | unsafe_impl!(NonZeroI64: AsBytes); |
| 3267 | unsafe_impl!(NonZeroU128: AsBytes); |
| 3268 | unsafe_impl!(NonZeroI128: AsBytes); |
| 3269 | unsafe_impl!(NonZeroUsize: AsBytes); |
| 3270 | unsafe_impl!(NonZeroIsize: AsBytes); |
| 3271 | /// SAFETY: |
| 3272 | /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid` |
| 3273 | /// closure: |
| 3274 | /// - Given `t: *mut NonZeroXxx` and `let r = *mut xxx`, `r` refers to an |
| 3275 | /// object of the same size as that referred to by `t`. This is true |
| 3276 | /// because `NonZeroXxx` and `xxx` have the same size. [1] |
| 3277 | /// - Since the closure takes a `&xxx` argument, given a `Ptr<'a, |
| 3278 | /// NonZeroXxx>` which satisfies the preconditions of |
| 3279 | /// `TryFromBytes::<NonZeroXxx>::is_bit_valid`, it must be guaranteed |
| 3280 | /// that the memory referenced by that `Ptr` always contains a valid |
| 3281 | /// `xxx`. Since `NonZeroXxx`'s bytes are always initialized [1], |
| 3282 | /// `is_bit_valid`'s precondition requires that the same is true of its |
| 3283 | /// argument. Since `xxx`'s only bit validity invariant is that its |
| 3284 | /// bytes must be initialized, this memory is guaranteed to contain a |
| 3285 | /// valid `xxx`. |
| 3286 | /// - The alignment of `NonZeroXxx` is equal to the alignment of `xxx`. |
| 3287 | /// [1] |
| 3288 | /// - The impl must only return `true` for its argument if the original |
| 3289 | /// `Ptr<NonZeroXxx>` refers to a valid `NonZeroXxx`. The only `xxx` |
| 3290 | /// which is not also a valid `NonZeroXxx` is 0. [1] |
| 3291 | /// |
| 3292 | /// [1] Per https://doc.rust-lang.org/core/num/struct.NonZeroU16.html: |
| 3293 | /// |
| 3294 | /// `NonZeroU16` is guaranteed to have the same layout and bit validity as |
| 3295 | /// `u16` with the exception that `0` is not a valid instance. |
| 3296 | unsafe_impl!(NonZeroU8: TryFromBytes; |n: &u8| *n != 0); |
| 3297 | unsafe_impl!(NonZeroI8: TryFromBytes; |n: &i8| *n != 0); |
| 3298 | unsafe_impl!(NonZeroU16: TryFromBytes; |n: &u16| *n != 0); |
| 3299 | unsafe_impl!(NonZeroI16: TryFromBytes; |n: &i16| *n != 0); |
| 3300 | unsafe_impl!(NonZeroU32: TryFromBytes; |n: &u32| *n != 0); |
| 3301 | unsafe_impl!(NonZeroI32: TryFromBytes; |n: &i32| *n != 0); |
| 3302 | unsafe_impl!(NonZeroU64: TryFromBytes; |n: &u64| *n != 0); |
| 3303 | unsafe_impl!(NonZeroI64: TryFromBytes; |n: &i64| *n != 0); |
| 3304 | unsafe_impl!(NonZeroU128: TryFromBytes; |n: &u128| *n != 0); |
| 3305 | unsafe_impl!(NonZeroI128: TryFromBytes; |n: &i128| *n != 0); |
| 3306 | unsafe_impl!(NonZeroUsize: TryFromBytes; |n: &usize| *n != 0); |
| 3307 | unsafe_impl!(NonZeroIsize: TryFromBytes; |n: &isize| *n != 0); |
| 3308 | } |
| 3309 | safety_comment! { |
| 3310 | /// SAFETY: |
| 3311 | /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`, |
| 3312 | /// `AsBytes`: The Rust compiler reuses `0` value to represent `None`, so |
| 3313 | /// `size_of::<Option<NonZeroXxx>>() == size_of::<xxx>()`; see |
| 3314 | /// `NonZeroXxx` documentation. |
| 3315 | /// - `Unaligned`: `NonZeroU8` and `NonZeroI8` document that |
| 3316 | /// `Option<NonZeroU8>` and `Option<NonZeroI8>` both have size 1. [1] [2] |
| 3317 | /// This is worded in a way that makes it unclear whether it's meant as a |
| 3318 | /// guarantee, but given the purpose of those types, it's virtually |
| 3319 | /// unthinkable that that would ever change. The only valid alignment for |
| 3320 | /// a 1-byte type is 1. |
| 3321 | /// |
| 3322 | /// TODO(#429): Add quotes from documentation. |
| 3323 | /// |
| 3324 | /// [1] https://doc.rust-lang.org/stable/std/num/struct.NonZeroU8.html |
| 3325 | /// [2] https://doc.rust-lang.org/stable/std/num/struct.NonZeroI8.html |
| 3326 | /// |
| 3327 | /// TODO(https://github.com/rust-lang/rust/pull/104082): Cite documentation |
| 3328 | /// for layout guarantees. |
| 3329 | unsafe_impl!(Option<NonZeroU8>: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 3330 | unsafe_impl!(Option<NonZeroI8>: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 3331 | assert_unaligned!(Option<NonZeroU8>, Option<NonZeroI8>); |
| 3332 | unsafe_impl!(Option<NonZeroU16>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3333 | unsafe_impl!(Option<NonZeroI16>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3334 | unsafe_impl!(Option<NonZeroU32>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3335 | unsafe_impl!(Option<NonZeroI32>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3336 | unsafe_impl!(Option<NonZeroU64>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3337 | unsafe_impl!(Option<NonZeroI64>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3338 | unsafe_impl!(Option<NonZeroU128>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3339 | unsafe_impl!(Option<NonZeroI128>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3340 | unsafe_impl!(Option<NonZeroUsize>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3341 | unsafe_impl!(Option<NonZeroIsize>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| 3342 | } |
| 3343 | |
| 3344 | safety_comment! { |
| 3345 | /// SAFETY: |
| 3346 | /// The following types can be transmuted from `[0u8; size_of::<T>()]`. [1] |
| 3347 | /// None of them contain `UnsafeCell`s, and so they all soundly implement |
| 3348 | /// `FromZeroes`. |
| 3349 | /// |
| 3350 | /// [1] Per |
| 3351 | /// https://doc.rust-lang.org/nightly/core/option/index.html#representation: |
| 3352 | /// |
| 3353 | /// Rust guarantees to optimize the following types `T` such that |
| 3354 | /// [`Option<T>`] has the same size and alignment as `T`. In some of these |
| 3355 | /// cases, Rust further guarantees that `transmute::<_, Option<T>>([0u8; |
| 3356 | /// size_of::<T>()])` is sound and produces `Option::<T>::None`. These |
| 3357 | /// cases are identified by the second column: |
| 3358 | /// |
| 3359 | /// | `T` | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? | |
| 3360 | /// |-----------------------|-----------------------------------------------------------| |
| 3361 | /// | [`Box<U>`] | when `U: Sized` | |
| 3362 | /// | `&U` | when `U: Sized` | |
| 3363 | /// | `&mut U` | when `U: Sized` | |
| 3364 | /// | [`ptr::NonNull<U>`] | when `U: Sized` | |
| 3365 | /// | `fn`, `extern "C" fn` | always | |
| 3366 | /// |
| 3367 | /// TODO(#429), TODO(https://github.com/rust-lang/rust/pull/115333): Cite |
| 3368 | /// the Stable docs once they're available. |
| 3369 | #[cfg (feature = "alloc" )] |
| 3370 | unsafe_impl!( |
| 3371 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 3372 | T => FromZeroes for Option<Box<T>> |
| 3373 | ); |
| 3374 | unsafe_impl!(T => FromZeroes for Option<&'_ T>); |
| 3375 | unsafe_impl!(T => FromZeroes for Option<&'_ mut T>); |
| 3376 | unsafe_impl!(T => FromZeroes for Option<NonNull<T>>); |
| 3377 | unsafe_impl_for_power_set!(A, B, C, D, E, F, G, H, I, J, K, L -> M => FromZeroes for opt_fn!(...)); |
| 3378 | unsafe_impl_for_power_set!(A, B, C, D, E, F, G, H, I, J, K, L -> M => FromZeroes for opt_extern_c_fn!(...)); |
| 3379 | } |
| 3380 | |
| 3381 | safety_comment! { |
| 3382 | /// SAFETY: |
| 3383 | /// Per reference [1]: |
| 3384 | /// "For all T, the following are guaranteed: |
| 3385 | /// size_of::<PhantomData<T>>() == 0 |
| 3386 | /// align_of::<PhantomData<T>>() == 1". |
| 3387 | /// This gives: |
| 3388 | /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: There |
| 3389 | /// is only one possible sequence of 0 bytes, and `PhantomData` is |
| 3390 | /// inhabited. |
| 3391 | /// - `AsBytes`: Since `PhantomData` has size 0, it contains no padding |
| 3392 | /// bytes. |
| 3393 | /// - `Unaligned`: Per the preceding reference, `PhantomData` has alignment |
| 3394 | /// 1. |
| 3395 | /// |
| 3396 | /// [1] https://doc.rust-lang.org/std/marker/struct.PhantomData.html#layout-1 |
| 3397 | unsafe_impl!(T: ?Sized => TryFromBytes for PhantomData<T>); |
| 3398 | unsafe_impl!(T: ?Sized => FromZeroes for PhantomData<T>); |
| 3399 | unsafe_impl!(T: ?Sized => FromBytes for PhantomData<T>); |
| 3400 | unsafe_impl!(T: ?Sized => AsBytes for PhantomData<T>); |
| 3401 | unsafe_impl!(T: ?Sized => Unaligned for PhantomData<T>); |
| 3402 | assert_unaligned!(PhantomData<()>, PhantomData<u8>, PhantomData<u64>); |
| 3403 | } |
| 3404 | safety_comment! { |
| 3405 | /// SAFETY: |
| 3406 | /// `Wrapping<T>` is guaranteed by its docs [1] to have the same layout and |
| 3407 | /// bit validity as `T`. Also, `Wrapping<T>` is `#[repr(transparent)]`, and |
| 3408 | /// has a single field, which is `pub`. Per the reference [2], this means |
| 3409 | /// that the `#[repr(transparent)]` attribute is "considered part of the |
| 3410 | /// public ABI". |
| 3411 | /// |
| 3412 | /// - `TryFromBytes`: The safety requirements for `unsafe_impl!` with an |
| 3413 | /// `is_bit_valid` closure: |
| 3414 | /// - Given `t: *mut Wrapping<T>` and `let r = *mut T`, `r` refers to an |
| 3415 | /// object of the same size as that referred to by `t`. This is true |
| 3416 | /// because `Wrapping<T>` and `T` have the same layout |
| 3417 | /// - The alignment of `Wrapping<T>` is equal to the alignment of `T`. |
| 3418 | /// - The impl must only return `true` for its argument if the original |
| 3419 | /// `Ptr<Wrapping<T>>` refers to a valid `Wrapping<T>`. Since |
| 3420 | /// `Wrapping<T>` has the same bit validity as `T`, and since our impl |
| 3421 | /// just calls `T::is_bit_valid`, our impl returns `true` exactly when |
| 3422 | /// its argument contains a valid `Wrapping<T>`. |
| 3423 | /// - `FromBytes`: Since `Wrapping<T>` has the same bit validity as `T`, if |
| 3424 | /// `T: FromBytes`, then all initialized byte sequences are valid |
| 3425 | /// instances of `Wrapping<T>`. Similarly, if `T: FromBytes`, then |
| 3426 | /// `Wrapping<T>` doesn't contain any `UnsafeCell`s. Thus, `impl FromBytes |
| 3427 | /// for Wrapping<T> where T: FromBytes` is a sound impl. |
| 3428 | /// - `AsBytes`: Since `Wrapping<T>` has the same bit validity as `T`, if |
| 3429 | /// `T: AsBytes`, then all valid instances of `Wrapping<T>` have all of |
| 3430 | /// their bytes initialized. Similarly, if `T: AsBytes`, then |
| 3431 | /// `Wrapping<T>` doesn't contain any `UnsafeCell`s. Thus, `impl AsBytes |
| 3432 | /// for Wrapping<T> where T: AsBytes` is a valid impl. |
| 3433 | /// - `Unaligned`: Since `Wrapping<T>` has the same layout as `T`, |
| 3434 | /// `Wrapping<T>` has alignment 1 exactly when `T` does. |
| 3435 | /// |
| 3436 | /// [1] Per https://doc.rust-lang.org/core/num/struct.NonZeroU16.html: |
| 3437 | /// |
| 3438 | /// `NonZeroU16` is guaranteed to have the same layout and bit validity as |
| 3439 | /// `u16` with the exception that `0` is not a valid instance. |
| 3440 | /// |
| 3441 | /// TODO(#429): Add quotes from documentation. |
| 3442 | /// |
| 3443 | /// [1] TODO(https://doc.rust-lang.org/nightly/core/num/struct.Wrapping.html#layout-1): |
| 3444 | /// Reference this documentation once it's available on stable. |
| 3445 | /// |
| 3446 | /// [2] https://doc.rust-lang.org/nomicon/other-reprs.html#reprtransparent |
| 3447 | unsafe_impl!(T: TryFromBytes => TryFromBytes for Wrapping<T>; |candidate: Ptr<T>| { |
| 3448 | // SAFETY: |
| 3449 | // - Since `T` and `Wrapping<T>` have the same layout and bit validity |
| 3450 | // and contain the same fields, `T` contains `UnsafeCell`s exactly |
| 3451 | // where `Wrapping<T>` does. Thus, all memory and `UnsafeCell` |
| 3452 | // preconditions of `T::is_bit_valid` hold exactly when the same |
| 3453 | // preconditions for `Wrapping<T>::is_bit_valid` hold. |
| 3454 | // - By the same token, since `candidate` is guaranteed to have its |
| 3455 | // bytes initialized where there are always initialized bytes in |
| 3456 | // `Wrapping<T>`, the same is true for `T`. |
| 3457 | unsafe { T::is_bit_valid(candidate) } |
| 3458 | }); |
| 3459 | unsafe_impl!(T: FromZeroes => FromZeroes for Wrapping<T>); |
| 3460 | unsafe_impl!(T: FromBytes => FromBytes for Wrapping<T>); |
| 3461 | unsafe_impl!(T: AsBytes => AsBytes for Wrapping<T>); |
| 3462 | unsafe_impl!(T: Unaligned => Unaligned for Wrapping<T>); |
| 3463 | assert_unaligned!(Wrapping<()>, Wrapping<u8>); |
| 3464 | } |
| 3465 | safety_comment! { |
| 3466 | // `MaybeUninit<T>` is `FromZeroes` and `FromBytes`, but never `AsBytes` |
| 3467 | // since it may contain uninitialized bytes. |
| 3468 | // |
| 3469 | /// SAFETY: |
| 3470 | /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: |
| 3471 | /// `MaybeUninit<T>` has no restrictions on its contents. Unfortunately, |
| 3472 | /// in addition to bit validity, `TryFromBytes`, `FromZeroes` and |
| 3473 | /// `FromBytes` also require that implementers contain no `UnsafeCell`s. |
| 3474 | /// Thus, we require `T: Trait` in order to ensure that `T` - and thus |
| 3475 | /// `MaybeUninit<T>` - contains to `UnsafeCell`s. Thus, requiring that `T` |
| 3476 | /// implement each of these traits is sufficient. |
| 3477 | /// - `Unaligned`: "MaybeUninit<T> is guaranteed to have the same size, |
| 3478 | /// alignment, and ABI as T" [1] |
| 3479 | /// |
| 3480 | /// [1] https://doc.rust-lang.org/stable/core/mem/union.MaybeUninit.html#layout-1 |
| 3481 | /// |
| 3482 | /// TODO(https://github.com/google/zerocopy/issues/251): If we split |
| 3483 | /// `FromBytes` and `RefFromBytes`, or if we introduce a separate |
| 3484 | /// `NoCell`/`Freeze` trait, we can relax the trait bounds for `FromZeroes` |
| 3485 | /// and `FromBytes`. |
| 3486 | unsafe_impl!(T: TryFromBytes => TryFromBytes for MaybeUninit<T>); |
| 3487 | unsafe_impl!(T: FromZeroes => FromZeroes for MaybeUninit<T>); |
| 3488 | unsafe_impl!(T: FromBytes => FromBytes for MaybeUninit<T>); |
| 3489 | unsafe_impl!(T: Unaligned => Unaligned for MaybeUninit<T>); |
| 3490 | assert_unaligned!(MaybeUninit<()>, MaybeUninit<u8>); |
| 3491 | } |
| 3492 | safety_comment! { |
| 3493 | /// SAFETY: |
| 3494 | /// `ManuallyDrop` has the same layout and bit validity as `T` [1], and |
| 3495 | /// accessing the inner value is safe (meaning that it's unsound to leave |
| 3496 | /// the inner value uninitialized while exposing the `ManuallyDrop` to safe |
| 3497 | /// code). |
| 3498 | /// - `FromZeroes`, `FromBytes`: Since it has the same layout as `T`, any |
| 3499 | /// valid `T` is a valid `ManuallyDrop<T>`. If `T: FromZeroes`, a sequence |
| 3500 | /// of zero bytes is a valid `T`, and thus a valid `ManuallyDrop<T>`. If |
| 3501 | /// `T: FromBytes`, any sequence of bytes is a valid `T`, and thus a valid |
| 3502 | /// `ManuallyDrop<T>`. |
| 3503 | /// - `AsBytes`: Since it has the same layout as `T`, and since it's unsound |
| 3504 | /// to let safe code access a `ManuallyDrop` whose inner value is |
| 3505 | /// uninitialized, safe code can only ever access a `ManuallyDrop` whose |
| 3506 | /// contents are a valid `T`. Since `T: AsBytes`, this means that safe |
| 3507 | /// code can only ever access a `ManuallyDrop` with all initialized bytes. |
| 3508 | /// - `Unaligned`: `ManuallyDrop` has the same layout (and thus alignment) |
| 3509 | /// as `T`, and `T: Unaligned` guarantees that that alignment is 1. |
| 3510 | /// |
| 3511 | /// `ManuallyDrop<T>` is guaranteed to have the same layout and bit |
| 3512 | /// validity as `T` |
| 3513 | /// |
| 3514 | /// [1] Per https://doc.rust-lang.org/nightly/core/mem/struct.ManuallyDrop.html: |
| 3515 | /// |
| 3516 | /// TODO(#429): |
| 3517 | /// - Add quotes from docs. |
| 3518 | /// - Once [1] (added in |
| 3519 | /// https://github.com/rust-lang/rust/pull/115522) is available on stable, |
| 3520 | /// quote the stable docs instead of the nightly docs. |
| 3521 | unsafe_impl!(T: ?Sized + FromZeroes => FromZeroes for ManuallyDrop<T>); |
| 3522 | unsafe_impl!(T: ?Sized + FromBytes => FromBytes for ManuallyDrop<T>); |
| 3523 | unsafe_impl!(T: ?Sized + AsBytes => AsBytes for ManuallyDrop<T>); |
| 3524 | unsafe_impl!(T: ?Sized + Unaligned => Unaligned for ManuallyDrop<T>); |
| 3525 | assert_unaligned!(ManuallyDrop<()>, ManuallyDrop<u8>); |
| 3526 | } |
| 3527 | safety_comment! { |
| 3528 | /// SAFETY: |
| 3529 | /// Per the reference [1]: |
| 3530 | /// |
| 3531 | /// An array of `[T; N]` has a size of `size_of::<T>() * N` and the same |
| 3532 | /// alignment of `T`. Arrays are laid out so that the zero-based `nth` |
| 3533 | /// element of the array is offset from the start of the array by `n * |
| 3534 | /// size_of::<T>()` bytes. |
| 3535 | /// |
| 3536 | /// ... |
| 3537 | /// |
| 3538 | /// Slices have the same layout as the section of the array they slice. |
| 3539 | /// |
| 3540 | /// In other words, the layout of a `[T]` or `[T; N]` is a sequence of `T`s |
| 3541 | /// laid out back-to-back with no bytes in between. Therefore, `[T]` or `[T; |
| 3542 | /// N]` are `TryFromBytes`, `FromZeroes`, `FromBytes`, and `AsBytes` if `T` |
| 3543 | /// is (respectively). Furthermore, since an array/slice has "the same |
| 3544 | /// alignment of `T`", `[T]` and `[T; N]` are `Unaligned` if `T` is. |
| 3545 | /// |
| 3546 | /// Note that we don't `assert_unaligned!` for slice types because |
| 3547 | /// `assert_unaligned!` uses `align_of`, which only works for `Sized` types. |
| 3548 | /// |
| 3549 | /// [1] https://doc.rust-lang.org/reference/type-layout.html#array-layout |
| 3550 | unsafe_impl!(const N: usize, T: FromZeroes => FromZeroes for [T; N]); |
| 3551 | unsafe_impl!(const N: usize, T: FromBytes => FromBytes for [T; N]); |
| 3552 | unsafe_impl!(const N: usize, T: AsBytes => AsBytes for [T; N]); |
| 3553 | unsafe_impl!(const N: usize, T: Unaligned => Unaligned for [T; N]); |
| 3554 | assert_unaligned!([(); 0], [(); 1], [u8; 0], [u8; 1]); |
| 3555 | unsafe_impl!(T: TryFromBytes => TryFromBytes for [T]; |c: Ptr<[T]>| { |
| 3556 | // SAFETY: Assuming the preconditions of `is_bit_valid` are satisfied, |
| 3557 | // so too will the postcondition: that, if `is_bit_valid(candidate)` |
| 3558 | // returns true, `*candidate` contains a valid `Self`. Per the reference |
| 3559 | // [1]: |
| 3560 | // |
| 3561 | // An array of `[T; N]` has a size of `size_of::<T>() * N` and the |
| 3562 | // same alignment of `T`. Arrays are laid out so that the zero-based |
| 3563 | // `nth` element of the array is offset from the start of the array by |
| 3564 | // `n * size_of::<T>()` bytes. |
| 3565 | // |
| 3566 | // ... |
| 3567 | // |
| 3568 | // Slices have the same layout as the section of the array they slice. |
| 3569 | // |
| 3570 | // In other words, the layout of a `[T] is a sequence of `T`s laid out |
| 3571 | // back-to-back with no bytes in between. If all elements in `candidate` |
| 3572 | // are `is_bit_valid`, so too is `candidate`. |
| 3573 | // |
| 3574 | // Note that any of the below calls may panic, but it would still be |
| 3575 | // sound even if it did. `is_bit_valid` does not promise that it will |
| 3576 | // not panic (in fact, it explicitly warns that it's a possibility), and |
| 3577 | // we have not violated any safety invariants that we must fix before |
| 3578 | // returning. |
| 3579 | c.iter().all(|elem| |
| 3580 | // SAFETY: We uphold the safety contract of `is_bit_valid(elem)`, by |
| 3581 | // precondition on the surrounding call to `is_bit_valid`. The |
| 3582 | // memory referenced by `elem` is contained entirely within `c`, and |
| 3583 | // satisfies the preconditions satisfied by `c`. By axiom, we assume |
| 3584 | // that `Iterator:all` does not invalidate these preconditions |
| 3585 | // (e.g., by writing to `elem`.) Since `elem` is derived from `c`, |
| 3586 | // it is only possible for uninitialized bytes to occur in `elem` at |
| 3587 | // the same bytes they occur within `c`. |
| 3588 | unsafe { <T as TryFromBytes>::is_bit_valid(elem) } |
| 3589 | ) |
| 3590 | }); |
| 3591 | unsafe_impl!(T: FromZeroes => FromZeroes for [T]); |
| 3592 | unsafe_impl!(T: FromBytes => FromBytes for [T]); |
| 3593 | unsafe_impl!(T: AsBytes => AsBytes for [T]); |
| 3594 | unsafe_impl!(T: Unaligned => Unaligned for [T]); |
| 3595 | } |
| 3596 | safety_comment! { |
| 3597 | /// SAFETY: |
| 3598 | /// - `FromZeroes`: For thin pointers (note that `T: Sized`), the zero |
| 3599 | /// pointer is considered "null". [1] No operations which require |
| 3600 | /// provenance are legal on null pointers, so this is not a footgun. |
| 3601 | /// |
| 3602 | /// NOTE(#170): Implementing `FromBytes` and `AsBytes` for raw pointers |
| 3603 | /// would be sound, but carries provenance footguns. We want to support |
| 3604 | /// `FromBytes` and `AsBytes` for raw pointers eventually, but we are |
| 3605 | /// holding off until we can figure out how to address those footguns. |
| 3606 | /// |
| 3607 | /// [1] TODO(https://github.com/rust-lang/rust/pull/116988): Cite the |
| 3608 | /// documentation once this PR lands. |
| 3609 | unsafe_impl!(T => FromZeroes for *const T); |
| 3610 | unsafe_impl!(T => FromZeroes for *mut T); |
| 3611 | } |
| 3612 | |
| 3613 | // SIMD support |
| 3614 | // |
| 3615 | // Per the Unsafe Code Guidelines Reference [1]: |
| 3616 | // |
| 3617 | // Packed SIMD vector types are `repr(simd)` homogeneous tuple-structs |
| 3618 | // containing `N` elements of type `T` where `N` is a power-of-two and the |
| 3619 | // size and alignment requirements of `T` are equal: |
| 3620 | // |
| 3621 | // ```rust |
| 3622 | // #[repr(simd)] |
| 3623 | // struct Vector<T, N>(T_0, ..., T_(N - 1)); |
| 3624 | // ``` |
| 3625 | // |
| 3626 | // ... |
| 3627 | // |
| 3628 | // The size of `Vector` is `N * size_of::<T>()` and its alignment is an |
| 3629 | // implementation-defined function of `T` and `N` greater than or equal to |
| 3630 | // `align_of::<T>()`. |
| 3631 | // |
| 3632 | // ... |
| 3633 | // |
| 3634 | // Vector elements are laid out in source field order, enabling random access |
| 3635 | // to vector elements by reinterpreting the vector as an array: |
| 3636 | // |
| 3637 | // ```rust |
| 3638 | // union U { |
| 3639 | // vec: Vector<T, N>, |
| 3640 | // arr: [T; N] |
| 3641 | // } |
| 3642 | // |
| 3643 | // assert_eq!(size_of::<Vector<T, N>>(), size_of::<[T; N]>()); |
| 3644 | // assert!(align_of::<Vector<T, N>>() >= align_of::<[T; N]>()); |
| 3645 | // |
| 3646 | // unsafe { |
| 3647 | // let u = U { vec: Vector<T, N>(t_0, ..., t_(N - 1)) }; |
| 3648 | // |
| 3649 | // assert_eq!(u.vec.0, u.arr[0]); |
| 3650 | // // ... |
| 3651 | // assert_eq!(u.vec.(N - 1), u.arr[N - 1]); |
| 3652 | // } |
| 3653 | // ``` |
| 3654 | // |
| 3655 | // Given this background, we can observe that: |
| 3656 | // - The size and bit pattern requirements of a SIMD type are equivalent to the |
| 3657 | // equivalent array type. Thus, for any SIMD type whose primitive `T` is |
| 3658 | // `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes`, that SIMD type is |
| 3659 | // also `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes` respectively. |
| 3660 | // - Since no upper bound is placed on the alignment, no SIMD type can be |
| 3661 | // guaranteed to be `Unaligned`. |
| 3662 | // |
| 3663 | // Also per [1]: |
| 3664 | // |
| 3665 | // This chapter represents the consensus from issue #38. The statements in |
| 3666 | // here are not (yet) "guaranteed" not to change until an RFC ratifies them. |
| 3667 | // |
| 3668 | // See issue #38 [2]. While this behavior is not technically guaranteed, the |
| 3669 | // likelihood that the behavior will change such that SIMD types are no longer |
| 3670 | // `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes` is next to zero, as |
| 3671 | // that would defeat the entire purpose of SIMD types. Nonetheless, we put this |
| 3672 | // behavior behind the `simd` Cargo feature, which requires consumers to opt |
| 3673 | // into this stability hazard. |
| 3674 | // |
| 3675 | // [1] https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html |
| 3676 | // [2] https://github.com/rust-lang/unsafe-code-guidelines/issues/38 |
| 3677 | #[cfg (feature = "simd" )] |
| 3678 | #[cfg_attr (doc_cfg, doc(cfg(feature = "simd" )))] |
| 3679 | mod simd { |
| 3680 | /// Defines a module which implements `TryFromBytes`, `FromZeroes`, |
| 3681 | /// `FromBytes`, and `AsBytes` for a set of types from a module in |
| 3682 | /// `core::arch`. |
| 3683 | /// |
| 3684 | /// `$arch` is both the name of the defined module and the name of the |
| 3685 | /// module in `core::arch`, and `$typ` is the list of items from that module |
| 3686 | /// to implement `FromZeroes`, `FromBytes`, and `AsBytes` for. |
| 3687 | #[allow (unused_macros)] // `allow(unused_macros)` is needed because some |
| 3688 | // target/feature combinations don't emit any impls |
| 3689 | // and thus don't use this macro. |
| 3690 | macro_rules! simd_arch_mod { |
| 3691 | (#[cfg $cfg:tt] $arch:ident, $mod:ident, $($typ:ident),*) => { |
| 3692 | #[cfg $cfg] |
| 3693 | #[cfg_attr(doc_cfg, doc(cfg $cfg))] |
| 3694 | mod $mod { |
| 3695 | use core::arch::$arch::{$($typ),*}; |
| 3696 | |
| 3697 | use crate::*; |
| 3698 | impl_known_layout!($($typ),*); |
| 3699 | safety_comment! { |
| 3700 | /// SAFETY: |
| 3701 | /// See comment on module definition for justification. |
| 3702 | $( unsafe_impl!($typ: TryFromBytes, FromZeroes, FromBytes, AsBytes); )* |
| 3703 | } |
| 3704 | } |
| 3705 | }; |
| 3706 | } |
| 3707 | |
| 3708 | #[rustfmt::skip] |
| 3709 | const _: () = { |
| 3710 | simd_arch_mod!( |
| 3711 | #[cfg(target_arch = "x86" )] |
| 3712 | x86, x86, __m128, __m128d, __m128i, __m256, __m256d, __m256i |
| 3713 | ); |
| 3714 | simd_arch_mod!( |
| 3715 | #[cfg(all(feature = "simd-nightly" , target_arch = "x86" ))] |
| 3716 | x86, x86_nightly, __m512bh, __m512, __m512d, __m512i |
| 3717 | ); |
| 3718 | simd_arch_mod!( |
| 3719 | #[cfg(target_arch = "x86_64" )] |
| 3720 | x86_64, x86_64, __m128, __m128d, __m128i, __m256, __m256d, __m256i |
| 3721 | ); |
| 3722 | simd_arch_mod!( |
| 3723 | #[cfg(all(feature = "simd-nightly" , target_arch = "x86_64" ))] |
| 3724 | x86_64, x86_64_nightly, __m512bh, __m512, __m512d, __m512i |
| 3725 | ); |
| 3726 | simd_arch_mod!( |
| 3727 | #[cfg(target_arch = "wasm32" )] |
| 3728 | wasm32, wasm32, v128 |
| 3729 | ); |
| 3730 | simd_arch_mod!( |
| 3731 | #[cfg(all(feature = "simd-nightly" , target_arch = "powerpc" ))] |
| 3732 | powerpc, powerpc, vector_bool_long, vector_double, vector_signed_long, vector_unsigned_long |
| 3733 | ); |
| 3734 | simd_arch_mod!( |
| 3735 | #[cfg(all(feature = "simd-nightly" , target_arch = "powerpc64" ))] |
| 3736 | powerpc64, powerpc64, vector_bool_long, vector_double, vector_signed_long, vector_unsigned_long |
| 3737 | ); |
| 3738 | simd_arch_mod!( |
| 3739 | #[cfg(target_arch = "aarch64" )] |
| 3740 | aarch64, aarch64, float32x2_t, float32x4_t, float64x1_t, float64x2_t, int8x8_t, int8x8x2_t, |
| 3741 | int8x8x3_t, int8x8x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int16x4_t, |
| 3742 | int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t, |
| 3743 | poly8x8x4_t, poly8x16_t, poly8x16x2_t, poly8x16x3_t, poly8x16x4_t, poly16x4_t, poly16x8_t, |
| 3744 | poly64x1_t, poly64x2_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t, uint8x16_t, |
| 3745 | uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t, |
| 3746 | uint64x1_t, uint64x2_t |
| 3747 | ); |
| 3748 | simd_arch_mod!( |
| 3749 | #[cfg(all(feature = "simd-nightly" , target_arch = "arm" ))] |
| 3750 | arm, arm, int8x4_t, uint8x4_t |
| 3751 | ); |
| 3752 | }; |
| 3753 | } |
| 3754 | |
| 3755 | /// Safely transmutes a value of one type to a value of another type of the same |
| 3756 | /// size. |
| 3757 | /// |
| 3758 | /// The expression `$e` must have a concrete type, `T`, which implements |
| 3759 | /// `AsBytes`. The `transmute!` expression must also have a concrete type, `U` |
| 3760 | /// (`U` is inferred from the calling context), and `U` must implement |
| 3761 | /// `FromBytes`. |
| 3762 | /// |
| 3763 | /// Note that the `T` produced by the expression `$e` will *not* be dropped. |
| 3764 | /// Semantically, its bits will be copied into a new value of type `U`, the |
| 3765 | /// original `T` will be forgotten, and the value of type `U` will be returned. |
| 3766 | /// |
| 3767 | /// # Examples |
| 3768 | /// |
| 3769 | /// ``` |
| 3770 | /// # use zerocopy::transmute; |
| 3771 | /// let one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7]; |
| 3772 | /// |
| 3773 | /// let two_dimensional: [[u8; 4]; 2] = transmute!(one_dimensional); |
| 3774 | /// |
| 3775 | /// assert_eq!(two_dimensional, [[0, 1, 2, 3], [4, 5, 6, 7]]); |
| 3776 | /// ``` |
| 3777 | #[macro_export ] |
| 3778 | macro_rules! transmute { |
| 3779 | ($e:expr) => {{ |
| 3780 | // NOTE: This must be a macro (rather than a function with trait bounds) |
| 3781 | // because there's no way, in a generic context, to enforce that two |
| 3782 | // types have the same size. `core::mem::transmute` uses compiler magic |
| 3783 | // to enforce this so long as the types are concrete. |
| 3784 | |
| 3785 | let e = $e; |
| 3786 | if false { |
| 3787 | // This branch, though never taken, ensures that the type of `e` is |
| 3788 | // `AsBytes` and that the type of this macro invocation expression |
| 3789 | // is `FromBytes`. |
| 3790 | |
| 3791 | struct AssertIsAsBytes<T: $crate::AsBytes>(T); |
| 3792 | let _ = AssertIsAsBytes(e); |
| 3793 | |
| 3794 | struct AssertIsFromBytes<U: $crate::FromBytes>(U); |
| 3795 | #[allow(unused, unreachable_code)] |
| 3796 | let u = AssertIsFromBytes(loop {}); |
| 3797 | u.0 |
| 3798 | } else { |
| 3799 | // SAFETY: `core::mem::transmute` ensures that the type of `e` and |
| 3800 | // the type of this macro invocation expression have the same size. |
| 3801 | // We know this transmute is safe thanks to the `AsBytes` and |
| 3802 | // `FromBytes` bounds enforced by the `false` branch. |
| 3803 | // |
| 3804 | // We use this reexport of `core::mem::transmute` because we know it |
| 3805 | // will always be available for crates which are using the 2015 |
| 3806 | // edition of Rust. By contrast, if we were to use |
| 3807 | // `std::mem::transmute`, this macro would not work for such crates |
| 3808 | // in `no_std` contexts, and if we were to use |
| 3809 | // `core::mem::transmute`, this macro would not work in `std` |
| 3810 | // contexts in which `core` was not manually imported. This is not a |
| 3811 | // problem for 2018 edition crates. |
| 3812 | unsafe { |
| 3813 | // Clippy: It's okay to transmute a type to itself. |
| 3814 | #[allow(clippy::useless_transmute, clippy::missing_transmute_annotations)] |
| 3815 | $crate::macro_util::core_reexport::mem::transmute(e) |
| 3816 | } |
| 3817 | } |
| 3818 | }} |
| 3819 | } |
| 3820 | |
| 3821 | /// Safely transmutes a mutable or immutable reference of one type to an |
| 3822 | /// immutable reference of another type of the same size. |
| 3823 | /// |
| 3824 | /// The expression `$e` must have a concrete type, `&T` or `&mut T`, where `T: |
| 3825 | /// Sized + AsBytes`. The `transmute_ref!` expression must also have a concrete |
| 3826 | /// type, `&U` (`U` is inferred from the calling context), where `U: Sized + |
| 3827 | /// FromBytes`. It must be the case that `align_of::<T>() >= align_of::<U>()`. |
| 3828 | /// |
| 3829 | /// The lifetime of the input type, `&T` or `&mut T`, must be the same as or |
| 3830 | /// outlive the lifetime of the output type, `&U`. |
| 3831 | /// |
| 3832 | /// # Examples |
| 3833 | /// |
| 3834 | /// ``` |
| 3835 | /// # use zerocopy::transmute_ref; |
| 3836 | /// let one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7]; |
| 3837 | /// |
| 3838 | /// let two_dimensional: &[[u8; 4]; 2] = transmute_ref!(&one_dimensional); |
| 3839 | /// |
| 3840 | /// assert_eq!(two_dimensional, &[[0, 1, 2, 3], [4, 5, 6, 7]]); |
| 3841 | /// ``` |
| 3842 | /// |
| 3843 | /// # Alignment increase error message |
| 3844 | /// |
| 3845 | /// Because of limitations on macros, the error message generated when |
| 3846 | /// `transmute_ref!` is used to transmute from a type of lower alignment to a |
| 3847 | /// type of higher alignment is somewhat confusing. For example, the following |
| 3848 | /// code: |
| 3849 | /// |
| 3850 | /// ```compile_fail |
| 3851 | /// const INCREASE_ALIGNMENT: &u16 = zerocopy::transmute_ref!(&[0u8; 2]); |
| 3852 | /// ``` |
| 3853 | /// |
| 3854 | /// ...generates the following error: |
| 3855 | /// |
| 3856 | /// ```text |
| 3857 | /// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types |
| 3858 | /// --> src/lib.rs:1524:34 |
| 3859 | /// | |
| 3860 | /// 5 | const INCREASE_ALIGNMENT: &u16 = zerocopy::transmute_ref!(&[0u8; 2]); |
| 3861 | /// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 3862 | /// | |
| 3863 | /// = note: source type: `AlignOf<[u8; 2]>` (8 bits) |
| 3864 | /// = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits) |
| 3865 | /// = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `transmute_ref` (in Nightly builds, run with -Z macro-backtrace for more info) |
| 3866 | /// ``` |
| 3867 | /// |
| 3868 | /// This is saying that `max(align_of::<T>(), align_of::<U>()) != |
| 3869 | /// align_of::<T>()`, which is equivalent to `align_of::<T>() < |
| 3870 | /// align_of::<U>()`. |
| 3871 | #[macro_export ] |
| 3872 | macro_rules! transmute_ref { |
| 3873 | ($e:expr) => {{ |
| 3874 | // NOTE: This must be a macro (rather than a function with trait bounds) |
| 3875 | // because there's no way, in a generic context, to enforce that two |
| 3876 | // types have the same size or alignment. |
| 3877 | |
| 3878 | // Ensure that the source type is a reference or a mutable reference |
| 3879 | // (note that mutable references are implicitly reborrowed here). |
| 3880 | let e: &_ = $e; |
| 3881 | |
| 3882 | #[allow(unused, clippy::diverging_sub_expression)] |
| 3883 | if false { |
| 3884 | // This branch, though never taken, ensures that the type of `e` is |
| 3885 | // `&T` where `T: 't + Sized + AsBytes`, that the type of this macro |
| 3886 | // expression is `&U` where `U: 'u + Sized + FromBytes`, and that |
| 3887 | // `'t` outlives `'u`. |
| 3888 | |
| 3889 | struct AssertIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T); |
| 3890 | let _ = AssertIsAsBytes(e); |
| 3891 | |
| 3892 | struct AssertIsFromBytes<'a, U: ::core::marker::Sized + $crate::FromBytes>(&'a U); |
| 3893 | #[allow(unused, unreachable_code)] |
| 3894 | let u = AssertIsFromBytes(loop {}); |
| 3895 | u.0 |
| 3896 | } else if false { |
| 3897 | // This branch, though never taken, ensures that `size_of::<T>() == |
| 3898 | // size_of::<U>()` and that that `align_of::<T>() >= |
| 3899 | // align_of::<U>()`. |
| 3900 | |
| 3901 | // `t` is inferred to have type `T` because it's assigned to `e` (of |
| 3902 | // type `&T`) as `&t`. |
| 3903 | let mut t = unreachable!(); |
| 3904 | e = &t; |
| 3905 | |
| 3906 | // `u` is inferred to have type `U` because it's used as `&u` as the |
| 3907 | // value returned from this branch. |
| 3908 | let u; |
| 3909 | |
| 3910 | $crate::assert_size_eq!(t, u); |
| 3911 | $crate::assert_align_gt_eq!(t, u); |
| 3912 | |
| 3913 | &u |
| 3914 | } else { |
| 3915 | // SAFETY: For source type `Src` and destination type `Dst`: |
| 3916 | // - We know that `Src: AsBytes` and `Dst: FromBytes` thanks to the |
| 3917 | // uses of `AssertIsAsBytes` and `AssertIsFromBytes` above. |
| 3918 | // - We know that `size_of::<Src>() == size_of::<Dst>()` thanks to |
| 3919 | // the use of `assert_size_eq!` above. |
| 3920 | // - We know that `align_of::<Src>() >= align_of::<Dst>()` thanks to |
| 3921 | // the use of `assert_align_gt_eq!` above. |
| 3922 | unsafe { $crate::macro_util::transmute_ref(e) } |
| 3923 | } |
| 3924 | }} |
| 3925 | } |
| 3926 | |
| 3927 | /// Safely transmutes a mutable reference of one type to an mutable reference of |
| 3928 | /// another type of the same size. |
| 3929 | /// |
| 3930 | /// The expression `$e` must have a concrete type, `&mut T`, where `T: Sized + |
| 3931 | /// AsBytes`. The `transmute_mut!` expression must also have a concrete type, |
| 3932 | /// `&mut U` (`U` is inferred from the calling context), where `U: Sized + |
| 3933 | /// FromBytes`. It must be the case that `align_of::<T>() >= align_of::<U>()`. |
| 3934 | /// |
| 3935 | /// The lifetime of the input type, `&mut T`, must be the same as or outlive the |
| 3936 | /// lifetime of the output type, `&mut U`. |
| 3937 | /// |
| 3938 | /// # Examples |
| 3939 | /// |
| 3940 | /// ``` |
| 3941 | /// # use zerocopy::transmute_mut; |
| 3942 | /// let mut one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7]; |
| 3943 | /// |
| 3944 | /// let two_dimensional: &mut [[u8; 4]; 2] = transmute_mut!(&mut one_dimensional); |
| 3945 | /// |
| 3946 | /// assert_eq!(two_dimensional, &[[0, 1, 2, 3], [4, 5, 6, 7]]); |
| 3947 | /// |
| 3948 | /// two_dimensional.reverse(); |
| 3949 | /// |
| 3950 | /// assert_eq!(one_dimensional, [4, 5, 6, 7, 0, 1, 2, 3]); |
| 3951 | /// ``` |
| 3952 | /// |
| 3953 | /// # Alignment increase error message |
| 3954 | /// |
| 3955 | /// Because of limitations on macros, the error message generated when |
| 3956 | /// `transmute_mut!` is used to transmute from a type of lower alignment to a |
| 3957 | /// type of higher alignment is somewhat confusing. For example, the following |
| 3958 | /// code: |
| 3959 | /// |
| 3960 | /// ```compile_fail |
| 3961 | /// const INCREASE_ALIGNMENT: &mut u16 = zerocopy::transmute_mut!(&mut [0u8; 2]); |
| 3962 | /// ``` |
| 3963 | /// |
| 3964 | /// ...generates the following error: |
| 3965 | /// |
| 3966 | /// ```text |
| 3967 | /// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types |
| 3968 | /// --> src/lib.rs:1524:34 |
| 3969 | /// | |
| 3970 | /// 5 | const INCREASE_ALIGNMENT: &mut u16 = zerocopy::transmute_mut!(&mut [0u8; 2]); |
| 3971 | /// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 3972 | /// | |
| 3973 | /// = note: source type: `AlignOf<[u8; 2]>` (8 bits) |
| 3974 | /// = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits) |
| 3975 | /// = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `transmute_mut` (in Nightly builds, run with -Z macro-backtrace for more info) |
| 3976 | /// ``` |
| 3977 | /// |
| 3978 | /// This is saying that `max(align_of::<T>(), align_of::<U>()) != |
| 3979 | /// align_of::<T>()`, which is equivalent to `align_of::<T>() < |
| 3980 | /// align_of::<U>()`. |
| 3981 | #[macro_export ] |
| 3982 | macro_rules! transmute_mut { |
| 3983 | ($e:expr) => {{ |
| 3984 | // NOTE: This must be a macro (rather than a function with trait bounds) |
| 3985 | // because there's no way, in a generic context, to enforce that two |
| 3986 | // types have the same size or alignment. |
| 3987 | |
| 3988 | // Ensure that the source type is a mutable reference. |
| 3989 | let e: &mut _ = $e; |
| 3990 | |
| 3991 | #[allow(unused, clippy::diverging_sub_expression)] |
| 3992 | if false { |
| 3993 | // This branch, though never taken, ensures that the type of `e` is |
| 3994 | // `&mut T` where `T: 't + Sized + FromBytes + AsBytes`, that the |
| 3995 | // type of this macro expression is `&mut U` where `U: 'u + Sized + |
| 3996 | // FromBytes + AsBytes`. |
| 3997 | |
| 3998 | // We use immutable references here rather than mutable so that, if |
| 3999 | // this macro is used in a const context (in which, as of this |
| 4000 | // writing, mutable references are banned), the error message |
| 4001 | // appears to originate in the user's code rather than in the |
| 4002 | // internals of this macro. |
| 4003 | struct AssertSrcIsFromBytes<'a, T: ::core::marker::Sized + $crate::FromBytes>(&'a T); |
| 4004 | struct AssertSrcIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T); |
| 4005 | struct AssertDstIsFromBytes<'a, T: ::core::marker::Sized + $crate::FromBytes>(&'a T); |
| 4006 | struct AssertDstIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T); |
| 4007 | |
| 4008 | if true { |
| 4009 | let _ = AssertSrcIsFromBytes(&*e); |
| 4010 | } else { |
| 4011 | let _ = AssertSrcIsAsBytes(&*e); |
| 4012 | } |
| 4013 | |
| 4014 | if true { |
| 4015 | #[allow(unused, unreachable_code)] |
| 4016 | let u = AssertDstIsFromBytes(loop {}); |
| 4017 | &mut *u.0 |
| 4018 | } else { |
| 4019 | #[allow(unused, unreachable_code)] |
| 4020 | let u = AssertDstIsAsBytes(loop {}); |
| 4021 | &mut *u.0 |
| 4022 | } |
| 4023 | } else if false { |
| 4024 | // This branch, though never taken, ensures that `size_of::<T>() == |
| 4025 | // size_of::<U>()` and that that `align_of::<T>() >= |
| 4026 | // align_of::<U>()`. |
| 4027 | |
| 4028 | // `t` is inferred to have type `T` because it's assigned to `e` (of |
| 4029 | // type `&mut T`) as `&mut t`. |
| 4030 | let mut t = unreachable!(); |
| 4031 | e = &mut t; |
| 4032 | |
| 4033 | // `u` is inferred to have type `U` because it's used as `&mut u` as |
| 4034 | // the value returned from this branch. |
| 4035 | let u; |
| 4036 | |
| 4037 | $crate::assert_size_eq!(t, u); |
| 4038 | $crate::assert_align_gt_eq!(t, u); |
| 4039 | |
| 4040 | &mut u |
| 4041 | } else { |
| 4042 | // SAFETY: For source type `Src` and destination type `Dst`: |
| 4043 | // - We know that `Src: FromBytes + AsBytes` and `Dst: FromBytes + |
| 4044 | // AsBytes` thanks to the uses of `AssertSrcIsFromBytes`, |
| 4045 | // `AssertSrcIsAsBytes`, `AssertDstIsFromBytes`, and |
| 4046 | // `AssertDstIsAsBytes` above. |
| 4047 | // - We know that `size_of::<Src>() == size_of::<Dst>()` thanks to |
| 4048 | // the use of `assert_size_eq!` above. |
| 4049 | // - We know that `align_of::<Src>() >= align_of::<Dst>()` thanks to |
| 4050 | // the use of `assert_align_gt_eq!` above. |
| 4051 | unsafe { $crate::macro_util::transmute_mut(e) } |
| 4052 | } |
| 4053 | }} |
| 4054 | } |
| 4055 | |
| 4056 | /// Includes a file and safely transmutes it to a value of an arbitrary type. |
| 4057 | /// |
| 4058 | /// The file will be included as a byte array, `[u8; N]`, which will be |
| 4059 | /// transmuted to another type, `T`. `T` is inferred from the calling context, |
| 4060 | /// and must implement [`FromBytes`]. |
| 4061 | /// |
| 4062 | /// The file is located relative to the current file (similarly to how modules |
| 4063 | /// are found). The provided path is interpreted in a platform-specific way at |
| 4064 | /// compile time. So, for instance, an invocation with a Windows path containing |
| 4065 | /// backslashes `\` would not compile correctly on Unix. |
| 4066 | /// |
| 4067 | /// `include_value!` is ignorant of byte order. For byte order-aware types, see |
| 4068 | /// the [`byteorder`] module. |
| 4069 | /// |
| 4070 | /// # Examples |
| 4071 | /// |
| 4072 | /// Assume there are two files in the same directory with the following |
| 4073 | /// contents: |
| 4074 | /// |
| 4075 | /// File `data` (no trailing newline): |
| 4076 | /// |
| 4077 | /// ```text |
| 4078 | /// abcd |
| 4079 | /// ``` |
| 4080 | /// |
| 4081 | /// File `main.rs`: |
| 4082 | /// |
| 4083 | /// ```rust |
| 4084 | /// use zerocopy::include_value; |
| 4085 | /// # macro_rules! include_value { |
| 4086 | /// # ($file:expr) => { zerocopy::include_value!(concat!("../testdata/include_value/" , $file)) }; |
| 4087 | /// # } |
| 4088 | /// |
| 4089 | /// fn main() { |
| 4090 | /// let as_u32: u32 = include_value!("data" ); |
| 4091 | /// assert_eq!(as_u32, u32::from_ne_bytes([b'a' , b'b' , b'c' , b'd' ])); |
| 4092 | /// let as_i32: i32 = include_value!("data" ); |
| 4093 | /// assert_eq!(as_i32, i32::from_ne_bytes([b'a' , b'b' , b'c' , b'd' ])); |
| 4094 | /// } |
| 4095 | /// ``` |
| 4096 | #[doc (alias("include_bytes" , "include_data" , "include_type" ))] |
| 4097 | #[macro_export ] |
| 4098 | macro_rules! include_value { |
| 4099 | ($file:expr $(,)?) => { |
| 4100 | $crate::transmute!(*::core::include_bytes!($file)) |
| 4101 | }; |
| 4102 | } |
| 4103 | |
| 4104 | /// A typed reference derived from a byte slice. |
| 4105 | /// |
| 4106 | /// A `Ref<B, T>` is a reference to a `T` which is stored in a byte slice, `B`. |
| 4107 | /// Unlike a native reference (`&T` or `&mut T`), `Ref<B, T>` has the same |
| 4108 | /// mutability as the byte slice it was constructed from (`B`). |
| 4109 | /// |
| 4110 | /// # Examples |
| 4111 | /// |
| 4112 | /// `Ref` can be used to treat a sequence of bytes as a structured type, and to |
| 4113 | /// read and write the fields of that type as if the byte slice reference were |
| 4114 | /// simply a reference to that type. |
| 4115 | /// |
| 4116 | /// ```rust |
| 4117 | /// # #[cfg (feature = "derive" )] { // This example uses derives, and won't compile without them |
| 4118 | /// use zerocopy::{AsBytes, ByteSlice, ByteSliceMut, FromBytes, FromZeroes, Ref, Unaligned}; |
| 4119 | /// |
| 4120 | /// #[derive(FromZeroes, FromBytes, AsBytes, Unaligned)] |
| 4121 | /// #[repr(C)] |
| 4122 | /// struct UdpHeader { |
| 4123 | /// src_port: [u8; 2], |
| 4124 | /// dst_port: [u8; 2], |
| 4125 | /// length: [u8; 2], |
| 4126 | /// checksum: [u8; 2], |
| 4127 | /// } |
| 4128 | /// |
| 4129 | /// struct UdpPacket<B> { |
| 4130 | /// header: Ref<B, UdpHeader>, |
| 4131 | /// body: B, |
| 4132 | /// } |
| 4133 | /// |
| 4134 | /// impl<B: ByteSlice> UdpPacket<B> { |
| 4135 | /// pub fn parse(bytes: B) -> Option<UdpPacket<B>> { |
| 4136 | /// let (header, body) = Ref::new_unaligned_from_prefix(bytes)?; |
| 4137 | /// Some(UdpPacket { header, body }) |
| 4138 | /// } |
| 4139 | /// |
| 4140 | /// pub fn get_src_port(&self) -> [u8; 2] { |
| 4141 | /// self.header.src_port |
| 4142 | /// } |
| 4143 | /// } |
| 4144 | /// |
| 4145 | /// impl<B: ByteSliceMut> UdpPacket<B> { |
| 4146 | /// pub fn set_src_port(&mut self, src_port: [u8; 2]) { |
| 4147 | /// self.header.src_port = src_port; |
| 4148 | /// } |
| 4149 | /// } |
| 4150 | /// # } |
| 4151 | /// ``` |
| 4152 | pub struct Ref<B, T: ?Sized>(B, PhantomData<T>); |
| 4153 | |
| 4154 | /// Deprecated: prefer [`Ref`] instead. |
| 4155 | #[deprecated (since = "0.7.0" , note = "LayoutVerified has been renamed to Ref" )] |
| 4156 | #[doc (hidden)] |
| 4157 | pub type LayoutVerified<B, T> = Ref<B, T>; |
| 4158 | |
| 4159 | impl<B, T> Ref<B, T> |
| 4160 | where |
| 4161 | B: ByteSlice, |
| 4162 | { |
| 4163 | /// Constructs a new `Ref`. |
| 4164 | /// |
| 4165 | /// `new` verifies that `bytes.len() == size_of::<T>()` and that `bytes` is |
| 4166 | /// aligned to `align_of::<T>()`, and constructs a new `Ref`. If either of |
| 4167 | /// these checks fail, it returns `None`. |
| 4168 | #[inline ] |
| 4169 | pub fn new(bytes: B) -> Option<Ref<B, T>> { |
| 4170 | if bytes.len() != mem::size_of::<T>() || !util::aligned_to::<_, T>(bytes.deref()) { |
| 4171 | return None; |
| 4172 | } |
| 4173 | Some(Ref(bytes, PhantomData)) |
| 4174 | } |
| 4175 | |
| 4176 | /// Constructs a new `Ref` from the prefix of a byte slice. |
| 4177 | /// |
| 4178 | /// `new_from_prefix` verifies that `bytes.len() >= size_of::<T>()` and that |
| 4179 | /// `bytes` is aligned to `align_of::<T>()`. It consumes the first |
| 4180 | /// `size_of::<T>()` bytes from `bytes` to construct a `Ref`, and returns |
| 4181 | /// the remaining bytes to the caller. If either the length or alignment |
| 4182 | /// checks fail, it returns `None`. |
| 4183 | #[inline ] |
| 4184 | pub fn new_from_prefix(bytes: B) -> Option<(Ref<B, T>, B)> { |
| 4185 | if bytes.len() < mem::size_of::<T>() || !util::aligned_to::<_, T>(bytes.deref()) { |
| 4186 | return None; |
| 4187 | } |
| 4188 | let (bytes, suffix) = bytes.split_at(mem::size_of::<T>()); |
| 4189 | Some((Ref(bytes, PhantomData), suffix)) |
| 4190 | } |
| 4191 | |
| 4192 | /// Constructs a new `Ref` from the suffix of a byte slice. |
| 4193 | /// |
| 4194 | /// `new_from_suffix` verifies that `bytes.len() >= size_of::<T>()` and that |
| 4195 | /// the last `size_of::<T>()` bytes of `bytes` are aligned to |
| 4196 | /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from |
| 4197 | /// `bytes` to construct a `Ref`, and returns the preceding bytes to the |
| 4198 | /// caller. If either the length or alignment checks fail, it returns |
| 4199 | /// `None`. |
| 4200 | #[inline ] |
| 4201 | pub fn new_from_suffix(bytes: B) -> Option<(B, Ref<B, T>)> { |
| 4202 | let bytes_len = bytes.len(); |
| 4203 | let split_at = bytes_len.checked_sub(mem::size_of::<T>())?; |
| 4204 | let (prefix, bytes) = bytes.split_at(split_at); |
| 4205 | if !util::aligned_to::<_, T>(bytes.deref()) { |
| 4206 | return None; |
| 4207 | } |
| 4208 | Some((prefix, Ref(bytes, PhantomData))) |
| 4209 | } |
| 4210 | } |
| 4211 | |
| 4212 | impl<B, T> Ref<B, [T]> |
| 4213 | where |
| 4214 | B: ByteSlice, |
| 4215 | { |
| 4216 | /// Constructs a new `Ref` of a slice type. |
| 4217 | /// |
| 4218 | /// `new_slice` verifies that `bytes.len()` is a multiple of |
| 4219 | /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and |
| 4220 | /// constructs a new `Ref`. If either of these checks fail, it returns |
| 4221 | /// `None`. |
| 4222 | /// |
| 4223 | /// # Panics |
| 4224 | /// |
| 4225 | /// `new_slice` panics if `T` is a zero-sized type. |
| 4226 | #[inline ] |
| 4227 | pub fn new_slice(bytes: B) -> Option<Ref<B, [T]>> { |
| 4228 | let remainder = bytes |
| 4229 | .len() |
| 4230 | .checked_rem(mem::size_of::<T>()) |
| 4231 | .expect("Ref::new_slice called on a zero-sized type" ); |
| 4232 | if remainder != 0 || !util::aligned_to::<_, T>(bytes.deref()) { |
| 4233 | return None; |
| 4234 | } |
| 4235 | Some(Ref(bytes, PhantomData)) |
| 4236 | } |
| 4237 | |
| 4238 | /// Constructs a new `Ref` of a slice type from the prefix of a byte slice. |
| 4239 | /// |
| 4240 | /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() * |
| 4241 | /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| 4242 | /// first `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`, |
| 4243 | /// and returns the remaining bytes to the caller. It also ensures that |
| 4244 | /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the |
| 4245 | /// length, alignment, or overflow checks fail, it returns `None`. |
| 4246 | /// |
| 4247 | /// # Panics |
| 4248 | /// |
| 4249 | /// `new_slice_from_prefix` panics if `T` is a zero-sized type. |
| 4250 | #[inline ] |
| 4251 | pub fn new_slice_from_prefix(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> { |
| 4252 | let expected_len = match mem::size_of::<T>().checked_mul(count) { |
| 4253 | Some(len) => len, |
| 4254 | None => return None, |
| 4255 | }; |
| 4256 | if bytes.len() < expected_len { |
| 4257 | return None; |
| 4258 | } |
| 4259 | let (prefix, bytes) = bytes.split_at(expected_len); |
| 4260 | Self::new_slice(prefix).map(move |l| (l, bytes)) |
| 4261 | } |
| 4262 | |
| 4263 | /// Constructs a new `Ref` of a slice type from the suffix of a byte slice. |
| 4264 | /// |
| 4265 | /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() * |
| 4266 | /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| 4267 | /// last `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`, |
| 4268 | /// and returns the preceding bytes to the caller. It also ensures that |
| 4269 | /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the |
| 4270 | /// length, alignment, or overflow checks fail, it returns `None`. |
| 4271 | /// |
| 4272 | /// # Panics |
| 4273 | /// |
| 4274 | /// `new_slice_from_suffix` panics if `T` is a zero-sized type. |
| 4275 | #[inline ] |
| 4276 | pub fn new_slice_from_suffix(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> { |
| 4277 | let expected_len = match mem::size_of::<T>().checked_mul(count) { |
| 4278 | Some(len) => len, |
| 4279 | None => return None, |
| 4280 | }; |
| 4281 | let split_at = bytes.len().checked_sub(expected_len)?; |
| 4282 | let (bytes, suffix) = bytes.split_at(split_at); |
| 4283 | Self::new_slice(suffix).map(move |l| (bytes, l)) |
| 4284 | } |
| 4285 | } |
| 4286 | |
| 4287 | fn map_zeroed<B: ByteSliceMut, T: ?Sized>(opt: Option<Ref<B, T>>) -> Option<Ref<B, T>> { |
| 4288 | match opt { |
| 4289 | Some(mut r: Ref) => { |
| 4290 | r.0.fill(0); |
| 4291 | Some(r) |
| 4292 | } |
| 4293 | None => None, |
| 4294 | } |
| 4295 | } |
| 4296 | |
| 4297 | fn map_prefix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>( |
| 4298 | opt: Option<(Ref<B, T>, B)>, |
| 4299 | ) -> Option<(Ref<B, T>, B)> { |
| 4300 | match opt { |
| 4301 | Some((mut r: Ref, rest: B)) => { |
| 4302 | r.0.fill(0); |
| 4303 | Some((r, rest)) |
| 4304 | } |
| 4305 | None => None, |
| 4306 | } |
| 4307 | } |
| 4308 | |
| 4309 | fn map_suffix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>( |
| 4310 | opt: Option<(B, Ref<B, T>)>, |
| 4311 | ) -> Option<(B, Ref<B, T>)> { |
| 4312 | map_prefix_tuple_zeroed(opt.map(|(a: B, b: Ref)| (b, a))).map(|(a: Ref, b: B)| (b, a)) |
| 4313 | } |
| 4314 | |
| 4315 | impl<B, T> Ref<B, T> |
| 4316 | where |
| 4317 | B: ByteSliceMut, |
| 4318 | { |
| 4319 | /// Constructs a new `Ref` after zeroing the bytes. |
| 4320 | /// |
| 4321 | /// `new_zeroed` verifies that `bytes.len() == size_of::<T>()` and that |
| 4322 | /// `bytes` is aligned to `align_of::<T>()`, and constructs a new `Ref`. If |
| 4323 | /// either of these checks fail, it returns `None`. |
| 4324 | /// |
| 4325 | /// If the checks succeed, then `bytes` will be initialized to zero. This |
| 4326 | /// can be useful when re-using buffers to ensure that sensitive data |
| 4327 | /// previously stored in the buffer is not leaked. |
| 4328 | #[inline (always)] |
| 4329 | pub fn new_zeroed(bytes: B) -> Option<Ref<B, T>> { |
| 4330 | map_zeroed(Self::new(bytes)) |
| 4331 | } |
| 4332 | |
| 4333 | /// Constructs a new `Ref` from the prefix of a byte slice, zeroing the |
| 4334 | /// prefix. |
| 4335 | /// |
| 4336 | /// `new_from_prefix_zeroed` verifies that `bytes.len() >= size_of::<T>()` |
| 4337 | /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the first |
| 4338 | /// `size_of::<T>()` bytes from `bytes` to construct a `Ref`, and returns |
| 4339 | /// the remaining bytes to the caller. If either the length or alignment |
| 4340 | /// checks fail, it returns `None`. |
| 4341 | /// |
| 4342 | /// If the checks succeed, then the prefix which is consumed will be |
| 4343 | /// initialized to zero. This can be useful when re-using buffers to ensure |
| 4344 | /// that sensitive data previously stored in the buffer is not leaked. |
| 4345 | #[inline (always)] |
| 4346 | pub fn new_from_prefix_zeroed(bytes: B) -> Option<(Ref<B, T>, B)> { |
| 4347 | map_prefix_tuple_zeroed(Self::new_from_prefix(bytes)) |
| 4348 | } |
| 4349 | |
| 4350 | /// Constructs a new `Ref` from the suffix of a byte slice, zeroing the |
| 4351 | /// suffix. |
| 4352 | /// |
| 4353 | /// `new_from_suffix_zeroed` verifies that `bytes.len() >= size_of::<T>()` |
| 4354 | /// and that the last `size_of::<T>()` bytes of `bytes` are aligned to |
| 4355 | /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from |
| 4356 | /// `bytes` to construct a `Ref`, and returns the preceding bytes to the |
| 4357 | /// caller. If either the length or alignment checks fail, it returns |
| 4358 | /// `None`. |
| 4359 | /// |
| 4360 | /// If the checks succeed, then the suffix which is consumed will be |
| 4361 | /// initialized to zero. This can be useful when re-using buffers to ensure |
| 4362 | /// that sensitive data previously stored in the buffer is not leaked. |
| 4363 | #[inline (always)] |
| 4364 | pub fn new_from_suffix_zeroed(bytes: B) -> Option<(B, Ref<B, T>)> { |
| 4365 | map_suffix_tuple_zeroed(Self::new_from_suffix(bytes)) |
| 4366 | } |
| 4367 | } |
| 4368 | |
| 4369 | impl<B, T> Ref<B, [T]> |
| 4370 | where |
| 4371 | B: ByteSliceMut, |
| 4372 | { |
| 4373 | /// Constructs a new `Ref` of a slice type after zeroing the bytes. |
| 4374 | /// |
| 4375 | /// `new_slice_zeroed` verifies that `bytes.len()` is a multiple of |
| 4376 | /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and |
| 4377 | /// constructs a new `Ref`. If either of these checks fail, it returns |
| 4378 | /// `None`. |
| 4379 | /// |
| 4380 | /// If the checks succeed, then `bytes` will be initialized to zero. This |
| 4381 | /// can be useful when re-using buffers to ensure that sensitive data |
| 4382 | /// previously stored in the buffer is not leaked. |
| 4383 | /// |
| 4384 | /// # Panics |
| 4385 | /// |
| 4386 | /// `new_slice` panics if `T` is a zero-sized type. |
| 4387 | #[inline (always)] |
| 4388 | pub fn new_slice_zeroed(bytes: B) -> Option<Ref<B, [T]>> { |
| 4389 | map_zeroed(Self::new_slice(bytes)) |
| 4390 | } |
| 4391 | |
| 4392 | /// Constructs a new `Ref` of a slice type from the prefix of a byte slice, |
| 4393 | /// after zeroing the bytes. |
| 4394 | /// |
| 4395 | /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() * |
| 4396 | /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| 4397 | /// first `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`, |
| 4398 | /// and returns the remaining bytes to the caller. It also ensures that |
| 4399 | /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the |
| 4400 | /// length, alignment, or overflow checks fail, it returns `None`. |
| 4401 | /// |
| 4402 | /// If the checks succeed, then the suffix which is consumed will be |
| 4403 | /// initialized to zero. This can be useful when re-using buffers to ensure |
| 4404 | /// that sensitive data previously stored in the buffer is not leaked. |
| 4405 | /// |
| 4406 | /// # Panics |
| 4407 | /// |
| 4408 | /// `new_slice_from_prefix_zeroed` panics if `T` is a zero-sized type. |
| 4409 | #[inline (always)] |
| 4410 | pub fn new_slice_from_prefix_zeroed(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> { |
| 4411 | map_prefix_tuple_zeroed(Self::new_slice_from_prefix(bytes, count)) |
| 4412 | } |
| 4413 | |
| 4414 | /// Constructs a new `Ref` of a slice type from the prefix of a byte slice, |
| 4415 | /// after zeroing the bytes. |
| 4416 | /// |
| 4417 | /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() * |
| 4418 | /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| 4419 | /// last `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`, |
| 4420 | /// and returns the preceding bytes to the caller. It also ensures that |
| 4421 | /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the |
| 4422 | /// length, alignment, or overflow checks fail, it returns `None`. |
| 4423 | /// |
| 4424 | /// If the checks succeed, then the consumed suffix will be initialized to |
| 4425 | /// zero. This can be useful when re-using buffers to ensure that sensitive |
| 4426 | /// data previously stored in the buffer is not leaked. |
| 4427 | /// |
| 4428 | /// # Panics |
| 4429 | /// |
| 4430 | /// `new_slice_from_suffix_zeroed` panics if `T` is a zero-sized type. |
| 4431 | #[inline (always)] |
| 4432 | pub fn new_slice_from_suffix_zeroed(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> { |
| 4433 | map_suffix_tuple_zeroed(Self::new_slice_from_suffix(bytes, count)) |
| 4434 | } |
| 4435 | } |
| 4436 | |
| 4437 | impl<B, T> Ref<B, T> |
| 4438 | where |
| 4439 | B: ByteSlice, |
| 4440 | T: Unaligned, |
| 4441 | { |
| 4442 | /// Constructs a new `Ref` for a type with no alignment requirement. |
| 4443 | /// |
| 4444 | /// `new_unaligned` verifies that `bytes.len() == size_of::<T>()` and |
| 4445 | /// constructs a new `Ref`. If the check fails, it returns `None`. |
| 4446 | #[inline (always)] |
| 4447 | pub fn new_unaligned(bytes: B) -> Option<Ref<B, T>> { |
| 4448 | Ref::new(bytes) |
| 4449 | } |
| 4450 | |
| 4451 | /// Constructs a new `Ref` from the prefix of a byte slice for a type with |
| 4452 | /// no alignment requirement. |
| 4453 | /// |
| 4454 | /// `new_unaligned_from_prefix` verifies that `bytes.len() >= |
| 4455 | /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from |
| 4456 | /// `bytes` to construct a `Ref`, and returns the remaining bytes to the |
| 4457 | /// caller. If the length check fails, it returns `None`. |
| 4458 | #[inline (always)] |
| 4459 | pub fn new_unaligned_from_prefix(bytes: B) -> Option<(Ref<B, T>, B)> { |
| 4460 | Ref::new_from_prefix(bytes) |
| 4461 | } |
| 4462 | |
| 4463 | /// Constructs a new `Ref` from the suffix of a byte slice for a type with |
| 4464 | /// no alignment requirement. |
| 4465 | /// |
| 4466 | /// `new_unaligned_from_suffix` verifies that `bytes.len() >= |
| 4467 | /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from |
| 4468 | /// `bytes` to construct a `Ref`, and returns the preceding bytes to the |
| 4469 | /// caller. If the length check fails, it returns `None`. |
| 4470 | #[inline (always)] |
| 4471 | pub fn new_unaligned_from_suffix(bytes: B) -> Option<(B, Ref<B, T>)> { |
| 4472 | Ref::new_from_suffix(bytes) |
| 4473 | } |
| 4474 | } |
| 4475 | |
| 4476 | impl<B, T> Ref<B, [T]> |
| 4477 | where |
| 4478 | B: ByteSlice, |
| 4479 | T: Unaligned, |
| 4480 | { |
| 4481 | /// Constructs a new `Ref` of a slice type with no alignment requirement. |
| 4482 | /// |
| 4483 | /// `new_slice_unaligned` verifies that `bytes.len()` is a multiple of |
| 4484 | /// `size_of::<T>()` and constructs a new `Ref`. If the check fails, it |
| 4485 | /// returns `None`. |
| 4486 | /// |
| 4487 | /// # Panics |
| 4488 | /// |
| 4489 | /// `new_slice` panics if `T` is a zero-sized type. |
| 4490 | #[inline (always)] |
| 4491 | pub fn new_slice_unaligned(bytes: B) -> Option<Ref<B, [T]>> { |
| 4492 | Ref::new_slice(bytes) |
| 4493 | } |
| 4494 | |
| 4495 | /// Constructs a new `Ref` of a slice type with no alignment requirement |
| 4496 | /// from the prefix of a byte slice. |
| 4497 | /// |
| 4498 | /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() * |
| 4499 | /// count`. It consumes the first `size_of::<T>() * count` bytes from |
| 4500 | /// `bytes` to construct a `Ref`, and returns the remaining bytes to the |
| 4501 | /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a |
| 4502 | /// `usize`. If either the length, or overflow checks fail, it returns |
| 4503 | /// `None`. |
| 4504 | /// |
| 4505 | /// # Panics |
| 4506 | /// |
| 4507 | /// `new_slice_unaligned_from_prefix` panics if `T` is a zero-sized type. |
| 4508 | #[inline (always)] |
| 4509 | pub fn new_slice_unaligned_from_prefix(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> { |
| 4510 | Ref::new_slice_from_prefix(bytes, count) |
| 4511 | } |
| 4512 | |
| 4513 | /// Constructs a new `Ref` of a slice type with no alignment requirement |
| 4514 | /// from the suffix of a byte slice. |
| 4515 | /// |
| 4516 | /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() * |
| 4517 | /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes` |
| 4518 | /// to construct a `Ref`, and returns the remaining bytes to the caller. It |
| 4519 | /// also ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| 4520 | /// If either the length, or overflow checks fail, it returns `None`. |
| 4521 | /// |
| 4522 | /// # Panics |
| 4523 | /// |
| 4524 | /// `new_slice_unaligned_from_suffix` panics if `T` is a zero-sized type. |
| 4525 | #[inline (always)] |
| 4526 | pub fn new_slice_unaligned_from_suffix(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> { |
| 4527 | Ref::new_slice_from_suffix(bytes, count) |
| 4528 | } |
| 4529 | } |
| 4530 | |
| 4531 | impl<B, T> Ref<B, T> |
| 4532 | where |
| 4533 | B: ByteSliceMut, |
| 4534 | T: Unaligned, |
| 4535 | { |
| 4536 | /// Constructs a new `Ref` for a type with no alignment requirement, zeroing |
| 4537 | /// the bytes. |
| 4538 | /// |
| 4539 | /// `new_unaligned_zeroed` verifies that `bytes.len() == size_of::<T>()` and |
| 4540 | /// constructs a new `Ref`. If the check fails, it returns `None`. |
| 4541 | /// |
| 4542 | /// If the check succeeds, then `bytes` will be initialized to zero. This |
| 4543 | /// can be useful when re-using buffers to ensure that sensitive data |
| 4544 | /// previously stored in the buffer is not leaked. |
| 4545 | #[inline (always)] |
| 4546 | pub fn new_unaligned_zeroed(bytes: B) -> Option<Ref<B, T>> { |
| 4547 | map_zeroed(Self::new_unaligned(bytes)) |
| 4548 | } |
| 4549 | |
| 4550 | /// Constructs a new `Ref` from the prefix of a byte slice for a type with |
| 4551 | /// no alignment requirement, zeroing the prefix. |
| 4552 | /// |
| 4553 | /// `new_unaligned_from_prefix_zeroed` verifies that `bytes.len() >= |
| 4554 | /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from |
| 4555 | /// `bytes` to construct a `Ref`, and returns the remaining bytes to the |
| 4556 | /// caller. If the length check fails, it returns `None`. |
| 4557 | /// |
| 4558 | /// If the check succeeds, then the prefix which is consumed will be |
| 4559 | /// initialized to zero. This can be useful when re-using buffers to ensure |
| 4560 | /// that sensitive data previously stored in the buffer is not leaked. |
| 4561 | #[inline (always)] |
| 4562 | pub fn new_unaligned_from_prefix_zeroed(bytes: B) -> Option<(Ref<B, T>, B)> { |
| 4563 | map_prefix_tuple_zeroed(Self::new_unaligned_from_prefix(bytes)) |
| 4564 | } |
| 4565 | |
| 4566 | /// Constructs a new `Ref` from the suffix of a byte slice for a type with |
| 4567 | /// no alignment requirement, zeroing the suffix. |
| 4568 | /// |
| 4569 | /// `new_unaligned_from_suffix_zeroed` verifies that `bytes.len() >= |
| 4570 | /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from |
| 4571 | /// `bytes` to construct a `Ref`, and returns the preceding bytes to the |
| 4572 | /// caller. If the length check fails, it returns `None`. |
| 4573 | /// |
| 4574 | /// If the check succeeds, then the suffix which is consumed will be |
| 4575 | /// initialized to zero. This can be useful when re-using buffers to ensure |
| 4576 | /// that sensitive data previously stored in the buffer is not leaked. |
| 4577 | #[inline (always)] |
| 4578 | pub fn new_unaligned_from_suffix_zeroed(bytes: B) -> Option<(B, Ref<B, T>)> { |
| 4579 | map_suffix_tuple_zeroed(Self::new_unaligned_from_suffix(bytes)) |
| 4580 | } |
| 4581 | } |
| 4582 | |
| 4583 | impl<B, T> Ref<B, [T]> |
| 4584 | where |
| 4585 | B: ByteSliceMut, |
| 4586 | T: Unaligned, |
| 4587 | { |
| 4588 | /// Constructs a new `Ref` for a slice type with no alignment requirement, |
| 4589 | /// zeroing the bytes. |
| 4590 | /// |
| 4591 | /// `new_slice_unaligned_zeroed` verifies that `bytes.len()` is a multiple |
| 4592 | /// of `size_of::<T>()` and constructs a new `Ref`. If the check fails, it |
| 4593 | /// returns `None`. |
| 4594 | /// |
| 4595 | /// If the check succeeds, then `bytes` will be initialized to zero. This |
| 4596 | /// can be useful when re-using buffers to ensure that sensitive data |
| 4597 | /// previously stored in the buffer is not leaked. |
| 4598 | /// |
| 4599 | /// # Panics |
| 4600 | /// |
| 4601 | /// `new_slice` panics if `T` is a zero-sized type. |
| 4602 | #[inline (always)] |
| 4603 | pub fn new_slice_unaligned_zeroed(bytes: B) -> Option<Ref<B, [T]>> { |
| 4604 | map_zeroed(Self::new_slice_unaligned(bytes)) |
| 4605 | } |
| 4606 | |
| 4607 | /// Constructs a new `Ref` of a slice type with no alignment requirement |
| 4608 | /// from the prefix of a byte slice, after zeroing the bytes. |
| 4609 | /// |
| 4610 | /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() * |
| 4611 | /// count`. It consumes the first `size_of::<T>() * count` bytes from |
| 4612 | /// `bytes` to construct a `Ref`, and returns the remaining bytes to the |
| 4613 | /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a |
| 4614 | /// `usize`. If either the length, or overflow checks fail, it returns |
| 4615 | /// `None`. |
| 4616 | /// |
| 4617 | /// If the checks succeed, then the prefix will be initialized to zero. This |
| 4618 | /// can be useful when re-using buffers to ensure that sensitive data |
| 4619 | /// previously stored in the buffer is not leaked. |
| 4620 | /// |
| 4621 | /// # Panics |
| 4622 | /// |
| 4623 | /// `new_slice_unaligned_from_prefix_zeroed` panics if `T` is a zero-sized |
| 4624 | /// type. |
| 4625 | #[inline (always)] |
| 4626 | pub fn new_slice_unaligned_from_prefix_zeroed( |
| 4627 | bytes: B, |
| 4628 | count: usize, |
| 4629 | ) -> Option<(Ref<B, [T]>, B)> { |
| 4630 | map_prefix_tuple_zeroed(Self::new_slice_unaligned_from_prefix(bytes, count)) |
| 4631 | } |
| 4632 | |
| 4633 | /// Constructs a new `Ref` of a slice type with no alignment requirement |
| 4634 | /// from the suffix of a byte slice, after zeroing the bytes. |
| 4635 | /// |
| 4636 | /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() * |
| 4637 | /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes` |
| 4638 | /// to construct a `Ref`, and returns the remaining bytes to the caller. It |
| 4639 | /// also ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| 4640 | /// If either the length, or overflow checks fail, it returns `None`. |
| 4641 | /// |
| 4642 | /// If the checks succeed, then the suffix will be initialized to zero. This |
| 4643 | /// can be useful when re-using buffers to ensure that sensitive data |
| 4644 | /// previously stored in the buffer is not leaked. |
| 4645 | /// |
| 4646 | /// # Panics |
| 4647 | /// |
| 4648 | /// `new_slice_unaligned_from_suffix_zeroed` panics if `T` is a zero-sized |
| 4649 | /// type. |
| 4650 | #[inline (always)] |
| 4651 | pub fn new_slice_unaligned_from_suffix_zeroed( |
| 4652 | bytes: B, |
| 4653 | count: usize, |
| 4654 | ) -> Option<(B, Ref<B, [T]>)> { |
| 4655 | map_suffix_tuple_zeroed(Self::new_slice_unaligned_from_suffix(bytes, count)) |
| 4656 | } |
| 4657 | } |
| 4658 | |
| 4659 | impl<'a, B, T> Ref<B, T> |
| 4660 | where |
| 4661 | B: 'a + ByteSlice, |
| 4662 | T: FromBytes, |
| 4663 | { |
| 4664 | /// Converts this `Ref` into a reference. |
| 4665 | /// |
| 4666 | /// `into_ref` consumes the `Ref`, and returns a reference to `T`. |
| 4667 | #[inline (always)] |
| 4668 | pub fn into_ref(self) -> &'a T { |
| 4669 | assert!(B::INTO_REF_INTO_MUT_ARE_SOUND); |
| 4670 | |
| 4671 | // SAFETY: According to the safety preconditions on |
| 4672 | // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert |
| 4673 | // ensures that, given `B: 'a`, it is sound to drop `self` and still |
| 4674 | // access the underlying memory using reads for `'a`. |
| 4675 | unsafe { self.deref_helper() } |
| 4676 | } |
| 4677 | } |
| 4678 | |
| 4679 | impl<'a, B, T> Ref<B, T> |
| 4680 | where |
| 4681 | B: 'a + ByteSliceMut, |
| 4682 | T: FromBytes + AsBytes, |
| 4683 | { |
| 4684 | /// Converts this `Ref` into a mutable reference. |
| 4685 | /// |
| 4686 | /// `into_mut` consumes the `Ref`, and returns a mutable reference to `T`. |
| 4687 | #[inline (always)] |
| 4688 | pub fn into_mut(mut self) -> &'a mut T { |
| 4689 | assert!(B::INTO_REF_INTO_MUT_ARE_SOUND); |
| 4690 | |
| 4691 | // SAFETY: According to the safety preconditions on |
| 4692 | // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert |
| 4693 | // ensures that, given `B: 'a + ByteSliceMut`, it is sound to drop |
| 4694 | // `self` and still access the underlying memory using both reads and |
| 4695 | // writes for `'a`. |
| 4696 | unsafe { self.deref_mut_helper() } |
| 4697 | } |
| 4698 | } |
| 4699 | |
| 4700 | impl<'a, B, T> Ref<B, [T]> |
| 4701 | where |
| 4702 | B: 'a + ByteSlice, |
| 4703 | T: FromBytes, |
| 4704 | { |
| 4705 | /// Converts this `Ref` into a slice reference. |
| 4706 | /// |
| 4707 | /// `into_slice` consumes the `Ref`, and returns a reference to `[T]`. |
| 4708 | #[inline (always)] |
| 4709 | pub fn into_slice(self) -> &'a [T] { |
| 4710 | assert!(B::INTO_REF_INTO_MUT_ARE_SOUND); |
| 4711 | |
| 4712 | // SAFETY: According to the safety preconditions on |
| 4713 | // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert |
| 4714 | // ensures that, given `B: 'a`, it is sound to drop `self` and still |
| 4715 | // access the underlying memory using reads for `'a`. |
| 4716 | unsafe { self.deref_slice_helper() } |
| 4717 | } |
| 4718 | } |
| 4719 | |
| 4720 | impl<'a, B, T> Ref<B, [T]> |
| 4721 | where |
| 4722 | B: 'a + ByteSliceMut, |
| 4723 | T: FromBytes + AsBytes, |
| 4724 | { |
| 4725 | /// Converts this `Ref` into a mutable slice reference. |
| 4726 | /// |
| 4727 | /// `into_mut_slice` consumes the `Ref`, and returns a mutable reference to |
| 4728 | /// `[T]`. |
| 4729 | #[inline (always)] |
| 4730 | pub fn into_mut_slice(mut self) -> &'a mut [T] { |
| 4731 | assert!(B::INTO_REF_INTO_MUT_ARE_SOUND); |
| 4732 | |
| 4733 | // SAFETY: According to the safety preconditions on |
| 4734 | // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert |
| 4735 | // ensures that, given `B: 'a + ByteSliceMut`, it is sound to drop |
| 4736 | // `self` and still access the underlying memory using both reads and |
| 4737 | // writes for `'a`. |
| 4738 | unsafe { self.deref_mut_slice_helper() } |
| 4739 | } |
| 4740 | } |
| 4741 | |
| 4742 | impl<B, T> Ref<B, T> |
| 4743 | where |
| 4744 | B: ByteSlice, |
| 4745 | T: FromBytes, |
| 4746 | { |
| 4747 | /// Creates an immutable reference to `T` with a specific lifetime. |
| 4748 | /// |
| 4749 | /// # Safety |
| 4750 | /// |
| 4751 | /// The type bounds on this method guarantee that it is safe to create an |
| 4752 | /// immutable reference to `T` from `self`. However, since the lifetime `'a` |
| 4753 | /// is not required to be shorter than the lifetime of the reference to |
| 4754 | /// `self`, the caller must guarantee that the lifetime `'a` is valid for |
| 4755 | /// this reference. In particular, the referent must exist for all of `'a`, |
| 4756 | /// and no mutable references to the same memory may be constructed during |
| 4757 | /// `'a`. |
| 4758 | unsafe fn deref_helper<'a>(&self) -> &'a T { |
| 4759 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 4760 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 4761 | unsafe { |
| 4762 | &*self.0.as_ptr().cast::<T>() |
| 4763 | } |
| 4764 | } |
| 4765 | } |
| 4766 | |
| 4767 | impl<B, T> Ref<B, T> |
| 4768 | where |
| 4769 | B: ByteSliceMut, |
| 4770 | T: FromBytes + AsBytes, |
| 4771 | { |
| 4772 | /// Creates a mutable reference to `T` with a specific lifetime. |
| 4773 | /// |
| 4774 | /// # Safety |
| 4775 | /// |
| 4776 | /// The type bounds on this method guarantee that it is safe to create a |
| 4777 | /// mutable reference to `T` from `self`. However, since the lifetime `'a` |
| 4778 | /// is not required to be shorter than the lifetime of the reference to |
| 4779 | /// `self`, the caller must guarantee that the lifetime `'a` is valid for |
| 4780 | /// this reference. In particular, the referent must exist for all of `'a`, |
| 4781 | /// and no other references - mutable or immutable - to the same memory may |
| 4782 | /// be constructed during `'a`. |
| 4783 | unsafe fn deref_mut_helper<'a>(&mut self) -> &'a mut T { |
| 4784 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 4785 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 4786 | unsafe { |
| 4787 | &mut *self.0.as_mut_ptr().cast::<T>() |
| 4788 | } |
| 4789 | } |
| 4790 | } |
| 4791 | |
| 4792 | impl<B, T> Ref<B, [T]> |
| 4793 | where |
| 4794 | B: ByteSlice, |
| 4795 | T: FromBytes, |
| 4796 | { |
| 4797 | /// Creates an immutable reference to `[T]` with a specific lifetime. |
| 4798 | /// |
| 4799 | /// # Safety |
| 4800 | /// |
| 4801 | /// `deref_slice_helper` has the same safety requirements as `deref_helper`. |
| 4802 | unsafe fn deref_slice_helper<'a>(&self) -> &'a [T] { |
| 4803 | let len: usize = self.0.len(); |
| 4804 | let elem_size: usize = mem::size_of::<T>(); |
| 4805 | debug_assert_ne!(elem_size, 0); |
| 4806 | // `Ref<_, [T]>` maintains the invariant that `size_of::<T>() > 0`. |
| 4807 | // Thus, neither the mod nor division operations here can panic. |
| 4808 | #[allow (clippy::arithmetic_side_effects)] |
| 4809 | let elems: usize = { |
| 4810 | debug_assert_eq!(len % elem_size, 0); |
| 4811 | len / elem_size |
| 4812 | }; |
| 4813 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 4814 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 4815 | unsafe { |
| 4816 | slice::from_raw_parts(self.0.as_ptr().cast::<T>(), len:elems) |
| 4817 | } |
| 4818 | } |
| 4819 | } |
| 4820 | |
| 4821 | impl<B, T> Ref<B, [T]> |
| 4822 | where |
| 4823 | B: ByteSliceMut, |
| 4824 | T: FromBytes + AsBytes, |
| 4825 | { |
| 4826 | /// Creates a mutable reference to `[T]` with a specific lifetime. |
| 4827 | /// |
| 4828 | /// # Safety |
| 4829 | /// |
| 4830 | /// `deref_mut_slice_helper` has the same safety requirements as |
| 4831 | /// `deref_mut_helper`. |
| 4832 | unsafe fn deref_mut_slice_helper<'a>(&mut self) -> &'a mut [T] { |
| 4833 | let len = self.0.len(); |
| 4834 | let elem_size = mem::size_of::<T>(); |
| 4835 | debug_assert_ne!(elem_size, 0); |
| 4836 | // `Ref<_, [T]>` maintains the invariant that `size_of::<T>() > 0`. |
| 4837 | // Thus, neither the mod nor division operations here can panic. |
| 4838 | #[allow (clippy::arithmetic_side_effects)] |
| 4839 | let elems = { |
| 4840 | debug_assert_eq!(len % elem_size, 0); |
| 4841 | len / elem_size |
| 4842 | }; |
| 4843 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 4844 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 4845 | unsafe { |
| 4846 | slice::from_raw_parts_mut(self.0.as_mut_ptr().cast::<T>(), elems) |
| 4847 | } |
| 4848 | } |
| 4849 | } |
| 4850 | |
| 4851 | impl<B, T> Ref<B, T> |
| 4852 | where |
| 4853 | B: ByteSlice, |
| 4854 | T: ?Sized, |
| 4855 | { |
| 4856 | /// Gets the underlying bytes. |
| 4857 | #[inline ] |
| 4858 | pub fn bytes(&self) -> &[u8] { |
| 4859 | &self.0 |
| 4860 | } |
| 4861 | } |
| 4862 | |
| 4863 | impl<B, T> Ref<B, T> |
| 4864 | where |
| 4865 | B: ByteSliceMut, |
| 4866 | T: ?Sized, |
| 4867 | { |
| 4868 | /// Gets the underlying bytes mutably. |
| 4869 | #[inline ] |
| 4870 | pub fn bytes_mut(&mut self) -> &mut [u8] { |
| 4871 | &mut self.0 |
| 4872 | } |
| 4873 | } |
| 4874 | |
| 4875 | impl<B, T> Ref<B, T> |
| 4876 | where |
| 4877 | B: ByteSlice, |
| 4878 | T: FromBytes, |
| 4879 | { |
| 4880 | /// Reads a copy of `T`. |
| 4881 | #[inline ] |
| 4882 | pub fn read(&self) -> T { |
| 4883 | // SAFETY: Because of the invariants on `Ref`, we know that `self.0` is |
| 4884 | // at least `size_of::<T>()` bytes long, and that it is at least as |
| 4885 | // aligned as `align_of::<T>()`. Because `T: FromBytes`, it is sound to |
| 4886 | // interpret these bytes as a `T`. |
| 4887 | unsafe { ptr::read(self.0.as_ptr().cast::<T>()) } |
| 4888 | } |
| 4889 | } |
| 4890 | |
| 4891 | impl<B, T> Ref<B, T> |
| 4892 | where |
| 4893 | B: ByteSliceMut, |
| 4894 | T: AsBytes, |
| 4895 | { |
| 4896 | /// Writes the bytes of `t` and then forgets `t`. |
| 4897 | #[inline ] |
| 4898 | pub fn write(&mut self, t: T) { |
| 4899 | // SAFETY: Because of the invariants on `Ref`, we know that `self.0` is |
| 4900 | // at least `size_of::<T>()` bytes long, and that it is at least as |
| 4901 | // aligned as `align_of::<T>()`. Writing `t` to the buffer will allow |
| 4902 | // all of the bytes of `t` to be accessed as a `[u8]`, but because `T: |
| 4903 | // AsBytes`, we know this is sound. |
| 4904 | unsafe { ptr::write(self.0.as_mut_ptr().cast::<T>(), src:t) } |
| 4905 | } |
| 4906 | } |
| 4907 | |
| 4908 | impl<B, T> Deref for Ref<B, T> |
| 4909 | where |
| 4910 | B: ByteSlice, |
| 4911 | T: FromBytes, |
| 4912 | { |
| 4913 | type Target = T; |
| 4914 | #[inline ] |
| 4915 | fn deref(&self) -> &T { |
| 4916 | // SAFETY: This is sound because the lifetime of `self` is the same as |
| 4917 | // the lifetime of the return value, meaning that a) the returned |
| 4918 | // reference cannot outlive `self` and, b) no mutable methods on `self` |
| 4919 | // can be called during the lifetime of the returned reference. See the |
| 4920 | // documentation on `deref_helper` for what invariants we are required |
| 4921 | // to uphold. |
| 4922 | unsafe { self.deref_helper() } |
| 4923 | } |
| 4924 | } |
| 4925 | |
| 4926 | impl<B, T> DerefMut for Ref<B, T> |
| 4927 | where |
| 4928 | B: ByteSliceMut, |
| 4929 | T: FromBytes + AsBytes, |
| 4930 | { |
| 4931 | #[inline ] |
| 4932 | fn deref_mut(&mut self) -> &mut T { |
| 4933 | // SAFETY: This is sound because the lifetime of `self` is the same as |
| 4934 | // the lifetime of the return value, meaning that a) the returned |
| 4935 | // reference cannot outlive `self` and, b) no other methods on `self` |
| 4936 | // can be called during the lifetime of the returned reference. See the |
| 4937 | // documentation on `deref_mut_helper` for what invariants we are |
| 4938 | // required to uphold. |
| 4939 | unsafe { self.deref_mut_helper() } |
| 4940 | } |
| 4941 | } |
| 4942 | |
| 4943 | impl<B, T> Deref for Ref<B, [T]> |
| 4944 | where |
| 4945 | B: ByteSlice, |
| 4946 | T: FromBytes, |
| 4947 | { |
| 4948 | type Target = [T]; |
| 4949 | #[inline ] |
| 4950 | fn deref(&self) -> &[T] { |
| 4951 | // SAFETY: This is sound because the lifetime of `self` is the same as |
| 4952 | // the lifetime of the return value, meaning that a) the returned |
| 4953 | // reference cannot outlive `self` and, b) no mutable methods on `self` |
| 4954 | // can be called during the lifetime of the returned reference. See the |
| 4955 | // documentation on `deref_slice_helper` for what invariants we are |
| 4956 | // required to uphold. |
| 4957 | unsafe { self.deref_slice_helper() } |
| 4958 | } |
| 4959 | } |
| 4960 | |
| 4961 | impl<B, T> DerefMut for Ref<B, [T]> |
| 4962 | where |
| 4963 | B: ByteSliceMut, |
| 4964 | T: FromBytes + AsBytes, |
| 4965 | { |
| 4966 | #[inline ] |
| 4967 | fn deref_mut(&mut self) -> &mut [T] { |
| 4968 | // SAFETY: This is sound because the lifetime of `self` is the same as |
| 4969 | // the lifetime of the return value, meaning that a) the returned |
| 4970 | // reference cannot outlive `self` and, b) no other methods on `self` |
| 4971 | // can be called during the lifetime of the returned reference. See the |
| 4972 | // documentation on `deref_mut_slice_helper` for what invariants we are |
| 4973 | // required to uphold. |
| 4974 | unsafe { self.deref_mut_slice_helper() } |
| 4975 | } |
| 4976 | } |
| 4977 | |
| 4978 | impl<T, B> Display for Ref<B, T> |
| 4979 | where |
| 4980 | B: ByteSlice, |
| 4981 | T: FromBytes + Display, |
| 4982 | { |
| 4983 | #[inline ] |
| 4984 | fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { |
| 4985 | let inner: &T = self; |
| 4986 | inner.fmt(fmt) |
| 4987 | } |
| 4988 | } |
| 4989 | |
| 4990 | impl<T, B> Display for Ref<B, [T]> |
| 4991 | where |
| 4992 | B: ByteSlice, |
| 4993 | T: FromBytes, |
| 4994 | [T]: Display, |
| 4995 | { |
| 4996 | #[inline ] |
| 4997 | fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { |
| 4998 | let inner: &[T] = self; |
| 4999 | inner.fmt(fmt) |
| 5000 | } |
| 5001 | } |
| 5002 | |
| 5003 | impl<T, B> Debug for Ref<B, T> |
| 5004 | where |
| 5005 | B: ByteSlice, |
| 5006 | T: FromBytes + Debug, |
| 5007 | { |
| 5008 | #[inline ] |
| 5009 | fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { |
| 5010 | let inner: &T = self; |
| 5011 | fmt.debug_tuple(name:"Ref" ).field(&inner).finish() |
| 5012 | } |
| 5013 | } |
| 5014 | |
| 5015 | impl<T, B> Debug for Ref<B, [T]> |
| 5016 | where |
| 5017 | B: ByteSlice, |
| 5018 | T: FromBytes + Debug, |
| 5019 | { |
| 5020 | #[inline ] |
| 5021 | fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { |
| 5022 | let inner: &[T] = self; |
| 5023 | fmt.debug_tuple(name:"Ref" ).field(&inner).finish() |
| 5024 | } |
| 5025 | } |
| 5026 | |
| 5027 | impl<T, B> Eq for Ref<B, T> |
| 5028 | where |
| 5029 | B: ByteSlice, |
| 5030 | T: FromBytes + Eq, |
| 5031 | { |
| 5032 | } |
| 5033 | |
| 5034 | impl<T, B> Eq for Ref<B, [T]> |
| 5035 | where |
| 5036 | B: ByteSlice, |
| 5037 | T: FromBytes + Eq, |
| 5038 | { |
| 5039 | } |
| 5040 | |
| 5041 | impl<T, B> PartialEq for Ref<B, T> |
| 5042 | where |
| 5043 | B: ByteSlice, |
| 5044 | T: FromBytes + PartialEq, |
| 5045 | { |
| 5046 | #[inline ] |
| 5047 | fn eq(&self, other: &Self) -> bool { |
| 5048 | self.deref().eq(other.deref()) |
| 5049 | } |
| 5050 | } |
| 5051 | |
| 5052 | impl<T, B> PartialEq for Ref<B, [T]> |
| 5053 | where |
| 5054 | B: ByteSlice, |
| 5055 | T: FromBytes + PartialEq, |
| 5056 | { |
| 5057 | #[inline ] |
| 5058 | fn eq(&self, other: &Self) -> bool { |
| 5059 | self.deref().eq(other.deref()) |
| 5060 | } |
| 5061 | } |
| 5062 | |
| 5063 | impl<T, B> Ord for Ref<B, T> |
| 5064 | where |
| 5065 | B: ByteSlice, |
| 5066 | T: FromBytes + Ord, |
| 5067 | { |
| 5068 | #[inline ] |
| 5069 | fn cmp(&self, other: &Self) -> Ordering { |
| 5070 | let inner: &T = self; |
| 5071 | let other_inner: &T = other; |
| 5072 | inner.cmp(other_inner) |
| 5073 | } |
| 5074 | } |
| 5075 | |
| 5076 | impl<T, B> Ord for Ref<B, [T]> |
| 5077 | where |
| 5078 | B: ByteSlice, |
| 5079 | T: FromBytes + Ord, |
| 5080 | { |
| 5081 | #[inline ] |
| 5082 | fn cmp(&self, other: &Self) -> Ordering { |
| 5083 | let inner: &[T] = self; |
| 5084 | let other_inner: &[T] = other; |
| 5085 | inner.cmp(other_inner) |
| 5086 | } |
| 5087 | } |
| 5088 | |
| 5089 | impl<T, B> PartialOrd for Ref<B, T> |
| 5090 | where |
| 5091 | B: ByteSlice, |
| 5092 | T: FromBytes + PartialOrd, |
| 5093 | { |
| 5094 | #[inline ] |
| 5095 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| 5096 | let inner: &T = self; |
| 5097 | let other_inner: &T = other; |
| 5098 | inner.partial_cmp(other_inner) |
| 5099 | } |
| 5100 | } |
| 5101 | |
| 5102 | impl<T, B> PartialOrd for Ref<B, [T]> |
| 5103 | where |
| 5104 | B: ByteSlice, |
| 5105 | T: FromBytes + PartialOrd, |
| 5106 | { |
| 5107 | #[inline ] |
| 5108 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| 5109 | let inner: &[T] = self; |
| 5110 | let other_inner: &[T] = other; |
| 5111 | inner.partial_cmp(other_inner) |
| 5112 | } |
| 5113 | } |
| 5114 | |
| 5115 | mod sealed { |
| 5116 | pub trait ByteSliceSealed {} |
| 5117 | } |
| 5118 | |
| 5119 | // ByteSlice and ByteSliceMut abstract over [u8] references (&[u8], &mut [u8], |
| 5120 | // Ref<[u8]>, RefMut<[u8]>, etc). We rely on various behaviors of these |
| 5121 | // references such as that a given reference will never changes its length |
| 5122 | // between calls to deref() or deref_mut(), and that split_at() works as |
| 5123 | // expected. If ByteSlice or ByteSliceMut were not sealed, consumers could |
| 5124 | // implement them in a way that violated these behaviors, and would break our |
| 5125 | // unsafe code. Thus, we seal them and implement it only for known-good |
| 5126 | // reference types. For the same reason, they're unsafe traits. |
| 5127 | |
| 5128 | #[allow (clippy::missing_safety_doc)] // TODO(fxbug.dev/99068) |
| 5129 | /// A mutable or immutable reference to a byte slice. |
| 5130 | /// |
| 5131 | /// `ByteSlice` abstracts over the mutability of a byte slice reference, and is |
| 5132 | /// implemented for various special reference types such as `Ref<[u8]>` and |
| 5133 | /// `RefMut<[u8]>`. |
| 5134 | /// |
| 5135 | /// Note that, while it would be technically possible, `ByteSlice` is not |
| 5136 | /// implemented for [`Vec<u8>`], as the only way to implement the [`split_at`] |
| 5137 | /// method would involve reallocation, and `split_at` must be a very cheap |
| 5138 | /// operation in order for the utilities in this crate to perform as designed. |
| 5139 | /// |
| 5140 | /// [`split_at`]: crate::ByteSlice::split_at |
| 5141 | // It may seem overkill to go to this length to ensure that this doc link never |
| 5142 | // breaks. We do this because it simplifies CI - it means that generating docs |
| 5143 | // always succeeds, so we don't need special logic to only generate docs under |
| 5144 | // certain features. |
| 5145 | #[cfg_attr (feature = "alloc" , doc = "[`Vec<u8>`]: alloc::vec::Vec" )] |
| 5146 | #[cfg_attr ( |
| 5147 | not(feature = "alloc" ), |
| 5148 | doc = "[`Vec<u8>`]: https://doc.rust-lang.org/std/vec/struct.Vec.html" |
| 5149 | )] |
| 5150 | pub unsafe trait ByteSlice: Deref<Target = [u8]> + Sized + sealed::ByteSliceSealed { |
| 5151 | /// Are the [`Ref::into_ref`] and [`Ref::into_mut`] methods sound when used |
| 5152 | /// with `Self`? If not, evaluating this constant must panic at compile |
| 5153 | /// time. |
| 5154 | /// |
| 5155 | /// This exists to work around #716 on versions of zerocopy prior to 0.8. |
| 5156 | /// |
| 5157 | /// # Safety |
| 5158 | /// |
| 5159 | /// This may only be set to true if the following holds: Given the |
| 5160 | /// following: |
| 5161 | /// - `Self: 'a` |
| 5162 | /// - `bytes: Self` |
| 5163 | /// - `let ptr = bytes.as_ptr()` |
| 5164 | /// |
| 5165 | /// ...then: |
| 5166 | /// - Using `ptr` to read the memory previously addressed by `bytes` is |
| 5167 | /// sound for `'a` even after `bytes` has been dropped. |
| 5168 | /// - If `Self: ByteSliceMut`, using `ptr` to write the memory previously |
| 5169 | /// addressed by `bytes` is sound for `'a` even after `bytes` has been |
| 5170 | /// dropped. |
| 5171 | #[doc (hidden)] |
| 5172 | const INTO_REF_INTO_MUT_ARE_SOUND: bool; |
| 5173 | |
| 5174 | /// Gets a raw pointer to the first byte in the slice. |
| 5175 | #[inline ] |
| 5176 | fn as_ptr(&self) -> *const u8 { |
| 5177 | <[u8]>::as_ptr(self) |
| 5178 | } |
| 5179 | |
| 5180 | /// Splits the slice at the midpoint. |
| 5181 | /// |
| 5182 | /// `x.split_at(mid)` returns `x[..mid]` and `x[mid..]`. |
| 5183 | /// |
| 5184 | /// # Panics |
| 5185 | /// |
| 5186 | /// `x.split_at(mid)` panics if `mid > x.len()`. |
| 5187 | fn split_at(self, mid: usize) -> (Self, Self); |
| 5188 | } |
| 5189 | |
| 5190 | #[allow (clippy::missing_safety_doc)] // TODO(fxbug.dev/99068) |
| 5191 | /// A mutable reference to a byte slice. |
| 5192 | /// |
| 5193 | /// `ByteSliceMut` abstracts over various ways of storing a mutable reference to |
| 5194 | /// a byte slice, and is implemented for various special reference types such as |
| 5195 | /// `RefMut<[u8]>`. |
| 5196 | pub unsafe trait ByteSliceMut: ByteSlice + DerefMut { |
| 5197 | /// Gets a mutable raw pointer to the first byte in the slice. |
| 5198 | #[inline ] |
| 5199 | fn as_mut_ptr(&mut self) -> *mut u8 { |
| 5200 | <[u8]>::as_mut_ptr(self) |
| 5201 | } |
| 5202 | } |
| 5203 | |
| 5204 | impl<'a> sealed::ByteSliceSealed for &'a [u8] {} |
| 5205 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 5206 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 5207 | unsafe impl<'a> ByteSlice for &'a [u8] { |
| 5208 | // SAFETY: If `&'b [u8]: 'a`, then the underlying memory is treated as |
| 5209 | // borrowed immutably for `'a` even if the slice itself is dropped. |
| 5210 | const INTO_REF_INTO_MUT_ARE_SOUND: bool = true; |
| 5211 | |
| 5212 | #[inline ] |
| 5213 | fn split_at(self, mid: usize) -> (Self, Self) { |
| 5214 | <[u8]>::split_at(self, mid) |
| 5215 | } |
| 5216 | } |
| 5217 | |
| 5218 | impl<'a> sealed::ByteSliceSealed for &'a mut [u8] {} |
| 5219 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 5220 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 5221 | unsafe impl<'a> ByteSlice for &'a mut [u8] { |
| 5222 | // SAFETY: If `&'b mut [u8]: 'a`, then the underlying memory is treated as |
| 5223 | // borrowed mutably for `'a` even if the slice itself is dropped. |
| 5224 | const INTO_REF_INTO_MUT_ARE_SOUND: bool = true; |
| 5225 | |
| 5226 | #[inline ] |
| 5227 | fn split_at(self, mid: usize) -> (Self, Self) { |
| 5228 | <[u8]>::split_at_mut(self, mid) |
| 5229 | } |
| 5230 | } |
| 5231 | |
| 5232 | impl<'a> sealed::ByteSliceSealed for cell::Ref<'a, [u8]> {} |
| 5233 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 5234 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 5235 | unsafe impl<'a> ByteSlice for cell::Ref<'a, [u8]> { |
| 5236 | const INTO_REF_INTO_MUT_ARE_SOUND: bool = if !cfg!(doc) { |
| 5237 | panic!("Ref::into_ref and Ref::into_mut are unsound when used with core::cell::Ref; see https://github.com/google/zerocopy/issues/716" ) |
| 5238 | } else { |
| 5239 | // When compiling documentation, allow the evaluation of this constant |
| 5240 | // to succeed. This doesn't represent a soundness hole - it just delays |
| 5241 | // any error to runtime. The reason we need this is that, otherwise, |
| 5242 | // `rustdoc` will fail when trying to document this item. |
| 5243 | false |
| 5244 | }; |
| 5245 | |
| 5246 | #[inline ] |
| 5247 | fn split_at(self, mid: usize) -> (Self, Self) { |
| 5248 | cell::Ref::map_split(self, |slice: &[u8]| <[u8]>::split_at(self:slice, mid)) |
| 5249 | } |
| 5250 | } |
| 5251 | |
| 5252 | impl<'a> sealed::ByteSliceSealed for RefMut<'a, [u8]> {} |
| 5253 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 5254 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 5255 | unsafe impl<'a> ByteSlice for RefMut<'a, [u8]> { |
| 5256 | const INTO_REF_INTO_MUT_ARE_SOUND: bool = if !cfg!(doc) { |
| 5257 | panic!("Ref::into_ref and Ref::into_mut are unsound when used with core::cell::RefMut; see https://github.com/google/zerocopy/issues/716" ) |
| 5258 | } else { |
| 5259 | // When compiling documentation, allow the evaluation of this constant |
| 5260 | // to succeed. This doesn't represent a soundness hole - it just delays |
| 5261 | // any error to runtime. The reason we need this is that, otherwise, |
| 5262 | // `rustdoc` will fail when trying to document this item. |
| 5263 | false |
| 5264 | }; |
| 5265 | |
| 5266 | #[inline ] |
| 5267 | fn split_at(self, mid: usize) -> (Self, Self) { |
| 5268 | RefMut::map_split(self, |slice: &mut [u8]| <[u8]>::split_at_mut(self:slice, mid)) |
| 5269 | } |
| 5270 | } |
| 5271 | |
| 5272 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 5273 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 5274 | unsafe impl<'a> ByteSliceMut for &'a mut [u8] {} |
| 5275 | |
| 5276 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| 5277 | #[allow (clippy::undocumented_unsafe_blocks)] |
| 5278 | unsafe impl<'a> ByteSliceMut for RefMut<'a, [u8]> {} |
| 5279 | |
| 5280 | #[cfg (feature = "alloc" )] |
| 5281 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 5282 | mod alloc_support { |
| 5283 | use alloc::vec::Vec; |
| 5284 | |
| 5285 | use super::*; |
| 5286 | |
| 5287 | /// Extends a `Vec<T>` by pushing `additional` new items onto the end of the |
| 5288 | /// vector. The new items are initialized with zeroes. |
| 5289 | /// |
| 5290 | /// # Panics |
| 5291 | /// |
| 5292 | /// Panics if `Vec::reserve(additional)` fails to reserve enough memory. |
| 5293 | #[inline (always)] |
| 5294 | pub fn extend_vec_zeroed<T: FromZeroes>(v: &mut Vec<T>, additional: usize) { |
| 5295 | insert_vec_zeroed(v, v.len(), additional); |
| 5296 | } |
| 5297 | |
| 5298 | /// Inserts `additional` new items into `Vec<T>` at `position`. |
| 5299 | /// The new items are initialized with zeroes. |
| 5300 | /// |
| 5301 | /// # Panics |
| 5302 | /// |
| 5303 | /// * Panics if `position > v.len()`. |
| 5304 | /// * Panics if `Vec::reserve(additional)` fails to reserve enough memory. |
| 5305 | #[inline ] |
| 5306 | pub fn insert_vec_zeroed<T: FromZeroes>(v: &mut Vec<T>, position: usize, additional: usize) { |
| 5307 | assert!(position <= v.len()); |
| 5308 | v.reserve(additional); |
| 5309 | // SAFETY: The `reserve` call guarantees that these cannot overflow: |
| 5310 | // * `ptr.add(position)` |
| 5311 | // * `position + additional` |
| 5312 | // * `v.len() + additional` |
| 5313 | // |
| 5314 | // `v.len() - position` cannot overflow because we asserted that |
| 5315 | // `position <= v.len()`. |
| 5316 | unsafe { |
| 5317 | // This is a potentially overlapping copy. |
| 5318 | let ptr = v.as_mut_ptr(); |
| 5319 | #[allow (clippy::arithmetic_side_effects)] |
| 5320 | ptr.add(position).copy_to(ptr.add(position + additional), v.len() - position); |
| 5321 | ptr.add(position).write_bytes(0, additional); |
| 5322 | #[allow (clippy::arithmetic_side_effects)] |
| 5323 | v.set_len(v.len() + additional); |
| 5324 | } |
| 5325 | } |
| 5326 | |
| 5327 | #[cfg (test)] |
| 5328 | mod tests { |
| 5329 | use core::convert::TryFrom as _; |
| 5330 | |
| 5331 | use super::*; |
| 5332 | |
| 5333 | #[test ] |
| 5334 | fn test_extend_vec_zeroed() { |
| 5335 | // Test extending when there is an existing allocation. |
| 5336 | let mut v = vec![100u64, 200, 300]; |
| 5337 | extend_vec_zeroed(&mut v, 3); |
| 5338 | assert_eq!(v.len(), 6); |
| 5339 | assert_eq!(&*v, &[100, 200, 300, 0, 0, 0]); |
| 5340 | drop(v); |
| 5341 | |
| 5342 | // Test extending when there is no existing allocation. |
| 5343 | let mut v: Vec<u64> = Vec::new(); |
| 5344 | extend_vec_zeroed(&mut v, 3); |
| 5345 | assert_eq!(v.len(), 3); |
| 5346 | assert_eq!(&*v, &[0, 0, 0]); |
| 5347 | drop(v); |
| 5348 | } |
| 5349 | |
| 5350 | #[test ] |
| 5351 | fn test_extend_vec_zeroed_zst() { |
| 5352 | // Test extending when there is an existing (fake) allocation. |
| 5353 | let mut v = vec![(), (), ()]; |
| 5354 | extend_vec_zeroed(&mut v, 3); |
| 5355 | assert_eq!(v.len(), 6); |
| 5356 | assert_eq!(&*v, &[(), (), (), (), (), ()]); |
| 5357 | drop(v); |
| 5358 | |
| 5359 | // Test extending when there is no existing (fake) allocation. |
| 5360 | let mut v: Vec<()> = Vec::new(); |
| 5361 | extend_vec_zeroed(&mut v, 3); |
| 5362 | assert_eq!(&*v, &[(), (), ()]); |
| 5363 | drop(v); |
| 5364 | } |
| 5365 | |
| 5366 | #[test ] |
| 5367 | fn test_insert_vec_zeroed() { |
| 5368 | // Insert at start (no existing allocation). |
| 5369 | let mut v: Vec<u64> = Vec::new(); |
| 5370 | insert_vec_zeroed(&mut v, 0, 2); |
| 5371 | assert_eq!(v.len(), 2); |
| 5372 | assert_eq!(&*v, &[0, 0]); |
| 5373 | drop(v); |
| 5374 | |
| 5375 | // Insert at start. |
| 5376 | let mut v = vec![100u64, 200, 300]; |
| 5377 | insert_vec_zeroed(&mut v, 0, 2); |
| 5378 | assert_eq!(v.len(), 5); |
| 5379 | assert_eq!(&*v, &[0, 0, 100, 200, 300]); |
| 5380 | drop(v); |
| 5381 | |
| 5382 | // Insert at middle. |
| 5383 | let mut v = vec![100u64, 200, 300]; |
| 5384 | insert_vec_zeroed(&mut v, 1, 1); |
| 5385 | assert_eq!(v.len(), 4); |
| 5386 | assert_eq!(&*v, &[100, 0, 200, 300]); |
| 5387 | drop(v); |
| 5388 | |
| 5389 | // Insert at end. |
| 5390 | let mut v = vec![100u64, 200, 300]; |
| 5391 | insert_vec_zeroed(&mut v, 3, 1); |
| 5392 | assert_eq!(v.len(), 4); |
| 5393 | assert_eq!(&*v, &[100, 200, 300, 0]); |
| 5394 | drop(v); |
| 5395 | } |
| 5396 | |
| 5397 | #[test ] |
| 5398 | fn test_insert_vec_zeroed_zst() { |
| 5399 | // Insert at start (no existing fake allocation). |
| 5400 | let mut v: Vec<()> = Vec::new(); |
| 5401 | insert_vec_zeroed(&mut v, 0, 2); |
| 5402 | assert_eq!(v.len(), 2); |
| 5403 | assert_eq!(&*v, &[(), ()]); |
| 5404 | drop(v); |
| 5405 | |
| 5406 | // Insert at start. |
| 5407 | let mut v = vec![(), (), ()]; |
| 5408 | insert_vec_zeroed(&mut v, 0, 2); |
| 5409 | assert_eq!(v.len(), 5); |
| 5410 | assert_eq!(&*v, &[(), (), (), (), ()]); |
| 5411 | drop(v); |
| 5412 | |
| 5413 | // Insert at middle. |
| 5414 | let mut v = vec![(), (), ()]; |
| 5415 | insert_vec_zeroed(&mut v, 1, 1); |
| 5416 | assert_eq!(v.len(), 4); |
| 5417 | assert_eq!(&*v, &[(), (), (), ()]); |
| 5418 | drop(v); |
| 5419 | |
| 5420 | // Insert at end. |
| 5421 | let mut v = vec![(), (), ()]; |
| 5422 | insert_vec_zeroed(&mut v, 3, 1); |
| 5423 | assert_eq!(v.len(), 4); |
| 5424 | assert_eq!(&*v, &[(), (), (), ()]); |
| 5425 | drop(v); |
| 5426 | } |
| 5427 | |
| 5428 | #[test ] |
| 5429 | fn test_new_box_zeroed() { |
| 5430 | assert_eq!(*u64::new_box_zeroed(), 0); |
| 5431 | } |
| 5432 | |
| 5433 | #[test ] |
| 5434 | fn test_new_box_zeroed_array() { |
| 5435 | drop(<[u32; 0x1000]>::new_box_zeroed()); |
| 5436 | } |
| 5437 | |
| 5438 | #[test ] |
| 5439 | fn test_new_box_zeroed_zst() { |
| 5440 | // This test exists in order to exercise unsafe code, especially |
| 5441 | // when running under Miri. |
| 5442 | #[allow (clippy::unit_cmp)] |
| 5443 | { |
| 5444 | assert_eq!(*<()>::new_box_zeroed(), ()); |
| 5445 | } |
| 5446 | } |
| 5447 | |
| 5448 | #[test ] |
| 5449 | fn test_new_box_slice_zeroed() { |
| 5450 | let mut s: Box<[u64]> = u64::new_box_slice_zeroed(3); |
| 5451 | assert_eq!(s.len(), 3); |
| 5452 | assert_eq!(&*s, &[0, 0, 0]); |
| 5453 | s[1] = 3; |
| 5454 | assert_eq!(&*s, &[0, 3, 0]); |
| 5455 | } |
| 5456 | |
| 5457 | #[test ] |
| 5458 | fn test_new_box_slice_zeroed_empty() { |
| 5459 | let s: Box<[u64]> = u64::new_box_slice_zeroed(0); |
| 5460 | assert_eq!(s.len(), 0); |
| 5461 | } |
| 5462 | |
| 5463 | #[test ] |
| 5464 | fn test_new_box_slice_zeroed_zst() { |
| 5465 | let mut s: Box<[()]> = <()>::new_box_slice_zeroed(3); |
| 5466 | assert_eq!(s.len(), 3); |
| 5467 | assert!(s.get(10).is_none()); |
| 5468 | // This test exists in order to exercise unsafe code, especially |
| 5469 | // when running under Miri. |
| 5470 | #[allow (clippy::unit_cmp)] |
| 5471 | { |
| 5472 | assert_eq!(s[1], ()); |
| 5473 | } |
| 5474 | s[2] = (); |
| 5475 | } |
| 5476 | |
| 5477 | #[test ] |
| 5478 | fn test_new_box_slice_zeroed_zst_empty() { |
| 5479 | let s: Box<[()]> = <()>::new_box_slice_zeroed(0); |
| 5480 | assert_eq!(s.len(), 0); |
| 5481 | } |
| 5482 | |
| 5483 | #[test ] |
| 5484 | #[should_panic (expected = "mem::size_of::<Self>() * len overflows `usize`" )] |
| 5485 | fn test_new_box_slice_zeroed_panics_mul_overflow() { |
| 5486 | let _ = u16::new_box_slice_zeroed(usize::MAX); |
| 5487 | } |
| 5488 | |
| 5489 | #[test ] |
| 5490 | #[should_panic (expected = "assertion failed: size <= max_alloc" )] |
| 5491 | fn test_new_box_slice_zeroed_panics_isize_overflow() { |
| 5492 | let max = usize::try_from(isize::MAX).unwrap(); |
| 5493 | let _ = u16::new_box_slice_zeroed((max / mem::size_of::<u16>()) + 1); |
| 5494 | } |
| 5495 | } |
| 5496 | } |
| 5497 | |
| 5498 | #[cfg (feature = "alloc" )] |
| 5499 | #[doc (inline)] |
| 5500 | pub use alloc_support::*; |
| 5501 | |
| 5502 | #[cfg (test)] |
| 5503 | mod tests { |
| 5504 | #![allow (clippy::unreadable_literal)] |
| 5505 | |
| 5506 | use core::{cell::UnsafeCell, convert::TryInto as _, ops::Deref}; |
| 5507 | |
| 5508 | use static_assertions::assert_impl_all; |
| 5509 | |
| 5510 | use super::*; |
| 5511 | use crate::util::testutil::*; |
| 5512 | |
| 5513 | // An unsized type. |
| 5514 | // |
| 5515 | // This is used to test the custom derives of our traits. The `[u8]` type |
| 5516 | // gets a hand-rolled impl, so it doesn't exercise our custom derives. |
| 5517 | #[derive (Debug, Eq, PartialEq, FromZeroes, FromBytes, AsBytes, Unaligned)] |
| 5518 | #[repr (transparent)] |
| 5519 | struct Unsized([u8]); |
| 5520 | |
| 5521 | impl Unsized { |
| 5522 | fn from_mut_slice(slc: &mut [u8]) -> &mut Unsized { |
| 5523 | // SAFETY: This *probably* sound - since the layouts of `[u8]` and |
| 5524 | // `Unsized` are the same, so are the layouts of `&mut [u8]` and |
| 5525 | // `&mut Unsized`. [1] Even if it turns out that this isn't actually |
| 5526 | // guaranteed by the language spec, we can just change this since |
| 5527 | // it's in test code. |
| 5528 | // |
| 5529 | // [1] https://github.com/rust-lang/unsafe-code-guidelines/issues/375 |
| 5530 | unsafe { mem::transmute(slc) } |
| 5531 | } |
| 5532 | } |
| 5533 | |
| 5534 | /// Tests of when a sized `DstLayout` is extended with a sized field. |
| 5535 | #[allow (clippy::decimal_literal_representation)] |
| 5536 | #[test ] |
| 5537 | fn test_dst_layout_extend_sized_with_sized() { |
| 5538 | // This macro constructs a layout corresponding to a `u8` and extends it |
| 5539 | // with a zero-sized trailing field of given alignment `n`. The macro |
| 5540 | // tests that the resulting layout has both size and alignment `min(n, |
| 5541 | // P)` for all valid values of `repr(packed(P))`. |
| 5542 | macro_rules! test_align_is_size { |
| 5543 | ($n:expr) => { |
| 5544 | let base = DstLayout::for_type::<u8>(); |
| 5545 | let trailing_field = DstLayout::for_type::<elain::Align<$n>>(); |
| 5546 | |
| 5547 | let packs = |
| 5548 | core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p)))); |
| 5549 | |
| 5550 | for pack in packs { |
| 5551 | let composite = base.extend(trailing_field, pack); |
| 5552 | let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN); |
| 5553 | let align = $n.min(max_align.get()); |
| 5554 | assert_eq!( |
| 5555 | composite, |
| 5556 | DstLayout { |
| 5557 | align: NonZeroUsize::new(align).unwrap(), |
| 5558 | size_info: SizeInfo::Sized { _size: align } |
| 5559 | } |
| 5560 | ) |
| 5561 | } |
| 5562 | }; |
| 5563 | } |
| 5564 | |
| 5565 | test_align_is_size!(1); |
| 5566 | test_align_is_size!(2); |
| 5567 | test_align_is_size!(4); |
| 5568 | test_align_is_size!(8); |
| 5569 | test_align_is_size!(16); |
| 5570 | test_align_is_size!(32); |
| 5571 | test_align_is_size!(64); |
| 5572 | test_align_is_size!(128); |
| 5573 | test_align_is_size!(256); |
| 5574 | test_align_is_size!(512); |
| 5575 | test_align_is_size!(1024); |
| 5576 | test_align_is_size!(2048); |
| 5577 | test_align_is_size!(4096); |
| 5578 | test_align_is_size!(8192); |
| 5579 | test_align_is_size!(16384); |
| 5580 | test_align_is_size!(32768); |
| 5581 | test_align_is_size!(65536); |
| 5582 | test_align_is_size!(131072); |
| 5583 | test_align_is_size!(262144); |
| 5584 | test_align_is_size!(524288); |
| 5585 | test_align_is_size!(1048576); |
| 5586 | test_align_is_size!(2097152); |
| 5587 | test_align_is_size!(4194304); |
| 5588 | test_align_is_size!(8388608); |
| 5589 | test_align_is_size!(16777216); |
| 5590 | test_align_is_size!(33554432); |
| 5591 | test_align_is_size!(67108864); |
| 5592 | test_align_is_size!(33554432); |
| 5593 | test_align_is_size!(134217728); |
| 5594 | test_align_is_size!(268435456); |
| 5595 | } |
| 5596 | |
| 5597 | /// Tests of when a sized `DstLayout` is extended with a DST field. |
| 5598 | #[test ] |
| 5599 | fn test_dst_layout_extend_sized_with_dst() { |
| 5600 | // Test that for all combinations of real-world alignments and |
| 5601 | // `repr_packed` values, that the extension of a sized `DstLayout`` with |
| 5602 | // a DST field correctly computes the trailing offset in the composite |
| 5603 | // layout. |
| 5604 | |
| 5605 | let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()); |
| 5606 | let packs = core::iter::once(None).chain(aligns.clone().map(Some)); |
| 5607 | |
| 5608 | for align in aligns { |
| 5609 | for pack in packs.clone() { |
| 5610 | let base = DstLayout::for_type::<u8>(); |
| 5611 | let elem_size = 42; |
| 5612 | let trailing_field_offset = 11; |
| 5613 | |
| 5614 | let trailing_field = DstLayout { |
| 5615 | align, |
| 5616 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| 5617 | _elem_size: elem_size, |
| 5618 | _offset: 11, |
| 5619 | }), |
| 5620 | }; |
| 5621 | |
| 5622 | let composite = base.extend(trailing_field, pack); |
| 5623 | |
| 5624 | let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get(); |
| 5625 | |
| 5626 | let align = align.get().min(max_align); |
| 5627 | |
| 5628 | assert_eq!( |
| 5629 | composite, |
| 5630 | DstLayout { |
| 5631 | align: NonZeroUsize::new(align).unwrap(), |
| 5632 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| 5633 | _elem_size: elem_size, |
| 5634 | _offset: align + trailing_field_offset, |
| 5635 | }), |
| 5636 | } |
| 5637 | ) |
| 5638 | } |
| 5639 | } |
| 5640 | } |
| 5641 | |
| 5642 | /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the |
| 5643 | /// expected amount of trailing padding. |
| 5644 | #[test ] |
| 5645 | fn test_dst_layout_pad_to_align_with_sized() { |
| 5646 | // For all valid alignments `align`, construct a one-byte layout aligned |
| 5647 | // to `align`, call `pad_to_align`, and assert that the size of the |
| 5648 | // resulting layout is equal to `align`. |
| 5649 | for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
| 5650 | let layout = DstLayout { align, size_info: SizeInfo::Sized { _size: 1 } }; |
| 5651 | |
| 5652 | assert_eq!( |
| 5653 | layout.pad_to_align(), |
| 5654 | DstLayout { align, size_info: SizeInfo::Sized { _size: align.get() } } |
| 5655 | ); |
| 5656 | } |
| 5657 | |
| 5658 | // Test explicitly-provided combinations of unpadded and padded |
| 5659 | // counterparts. |
| 5660 | |
| 5661 | macro_rules! test { |
| 5662 | (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr } |
| 5663 | => padded { size: $padded_size:expr, align: $padded_align:expr }) => { |
| 5664 | let unpadded = DstLayout { |
| 5665 | align: NonZeroUsize::new($unpadded_align).unwrap(), |
| 5666 | size_info: SizeInfo::Sized { _size: $unpadded_size }, |
| 5667 | }; |
| 5668 | let padded = unpadded.pad_to_align(); |
| 5669 | |
| 5670 | assert_eq!( |
| 5671 | padded, |
| 5672 | DstLayout { |
| 5673 | align: NonZeroUsize::new($padded_align).unwrap(), |
| 5674 | size_info: SizeInfo::Sized { _size: $padded_size }, |
| 5675 | } |
| 5676 | ); |
| 5677 | }; |
| 5678 | } |
| 5679 | |
| 5680 | test !(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 }); |
| 5681 | test !(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 }); |
| 5682 | test !(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 }); |
| 5683 | test !(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 }); |
| 5684 | test !(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 }); |
| 5685 | test !(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 }); |
| 5686 | test !(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 }); |
| 5687 | test !(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 }); |
| 5688 | test !(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 }); |
| 5689 | |
| 5690 | let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get(); |
| 5691 | |
| 5692 | test !(unpadded { size: 1, align: current_max_align } |
| 5693 | => padded { size: current_max_align, align: current_max_align }); |
| 5694 | |
| 5695 | test !(unpadded { size: current_max_align + 1, align: current_max_align } |
| 5696 | => padded { size: current_max_align * 2, align: current_max_align }); |
| 5697 | } |
| 5698 | |
| 5699 | /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op. |
| 5700 | #[test ] |
| 5701 | fn test_dst_layout_pad_to_align_with_dst() { |
| 5702 | for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
| 5703 | for offset in 0..10 { |
| 5704 | for elem_size in 0..10 { |
| 5705 | let layout = DstLayout { |
| 5706 | align, |
| 5707 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| 5708 | _offset: offset, |
| 5709 | _elem_size: elem_size, |
| 5710 | }), |
| 5711 | }; |
| 5712 | assert_eq!(layout.pad_to_align(), layout); |
| 5713 | } |
| 5714 | } |
| 5715 | } |
| 5716 | } |
| 5717 | |
| 5718 | // This test takes a long time when running under Miri, so we skip it in |
| 5719 | // that case. This is acceptable because this is a logic test that doesn't |
| 5720 | // attempt to expose UB. |
| 5721 | #[test ] |
| 5722 | #[cfg_attr (miri, ignore)] |
| 5723 | fn testvalidate_cast_and_convert_metadata() { |
| 5724 | impl From<usize> for SizeInfo { |
| 5725 | fn from(_size: usize) -> SizeInfo { |
| 5726 | SizeInfo::Sized { _size } |
| 5727 | } |
| 5728 | } |
| 5729 | |
| 5730 | impl From<(usize, usize)> for SizeInfo { |
| 5731 | fn from((_offset, _elem_size): (usize, usize)) -> SizeInfo { |
| 5732 | SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) |
| 5733 | } |
| 5734 | } |
| 5735 | |
| 5736 | fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout { |
| 5737 | DstLayout { size_info: s.into(), align: NonZeroUsize::new(align).unwrap() } |
| 5738 | } |
| 5739 | |
| 5740 | /// This macro accepts arguments in the form of: |
| 5741 | /// |
| 5742 | /// layout(_, _, _).validate(_, _, _), Ok(Some((_, _))) |
| 5743 | /// | | | | | | | | |
| 5744 | /// base_size ----+ | | | | | | | |
| 5745 | /// align -----------+ | | | | | | |
| 5746 | /// trailing_size ------+ | | | | | |
| 5747 | /// addr ---------------------------+ | | | | |
| 5748 | /// bytes_len -------------------------+ | | | |
| 5749 | /// cast_type ----------------------------+ | | |
| 5750 | /// elems ---------------------------------------------+ | |
| 5751 | /// split_at ---------------------------------------------+ |
| 5752 | /// |
| 5753 | /// `.validate` is shorthand for `.validate_cast_and_convert_metadata` |
| 5754 | /// for brevity. |
| 5755 | /// |
| 5756 | /// Each argument can either be an iterator or a wildcard. Each |
| 5757 | /// wildcarded variable is implicitly replaced by an iterator over a |
| 5758 | /// representative sample of values for that variable. Each `test!` |
| 5759 | /// invocation iterates over every combination of values provided by |
| 5760 | /// each variable's iterator (ie, the cartesian product) and validates |
| 5761 | /// that the results are expected. |
| 5762 | /// |
| 5763 | /// The final argument uses the same syntax, but it has a different |
| 5764 | /// meaning: |
| 5765 | /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to |
| 5766 | /// `assert_matches!` to validate the computed result for each |
| 5767 | /// combination of input values. |
| 5768 | /// - If it is `Err(msg)`, then `test!` validates that the call to |
| 5769 | /// `validate_cast_and_convert_metadata` panics with the given panic |
| 5770 | /// message. |
| 5771 | /// |
| 5772 | /// Note that the meta-variables that match these variables have the |
| 5773 | /// `tt` type, and some valid expressions are not valid `tt`s (such as |
| 5774 | /// `a..b`). In this case, wrap the expression in parentheses, and it |
| 5775 | /// will become valid `tt`. |
| 5776 | macro_rules! test { |
| 5777 | ($(:$sizes:expr =>)? |
| 5778 | layout($size:tt, $align:tt) |
| 5779 | .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)? |
| 5780 | ) => { |
| 5781 | itertools::iproduct!( |
| 5782 | test!(@generate_size $size), |
| 5783 | test!(@generate_align $align), |
| 5784 | test!(@generate_usize $addr), |
| 5785 | test!(@generate_usize $bytes_len), |
| 5786 | test!(@generate_cast_type $cast_type) |
| 5787 | ).for_each(|(size_info, align, addr, bytes_len, cast_type)| { |
| 5788 | // Temporarily disable the panic hook installed by the test |
| 5789 | // harness. If we don't do this, all panic messages will be |
| 5790 | // kept in an internal log. On its own, this isn't a |
| 5791 | // problem, but if a non-caught panic ever happens (ie, in |
| 5792 | // code later in this test not in this macro), all of the |
| 5793 | // previously-buffered messages will be dumped, hiding the |
| 5794 | // real culprit. |
| 5795 | let previous_hook = std::panic::take_hook(); |
| 5796 | // I don't understand why, but this seems to be required in |
| 5797 | // addition to the previous line. |
| 5798 | std::panic::set_hook(Box::new(|_| {})); |
| 5799 | let actual = std::panic::catch_unwind(|| { |
| 5800 | layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
| 5801 | }).map_err(|d| { |
| 5802 | *d.downcast::<&'static str>().expect("expected string panic message" ).as_ref() |
| 5803 | }); |
| 5804 | std::panic::set_hook(previous_hook); |
| 5805 | |
| 5806 | assert_matches::assert_matches!( |
| 5807 | actual, $expect, |
| 5808 | "layout({size_info:?}, {align}).validate_cast_and_convert_metadata({addr}, {bytes_len}, {cast_type:?})" , |
| 5809 | ); |
| 5810 | }); |
| 5811 | }; |
| 5812 | (@generate_usize _) => { 0..8 }; |
| 5813 | // Generate sizes for both Sized and !Sized types. |
| 5814 | (@generate_size _) => { |
| 5815 | test!(@generate_size (_)).chain(test!(@generate_size (_, _))) |
| 5816 | }; |
| 5817 | // Generate sizes for both Sized and !Sized types by chaining |
| 5818 | // specified iterators for each. |
| 5819 | (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => { |
| 5820 | test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes)) |
| 5821 | }; |
| 5822 | // Generate sizes for Sized types. |
| 5823 | (@generate_size (_)) => { test!(@generate_size (0..8)) }; |
| 5824 | (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) }; |
| 5825 | // Generate sizes for !Sized types. |
| 5826 | (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => { |
| 5827 | itertools::iproduct!( |
| 5828 | test!(@generate_min_size $min_sizes), |
| 5829 | test!(@generate_elem_size $elem_sizes) |
| 5830 | ).map(Into::<SizeInfo>::into) |
| 5831 | }; |
| 5832 | (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) }; |
| 5833 | (@generate_min_size _) => { 0..8 }; |
| 5834 | (@generate_elem_size _) => { 1..8 }; |
| 5835 | (@generate_align _) => { [1, 2, 4, 8, 16] }; |
| 5836 | (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) }; |
| 5837 | (@generate_cast_type _) => { [_CastType::_Prefix, _CastType::_Suffix] }; |
| 5838 | (@generate_cast_type $variant:ident) => { [_CastType::$variant] }; |
| 5839 | // Some expressions need to be wrapped in parentheses in order to be |
| 5840 | // valid `tt`s (required by the top match pattern). See the comment |
| 5841 | // below for more details. This arm removes these parentheses to |
| 5842 | // avoid generating an `unused_parens` warning. |
| 5843 | (@$_:ident ($vals:expr)) => { $vals }; |
| 5844 | (@$_:ident $vals:expr) => { $vals }; |
| 5845 | } |
| 5846 | |
| 5847 | const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14]; |
| 5848 | const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15]; |
| 5849 | |
| 5850 | // base_size is too big for the memory region. |
| 5851 | test !(layout(((1..8) | ((1..8), (1..8))), _).validate(_, [0], _), Ok(None)); |
| 5852 | test !(layout(((2..8) | ((2..8), (2..8))), _).validate(_, [1], _), Ok(None)); |
| 5853 | |
| 5854 | // addr is unaligned for prefix cast |
| 5855 | test !(layout(_, [2]).validate(ODDS, _, _Prefix), Ok(None)); |
| 5856 | test !(layout(_, [2]).validate(ODDS, _, _Prefix), Ok(None)); |
| 5857 | |
| 5858 | // addr is aligned, but end of buffer is unaligned for suffix cast |
| 5859 | test !(layout(_, [2]).validate(EVENS, ODDS, _Suffix), Ok(None)); |
| 5860 | test !(layout(_, [2]).validate(EVENS, ODDS, _Suffix), Ok(None)); |
| 5861 | |
| 5862 | // Unfortunately, these constants cannot easily be used in the |
| 5863 | // implementation of `validate_cast_and_convert_metadata`, since |
| 5864 | // `panic!` consumes a string literal, not an expression. |
| 5865 | // |
| 5866 | // It's important that these messages be in a separate module. If they |
| 5867 | // were at the function's top level, we'd pass them to `test!` as, e.g., |
| 5868 | // `Err(TRAILING)`, which would run into a subtle Rust footgun - the |
| 5869 | // `TRAILING` identifier would be treated as a pattern to match rather |
| 5870 | // than a value to check for equality. |
| 5871 | mod msgs { |
| 5872 | pub(super) const TRAILING: &str = |
| 5873 | "attempted to cast to slice type with zero-sized element" ; |
| 5874 | pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX" ; |
| 5875 | } |
| 5876 | |
| 5877 | // casts with ZST trailing element types are unsupported |
| 5878 | test !(layout((_, [0]), _).validate(_, _, _), Err(msgs::TRAILING),); |
| 5879 | |
| 5880 | // addr + bytes_len must not overflow usize |
| 5881 | test !(layout(_, _).validate([usize::MAX], (1..100), _), Err(msgs::OVERFLOW)); |
| 5882 | test !(layout(_, _).validate((1..100), [usize::MAX], _), Err(msgs::OVERFLOW)); |
| 5883 | test !( |
| 5884 | layout(_, _).validate( |
| 5885 | [usize::MAX / 2 + 1, usize::MAX], |
| 5886 | [usize::MAX / 2 + 1, usize::MAX], |
| 5887 | _ |
| 5888 | ), |
| 5889 | Err(msgs::OVERFLOW) |
| 5890 | ); |
| 5891 | |
| 5892 | // Validates that `validate_cast_and_convert_metadata` satisfies its own |
| 5893 | // documented safety postconditions, and also a few other properties |
| 5894 | // that aren't documented but we want to guarantee anyway. |
| 5895 | fn validate_behavior( |
| 5896 | (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, _CastType), |
| 5897 | ) { |
| 5898 | if let Some((elems, split_at)) = |
| 5899 | layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
| 5900 | { |
| 5901 | let (size_info, align) = (layout.size_info, layout.align); |
| 5902 | let debug_str = format!( |
| 5903 | "layout({size_info:?}, {align}).validate_cast_and_convert_metadata({addr}, {bytes_len}, {cast_type:?}) => ({elems}, {split_at})" , |
| 5904 | ); |
| 5905 | |
| 5906 | // If this is a sized type (no trailing slice), then `elems` is |
| 5907 | // meaningless, but in practice we set it to 0. Callers are not |
| 5908 | // allowed to rely on this, but a lot of math is nicer if |
| 5909 | // they're able to, and some callers might accidentally do that. |
| 5910 | let sized = matches!(layout.size_info, SizeInfo::Sized { .. }); |
| 5911 | assert!(!(sized && elems != 0), "{}" , debug_str); |
| 5912 | |
| 5913 | let resulting_size = match layout.size_info { |
| 5914 | SizeInfo::Sized { _size } => _size, |
| 5915 | SizeInfo::SliceDst(TrailingSliceLayout { |
| 5916 | _offset: offset, |
| 5917 | _elem_size: elem_size, |
| 5918 | }) => { |
| 5919 | let padded_size = |elems| { |
| 5920 | let without_padding = offset + elems * elem_size; |
| 5921 | without_padding |
| 5922 | + util::core_layout::padding_needed_for(without_padding, align) |
| 5923 | }; |
| 5924 | |
| 5925 | let resulting_size = padded_size(elems); |
| 5926 | // Test that `validate_cast_and_convert_metadata` |
| 5927 | // computed the largest possible value that fits in the |
| 5928 | // given range. |
| 5929 | assert!(padded_size(elems + 1) > bytes_len, "{}" , debug_str); |
| 5930 | resulting_size |
| 5931 | } |
| 5932 | }; |
| 5933 | |
| 5934 | // Test safety postconditions guaranteed by |
| 5935 | // `validate_cast_and_convert_metadata`. |
| 5936 | assert!(resulting_size <= bytes_len, "{}" , debug_str); |
| 5937 | match cast_type { |
| 5938 | _CastType::_Prefix => { |
| 5939 | assert_eq!(addr % align, 0, "{}" , debug_str); |
| 5940 | assert_eq!(resulting_size, split_at, "{}" , debug_str); |
| 5941 | } |
| 5942 | _CastType::_Suffix => { |
| 5943 | assert_eq!(split_at, bytes_len - resulting_size, "{}" , debug_str); |
| 5944 | assert_eq!((addr + split_at) % align, 0, "{}" , debug_str); |
| 5945 | } |
| 5946 | } |
| 5947 | } else { |
| 5948 | let min_size = match layout.size_info { |
| 5949 | SizeInfo::Sized { _size } => _size, |
| 5950 | SizeInfo::SliceDst(TrailingSliceLayout { _offset, .. }) => { |
| 5951 | _offset + util::core_layout::padding_needed_for(_offset, layout.align) |
| 5952 | } |
| 5953 | }; |
| 5954 | |
| 5955 | // If a cast is invalid, it is either because... |
| 5956 | // 1. there are insufficent bytes at the given region for type: |
| 5957 | let insufficient_bytes = bytes_len < min_size; |
| 5958 | // 2. performing the cast would misalign type: |
| 5959 | let base = match cast_type { |
| 5960 | _CastType::_Prefix => 0, |
| 5961 | _CastType::_Suffix => bytes_len, |
| 5962 | }; |
| 5963 | let misaligned = (base + addr) % layout.align != 0; |
| 5964 | |
| 5965 | assert!(insufficient_bytes || misaligned); |
| 5966 | } |
| 5967 | } |
| 5968 | |
| 5969 | let sizes = 0..8; |
| 5970 | let elem_sizes = 1..8; |
| 5971 | let size_infos = sizes |
| 5972 | .clone() |
| 5973 | .map(Into::<SizeInfo>::into) |
| 5974 | .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into)); |
| 5975 | let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32]) |
| 5976 | .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { _size } if _size % align != 0)) |
| 5977 | .map(|(size_info, align)| layout(size_info, align)); |
| 5978 | itertools::iproduct!(layouts, 0..8, 0..8, [_CastType::_Prefix, _CastType::_Suffix]) |
| 5979 | .for_each(validate_behavior); |
| 5980 | } |
| 5981 | |
| 5982 | #[test ] |
| 5983 | #[cfg (__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)] |
| 5984 | fn test_validate_rust_layout() { |
| 5985 | use core::ptr::NonNull; |
| 5986 | |
| 5987 | // This test synthesizes pointers with various metadata and uses Rust's |
| 5988 | // built-in APIs to confirm that Rust makes decisions about type layout |
| 5989 | // which are consistent with what we believe is guaranteed by the |
| 5990 | // language. If this test fails, it doesn't just mean our code is wrong |
| 5991 | // - it means we're misunderstanding the language's guarantees. |
| 5992 | |
| 5993 | #[derive (Debug)] |
| 5994 | struct MacroArgs { |
| 5995 | offset: usize, |
| 5996 | align: NonZeroUsize, |
| 5997 | elem_size: Option<usize>, |
| 5998 | } |
| 5999 | |
| 6000 | /// # Safety |
| 6001 | /// |
| 6002 | /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>` |
| 6003 | /// which points to a valid `T`. |
| 6004 | /// |
| 6005 | /// `with_elems` must produce a pointer which points to a valid `T`. |
| 6006 | fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>( |
| 6007 | args: MacroArgs, |
| 6008 | with_elems: W, |
| 6009 | addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>, |
| 6010 | ) { |
| 6011 | let dst = args.elem_size.is_some(); |
| 6012 | let layout = { |
| 6013 | let size_info = match args.elem_size { |
| 6014 | Some(elem_size) => SizeInfo::SliceDst(TrailingSliceLayout { |
| 6015 | _offset: args.offset, |
| 6016 | _elem_size: elem_size, |
| 6017 | }), |
| 6018 | None => SizeInfo::Sized { |
| 6019 | // Rust only supports types whose sizes are a multiple |
| 6020 | // of their alignment. If the macro created a type like |
| 6021 | // this: |
| 6022 | // |
| 6023 | // #[repr(C, align(2))] |
| 6024 | // struct Foo([u8; 1]); |
| 6025 | // |
| 6026 | // ...then Rust will automatically round the type's size |
| 6027 | // up to 2. |
| 6028 | _size: args.offset |
| 6029 | + util::core_layout::padding_needed_for(args.offset, args.align), |
| 6030 | }, |
| 6031 | }; |
| 6032 | DstLayout { size_info, align: args.align } |
| 6033 | }; |
| 6034 | |
| 6035 | for elems in 0..128 { |
| 6036 | let ptr = with_elems(elems); |
| 6037 | |
| 6038 | if let Some(addr_of_slice_field) = addr_of_slice_field { |
| 6039 | let slc_field_ptr = addr_of_slice_field(ptr).as_ptr(); |
| 6040 | // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to |
| 6041 | // the same valid Rust object. |
| 6042 | let offset: usize = |
| 6043 | unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() }; |
| 6044 | assert_eq!(offset, args.offset); |
| 6045 | } |
| 6046 | |
| 6047 | // SAFETY: `ptr` points to a valid `T`. |
| 6048 | let (size, align) = unsafe { |
| 6049 | (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr())) |
| 6050 | }; |
| 6051 | |
| 6052 | // Avoid expensive allocation when running under Miri. |
| 6053 | let assert_msg = if !cfg!(miri) { |
| 6054 | format!(" \n{args:?} \nsize:{size}, align:{align}" ) |
| 6055 | } else { |
| 6056 | String::new() |
| 6057 | }; |
| 6058 | |
| 6059 | let without_padding = |
| 6060 | args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0); |
| 6061 | assert!(size >= without_padding, "{}" , assert_msg); |
| 6062 | assert_eq!(align, args.align.get(), "{}" , assert_msg); |
| 6063 | |
| 6064 | // This encodes the most important part of the test: our |
| 6065 | // understanding of how Rust determines the layout of repr(C) |
| 6066 | // types. Sized repr(C) types are trivial, but DST types have |
| 6067 | // some subtlety. Note that: |
| 6068 | // - For sized types, `without_padding` is just the size of the |
| 6069 | // type that we constructed for `Foo`. Since we may have |
| 6070 | // requested a larger alignment, `Foo` may actually be larger |
| 6071 | // than this, hence `padding_needed_for`. |
| 6072 | // - For unsized types, `without_padding` is dynamically |
| 6073 | // computed from the offset, the element size, and element |
| 6074 | // count. We expect that the size of the object should be |
| 6075 | // `offset + elem_size * elems` rounded up to the next |
| 6076 | // alignment. |
| 6077 | let expected_size = without_padding |
| 6078 | + util::core_layout::padding_needed_for(without_padding, args.align); |
| 6079 | assert_eq!(expected_size, size, "{}" , assert_msg); |
| 6080 | |
| 6081 | // For zero-sized element types, |
| 6082 | // `validate_cast_and_convert_metadata` just panics, so we skip |
| 6083 | // testing those types. |
| 6084 | if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) { |
| 6085 | let addr = ptr.addr().get(); |
| 6086 | let (got_elems, got_split_at) = layout |
| 6087 | .validate_cast_and_convert_metadata(addr, size, _CastType::_Prefix) |
| 6088 | .unwrap(); |
| 6089 | // Avoid expensive allocation when running under Miri. |
| 6090 | let assert_msg = if !cfg!(miri) { |
| 6091 | format!( |
| 6092 | "{} \nvalidate_cast_and_convert_metadata({addr}, {size})" , |
| 6093 | assert_msg |
| 6094 | ) |
| 6095 | } else { |
| 6096 | String::new() |
| 6097 | }; |
| 6098 | assert_eq!(got_split_at, size, "{}" , assert_msg); |
| 6099 | if dst { |
| 6100 | assert!(got_elems >= elems, "{}" , assert_msg); |
| 6101 | if got_elems != elems { |
| 6102 | // If `validate_cast_and_convert_metadata` |
| 6103 | // returned more elements than `elems`, that |
| 6104 | // means that `elems` is not the maximum number |
| 6105 | // of elements that can fit in `size` - in other |
| 6106 | // words, there is enough padding at the end of |
| 6107 | // the value to fit at least one more element. |
| 6108 | // If we use this metadata to synthesize a |
| 6109 | // pointer, despite having a different element |
| 6110 | // count, we still expect it to have the same |
| 6111 | // size. |
| 6112 | let got_ptr = with_elems(got_elems); |
| 6113 | // SAFETY: `got_ptr` is a pointer to a valid `T`. |
| 6114 | let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) }; |
| 6115 | assert_eq!(size_of_got_ptr, size, "{}" , assert_msg); |
| 6116 | } |
| 6117 | } else { |
| 6118 | // For sized casts, the returned element value is |
| 6119 | // technically meaningless, and we don't guarantee any |
| 6120 | // particular value. In practice, it's always zero. |
| 6121 | assert_eq!(got_elems, 0, "{}" , assert_msg) |
| 6122 | } |
| 6123 | } |
| 6124 | } |
| 6125 | } |
| 6126 | |
| 6127 | macro_rules! validate_against_rust { |
| 6128 | ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{ |
| 6129 | #[repr(C, align($align))] |
| 6130 | struct Foo([u8; $offset]$(, [[u8; $elem_size]])?); |
| 6131 | |
| 6132 | let args = MacroArgs { |
| 6133 | offset: $offset, |
| 6134 | align: $align.try_into().unwrap(), |
| 6135 | elem_size: { |
| 6136 | #[allow(unused)] |
| 6137 | let ret = None::<usize>; |
| 6138 | $(let ret = Some($elem_size);)? |
| 6139 | ret |
| 6140 | } |
| 6141 | }; |
| 6142 | |
| 6143 | #[repr(C, align($align))] |
| 6144 | struct FooAlign; |
| 6145 | // Create an aligned buffer to use in order to synthesize |
| 6146 | // pointers to `Foo`. We don't ever load values from these |
| 6147 | // pointers - we just do arithmetic on them - so having a "real" |
| 6148 | // block of memory as opposed to a validly-aligned-but-dangling |
| 6149 | // pointer is only necessary to make Miri happy since we run it |
| 6150 | // with "strict provenance" checking enabled. |
| 6151 | let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]); |
| 6152 | let with_elems = |elems| { |
| 6153 | let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems); |
| 6154 | #[allow(clippy::as_conversions)] |
| 6155 | NonNull::new(slc.as_ptr() as *mut Foo).unwrap() |
| 6156 | }; |
| 6157 | let addr_of_slice_field = { |
| 6158 | #[allow(unused)] |
| 6159 | let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>; |
| 6160 | $( |
| 6161 | // SAFETY: `test` promises to only call `f` with a `ptr` |
| 6162 | // to a valid `Foo`. |
| 6163 | let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe { |
| 6164 | NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>() |
| 6165 | }); |
| 6166 | let _ = $elem_size; |
| 6167 | )? |
| 6168 | f |
| 6169 | }; |
| 6170 | |
| 6171 | test::<Foo, _>(args, with_elems, addr_of_slice_field); |
| 6172 | }}; |
| 6173 | } |
| 6174 | |
| 6175 | // Every permutation of: |
| 6176 | // - offset in [0, 4] |
| 6177 | // - align in [1, 16] |
| 6178 | // - elem_size in [0, 4] (plus no elem_size) |
| 6179 | validate_against_rust!(0, 1); |
| 6180 | validate_against_rust!(0, 1, 0); |
| 6181 | validate_against_rust!(0, 1, 1); |
| 6182 | validate_against_rust!(0, 1, 2); |
| 6183 | validate_against_rust!(0, 1, 3); |
| 6184 | validate_against_rust!(0, 1, 4); |
| 6185 | validate_against_rust!(0, 2); |
| 6186 | validate_against_rust!(0, 2, 0); |
| 6187 | validate_against_rust!(0, 2, 1); |
| 6188 | validate_against_rust!(0, 2, 2); |
| 6189 | validate_against_rust!(0, 2, 3); |
| 6190 | validate_against_rust!(0, 2, 4); |
| 6191 | validate_against_rust!(0, 4); |
| 6192 | validate_against_rust!(0, 4, 0); |
| 6193 | validate_against_rust!(0, 4, 1); |
| 6194 | validate_against_rust!(0, 4, 2); |
| 6195 | validate_against_rust!(0, 4, 3); |
| 6196 | validate_against_rust!(0, 4, 4); |
| 6197 | validate_against_rust!(0, 8); |
| 6198 | validate_against_rust!(0, 8, 0); |
| 6199 | validate_against_rust!(0, 8, 1); |
| 6200 | validate_against_rust!(0, 8, 2); |
| 6201 | validate_against_rust!(0, 8, 3); |
| 6202 | validate_against_rust!(0, 8, 4); |
| 6203 | validate_against_rust!(0, 16); |
| 6204 | validate_against_rust!(0, 16, 0); |
| 6205 | validate_against_rust!(0, 16, 1); |
| 6206 | validate_against_rust!(0, 16, 2); |
| 6207 | validate_against_rust!(0, 16, 3); |
| 6208 | validate_against_rust!(0, 16, 4); |
| 6209 | validate_against_rust!(1, 1); |
| 6210 | validate_against_rust!(1, 1, 0); |
| 6211 | validate_against_rust!(1, 1, 1); |
| 6212 | validate_against_rust!(1, 1, 2); |
| 6213 | validate_against_rust!(1, 1, 3); |
| 6214 | validate_against_rust!(1, 1, 4); |
| 6215 | validate_against_rust!(1, 2); |
| 6216 | validate_against_rust!(1, 2, 0); |
| 6217 | validate_against_rust!(1, 2, 1); |
| 6218 | validate_against_rust!(1, 2, 2); |
| 6219 | validate_against_rust!(1, 2, 3); |
| 6220 | validate_against_rust!(1, 2, 4); |
| 6221 | validate_against_rust!(1, 4); |
| 6222 | validate_against_rust!(1, 4, 0); |
| 6223 | validate_against_rust!(1, 4, 1); |
| 6224 | validate_against_rust!(1, 4, 2); |
| 6225 | validate_against_rust!(1, 4, 3); |
| 6226 | validate_against_rust!(1, 4, 4); |
| 6227 | validate_against_rust!(1, 8); |
| 6228 | validate_against_rust!(1, 8, 0); |
| 6229 | validate_against_rust!(1, 8, 1); |
| 6230 | validate_against_rust!(1, 8, 2); |
| 6231 | validate_against_rust!(1, 8, 3); |
| 6232 | validate_against_rust!(1, 8, 4); |
| 6233 | validate_against_rust!(1, 16); |
| 6234 | validate_against_rust!(1, 16, 0); |
| 6235 | validate_against_rust!(1, 16, 1); |
| 6236 | validate_against_rust!(1, 16, 2); |
| 6237 | validate_against_rust!(1, 16, 3); |
| 6238 | validate_against_rust!(1, 16, 4); |
| 6239 | validate_against_rust!(2, 1); |
| 6240 | validate_against_rust!(2, 1, 0); |
| 6241 | validate_against_rust!(2, 1, 1); |
| 6242 | validate_against_rust!(2, 1, 2); |
| 6243 | validate_against_rust!(2, 1, 3); |
| 6244 | validate_against_rust!(2, 1, 4); |
| 6245 | validate_against_rust!(2, 2); |
| 6246 | validate_against_rust!(2, 2, 0); |
| 6247 | validate_against_rust!(2, 2, 1); |
| 6248 | validate_against_rust!(2, 2, 2); |
| 6249 | validate_against_rust!(2, 2, 3); |
| 6250 | validate_against_rust!(2, 2, 4); |
| 6251 | validate_against_rust!(2, 4); |
| 6252 | validate_against_rust!(2, 4, 0); |
| 6253 | validate_against_rust!(2, 4, 1); |
| 6254 | validate_against_rust!(2, 4, 2); |
| 6255 | validate_against_rust!(2, 4, 3); |
| 6256 | validate_against_rust!(2, 4, 4); |
| 6257 | validate_against_rust!(2, 8); |
| 6258 | validate_against_rust!(2, 8, 0); |
| 6259 | validate_against_rust!(2, 8, 1); |
| 6260 | validate_against_rust!(2, 8, 2); |
| 6261 | validate_against_rust!(2, 8, 3); |
| 6262 | validate_against_rust!(2, 8, 4); |
| 6263 | validate_against_rust!(2, 16); |
| 6264 | validate_against_rust!(2, 16, 0); |
| 6265 | validate_against_rust!(2, 16, 1); |
| 6266 | validate_against_rust!(2, 16, 2); |
| 6267 | validate_against_rust!(2, 16, 3); |
| 6268 | validate_against_rust!(2, 16, 4); |
| 6269 | validate_against_rust!(3, 1); |
| 6270 | validate_against_rust!(3, 1, 0); |
| 6271 | validate_against_rust!(3, 1, 1); |
| 6272 | validate_against_rust!(3, 1, 2); |
| 6273 | validate_against_rust!(3, 1, 3); |
| 6274 | validate_against_rust!(3, 1, 4); |
| 6275 | validate_against_rust!(3, 2); |
| 6276 | validate_against_rust!(3, 2, 0); |
| 6277 | validate_against_rust!(3, 2, 1); |
| 6278 | validate_against_rust!(3, 2, 2); |
| 6279 | validate_against_rust!(3, 2, 3); |
| 6280 | validate_against_rust!(3, 2, 4); |
| 6281 | validate_against_rust!(3, 4); |
| 6282 | validate_against_rust!(3, 4, 0); |
| 6283 | validate_against_rust!(3, 4, 1); |
| 6284 | validate_against_rust!(3, 4, 2); |
| 6285 | validate_against_rust!(3, 4, 3); |
| 6286 | validate_against_rust!(3, 4, 4); |
| 6287 | validate_against_rust!(3, 8); |
| 6288 | validate_against_rust!(3, 8, 0); |
| 6289 | validate_against_rust!(3, 8, 1); |
| 6290 | validate_against_rust!(3, 8, 2); |
| 6291 | validate_against_rust!(3, 8, 3); |
| 6292 | validate_against_rust!(3, 8, 4); |
| 6293 | validate_against_rust!(3, 16); |
| 6294 | validate_against_rust!(3, 16, 0); |
| 6295 | validate_against_rust!(3, 16, 1); |
| 6296 | validate_against_rust!(3, 16, 2); |
| 6297 | validate_against_rust!(3, 16, 3); |
| 6298 | validate_against_rust!(3, 16, 4); |
| 6299 | validate_against_rust!(4, 1); |
| 6300 | validate_against_rust!(4, 1, 0); |
| 6301 | validate_against_rust!(4, 1, 1); |
| 6302 | validate_against_rust!(4, 1, 2); |
| 6303 | validate_against_rust!(4, 1, 3); |
| 6304 | validate_against_rust!(4, 1, 4); |
| 6305 | validate_against_rust!(4, 2); |
| 6306 | validate_against_rust!(4, 2, 0); |
| 6307 | validate_against_rust!(4, 2, 1); |
| 6308 | validate_against_rust!(4, 2, 2); |
| 6309 | validate_against_rust!(4, 2, 3); |
| 6310 | validate_against_rust!(4, 2, 4); |
| 6311 | validate_against_rust!(4, 4); |
| 6312 | validate_against_rust!(4, 4, 0); |
| 6313 | validate_against_rust!(4, 4, 1); |
| 6314 | validate_against_rust!(4, 4, 2); |
| 6315 | validate_against_rust!(4, 4, 3); |
| 6316 | validate_against_rust!(4, 4, 4); |
| 6317 | validate_against_rust!(4, 8); |
| 6318 | validate_against_rust!(4, 8, 0); |
| 6319 | validate_against_rust!(4, 8, 1); |
| 6320 | validate_against_rust!(4, 8, 2); |
| 6321 | validate_against_rust!(4, 8, 3); |
| 6322 | validate_against_rust!(4, 8, 4); |
| 6323 | validate_against_rust!(4, 16); |
| 6324 | validate_against_rust!(4, 16, 0); |
| 6325 | validate_against_rust!(4, 16, 1); |
| 6326 | validate_against_rust!(4, 16, 2); |
| 6327 | validate_against_rust!(4, 16, 3); |
| 6328 | validate_against_rust!(4, 16, 4); |
| 6329 | } |
| 6330 | |
| 6331 | #[test ] |
| 6332 | fn test_known_layout() { |
| 6333 | // Test that `$ty` and `ManuallyDrop<$ty>` have the expected layout. |
| 6334 | // Test that `PhantomData<$ty>` has the same layout as `()` regardless |
| 6335 | // of `$ty`. |
| 6336 | macro_rules! test { |
| 6337 | ($ty:ty, $expect:expr) => { |
| 6338 | let expect = $expect; |
| 6339 | assert_eq!(<$ty as KnownLayout>::LAYOUT, expect); |
| 6340 | assert_eq!(<ManuallyDrop<$ty> as KnownLayout>::LAYOUT, expect); |
| 6341 | assert_eq!(<PhantomData<$ty> as KnownLayout>::LAYOUT, <() as KnownLayout>::LAYOUT); |
| 6342 | }; |
| 6343 | } |
| 6344 | |
| 6345 | let layout = |offset, align, _trailing_slice_elem_size| DstLayout { |
| 6346 | align: NonZeroUsize::new(align).unwrap(), |
| 6347 | size_info: match _trailing_slice_elem_size { |
| 6348 | None => SizeInfo::Sized { _size: offset }, |
| 6349 | Some(elem_size) => SizeInfo::SliceDst(TrailingSliceLayout { |
| 6350 | _offset: offset, |
| 6351 | _elem_size: elem_size, |
| 6352 | }), |
| 6353 | }, |
| 6354 | }; |
| 6355 | |
| 6356 | test !((), layout(0, 1, None)); |
| 6357 | test !(u8, layout(1, 1, None)); |
| 6358 | // Use `align_of` because `u64` alignment may be smaller than 8 on some |
| 6359 | // platforms. |
| 6360 | test !(u64, layout(8, mem::align_of::<u64>(), None)); |
| 6361 | test !(AU64, layout(8, 8, None)); |
| 6362 | |
| 6363 | test !(Option<&'static ()>, usize::LAYOUT); |
| 6364 | |
| 6365 | test !([()], layout(0, 1, Some(0))); |
| 6366 | test !([u8], layout(0, 1, Some(1))); |
| 6367 | test !(str, layout(0, 1, Some(1))); |
| 6368 | } |
| 6369 | |
| 6370 | #[cfg (feature = "derive" )] |
| 6371 | #[test ] |
| 6372 | fn test_known_layout_derive() { |
| 6373 | // In this and other files (`late_compile_pass.rs`, |
| 6374 | // `mid_compile_pass.rs`, and `struct.rs`), we test success and failure |
| 6375 | // modes of `derive(KnownLayout)` for the following combination of |
| 6376 | // properties: |
| 6377 | // |
| 6378 | // +------------+--------------------------------------+-----------+ |
| 6379 | // | | trailing field properties | | |
| 6380 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6381 | // |------------+----------+----------------+----------+-----------| |
| 6382 | // | N | N | N | N | KL00 | |
| 6383 | // | N | N | N | Y | KL01 | |
| 6384 | // | N | N | Y | N | KL02 | |
| 6385 | // | N | N | Y | Y | KL03 | |
| 6386 | // | N | Y | N | N | KL04 | |
| 6387 | // | N | Y | N | Y | KL05 | |
| 6388 | // | N | Y | Y | N | KL06 | |
| 6389 | // | N | Y | Y | Y | KL07 | |
| 6390 | // | Y | N | N | N | KL08 | |
| 6391 | // | Y | N | N | Y | KL09 | |
| 6392 | // | Y | N | Y | N | KL10 | |
| 6393 | // | Y | N | Y | Y | KL11 | |
| 6394 | // | Y | Y | N | N | KL12 | |
| 6395 | // | Y | Y | N | Y | KL13 | |
| 6396 | // | Y | Y | Y | N | KL14 | |
| 6397 | // | Y | Y | Y | Y | KL15 | |
| 6398 | // +------------+----------+----------------+----------+-----------+ |
| 6399 | |
| 6400 | struct NotKnownLayout<T = ()> { |
| 6401 | _t: T, |
| 6402 | } |
| 6403 | |
| 6404 | #[derive (KnownLayout)] |
| 6405 | #[repr (C)] |
| 6406 | struct AlignSize<const ALIGN: usize, const SIZE: usize> |
| 6407 | where |
| 6408 | elain::Align<ALIGN>: elain::Alignment, |
| 6409 | { |
| 6410 | _align: elain::Align<ALIGN>, |
| 6411 | _size: [u8; SIZE], |
| 6412 | } |
| 6413 | |
| 6414 | type AU16 = AlignSize<2, 2>; |
| 6415 | type AU32 = AlignSize<4, 4>; |
| 6416 | |
| 6417 | fn _assert_kl<T: ?Sized + KnownLayout>(_: &T) {} |
| 6418 | |
| 6419 | let sized_layout = |align, size| DstLayout { |
| 6420 | align: NonZeroUsize::new(align).unwrap(), |
| 6421 | size_info: SizeInfo::Sized { _size: size }, |
| 6422 | }; |
| 6423 | |
| 6424 | let unsized_layout = |align, elem_size, offset| DstLayout { |
| 6425 | align: NonZeroUsize::new(align).unwrap(), |
| 6426 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| 6427 | _offset: offset, |
| 6428 | _elem_size: elem_size, |
| 6429 | }), |
| 6430 | }; |
| 6431 | |
| 6432 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6433 | // | N | N | N | Y | KL01 | |
| 6434 | #[derive (KnownLayout)] |
| 6435 | #[allow (dead_code)] // fields are never read |
| 6436 | struct KL01(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
| 6437 | |
| 6438 | let expected = DstLayout::for_type::<KL01>(); |
| 6439 | |
| 6440 | assert_eq!(<KL01 as KnownLayout>::LAYOUT, expected); |
| 6441 | assert_eq!(<KL01 as KnownLayout>::LAYOUT, sized_layout(4, 8)); |
| 6442 | |
| 6443 | // ...with `align(N)`: |
| 6444 | #[derive (KnownLayout)] |
| 6445 | #[repr (align(64))] |
| 6446 | #[allow (dead_code)] // fields are never read |
| 6447 | struct KL01Align(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
| 6448 | |
| 6449 | let expected = DstLayout::for_type::<KL01Align>(); |
| 6450 | |
| 6451 | assert_eq!(<KL01Align as KnownLayout>::LAYOUT, expected); |
| 6452 | assert_eq!(<KL01Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
| 6453 | |
| 6454 | // ...with `packed`: |
| 6455 | #[derive (KnownLayout)] |
| 6456 | #[repr (packed)] |
| 6457 | #[allow (dead_code)] // fields are never read |
| 6458 | struct KL01Packed(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
| 6459 | |
| 6460 | let expected = DstLayout::for_type::<KL01Packed>(); |
| 6461 | |
| 6462 | assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, expected); |
| 6463 | assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, sized_layout(1, 6)); |
| 6464 | |
| 6465 | // ...with `packed(N)`: |
| 6466 | #[derive (KnownLayout)] |
| 6467 | #[repr (packed(2))] |
| 6468 | #[allow (dead_code)] // fields are never read |
| 6469 | struct KL01PackedN(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
| 6470 | |
| 6471 | assert_impl_all!(KL01PackedN: KnownLayout); |
| 6472 | |
| 6473 | let expected = DstLayout::for_type::<KL01PackedN>(); |
| 6474 | |
| 6475 | assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, expected); |
| 6476 | assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6)); |
| 6477 | |
| 6478 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6479 | // | N | N | Y | Y | KL03 | |
| 6480 | #[derive (KnownLayout)] |
| 6481 | #[allow (dead_code)] // fields are never read |
| 6482 | struct KL03(NotKnownLayout, u8); |
| 6483 | |
| 6484 | let expected = DstLayout::for_type::<KL03>(); |
| 6485 | |
| 6486 | assert_eq!(<KL03 as KnownLayout>::LAYOUT, expected); |
| 6487 | assert_eq!(<KL03 as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
| 6488 | |
| 6489 | // ... with `align(N)` |
| 6490 | #[derive (KnownLayout)] |
| 6491 | #[repr (align(64))] |
| 6492 | #[allow (dead_code)] // fields are never read |
| 6493 | struct KL03Align(NotKnownLayout<AU32>, u8); |
| 6494 | |
| 6495 | let expected = DstLayout::for_type::<KL03Align>(); |
| 6496 | |
| 6497 | assert_eq!(<KL03Align as KnownLayout>::LAYOUT, expected); |
| 6498 | assert_eq!(<KL03Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
| 6499 | |
| 6500 | // ... with `packed`: |
| 6501 | #[derive (KnownLayout)] |
| 6502 | #[repr (packed)] |
| 6503 | #[allow (dead_code)] // fields are never read |
| 6504 | struct KL03Packed(NotKnownLayout<AU32>, u8); |
| 6505 | |
| 6506 | let expected = DstLayout::for_type::<KL03Packed>(); |
| 6507 | |
| 6508 | assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, expected); |
| 6509 | assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, sized_layout(1, 5)); |
| 6510 | |
| 6511 | // ... with `packed(N)` |
| 6512 | #[derive (KnownLayout)] |
| 6513 | #[repr (packed(2))] |
| 6514 | #[allow (dead_code)] // fields are never read |
| 6515 | struct KL03PackedN(NotKnownLayout<AU32>, u8); |
| 6516 | |
| 6517 | assert_impl_all!(KL03PackedN: KnownLayout); |
| 6518 | |
| 6519 | let expected = DstLayout::for_type::<KL03PackedN>(); |
| 6520 | |
| 6521 | assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, expected); |
| 6522 | assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6)); |
| 6523 | |
| 6524 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6525 | // | N | Y | N | Y | KL05 | |
| 6526 | #[derive (KnownLayout)] |
| 6527 | #[allow (dead_code)] // fields are never read |
| 6528 | struct KL05<T>(u8, T); |
| 6529 | |
| 6530 | fn _test_kl05<T>(t: T) -> impl KnownLayout { |
| 6531 | KL05(0u8, t) |
| 6532 | } |
| 6533 | |
| 6534 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6535 | // | N | Y | Y | Y | KL07 | |
| 6536 | #[derive (KnownLayout)] |
| 6537 | #[allow (dead_code)] // fields are never read |
| 6538 | struct KL07<T: KnownLayout>(u8, T); |
| 6539 | |
| 6540 | fn _test_kl07<T: KnownLayout>(t: T) -> impl KnownLayout { |
| 6541 | let _ = KL07(0u8, t); |
| 6542 | } |
| 6543 | |
| 6544 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6545 | // | Y | N | Y | N | KL10 | |
| 6546 | #[derive (KnownLayout)] |
| 6547 | #[repr (C)] |
| 6548 | struct KL10(NotKnownLayout<AU32>, [u8]); |
| 6549 | |
| 6550 | let expected = DstLayout::new_zst(None) |
| 6551 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None) |
| 6552 | .extend(<[u8] as KnownLayout>::LAYOUT, None) |
| 6553 | .pad_to_align(); |
| 6554 | |
| 6555 | assert_eq!(<KL10 as KnownLayout>::LAYOUT, expected); |
| 6556 | assert_eq!(<KL10 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 4)); |
| 6557 | |
| 6558 | // ...with `align(N)`: |
| 6559 | #[derive (KnownLayout)] |
| 6560 | #[repr (C, align(64))] |
| 6561 | struct KL10Align(NotKnownLayout<AU32>, [u8]); |
| 6562 | |
| 6563 | let repr_align = NonZeroUsize::new(64); |
| 6564 | |
| 6565 | let expected = DstLayout::new_zst(repr_align) |
| 6566 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None) |
| 6567 | .extend(<[u8] as KnownLayout>::LAYOUT, None) |
| 6568 | .pad_to_align(); |
| 6569 | |
| 6570 | assert_eq!(<KL10Align as KnownLayout>::LAYOUT, expected); |
| 6571 | assert_eq!(<KL10Align as KnownLayout>::LAYOUT, unsized_layout(64, 1, 4)); |
| 6572 | |
| 6573 | // ...with `packed`: |
| 6574 | #[derive (KnownLayout)] |
| 6575 | #[repr (C, packed)] |
| 6576 | struct KL10Packed(NotKnownLayout<AU32>, [u8]); |
| 6577 | |
| 6578 | let repr_packed = NonZeroUsize::new(1); |
| 6579 | |
| 6580 | let expected = DstLayout::new_zst(None) |
| 6581 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed) |
| 6582 | .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed) |
| 6583 | .pad_to_align(); |
| 6584 | |
| 6585 | assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, expected); |
| 6586 | assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, unsized_layout(1, 1, 4)); |
| 6587 | |
| 6588 | // ...with `packed(N)`: |
| 6589 | #[derive (KnownLayout)] |
| 6590 | #[repr (C, packed(2))] |
| 6591 | struct KL10PackedN(NotKnownLayout<AU32>, [u8]); |
| 6592 | |
| 6593 | let repr_packed = NonZeroUsize::new(2); |
| 6594 | |
| 6595 | let expected = DstLayout::new_zst(None) |
| 6596 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed) |
| 6597 | .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed) |
| 6598 | .pad_to_align(); |
| 6599 | |
| 6600 | assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, expected); |
| 6601 | assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4)); |
| 6602 | |
| 6603 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6604 | // | Y | N | Y | Y | KL11 | |
| 6605 | #[derive (KnownLayout)] |
| 6606 | #[repr (C)] |
| 6607 | struct KL11(NotKnownLayout<AU64>, u8); |
| 6608 | |
| 6609 | let expected = DstLayout::new_zst(None) |
| 6610 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None) |
| 6611 | .extend(<u8 as KnownLayout>::LAYOUT, None) |
| 6612 | .pad_to_align(); |
| 6613 | |
| 6614 | assert_eq!(<KL11 as KnownLayout>::LAYOUT, expected); |
| 6615 | assert_eq!(<KL11 as KnownLayout>::LAYOUT, sized_layout(8, 16)); |
| 6616 | |
| 6617 | // ...with `align(N)`: |
| 6618 | #[derive (KnownLayout)] |
| 6619 | #[repr (C, align(64))] |
| 6620 | struct KL11Align(NotKnownLayout<AU64>, u8); |
| 6621 | |
| 6622 | let repr_align = NonZeroUsize::new(64); |
| 6623 | |
| 6624 | let expected = DstLayout::new_zst(repr_align) |
| 6625 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None) |
| 6626 | .extend(<u8 as KnownLayout>::LAYOUT, None) |
| 6627 | .pad_to_align(); |
| 6628 | |
| 6629 | assert_eq!(<KL11Align as KnownLayout>::LAYOUT, expected); |
| 6630 | assert_eq!(<KL11Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
| 6631 | |
| 6632 | // ...with `packed`: |
| 6633 | #[derive (KnownLayout)] |
| 6634 | #[repr (C, packed)] |
| 6635 | struct KL11Packed(NotKnownLayout<AU64>, u8); |
| 6636 | |
| 6637 | let repr_packed = NonZeroUsize::new(1); |
| 6638 | |
| 6639 | let expected = DstLayout::new_zst(None) |
| 6640 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed) |
| 6641 | .extend(<u8 as KnownLayout>::LAYOUT, repr_packed) |
| 6642 | .pad_to_align(); |
| 6643 | |
| 6644 | assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, expected); |
| 6645 | assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, sized_layout(1, 9)); |
| 6646 | |
| 6647 | // ...with `packed(N)`: |
| 6648 | #[derive (KnownLayout)] |
| 6649 | #[repr (C, packed(2))] |
| 6650 | struct KL11PackedN(NotKnownLayout<AU64>, u8); |
| 6651 | |
| 6652 | let repr_packed = NonZeroUsize::new(2); |
| 6653 | |
| 6654 | let expected = DstLayout::new_zst(None) |
| 6655 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed) |
| 6656 | .extend(<u8 as KnownLayout>::LAYOUT, repr_packed) |
| 6657 | .pad_to_align(); |
| 6658 | |
| 6659 | assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, expected); |
| 6660 | assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, sized_layout(2, 10)); |
| 6661 | |
| 6662 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6663 | // | Y | Y | Y | N | KL14 | |
| 6664 | #[derive (KnownLayout)] |
| 6665 | #[repr (C)] |
| 6666 | struct KL14<T: ?Sized + KnownLayout>(u8, T); |
| 6667 | |
| 6668 | fn _test_kl14<T: ?Sized + KnownLayout>(kl: &KL14<T>) { |
| 6669 | _assert_kl(kl) |
| 6670 | } |
| 6671 | |
| 6672 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| 6673 | // | Y | Y | Y | Y | KL15 | |
| 6674 | #[derive (KnownLayout)] |
| 6675 | #[repr (C)] |
| 6676 | struct KL15<T: KnownLayout>(u8, T); |
| 6677 | |
| 6678 | fn _test_kl15<T: KnownLayout>(t: T) -> impl KnownLayout { |
| 6679 | let _ = KL15(0u8, t); |
| 6680 | } |
| 6681 | |
| 6682 | // Test a variety of combinations of field types: |
| 6683 | // - () |
| 6684 | // - u8 |
| 6685 | // - AU16 |
| 6686 | // - [()] |
| 6687 | // - [u8] |
| 6688 | // - [AU16] |
| 6689 | |
| 6690 | #[allow (clippy::upper_case_acronyms)] |
| 6691 | #[derive (KnownLayout)] |
| 6692 | #[repr (C)] |
| 6693 | struct KLTU<T, U: ?Sized>(T, U); |
| 6694 | |
| 6695 | assert_eq!(<KLTU<(), ()> as KnownLayout>::LAYOUT, sized_layout(1, 0)); |
| 6696 | |
| 6697 | assert_eq!(<KLTU<(), u8> as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
| 6698 | |
| 6699 | assert_eq!(<KLTU<(), AU16> as KnownLayout>::LAYOUT, sized_layout(2, 2)); |
| 6700 | |
| 6701 | assert_eq!(<KLTU<(), [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 0)); |
| 6702 | |
| 6703 | assert_eq!(<KLTU<(), [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0)); |
| 6704 | |
| 6705 | assert_eq!(<KLTU<(), [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 0)); |
| 6706 | |
| 6707 | assert_eq!(<KLTU<u8, ()> as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
| 6708 | |
| 6709 | assert_eq!(<KLTU<u8, u8> as KnownLayout>::LAYOUT, sized_layout(1, 2)); |
| 6710 | |
| 6711 | assert_eq!(<KLTU<u8, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
| 6712 | |
| 6713 | assert_eq!(<KLTU<u8, [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 1)); |
| 6714 | |
| 6715 | assert_eq!(<KLTU<u8, [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1)); |
| 6716 | |
| 6717 | assert_eq!(<KLTU<u8, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2)); |
| 6718 | |
| 6719 | assert_eq!(<KLTU<AU16, ()> as KnownLayout>::LAYOUT, sized_layout(2, 2)); |
| 6720 | |
| 6721 | assert_eq!(<KLTU<AU16, u8> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
| 6722 | |
| 6723 | assert_eq!(<KLTU<AU16, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
| 6724 | |
| 6725 | assert_eq!(<KLTU<AU16, [()]> as KnownLayout>::LAYOUT, unsized_layout(2, 0, 2)); |
| 6726 | |
| 6727 | assert_eq!(<KLTU<AU16, [u8]> as KnownLayout>::LAYOUT, unsized_layout(2, 1, 2)); |
| 6728 | |
| 6729 | assert_eq!(<KLTU<AU16, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2)); |
| 6730 | |
| 6731 | // Test a variety of field counts. |
| 6732 | |
| 6733 | #[derive (KnownLayout)] |
| 6734 | #[repr (C)] |
| 6735 | struct KLF0; |
| 6736 | |
| 6737 | assert_eq!(<KLF0 as KnownLayout>::LAYOUT, sized_layout(1, 0)); |
| 6738 | |
| 6739 | #[derive (KnownLayout)] |
| 6740 | #[repr (C)] |
| 6741 | struct KLF1([u8]); |
| 6742 | |
| 6743 | assert_eq!(<KLF1 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0)); |
| 6744 | |
| 6745 | #[derive (KnownLayout)] |
| 6746 | #[repr (C)] |
| 6747 | struct KLF2(NotKnownLayout<u8>, [u8]); |
| 6748 | |
| 6749 | assert_eq!(<KLF2 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1)); |
| 6750 | |
| 6751 | #[derive (KnownLayout)] |
| 6752 | #[repr (C)] |
| 6753 | struct KLF3(NotKnownLayout<u8>, NotKnownLayout<AU16>, [u8]); |
| 6754 | |
| 6755 | assert_eq!(<KLF3 as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4)); |
| 6756 | |
| 6757 | #[derive (KnownLayout)] |
| 6758 | #[repr (C)] |
| 6759 | struct KLF4(NotKnownLayout<u8>, NotKnownLayout<AU16>, NotKnownLayout<AU32>, [u8]); |
| 6760 | |
| 6761 | assert_eq!(<KLF4 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 8)); |
| 6762 | } |
| 6763 | |
| 6764 | #[test ] |
| 6765 | fn test_object_safety() { |
| 6766 | fn _takes_from_zeroes(_: &dyn FromZeroes) {} |
| 6767 | fn _takes_from_bytes(_: &dyn FromBytes) {} |
| 6768 | fn _takes_unaligned(_: &dyn Unaligned) {} |
| 6769 | } |
| 6770 | |
| 6771 | #[test ] |
| 6772 | fn test_from_zeroes_only() { |
| 6773 | // Test types that implement `FromZeroes` but not `FromBytes`. |
| 6774 | |
| 6775 | assert!(!bool::new_zeroed()); |
| 6776 | assert_eq!(char::new_zeroed(), ' \0' ); |
| 6777 | |
| 6778 | #[cfg (feature = "alloc" )] |
| 6779 | { |
| 6780 | assert_eq!(bool::new_box_zeroed(), Box::new(false)); |
| 6781 | assert_eq!(char::new_box_zeroed(), Box::new(' \0' )); |
| 6782 | |
| 6783 | assert_eq!(bool::new_box_slice_zeroed(3).as_ref(), [false, false, false]); |
| 6784 | assert_eq!(char::new_box_slice_zeroed(3).as_ref(), [' \0' , ' \0' , ' \0' ]); |
| 6785 | |
| 6786 | assert_eq!(bool::new_vec_zeroed(3).as_ref(), [false, false, false]); |
| 6787 | assert_eq!(char::new_vec_zeroed(3).as_ref(), [' \0' , ' \0' , ' \0' ]); |
| 6788 | } |
| 6789 | |
| 6790 | let mut string = "hello" .to_string(); |
| 6791 | let s: &mut str = string.as_mut(); |
| 6792 | assert_eq!(s, "hello" ); |
| 6793 | s.zero(); |
| 6794 | assert_eq!(s, " \0\0\0\0\0" ); |
| 6795 | } |
| 6796 | |
| 6797 | #[test ] |
| 6798 | fn test_read_write() { |
| 6799 | const VAL: u64 = 0x12345678; |
| 6800 | #[cfg (target_endian = "big" )] |
| 6801 | const VAL_BYTES: [u8; 8] = VAL.to_be_bytes(); |
| 6802 | #[cfg (target_endian = "little" )] |
| 6803 | const VAL_BYTES: [u8; 8] = VAL.to_le_bytes(); |
| 6804 | |
| 6805 | // Test `FromBytes::{read_from, read_from_prefix, read_from_suffix}`. |
| 6806 | |
| 6807 | assert_eq!(u64::read_from(&VAL_BYTES[..]), Some(VAL)); |
| 6808 | // The first 8 bytes are from `VAL_BYTES` and the second 8 bytes are all |
| 6809 | // zeroes. |
| 6810 | let bytes_with_prefix: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]); |
| 6811 | assert_eq!(u64::read_from_prefix(&bytes_with_prefix[..]), Some(VAL)); |
| 6812 | assert_eq!(u64::read_from_suffix(&bytes_with_prefix[..]), Some(0)); |
| 6813 | // The first 8 bytes are all zeroes and the second 8 bytes are from |
| 6814 | // `VAL_BYTES` |
| 6815 | let bytes_with_suffix: [u8; 16] = transmute!([[0; 8], VAL_BYTES]); |
| 6816 | assert_eq!(u64::read_from_prefix(&bytes_with_suffix[..]), Some(0)); |
| 6817 | assert_eq!(u64::read_from_suffix(&bytes_with_suffix[..]), Some(VAL)); |
| 6818 | |
| 6819 | // Test `AsBytes::{write_to, write_to_prefix, write_to_suffix}`. |
| 6820 | |
| 6821 | let mut bytes = [0u8; 8]; |
| 6822 | assert_eq!(VAL.write_to(&mut bytes[..]), Some(())); |
| 6823 | assert_eq!(bytes, VAL_BYTES); |
| 6824 | let mut bytes = [0u8; 16]; |
| 6825 | assert_eq!(VAL.write_to_prefix(&mut bytes[..]), Some(())); |
| 6826 | let want: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]); |
| 6827 | assert_eq!(bytes, want); |
| 6828 | let mut bytes = [0u8; 16]; |
| 6829 | assert_eq!(VAL.write_to_suffix(&mut bytes[..]), Some(())); |
| 6830 | let want: [u8; 16] = transmute!([[0; 8], VAL_BYTES]); |
| 6831 | assert_eq!(bytes, want); |
| 6832 | } |
| 6833 | |
| 6834 | #[test ] |
| 6835 | fn test_transmute() { |
| 6836 | // Test that memory is transmuted as expected. |
| 6837 | let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| 6838 | let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| 6839 | let x: [[u8; 2]; 4] = transmute!(array_of_u8s); |
| 6840 | assert_eq!(x, array_of_arrays); |
| 6841 | let x: [u8; 8] = transmute!(array_of_arrays); |
| 6842 | assert_eq!(x, array_of_u8s); |
| 6843 | |
| 6844 | // Test that the source expression's value is forgotten rather than |
| 6845 | // dropped. |
| 6846 | #[derive (AsBytes)] |
| 6847 | #[repr (transparent)] |
| 6848 | struct PanicOnDrop(()); |
| 6849 | impl Drop for PanicOnDrop { |
| 6850 | fn drop(&mut self) { |
| 6851 | panic!("PanicOnDrop::drop" ); |
| 6852 | } |
| 6853 | } |
| 6854 | #[allow (clippy::let_unit_value)] |
| 6855 | let _: () = transmute!(PanicOnDrop(())); |
| 6856 | |
| 6857 | // Test that `transmute!` is legal in a const context. |
| 6858 | const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| 6859 | const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| 6860 | const X: [[u8; 2]; 4] = transmute!(ARRAY_OF_U8S); |
| 6861 | assert_eq!(X, ARRAY_OF_ARRAYS); |
| 6862 | } |
| 6863 | |
| 6864 | #[test ] |
| 6865 | fn test_transmute_ref() { |
| 6866 | // Test that memory is transmuted as expected. |
| 6867 | let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| 6868 | let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| 6869 | let x: &[[u8; 2]; 4] = transmute_ref!(&array_of_u8s); |
| 6870 | assert_eq!(*x, array_of_arrays); |
| 6871 | let x: &[u8; 8] = transmute_ref!(&array_of_arrays); |
| 6872 | assert_eq!(*x, array_of_u8s); |
| 6873 | |
| 6874 | // Test that `transmute_ref!` is legal in a const context. |
| 6875 | const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| 6876 | const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| 6877 | #[allow (clippy::redundant_static_lifetimes)] |
| 6878 | const X: &'static [[u8; 2]; 4] = transmute_ref!(&ARRAY_OF_U8S); |
| 6879 | assert_eq!(*X, ARRAY_OF_ARRAYS); |
| 6880 | |
| 6881 | // Test that it's legal to transmute a reference while shrinking the |
| 6882 | // lifetime (note that `X` has the lifetime `'static`). |
| 6883 | let x: &[u8; 8] = transmute_ref!(X); |
| 6884 | assert_eq!(*x, ARRAY_OF_U8S); |
| 6885 | |
| 6886 | // Test that `transmute_ref!` supports decreasing alignment. |
| 6887 | let u = AU64(0); |
| 6888 | let array = [0, 0, 0, 0, 0, 0, 0, 0]; |
| 6889 | let x: &[u8; 8] = transmute_ref!(&u); |
| 6890 | assert_eq!(*x, array); |
| 6891 | |
| 6892 | // Test that a mutable reference can be turned into an immutable one. |
| 6893 | let mut x = 0u8; |
| 6894 | #[allow (clippy::useless_transmute)] |
| 6895 | let y: &u8 = transmute_ref!(&mut x); |
| 6896 | assert_eq!(*y, 0); |
| 6897 | } |
| 6898 | |
| 6899 | #[test ] |
| 6900 | fn test_transmute_mut() { |
| 6901 | // Test that memory is transmuted as expected. |
| 6902 | let mut array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| 6903 | let mut array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| 6904 | let x: &mut [[u8; 2]; 4] = transmute_mut!(&mut array_of_u8s); |
| 6905 | assert_eq!(*x, array_of_arrays); |
| 6906 | let x: &mut [u8; 8] = transmute_mut!(&mut array_of_arrays); |
| 6907 | assert_eq!(*x, array_of_u8s); |
| 6908 | |
| 6909 | { |
| 6910 | // Test that it's legal to transmute a reference while shrinking the |
| 6911 | // lifetime. |
| 6912 | let x: &mut [u8; 8] = transmute_mut!(&mut array_of_arrays); |
| 6913 | assert_eq!(*x, array_of_u8s); |
| 6914 | } |
| 6915 | // Test that `transmute_mut!` supports decreasing alignment. |
| 6916 | let mut u = AU64(0); |
| 6917 | let array = [0, 0, 0, 0, 0, 0, 0, 0]; |
| 6918 | let x: &[u8; 8] = transmute_mut!(&mut u); |
| 6919 | assert_eq!(*x, array); |
| 6920 | |
| 6921 | // Test that a mutable reference can be turned into an immutable one. |
| 6922 | let mut x = 0u8; |
| 6923 | #[allow (clippy::useless_transmute)] |
| 6924 | let y: &u8 = transmute_mut!(&mut x); |
| 6925 | assert_eq!(*y, 0); |
| 6926 | } |
| 6927 | |
| 6928 | #[test ] |
| 6929 | fn test_macros_evaluate_args_once() { |
| 6930 | let mut ctr = 0; |
| 6931 | let _: usize = transmute!({ |
| 6932 | ctr += 1; |
| 6933 | 0usize |
| 6934 | }); |
| 6935 | assert_eq!(ctr, 1); |
| 6936 | |
| 6937 | let mut ctr = 0; |
| 6938 | let _: &usize = transmute_ref!({ |
| 6939 | ctr += 1; |
| 6940 | &0usize |
| 6941 | }); |
| 6942 | assert_eq!(ctr, 1); |
| 6943 | } |
| 6944 | |
| 6945 | #[test ] |
| 6946 | fn test_include_value() { |
| 6947 | const AS_U32: u32 = include_value!("../testdata/include_value/data" ); |
| 6948 | assert_eq!(AS_U32, u32::from_ne_bytes([b'a' , b'b' , b'c' , b'd' ])); |
| 6949 | const AS_I32: i32 = include_value!("../testdata/include_value/data" ); |
| 6950 | assert_eq!(AS_I32, i32::from_ne_bytes([b'a' , b'b' , b'c' , b'd' ])); |
| 6951 | } |
| 6952 | |
| 6953 | #[test ] |
| 6954 | fn test_address() { |
| 6955 | // Test that the `Deref` and `DerefMut` implementations return a |
| 6956 | // reference which points to the right region of memory. |
| 6957 | |
| 6958 | let buf = [0]; |
| 6959 | let r = Ref::<_, u8>::new(&buf[..]).unwrap(); |
| 6960 | let buf_ptr = buf.as_ptr(); |
| 6961 | let deref_ptr: *const u8 = r.deref(); |
| 6962 | assert_eq!(buf_ptr, deref_ptr); |
| 6963 | |
| 6964 | let buf = [0]; |
| 6965 | let r = Ref::<_, [u8]>::new_slice(&buf[..]).unwrap(); |
| 6966 | let buf_ptr = buf.as_ptr(); |
| 6967 | let deref_ptr = r.deref().as_ptr(); |
| 6968 | assert_eq!(buf_ptr, deref_ptr); |
| 6969 | } |
| 6970 | |
| 6971 | // Verify that values written to a `Ref` are properly shared between the |
| 6972 | // typed and untyped representations, that reads via `deref` and `read` |
| 6973 | // behave the same, and that writes via `deref_mut` and `write` behave the |
| 6974 | // same. |
| 6975 | fn test_new_helper(mut r: Ref<&mut [u8], AU64>) { |
| 6976 | // assert that the value starts at 0 |
| 6977 | assert_eq!(*r, AU64(0)); |
| 6978 | assert_eq!(r.read(), AU64(0)); |
| 6979 | |
| 6980 | // Assert that values written to the typed value are reflected in the |
| 6981 | // byte slice. |
| 6982 | const VAL1: AU64 = AU64(0xFF00FF00FF00FF00); |
| 6983 | *r = VAL1; |
| 6984 | assert_eq!(r.bytes(), &VAL1.to_bytes()); |
| 6985 | *r = AU64(0); |
| 6986 | r.write(VAL1); |
| 6987 | assert_eq!(r.bytes(), &VAL1.to_bytes()); |
| 6988 | |
| 6989 | // Assert that values written to the byte slice are reflected in the |
| 6990 | // typed value. |
| 6991 | const VAL2: AU64 = AU64(!VAL1.0); // different from `VAL1` |
| 6992 | r.bytes_mut().copy_from_slice(&VAL2.to_bytes()[..]); |
| 6993 | assert_eq!(*r, VAL2); |
| 6994 | assert_eq!(r.read(), VAL2); |
| 6995 | } |
| 6996 | |
| 6997 | // Verify that values written to a `Ref` are properly shared between the |
| 6998 | // typed and untyped representations; pass a value with `typed_len` `AU64`s |
| 6999 | // backed by an array of `typed_len * 8` bytes. |
| 7000 | fn test_new_helper_slice(mut r: Ref<&mut [u8], [AU64]>, typed_len: usize) { |
| 7001 | // Assert that the value starts out zeroed. |
| 7002 | assert_eq!(&*r, vec![AU64(0); typed_len].as_slice()); |
| 7003 | |
| 7004 | // Check the backing storage is the exact same slice. |
| 7005 | let untyped_len = typed_len * 8; |
| 7006 | assert_eq!(r.bytes().len(), untyped_len); |
| 7007 | assert_eq!(r.bytes().as_ptr(), r.as_ptr().cast::<u8>()); |
| 7008 | |
| 7009 | // Assert that values written to the typed value are reflected in the |
| 7010 | // byte slice. |
| 7011 | const VAL1: AU64 = AU64(0xFF00FF00FF00FF00); |
| 7012 | for typed in &mut *r { |
| 7013 | *typed = VAL1; |
| 7014 | } |
| 7015 | assert_eq!(r.bytes(), VAL1.0.to_ne_bytes().repeat(typed_len).as_slice()); |
| 7016 | |
| 7017 | // Assert that values written to the byte slice are reflected in the |
| 7018 | // typed value. |
| 7019 | const VAL2: AU64 = AU64(!VAL1.0); // different from VAL1 |
| 7020 | r.bytes_mut().copy_from_slice(&VAL2.0.to_ne_bytes().repeat(typed_len)); |
| 7021 | assert!(r.iter().copied().all(|x| x == VAL2)); |
| 7022 | } |
| 7023 | |
| 7024 | // Verify that values written to a `Ref` are properly shared between the |
| 7025 | // typed and untyped representations, that reads via `deref` and `read` |
| 7026 | // behave the same, and that writes via `deref_mut` and `write` behave the |
| 7027 | // same. |
| 7028 | fn test_new_helper_unaligned(mut r: Ref<&mut [u8], [u8; 8]>) { |
| 7029 | // assert that the value starts at 0 |
| 7030 | assert_eq!(*r, [0; 8]); |
| 7031 | assert_eq!(r.read(), [0; 8]); |
| 7032 | |
| 7033 | // Assert that values written to the typed value are reflected in the |
| 7034 | // byte slice. |
| 7035 | const VAL1: [u8; 8] = [0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00]; |
| 7036 | *r = VAL1; |
| 7037 | assert_eq!(r.bytes(), &VAL1); |
| 7038 | *r = [0; 8]; |
| 7039 | r.write(VAL1); |
| 7040 | assert_eq!(r.bytes(), &VAL1); |
| 7041 | |
| 7042 | // Assert that values written to the byte slice are reflected in the |
| 7043 | // typed value. |
| 7044 | const VAL2: [u8; 8] = [0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF]; // different from VAL1 |
| 7045 | r.bytes_mut().copy_from_slice(&VAL2[..]); |
| 7046 | assert_eq!(*r, VAL2); |
| 7047 | assert_eq!(r.read(), VAL2); |
| 7048 | } |
| 7049 | |
| 7050 | // Verify that values written to a `Ref` are properly shared between the |
| 7051 | // typed and untyped representations; pass a value with `len` `u8`s backed |
| 7052 | // by an array of `len` bytes. |
| 7053 | fn test_new_helper_slice_unaligned(mut r: Ref<&mut [u8], [u8]>, len: usize) { |
| 7054 | // Assert that the value starts out zeroed. |
| 7055 | assert_eq!(&*r, vec![0u8; len].as_slice()); |
| 7056 | |
| 7057 | // Check the backing storage is the exact same slice. |
| 7058 | assert_eq!(r.bytes().len(), len); |
| 7059 | assert_eq!(r.bytes().as_ptr(), r.as_ptr()); |
| 7060 | |
| 7061 | // Assert that values written to the typed value are reflected in the |
| 7062 | // byte slice. |
| 7063 | let mut expected_bytes = [0xFF, 0x00].iter().copied().cycle().take(len).collect::<Vec<_>>(); |
| 7064 | r.copy_from_slice(&expected_bytes); |
| 7065 | assert_eq!(r.bytes(), expected_bytes.as_slice()); |
| 7066 | |
| 7067 | // Assert that values written to the byte slice are reflected in the |
| 7068 | // typed value. |
| 7069 | for byte in &mut expected_bytes { |
| 7070 | *byte = !*byte; // different from `expected_len` |
| 7071 | } |
| 7072 | r.bytes_mut().copy_from_slice(&expected_bytes); |
| 7073 | assert_eq!(&*r, expected_bytes.as_slice()); |
| 7074 | } |
| 7075 | |
| 7076 | #[test ] |
| 7077 | fn test_new_aligned_sized() { |
| 7078 | // Test that a properly-aligned, properly-sized buffer works for new, |
| 7079 | // new_from_prefix, and new_from_suffix, and that new_from_prefix and |
| 7080 | // new_from_suffix return empty slices. Test that a properly-aligned |
| 7081 | // buffer whose length is a multiple of the element size works for |
| 7082 | // new_slice. Test that xxx_zeroed behaves the same, and zeroes the |
| 7083 | // memory. |
| 7084 | |
| 7085 | // A buffer with an alignment of 8. |
| 7086 | let mut buf = Align::<[u8; 8], AU64>::default(); |
| 7087 | // `buf.t` should be aligned to 8, so this should always succeed. |
| 7088 | test_new_helper(Ref::<_, AU64>::new(&mut buf.t[..]).unwrap()); |
| 7089 | let ascending: [u8; 8] = (0..8).collect::<Vec<_>>().try_into().unwrap(); |
| 7090 | buf.t = ascending; |
| 7091 | test_new_helper(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).unwrap()); |
| 7092 | { |
| 7093 | // In a block so that `r` and `suffix` don't live too long. |
| 7094 | buf.set_default(); |
| 7095 | let (r, suffix) = Ref::<_, AU64>::new_from_prefix(&mut buf.t[..]).unwrap(); |
| 7096 | assert!(suffix.is_empty()); |
| 7097 | test_new_helper(r); |
| 7098 | } |
| 7099 | { |
| 7100 | buf.t = ascending; |
| 7101 | let (r, suffix) = Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).unwrap(); |
| 7102 | assert!(suffix.is_empty()); |
| 7103 | test_new_helper(r); |
| 7104 | } |
| 7105 | { |
| 7106 | buf.set_default(); |
| 7107 | let (prefix, r) = Ref::<_, AU64>::new_from_suffix(&mut buf.t[..]).unwrap(); |
| 7108 | assert!(prefix.is_empty()); |
| 7109 | test_new_helper(r); |
| 7110 | } |
| 7111 | { |
| 7112 | buf.t = ascending; |
| 7113 | let (prefix, r) = Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).unwrap(); |
| 7114 | assert!(prefix.is_empty()); |
| 7115 | test_new_helper(r); |
| 7116 | } |
| 7117 | |
| 7118 | // A buffer with alignment 8 and length 24. We choose this length very |
| 7119 | // intentionally: if we instead used length 16, then the prefix and |
| 7120 | // suffix lengths would be identical. In the past, we used length 16, |
| 7121 | // which resulted in this test failing to discover the bug uncovered in |
| 7122 | // #506. |
| 7123 | let mut buf = Align::<[u8; 24], AU64>::default(); |
| 7124 | // `buf.t` should be aligned to 8 and have a length which is a multiple |
| 7125 | // of `size_of::<AU64>()`, so this should always succeed. |
| 7126 | test_new_helper_slice(Ref::<_, [AU64]>::new_slice(&mut buf.t[..]).unwrap(), 3); |
| 7127 | let ascending: [u8; 24] = (0..24).collect::<Vec<_>>().try_into().unwrap(); |
| 7128 | // 16 ascending bytes followed by 8 zeros. |
| 7129 | let mut ascending_prefix = ascending; |
| 7130 | ascending_prefix[16..].copy_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]); |
| 7131 | // 8 zeros followed by 16 ascending bytes. |
| 7132 | let mut ascending_suffix = ascending; |
| 7133 | ascending_suffix[..8].copy_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]); |
| 7134 | test_new_helper_slice(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[..]).unwrap(), 3); |
| 7135 | |
| 7136 | { |
| 7137 | buf.t = ascending_suffix; |
| 7138 | let (r, suffix) = Ref::<_, [AU64]>::new_slice_from_prefix(&mut buf.t[..], 1).unwrap(); |
| 7139 | assert_eq!(suffix, &ascending[8..]); |
| 7140 | test_new_helper_slice(r, 1); |
| 7141 | } |
| 7142 | { |
| 7143 | buf.t = ascending_suffix; |
| 7144 | let (r, suffix) = |
| 7145 | Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], 1).unwrap(); |
| 7146 | assert_eq!(suffix, &ascending[8..]); |
| 7147 | test_new_helper_slice(r, 1); |
| 7148 | } |
| 7149 | { |
| 7150 | buf.t = ascending_prefix; |
| 7151 | let (prefix, r) = Ref::<_, [AU64]>::new_slice_from_suffix(&mut buf.t[..], 1).unwrap(); |
| 7152 | assert_eq!(prefix, &ascending[..16]); |
| 7153 | test_new_helper_slice(r, 1); |
| 7154 | } |
| 7155 | { |
| 7156 | buf.t = ascending_prefix; |
| 7157 | let (prefix, r) = |
| 7158 | Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], 1).unwrap(); |
| 7159 | assert_eq!(prefix, &ascending[..16]); |
| 7160 | test_new_helper_slice(r, 1); |
| 7161 | } |
| 7162 | } |
| 7163 | |
| 7164 | #[test ] |
| 7165 | fn test_new_unaligned_sized() { |
| 7166 | // Test that an unaligned, properly-sized buffer works for |
| 7167 | // `new_unaligned`, `new_unaligned_from_prefix`, and |
| 7168 | // `new_unaligned_from_suffix`, and that `new_unaligned_from_prefix` |
| 7169 | // `new_unaligned_from_suffix` return empty slices. Test that an |
| 7170 | // unaligned buffer whose length is a multiple of the element size works |
| 7171 | // for `new_slice`. Test that `xxx_zeroed` behaves the same, and zeroes |
| 7172 | // the memory. |
| 7173 | |
| 7174 | let mut buf = [0u8; 8]; |
| 7175 | test_new_helper_unaligned(Ref::<_, [u8; 8]>::new_unaligned(&mut buf[..]).unwrap()); |
| 7176 | buf = [0xFFu8; 8]; |
| 7177 | test_new_helper_unaligned(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf[..]).unwrap()); |
| 7178 | { |
| 7179 | // In a block so that `r` and `suffix` don't live too long. |
| 7180 | buf = [0u8; 8]; |
| 7181 | let (r, suffix) = Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap(); |
| 7182 | assert!(suffix.is_empty()); |
| 7183 | test_new_helper_unaligned(r); |
| 7184 | } |
| 7185 | { |
| 7186 | buf = [0xFFu8; 8]; |
| 7187 | let (r, suffix) = |
| 7188 | Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..]).unwrap(); |
| 7189 | assert!(suffix.is_empty()); |
| 7190 | test_new_helper_unaligned(r); |
| 7191 | } |
| 7192 | { |
| 7193 | buf = [0u8; 8]; |
| 7194 | let (prefix, r) = Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap(); |
| 7195 | assert!(prefix.is_empty()); |
| 7196 | test_new_helper_unaligned(r); |
| 7197 | } |
| 7198 | { |
| 7199 | buf = [0xFFu8; 8]; |
| 7200 | let (prefix, r) = |
| 7201 | Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..]).unwrap(); |
| 7202 | assert!(prefix.is_empty()); |
| 7203 | test_new_helper_unaligned(r); |
| 7204 | } |
| 7205 | |
| 7206 | let mut buf = [0u8; 16]; |
| 7207 | // `buf.t` should be aligned to 8 and have a length which is a multiple |
| 7208 | // of `size_of::AU64>()`, so this should always succeed. |
| 7209 | test_new_helper_slice_unaligned( |
| 7210 | Ref::<_, [u8]>::new_slice_unaligned(&mut buf[..]).unwrap(), |
| 7211 | 16, |
| 7212 | ); |
| 7213 | buf = [0xFFu8; 16]; |
| 7214 | test_new_helper_slice_unaligned( |
| 7215 | Ref::<_, [u8]>::new_slice_unaligned_zeroed(&mut buf[..]).unwrap(), |
| 7216 | 16, |
| 7217 | ); |
| 7218 | |
| 7219 | { |
| 7220 | buf = [0u8; 16]; |
| 7221 | let (r, suffix) = |
| 7222 | Ref::<_, [u8]>::new_slice_unaligned_from_prefix(&mut buf[..], 8).unwrap(); |
| 7223 | assert_eq!(suffix, [0; 8]); |
| 7224 | test_new_helper_slice_unaligned(r, 8); |
| 7225 | } |
| 7226 | { |
| 7227 | buf = [0xFFu8; 16]; |
| 7228 | let (r, suffix) = |
| 7229 | Ref::<_, [u8]>::new_slice_unaligned_from_prefix_zeroed(&mut buf[..], 8).unwrap(); |
| 7230 | assert_eq!(suffix, [0xFF; 8]); |
| 7231 | test_new_helper_slice_unaligned(r, 8); |
| 7232 | } |
| 7233 | { |
| 7234 | buf = [0u8; 16]; |
| 7235 | let (prefix, r) = |
| 7236 | Ref::<_, [u8]>::new_slice_unaligned_from_suffix(&mut buf[..], 8).unwrap(); |
| 7237 | assert_eq!(prefix, [0; 8]); |
| 7238 | test_new_helper_slice_unaligned(r, 8); |
| 7239 | } |
| 7240 | { |
| 7241 | buf = [0xFFu8; 16]; |
| 7242 | let (prefix, r) = |
| 7243 | Ref::<_, [u8]>::new_slice_unaligned_from_suffix_zeroed(&mut buf[..], 8).unwrap(); |
| 7244 | assert_eq!(prefix, [0xFF; 8]); |
| 7245 | test_new_helper_slice_unaligned(r, 8); |
| 7246 | } |
| 7247 | } |
| 7248 | |
| 7249 | #[test ] |
| 7250 | fn test_new_oversized() { |
| 7251 | // Test that a properly-aligned, overly-sized buffer works for |
| 7252 | // `new_from_prefix` and `new_from_suffix`, and that they return the |
| 7253 | // remainder and prefix of the slice respectively. Test that |
| 7254 | // `xxx_zeroed` behaves the same, and zeroes the memory. |
| 7255 | |
| 7256 | let mut buf = Align::<[u8; 16], AU64>::default(); |
| 7257 | { |
| 7258 | // In a block so that `r` and `suffix` don't live too long. `buf.t` |
| 7259 | // should be aligned to 8, so this should always succeed. |
| 7260 | let (r, suffix) = Ref::<_, AU64>::new_from_prefix(&mut buf.t[..]).unwrap(); |
| 7261 | assert_eq!(suffix.len(), 8); |
| 7262 | test_new_helper(r); |
| 7263 | } |
| 7264 | { |
| 7265 | buf.t = [0xFFu8; 16]; |
| 7266 | // `buf.t` should be aligned to 8, so this should always succeed. |
| 7267 | let (r, suffix) = Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).unwrap(); |
| 7268 | // Assert that the suffix wasn't zeroed. |
| 7269 | assert_eq!(suffix, &[0xFFu8; 8]); |
| 7270 | test_new_helper(r); |
| 7271 | } |
| 7272 | { |
| 7273 | buf.set_default(); |
| 7274 | // `buf.t` should be aligned to 8, so this should always succeed. |
| 7275 | let (prefix, r) = Ref::<_, AU64>::new_from_suffix(&mut buf.t[..]).unwrap(); |
| 7276 | assert_eq!(prefix.len(), 8); |
| 7277 | test_new_helper(r); |
| 7278 | } |
| 7279 | { |
| 7280 | buf.t = [0xFFu8; 16]; |
| 7281 | // `buf.t` should be aligned to 8, so this should always succeed. |
| 7282 | let (prefix, r) = Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).unwrap(); |
| 7283 | // Assert that the prefix wasn't zeroed. |
| 7284 | assert_eq!(prefix, &[0xFFu8; 8]); |
| 7285 | test_new_helper(r); |
| 7286 | } |
| 7287 | } |
| 7288 | |
| 7289 | #[test ] |
| 7290 | fn test_new_unaligned_oversized() { |
| 7291 | // Test than an unaligned, overly-sized buffer works for |
| 7292 | // `new_unaligned_from_prefix` and `new_unaligned_from_suffix`, and that |
| 7293 | // they return the remainder and prefix of the slice respectively. Test |
| 7294 | // that `xxx_zeroed` behaves the same, and zeroes the memory. |
| 7295 | |
| 7296 | let mut buf = [0u8; 16]; |
| 7297 | { |
| 7298 | // In a block so that `r` and `suffix` don't live too long. |
| 7299 | let (r, suffix) = Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap(); |
| 7300 | assert_eq!(suffix.len(), 8); |
| 7301 | test_new_helper_unaligned(r); |
| 7302 | } |
| 7303 | { |
| 7304 | buf = [0xFFu8; 16]; |
| 7305 | let (r, suffix) = |
| 7306 | Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..]).unwrap(); |
| 7307 | // Assert that the suffix wasn't zeroed. |
| 7308 | assert_eq!(suffix, &[0xFF; 8]); |
| 7309 | test_new_helper_unaligned(r); |
| 7310 | } |
| 7311 | { |
| 7312 | buf = [0u8; 16]; |
| 7313 | let (prefix, r) = Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap(); |
| 7314 | assert_eq!(prefix.len(), 8); |
| 7315 | test_new_helper_unaligned(r); |
| 7316 | } |
| 7317 | { |
| 7318 | buf = [0xFFu8; 16]; |
| 7319 | let (prefix, r) = |
| 7320 | Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..]).unwrap(); |
| 7321 | // Assert that the prefix wasn't zeroed. |
| 7322 | assert_eq!(prefix, &[0xFF; 8]); |
| 7323 | test_new_helper_unaligned(r); |
| 7324 | } |
| 7325 | } |
| 7326 | |
| 7327 | #[test ] |
| 7328 | fn test_ref_from_mut_from() { |
| 7329 | // Test `FromBytes::{ref_from, mut_from}{,_prefix,_suffix}` success cases |
| 7330 | // Exhaustive coverage for these methods is covered by the `Ref` tests above, |
| 7331 | // which these helper methods defer to. |
| 7332 | |
| 7333 | let mut buf = |
| 7334 | Align::<[u8; 16], AU64>::new([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); |
| 7335 | |
| 7336 | assert_eq!( |
| 7337 | AU64::ref_from(&buf.t[8..]).unwrap().0.to_ne_bytes(), |
| 7338 | [8, 9, 10, 11, 12, 13, 14, 15] |
| 7339 | ); |
| 7340 | let suffix = AU64::mut_from(&mut buf.t[8..]).unwrap(); |
| 7341 | suffix.0 = 0x0101010101010101; |
| 7342 | // The `[u8:9]` is a non-half size of the full buffer, which would catch |
| 7343 | // `from_prefix` having the same implementation as `from_suffix` (issues #506, #511). |
| 7344 | assert_eq!(<[u8; 9]>::ref_from_suffix(&buf.t[..]).unwrap(), &[7u8, 1, 1, 1, 1, 1, 1, 1, 1]); |
| 7345 | let suffix = AU64::mut_from_suffix(&mut buf.t[1..]).unwrap(); |
| 7346 | suffix.0 = 0x0202020202020202; |
| 7347 | <[u8; 10]>::mut_from_suffix(&mut buf.t[..]).unwrap()[0] = 42; |
| 7348 | assert_eq!(<[u8; 9]>::ref_from_prefix(&buf.t[..]).unwrap(), &[0, 1, 2, 3, 4, 5, 42, 7, 2]); |
| 7349 | <[u8; 2]>::mut_from_prefix(&mut buf.t[..]).unwrap()[1] = 30; |
| 7350 | assert_eq!(buf.t, [0, 30, 2, 3, 4, 5, 42, 7, 2, 2, 2, 2, 2, 2, 2, 2]); |
| 7351 | } |
| 7352 | |
| 7353 | #[test ] |
| 7354 | fn test_ref_from_mut_from_error() { |
| 7355 | // Test `FromBytes::{ref_from, mut_from}{,_prefix,_suffix}` error cases. |
| 7356 | |
| 7357 | // Fail because the buffer is too large. |
| 7358 | let mut buf = Align::<[u8; 16], AU64>::default(); |
| 7359 | // `buf.t` should be aligned to 8, so only the length check should fail. |
| 7360 | assert!(AU64::ref_from(&buf.t[..]).is_none()); |
| 7361 | assert!(AU64::mut_from(&mut buf.t[..]).is_none()); |
| 7362 | assert!(<[u8; 8]>::ref_from(&buf.t[..]).is_none()); |
| 7363 | assert!(<[u8; 8]>::mut_from(&mut buf.t[..]).is_none()); |
| 7364 | |
| 7365 | // Fail because the buffer is too small. |
| 7366 | let mut buf = Align::<[u8; 4], AU64>::default(); |
| 7367 | assert!(AU64::ref_from(&buf.t[..]).is_none()); |
| 7368 | assert!(AU64::mut_from(&mut buf.t[..]).is_none()); |
| 7369 | assert!(<[u8; 8]>::ref_from(&buf.t[..]).is_none()); |
| 7370 | assert!(<[u8; 8]>::mut_from(&mut buf.t[..]).is_none()); |
| 7371 | assert!(AU64::ref_from_prefix(&buf.t[..]).is_none()); |
| 7372 | assert!(AU64::mut_from_prefix(&mut buf.t[..]).is_none()); |
| 7373 | assert!(AU64::ref_from_suffix(&buf.t[..]).is_none()); |
| 7374 | assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_none()); |
| 7375 | assert!(<[u8; 8]>::ref_from_prefix(&buf.t[..]).is_none()); |
| 7376 | assert!(<[u8; 8]>::mut_from_prefix(&mut buf.t[..]).is_none()); |
| 7377 | assert!(<[u8; 8]>::ref_from_suffix(&buf.t[..]).is_none()); |
| 7378 | assert!(<[u8; 8]>::mut_from_suffix(&mut buf.t[..]).is_none()); |
| 7379 | |
| 7380 | // Fail because the alignment is insufficient. |
| 7381 | let mut buf = Align::<[u8; 13], AU64>::default(); |
| 7382 | assert!(AU64::ref_from(&buf.t[1..]).is_none()); |
| 7383 | assert!(AU64::mut_from(&mut buf.t[1..]).is_none()); |
| 7384 | assert!(AU64::ref_from(&buf.t[1..]).is_none()); |
| 7385 | assert!(AU64::mut_from(&mut buf.t[1..]).is_none()); |
| 7386 | assert!(AU64::ref_from_prefix(&buf.t[1..]).is_none()); |
| 7387 | assert!(AU64::mut_from_prefix(&mut buf.t[1..]).is_none()); |
| 7388 | assert!(AU64::ref_from_suffix(&buf.t[..]).is_none()); |
| 7389 | assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_none()); |
| 7390 | } |
| 7391 | |
| 7392 | #[test ] |
| 7393 | #[allow (clippy::cognitive_complexity)] |
| 7394 | fn test_new_error() { |
| 7395 | // Fail because the buffer is too large. |
| 7396 | |
| 7397 | // A buffer with an alignment of 8. |
| 7398 | let mut buf = Align::<[u8; 16], AU64>::default(); |
| 7399 | // `buf.t` should be aligned to 8, so only the length check should fail. |
| 7400 | assert!(Ref::<_, AU64>::new(&buf.t[..]).is_none()); |
| 7401 | assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).is_none()); |
| 7402 | assert!(Ref::<_, [u8; 8]>::new_unaligned(&buf.t[..]).is_none()); |
| 7403 | assert!(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.t[..]).is_none()); |
| 7404 | |
| 7405 | // Fail because the buffer is too small. |
| 7406 | |
| 7407 | // A buffer with an alignment of 8. |
| 7408 | let mut buf = Align::<[u8; 4], AU64>::default(); |
| 7409 | // `buf.t` should be aligned to 8, so only the length check should fail. |
| 7410 | assert!(Ref::<_, AU64>::new(&buf.t[..]).is_none()); |
| 7411 | assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).is_none()); |
| 7412 | assert!(Ref::<_, [u8; 8]>::new_unaligned(&buf.t[..]).is_none()); |
| 7413 | assert!(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.t[..]).is_none()); |
| 7414 | assert!(Ref::<_, AU64>::new_from_prefix(&buf.t[..]).is_none()); |
| 7415 | assert!(Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).is_none()); |
| 7416 | assert!(Ref::<_, AU64>::new_from_suffix(&buf.t[..]).is_none()); |
| 7417 | assert!(Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).is_none()); |
| 7418 | assert!(Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&buf.t[..]).is_none()); |
| 7419 | assert!(Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf.t[..]).is_none()); |
| 7420 | assert!(Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&buf.t[..]).is_none()); |
| 7421 | assert!(Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf.t[..]).is_none()); |
| 7422 | |
| 7423 | // Fail because the length is not a multiple of the element size. |
| 7424 | |
| 7425 | let mut buf = Align::<[u8; 12], AU64>::default(); |
| 7426 | // `buf.t` has length 12, but element size is 8. |
| 7427 | assert!(Ref::<_, [AU64]>::new_slice(&buf.t[..]).is_none()); |
| 7428 | assert!(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[..]).is_none()); |
| 7429 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned(&buf.t[..]).is_none()); |
| 7430 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_zeroed(&mut buf.t[..]).is_none()); |
| 7431 | |
| 7432 | // Fail because the buffer is too short. |
| 7433 | let mut buf = Align::<[u8; 12], AU64>::default(); |
| 7434 | // `buf.t` has length 12, but the element size is 8 (and we're expecting |
| 7435 | // two of them). |
| 7436 | assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[..], 2).is_none()); |
| 7437 | assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], 2).is_none()); |
| 7438 | assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[..], 2).is_none()); |
| 7439 | assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], 2).is_none()); |
| 7440 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(&buf.t[..], 2).is_none()); |
| 7441 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed(&mut buf.t[..], 2) |
| 7442 | .is_none()); |
| 7443 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(&buf.t[..], 2).is_none()); |
| 7444 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed(&mut buf.t[..], 2) |
| 7445 | .is_none()); |
| 7446 | |
| 7447 | // Fail because the alignment is insufficient. |
| 7448 | |
| 7449 | // A buffer with an alignment of 8. An odd buffer size is chosen so that |
| 7450 | // the last byte of the buffer has odd alignment. |
| 7451 | let mut buf = Align::<[u8; 13], AU64>::default(); |
| 7452 | // Slicing from 1, we get a buffer with size 12 (so the length check |
| 7453 | // should succeed) but an alignment of only 1, which is insufficient. |
| 7454 | assert!(Ref::<_, AU64>::new(&buf.t[1..]).is_none()); |
| 7455 | assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[1..]).is_none()); |
| 7456 | assert!(Ref::<_, AU64>::new_from_prefix(&buf.t[1..]).is_none()); |
| 7457 | assert!(Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[1..]).is_none()); |
| 7458 | assert!(Ref::<_, [AU64]>::new_slice(&buf.t[1..]).is_none()); |
| 7459 | assert!(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[1..]).is_none()); |
| 7460 | assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[1..], 1).is_none()); |
| 7461 | assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[1..], 1).is_none()); |
| 7462 | assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[1..], 1).is_none()); |
| 7463 | assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[1..], 1).is_none()); |
| 7464 | // Slicing is unnecessary here because `new_from_suffix[_zeroed]` use |
| 7465 | // the suffix of the slice, which has odd alignment. |
| 7466 | assert!(Ref::<_, AU64>::new_from_suffix(&buf.t[..]).is_none()); |
| 7467 | assert!(Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).is_none()); |
| 7468 | |
| 7469 | // Fail due to arithmetic overflow. |
| 7470 | |
| 7471 | let mut buf = Align::<[u8; 16], AU64>::default(); |
| 7472 | let unreasonable_len = usize::MAX / mem::size_of::<AU64>() + 1; |
| 7473 | assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[..], unreasonable_len).is_none()); |
| 7474 | assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], unreasonable_len) |
| 7475 | .is_none()); |
| 7476 | assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[..], unreasonable_len).is_none()); |
| 7477 | assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], unreasonable_len) |
| 7478 | .is_none()); |
| 7479 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(&buf.t[..], unreasonable_len) |
| 7480 | .is_none()); |
| 7481 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed( |
| 7482 | &mut buf.t[..], |
| 7483 | unreasonable_len |
| 7484 | ) |
| 7485 | .is_none()); |
| 7486 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(&buf.t[..], unreasonable_len) |
| 7487 | .is_none()); |
| 7488 | assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed( |
| 7489 | &mut buf.t[..], |
| 7490 | unreasonable_len |
| 7491 | ) |
| 7492 | .is_none()); |
| 7493 | } |
| 7494 | |
| 7495 | // Tests for ensuring that, if a ZST is passed into a slice-like function, |
| 7496 | // we always panic. Since these tests need to be separate per-function, and |
| 7497 | // they tend to take up a lot of space, we generate them using a macro in a |
| 7498 | // submodule instead. The submodule ensures that we can just re-use the name |
| 7499 | // of the function under test for the name of the test itself. |
| 7500 | mod test_zst_panics { |
| 7501 | macro_rules! zst_test { |
| 7502 | ($name:ident($($tt:tt)*), $constructor_in_panic_msg:tt) => { |
| 7503 | #[test] |
| 7504 | #[should_panic = concat!("Ref::" , $constructor_in_panic_msg, " called on a zero-sized type" )] |
| 7505 | fn $name() { |
| 7506 | let mut buffer = [0u8]; |
| 7507 | let r = $crate::Ref::<_, [()]>::$name(&mut buffer[..], $($tt)*); |
| 7508 | unreachable!("should have panicked, got {:?}" , r); |
| 7509 | } |
| 7510 | } |
| 7511 | } |
| 7512 | zst_test!(new_slice(), "new_slice" ); |
| 7513 | zst_test!(new_slice_zeroed(), "new_slice" ); |
| 7514 | zst_test!(new_slice_from_prefix(1), "new_slice" ); |
| 7515 | zst_test!(new_slice_from_prefix_zeroed(1), "new_slice" ); |
| 7516 | zst_test!(new_slice_from_suffix(1), "new_slice" ); |
| 7517 | zst_test!(new_slice_from_suffix_zeroed(1), "new_slice" ); |
| 7518 | zst_test!(new_slice_unaligned(), "new_slice_unaligned" ); |
| 7519 | zst_test!(new_slice_unaligned_zeroed(), "new_slice_unaligned" ); |
| 7520 | zst_test!(new_slice_unaligned_from_prefix(1), "new_slice_unaligned" ); |
| 7521 | zst_test!(new_slice_unaligned_from_prefix_zeroed(1), "new_slice_unaligned" ); |
| 7522 | zst_test!(new_slice_unaligned_from_suffix(1), "new_slice_unaligned" ); |
| 7523 | zst_test!(new_slice_unaligned_from_suffix_zeroed(1), "new_slice_unaligned" ); |
| 7524 | } |
| 7525 | |
| 7526 | #[test ] |
| 7527 | fn test_as_bytes_methods() { |
| 7528 | /// Run a series of tests by calling `AsBytes` methods on `t`. |
| 7529 | /// |
| 7530 | /// `bytes` is the expected byte sequence returned from `t.as_bytes()` |
| 7531 | /// before `t` has been modified. `post_mutation` is the expected |
| 7532 | /// sequence returned from `t.as_bytes()` after `t.as_bytes_mut()[0]` |
| 7533 | /// has had its bits flipped (by applying `^= 0xFF`). |
| 7534 | /// |
| 7535 | /// `N` is the size of `t` in bytes. |
| 7536 | fn test<T: FromBytes + AsBytes + Debug + Eq + ?Sized, const N: usize>( |
| 7537 | t: &mut T, |
| 7538 | bytes: &[u8], |
| 7539 | post_mutation: &T, |
| 7540 | ) { |
| 7541 | // Test that we can access the underlying bytes, and that we get the |
| 7542 | // right bytes and the right number of bytes. |
| 7543 | assert_eq!(t.as_bytes(), bytes); |
| 7544 | |
| 7545 | // Test that changes to the underlying byte slices are reflected in |
| 7546 | // the original object. |
| 7547 | t.as_bytes_mut()[0] ^= 0xFF; |
| 7548 | assert_eq!(t, post_mutation); |
| 7549 | t.as_bytes_mut()[0] ^= 0xFF; |
| 7550 | |
| 7551 | // `write_to` rejects slices that are too small or too large. |
| 7552 | assert_eq!(t.write_to(&mut vec![0; N - 1][..]), None); |
| 7553 | assert_eq!(t.write_to(&mut vec![0; N + 1][..]), None); |
| 7554 | |
| 7555 | // `write_to` works as expected. |
| 7556 | let mut bytes = [0; N]; |
| 7557 | assert_eq!(t.write_to(&mut bytes[..]), Some(())); |
| 7558 | assert_eq!(bytes, t.as_bytes()); |
| 7559 | |
| 7560 | // `write_to_prefix` rejects slices that are too small. |
| 7561 | assert_eq!(t.write_to_prefix(&mut vec![0; N - 1][..]), None); |
| 7562 | |
| 7563 | // `write_to_prefix` works with exact-sized slices. |
| 7564 | let mut bytes = [0; N]; |
| 7565 | assert_eq!(t.write_to_prefix(&mut bytes[..]), Some(())); |
| 7566 | assert_eq!(bytes, t.as_bytes()); |
| 7567 | |
| 7568 | // `write_to_prefix` works with too-large slices, and any bytes past |
| 7569 | // the prefix aren't modified. |
| 7570 | let mut too_many_bytes = vec![0; N + 1]; |
| 7571 | too_many_bytes[N] = 123; |
| 7572 | assert_eq!(t.write_to_prefix(&mut too_many_bytes[..]), Some(())); |
| 7573 | assert_eq!(&too_many_bytes[..N], t.as_bytes()); |
| 7574 | assert_eq!(too_many_bytes[N], 123); |
| 7575 | |
| 7576 | // `write_to_suffix` rejects slices that are too small. |
| 7577 | assert_eq!(t.write_to_suffix(&mut vec![0; N - 1][..]), None); |
| 7578 | |
| 7579 | // `write_to_suffix` works with exact-sized slices. |
| 7580 | let mut bytes = [0; N]; |
| 7581 | assert_eq!(t.write_to_suffix(&mut bytes[..]), Some(())); |
| 7582 | assert_eq!(bytes, t.as_bytes()); |
| 7583 | |
| 7584 | // `write_to_suffix` works with too-large slices, and any bytes |
| 7585 | // before the suffix aren't modified. |
| 7586 | let mut too_many_bytes = vec![0; N + 1]; |
| 7587 | too_many_bytes[0] = 123; |
| 7588 | assert_eq!(t.write_to_suffix(&mut too_many_bytes[..]), Some(())); |
| 7589 | assert_eq!(&too_many_bytes[1..], t.as_bytes()); |
| 7590 | assert_eq!(too_many_bytes[0], 123); |
| 7591 | } |
| 7592 | |
| 7593 | #[derive (Debug, Eq, PartialEq, FromZeroes, FromBytes, AsBytes)] |
| 7594 | #[repr (C)] |
| 7595 | struct Foo { |
| 7596 | a: u32, |
| 7597 | b: Wrapping<u32>, |
| 7598 | c: Option<NonZeroU32>, |
| 7599 | } |
| 7600 | |
| 7601 | let expected_bytes: Vec<u8> = if cfg!(target_endian = "little" ) { |
| 7602 | vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] |
| 7603 | } else { |
| 7604 | vec![0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0] |
| 7605 | }; |
| 7606 | let post_mutation_expected_a = |
| 7607 | if cfg!(target_endian = "little" ) { 0x00_00_00_FE } else { 0xFF_00_00_01 }; |
| 7608 | test ::<_, 12>( |
| 7609 | &mut Foo { a: 1, b: Wrapping(2), c: None }, |
| 7610 | expected_bytes.as_bytes(), |
| 7611 | &Foo { a: post_mutation_expected_a, b: Wrapping(2), c: None }, |
| 7612 | ); |
| 7613 | test ::<_, 3>( |
| 7614 | Unsized::from_mut_slice(&mut [1, 2, 3]), |
| 7615 | &[1, 2, 3], |
| 7616 | Unsized::from_mut_slice(&mut [0xFE, 2, 3]), |
| 7617 | ); |
| 7618 | } |
| 7619 | |
| 7620 | #[test ] |
| 7621 | fn test_array() { |
| 7622 | #[derive (FromZeroes, FromBytes, AsBytes)] |
| 7623 | #[repr (C)] |
| 7624 | struct Foo { |
| 7625 | a: [u16; 33], |
| 7626 | } |
| 7627 | |
| 7628 | let foo = Foo { a: [0xFFFF; 33] }; |
| 7629 | let expected = [0xFFu8; 66]; |
| 7630 | assert_eq!(foo.as_bytes(), &expected[..]); |
| 7631 | } |
| 7632 | |
| 7633 | #[test ] |
| 7634 | fn test_display_debug() { |
| 7635 | let buf = Align::<[u8; 8], u64>::default(); |
| 7636 | let r = Ref::<_, u64>::new(&buf.t[..]).unwrap(); |
| 7637 | assert_eq!(format!("{}" , r), "0" ); |
| 7638 | assert_eq!(format!("{:?}" , r), "Ref(0)" ); |
| 7639 | |
| 7640 | let buf = Align::<[u8; 8], u64>::default(); |
| 7641 | let r = Ref::<_, [u64]>::new_slice(&buf.t[..]).unwrap(); |
| 7642 | assert_eq!(format!("{:?}" , r), "Ref([0])" ); |
| 7643 | } |
| 7644 | |
| 7645 | #[test ] |
| 7646 | fn test_eq() { |
| 7647 | let buf1 = 0_u64; |
| 7648 | let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap(); |
| 7649 | let buf2 = 0_u64; |
| 7650 | let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap(); |
| 7651 | assert_eq!(r1, r2); |
| 7652 | } |
| 7653 | |
| 7654 | #[test ] |
| 7655 | fn test_ne() { |
| 7656 | let buf1 = 0_u64; |
| 7657 | let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap(); |
| 7658 | let buf2 = 1_u64; |
| 7659 | let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap(); |
| 7660 | assert_ne!(r1, r2); |
| 7661 | } |
| 7662 | |
| 7663 | #[test ] |
| 7664 | fn test_ord() { |
| 7665 | let buf1 = 0_u64; |
| 7666 | let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap(); |
| 7667 | let buf2 = 1_u64; |
| 7668 | let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap(); |
| 7669 | assert!(r1 < r2); |
| 7670 | } |
| 7671 | |
| 7672 | #[test ] |
| 7673 | fn test_new_zeroed() { |
| 7674 | assert!(!bool::new_zeroed()); |
| 7675 | assert_eq!(u64::new_zeroed(), 0); |
| 7676 | // This test exists in order to exercise unsafe code, especially when |
| 7677 | // running under Miri. |
| 7678 | #[allow (clippy::unit_cmp)] |
| 7679 | { |
| 7680 | assert_eq!(<()>::new_zeroed(), ()); |
| 7681 | } |
| 7682 | } |
| 7683 | |
| 7684 | #[test ] |
| 7685 | fn test_transparent_packed_generic_struct() { |
| 7686 | #[derive (AsBytes, FromZeroes, FromBytes, Unaligned)] |
| 7687 | #[repr (transparent)] |
| 7688 | #[allow (dead_code)] // for the unused fields |
| 7689 | struct Foo<T> { |
| 7690 | _t: T, |
| 7691 | _phantom: PhantomData<()>, |
| 7692 | } |
| 7693 | |
| 7694 | assert_impl_all!(Foo<u32>: FromZeroes, FromBytes, AsBytes); |
| 7695 | assert_impl_all!(Foo<u8>: Unaligned); |
| 7696 | |
| 7697 | #[derive (AsBytes, FromZeroes, FromBytes, Unaligned)] |
| 7698 | #[repr (packed)] |
| 7699 | #[allow (dead_code)] // for the unused fields |
| 7700 | struct Bar<T, U> { |
| 7701 | _t: T, |
| 7702 | _u: U, |
| 7703 | } |
| 7704 | |
| 7705 | assert_impl_all!(Bar<u8, AU64>: FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7706 | } |
| 7707 | |
| 7708 | #[test ] |
| 7709 | fn test_impls() { |
| 7710 | use core::borrow::Borrow; |
| 7711 | |
| 7712 | // A type that can supply test cases for testing |
| 7713 | // `TryFromBytes::is_bit_valid`. All types passed to `assert_impls!` |
| 7714 | // must implement this trait; that macro uses it to generate runtime |
| 7715 | // tests for `TryFromBytes` impls. |
| 7716 | // |
| 7717 | // All `T: FromBytes` types are provided with a blanket impl. Other |
| 7718 | // types must implement `TryFromBytesTestable` directly (ie using |
| 7719 | // `impl_try_from_bytes_testable!`). |
| 7720 | trait TryFromBytesTestable { |
| 7721 | fn with_passing_test_cases<F: Fn(&Self)>(f: F); |
| 7722 | fn with_failing_test_cases<F: Fn(&[u8])>(f: F); |
| 7723 | } |
| 7724 | |
| 7725 | impl<T: FromBytes> TryFromBytesTestable for T { |
| 7726 | fn with_passing_test_cases<F: Fn(&Self)>(f: F) { |
| 7727 | // Test with a zeroed value. |
| 7728 | f(&Self::new_zeroed()); |
| 7729 | |
| 7730 | let ffs = { |
| 7731 | let mut t = Self::new_zeroed(); |
| 7732 | let ptr: *mut T = &mut t; |
| 7733 | // SAFETY: `T: FromBytes` |
| 7734 | unsafe { ptr::write_bytes(ptr.cast::<u8>(), 0xFF, mem::size_of::<T>()) }; |
| 7735 | t |
| 7736 | }; |
| 7737 | |
| 7738 | // Test with a value initialized with 0xFF. |
| 7739 | f(&ffs); |
| 7740 | } |
| 7741 | |
| 7742 | fn with_failing_test_cases<F: Fn(&[u8])>(_f: F) {} |
| 7743 | } |
| 7744 | |
| 7745 | // Implements `TryFromBytesTestable`. |
| 7746 | macro_rules! impl_try_from_bytes_testable { |
| 7747 | // Base case for recursion (when the list of types has run out). |
| 7748 | (=> @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => {}; |
| 7749 | // Implements for type(s) with no type parameters. |
| 7750 | ($ty:ty $(,$tys:ty)* => @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => { |
| 7751 | impl TryFromBytesTestable for $ty { |
| 7752 | impl_try_from_bytes_testable!( |
| 7753 | @methods @success $($success_case),* |
| 7754 | $(, @failure $($failure_case),*)? |
| 7755 | ); |
| 7756 | } |
| 7757 | impl_try_from_bytes_testable!($($tys),* => @success $($success_case),* $(, @failure $($failure_case),*)?); |
| 7758 | }; |
| 7759 | // Implements for multiple types with no type parameters. |
| 7760 | ($($($ty:ty),* => @success $($success_case:expr), * $(, @failure $($failure_case:expr),*)?;)*) => { |
| 7761 | $( |
| 7762 | impl_try_from_bytes_testable!($($ty),* => @success $($success_case),* $(, @failure $($failure_case),*)*); |
| 7763 | )* |
| 7764 | }; |
| 7765 | // Implements only the methods; caller must invoke this from inside |
| 7766 | // an impl block. |
| 7767 | (@methods @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => { |
| 7768 | fn with_passing_test_cases<F: Fn(&Self)>(_f: F) { |
| 7769 | $( |
| 7770 | _f($success_case.borrow()); |
| 7771 | )* |
| 7772 | } |
| 7773 | |
| 7774 | fn with_failing_test_cases<F: Fn(&[u8])>(_f: F) { |
| 7775 | $($( |
| 7776 | let case = $failure_case.as_bytes(); |
| 7777 | _f(case.as_bytes()); |
| 7778 | )*)? |
| 7779 | } |
| 7780 | }; |
| 7781 | } |
| 7782 | |
| 7783 | // Note that these impls are only for types which are not `FromBytes`. |
| 7784 | // `FromBytes` types are covered by a preceding blanket impl. |
| 7785 | impl_try_from_bytes_testable!( |
| 7786 | bool => @success true, false, |
| 7787 | @failure 2u8, 3u8, 0xFFu8; |
| 7788 | char => @success ' \u{0}' , ' \u{D7FF}' , ' \u{E000}' , ' \u{10FFFF}' , |
| 7789 | @failure 0xD800u32, 0xDFFFu32, 0x110000u32; |
| 7790 | str => @success "" , "hello" , "❤️🧡💛💚💙💜" , |
| 7791 | @failure [0, 159, 146, 150]; |
| 7792 | [u8] => @success [], [0, 1, 2]; |
| 7793 | NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32, |
| 7794 | NonZeroI32, NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128, |
| 7795 | NonZeroUsize, NonZeroIsize |
| 7796 | => @success Self::new(1).unwrap(), |
| 7797 | // Doing this instead of `0` ensures that we always satisfy |
| 7798 | // the size and alignment requirements of `Self` (whereas |
| 7799 | // `0` may be any integer type with a different size or |
| 7800 | // alignment than some `NonZeroXxx` types). |
| 7801 | @failure Option::<Self>::None; |
| 7802 | [bool] |
| 7803 | => @success [true, false], [false, true], |
| 7804 | @failure [2u8], [3u8], [0xFFu8], [0u8, 1u8, 2u8]; |
| 7805 | ); |
| 7806 | |
| 7807 | // Asserts that `$ty` implements any `$trait` and doesn't implement any |
| 7808 | // `!$trait`. Note that all `$trait`s must come before any `!$trait`s. |
| 7809 | // |
| 7810 | // For `T: TryFromBytes`, uses `TryFromBytesTestable` to test success |
| 7811 | // and failure cases for `TryFromBytes::is_bit_valid`. |
| 7812 | macro_rules! assert_impls { |
| 7813 | ($ty:ty: TryFromBytes) => { |
| 7814 | <$ty as TryFromBytesTestable>::with_passing_test_cases(|val| { |
| 7815 | let c = Ptr::from(val); |
| 7816 | // SAFETY: |
| 7817 | // - Since `val` is a normal reference, `c` is guranteed to |
| 7818 | // be aligned, to point to a single allocation, and to |
| 7819 | // have a size which doesn't overflow `isize`. |
| 7820 | // - Since `val` is a valid `$ty`, `c`'s referent satisfies |
| 7821 | // the bit validity constraints of `is_bit_valid`, which |
| 7822 | // are a superset of the bit validity constraints of |
| 7823 | // `$ty`. |
| 7824 | let res = unsafe { <$ty as TryFromBytes>::is_bit_valid(c) }; |
| 7825 | assert!(res, "{}::is_bit_valid({:?}): got false, expected true" , stringify!($ty), val); |
| 7826 | |
| 7827 | // TODO(#5): In addition to testing `is_bit_valid`, test the |
| 7828 | // methods built on top of it. This would both allow us to |
| 7829 | // test their implementations and actually convert the bytes |
| 7830 | // to `$ty`, giving Miri a chance to catch if this is |
| 7831 | // unsound (ie, if our `is_bit_valid` impl is buggy). |
| 7832 | // |
| 7833 | // The following code was tried, but it doesn't work because |
| 7834 | // a) some types are not `AsBytes` and, b) some types are |
| 7835 | // not `Sized`. |
| 7836 | // |
| 7837 | // let r = <$ty as TryFromBytes>::try_from_ref(val.as_bytes()).unwrap(); |
| 7838 | // assert_eq!(r, &val); |
| 7839 | // let r = <$ty as TryFromBytes>::try_from_mut(val.as_bytes_mut()).unwrap(); |
| 7840 | // assert_eq!(r, &mut val); |
| 7841 | // let v = <$ty as TryFromBytes>::try_read_from(val.as_bytes()).unwrap(); |
| 7842 | // assert_eq!(v, val); |
| 7843 | }); |
| 7844 | #[allow(clippy::as_conversions)] |
| 7845 | <$ty as TryFromBytesTestable>::with_failing_test_cases(|c| { |
| 7846 | let res = <$ty as TryFromBytes>::try_from_ref(c); |
| 7847 | assert!(res.is_none(), "{}::is_bit_valid({:?}): got true, expected false" , stringify!($ty), c); |
| 7848 | }); |
| 7849 | |
| 7850 | #[allow(dead_code)] |
| 7851 | const _: () = { static_assertions::assert_impl_all!($ty: TryFromBytes); }; |
| 7852 | }; |
| 7853 | ($ty:ty: $trait:ident) => { |
| 7854 | #[allow(dead_code)] |
| 7855 | const _: () = { static_assertions::assert_impl_all!($ty: $trait); }; |
| 7856 | }; |
| 7857 | ($ty:ty: !$trait:ident) => { |
| 7858 | #[allow(dead_code)] |
| 7859 | const _: () = { static_assertions::assert_not_impl_any!($ty: $trait); }; |
| 7860 | }; |
| 7861 | ($ty:ty: $($trait:ident),* $(,)? $(!$negative_trait:ident),*) => { |
| 7862 | $( |
| 7863 | assert_impls!($ty: $trait); |
| 7864 | )* |
| 7865 | |
| 7866 | $( |
| 7867 | assert_impls!($ty: !$negative_trait); |
| 7868 | )* |
| 7869 | }; |
| 7870 | } |
| 7871 | |
| 7872 | // NOTE: The negative impl assertions here are not necessarily |
| 7873 | // prescriptive. They merely serve as change detectors to make sure |
| 7874 | // we're aware of what trait impls are getting added with a given |
| 7875 | // change. Of course, some impls would be invalid (e.g., `bool: |
| 7876 | // FromBytes`), and so this change detection is very important. |
| 7877 | |
| 7878 | assert_impls!((): KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7879 | assert_impls!(u8: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7880 | assert_impls!(i8: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7881 | assert_impls!(u16: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7882 | assert_impls!(i16: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7883 | assert_impls!(u32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7884 | assert_impls!(i32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7885 | assert_impls!(u64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7886 | assert_impls!(i64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7887 | assert_impls!(u128: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7888 | assert_impls!(i128: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7889 | assert_impls!(usize: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7890 | assert_impls!(isize: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7891 | assert_impls!(f32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7892 | assert_impls!(f64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7893 | |
| 7894 | assert_impls!(bool: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes); |
| 7895 | assert_impls!(char: KnownLayout, TryFromBytes, FromZeroes, AsBytes, !FromBytes, !Unaligned); |
| 7896 | assert_impls!(str: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes); |
| 7897 | |
| 7898 | assert_impls!(NonZeroU8: KnownLayout, TryFromBytes, AsBytes, Unaligned, !FromZeroes, !FromBytes); |
| 7899 | assert_impls!(NonZeroI8: KnownLayout, TryFromBytes, AsBytes, Unaligned, !FromZeroes, !FromBytes); |
| 7900 | assert_impls!(NonZeroU16: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7901 | assert_impls!(NonZeroI16: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7902 | assert_impls!(NonZeroU32: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7903 | assert_impls!(NonZeroI32: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7904 | assert_impls!(NonZeroU64: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7905 | assert_impls!(NonZeroI64: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7906 | assert_impls!(NonZeroU128: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7907 | assert_impls!(NonZeroI128: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7908 | assert_impls!(NonZeroUsize: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7909 | assert_impls!(NonZeroIsize: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| 7910 | |
| 7911 | assert_impls!(Option<NonZeroU8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7912 | assert_impls!(Option<NonZeroI8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7913 | assert_impls!(Option<NonZeroU16>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7914 | assert_impls!(Option<NonZeroI16>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7915 | assert_impls!(Option<NonZeroU32>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7916 | assert_impls!(Option<NonZeroI32>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7917 | assert_impls!(Option<NonZeroU64>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7918 | assert_impls!(Option<NonZeroI64>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7919 | assert_impls!(Option<NonZeroU128>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7920 | assert_impls!(Option<NonZeroI128>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7921 | assert_impls!(Option<NonZeroUsize>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7922 | assert_impls!(Option<NonZeroIsize>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| 7923 | |
| 7924 | // Implements none of the ZC traits. |
| 7925 | struct NotZerocopy; |
| 7926 | |
| 7927 | #[rustfmt::skip] |
| 7928 | type FnManyArgs = fn( |
| 7929 | NotZerocopy, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, |
| 7930 | ) -> (NotZerocopy, NotZerocopy); |
| 7931 | |
| 7932 | // Allowed, because we're not actually using this type for FFI. |
| 7933 | #[allow (improper_ctypes_definitions)] |
| 7934 | #[rustfmt::skip] |
| 7935 | type ECFnManyArgs = extern "C" fn( |
| 7936 | NotZerocopy, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, |
| 7937 | ) -> (NotZerocopy, NotZerocopy); |
| 7938 | |
| 7939 | #[cfg (feature = "alloc" )] |
| 7940 | assert_impls!(Option<Box<UnsafeCell<NotZerocopy>>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7941 | assert_impls!(Option<Box<[UnsafeCell<NotZerocopy>]>>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7942 | assert_impls!(Option<&'static UnsafeCell<NotZerocopy>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7943 | assert_impls!(Option<&'static [UnsafeCell<NotZerocopy>]>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7944 | assert_impls!(Option<&'static mut UnsafeCell<NotZerocopy>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7945 | assert_impls!(Option<&'static mut [UnsafeCell<NotZerocopy>]>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7946 | assert_impls!(Option<NonNull<UnsafeCell<NotZerocopy>>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7947 | assert_impls!(Option<NonNull<[UnsafeCell<NotZerocopy>]>>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7948 | assert_impls!(Option<fn()>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7949 | assert_impls!(Option<FnManyArgs>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7950 | assert_impls!(Option<extern "C" fn()>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7951 | assert_impls!(Option<ECFnManyArgs>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7952 | |
| 7953 | assert_impls!(PhantomData<NotZerocopy>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7954 | assert_impls!(PhantomData<[u8]>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7955 | |
| 7956 | assert_impls!(ManuallyDrop<u8>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| 7957 | assert_impls!(ManuallyDrop<[u8]>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| 7958 | assert_impls!(ManuallyDrop<NotZerocopy>: !TryFromBytes, !KnownLayout, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7959 | assert_impls!(ManuallyDrop<[NotZerocopy]>: !TryFromBytes, !KnownLayout, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7960 | |
| 7961 | assert_impls!(MaybeUninit<u8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, Unaligned, !AsBytes); |
| 7962 | assert_impls!(MaybeUninit<NotZerocopy>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7963 | |
| 7964 | assert_impls!(Wrapping<u8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7965 | assert_impls!(Wrapping<NotZerocopy>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7966 | |
| 7967 | assert_impls!(Unalign<u8>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| 7968 | assert_impls!(Unalign<NotZerocopy>: Unaligned, !KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes); |
| 7969 | |
| 7970 | assert_impls!([u8]: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| 7971 | assert_impls!([bool]: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes); |
| 7972 | assert_impls!([NotZerocopy]: !KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7973 | assert_impls!([u8; 0]: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| 7974 | assert_impls!([NotZerocopy; 0]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7975 | assert_impls!([u8; 1]: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| 7976 | assert_impls!([NotZerocopy; 1]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7977 | |
| 7978 | assert_impls!(*const NotZerocopy: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7979 | assert_impls!(*mut NotZerocopy: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| 7980 | assert_impls!(*const [NotZerocopy]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7981 | assert_impls!(*mut [NotZerocopy]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7982 | assert_impls!(*const dyn Debug: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7983 | assert_impls!(*mut dyn Debug: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| 7984 | |
| 7985 | #[cfg (feature = "simd" )] |
| 7986 | { |
| 7987 | #[allow (unused_macros)] |
| 7988 | macro_rules! test_simd_arch_mod { |
| 7989 | ($arch:ident, $($typ:ident),*) => { |
| 7990 | { |
| 7991 | use core::arch::$arch::{$($typ),*}; |
| 7992 | use crate::*; |
| 7993 | $( assert_impls!($typ: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); )* |
| 7994 | } |
| 7995 | }; |
| 7996 | } |
| 7997 | #[cfg (target_arch = "x86" )] |
| 7998 | test_simd_arch_mod!(x86, __m128, __m128d, __m128i, __m256, __m256d, __m256i); |
| 7999 | |
| 8000 | #[cfg (all(feature = "simd-nightly" , target_arch = "x86" ))] |
| 8001 | test_simd_arch_mod!(x86, __m512bh, __m512, __m512d, __m512i); |
| 8002 | |
| 8003 | #[cfg (target_arch = "x86_64" )] |
| 8004 | test_simd_arch_mod!(x86_64, __m128, __m128d, __m128i, __m256, __m256d, __m256i); |
| 8005 | |
| 8006 | #[cfg (all(feature = "simd-nightly" , target_arch = "x86_64" ))] |
| 8007 | test_simd_arch_mod!(x86_64, __m512bh, __m512, __m512d, __m512i); |
| 8008 | |
| 8009 | #[cfg (target_arch = "wasm32" )] |
| 8010 | test_simd_arch_mod!(wasm32, v128); |
| 8011 | |
| 8012 | #[cfg (all(feature = "simd-nightly" , target_arch = "powerpc" ))] |
| 8013 | test_simd_arch_mod!( |
| 8014 | powerpc, |
| 8015 | vector_bool_long, |
| 8016 | vector_double, |
| 8017 | vector_signed_long, |
| 8018 | vector_unsigned_long |
| 8019 | ); |
| 8020 | |
| 8021 | #[cfg (all(feature = "simd-nightly" , target_arch = "powerpc64" ))] |
| 8022 | test_simd_arch_mod!( |
| 8023 | powerpc64, |
| 8024 | vector_bool_long, |
| 8025 | vector_double, |
| 8026 | vector_signed_long, |
| 8027 | vector_unsigned_long |
| 8028 | ); |
| 8029 | #[cfg (target_arch = "aarch64" )] |
| 8030 | #[rustfmt::skip] |
| 8031 | test_simd_arch_mod!( |
| 8032 | aarch64, float32x2_t, float32x4_t, float64x1_t, float64x2_t, int8x8_t, int8x8x2_t, |
| 8033 | int8x8x3_t, int8x8x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int16x4_t, |
| 8034 | int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t, |
| 8035 | poly8x8x4_t, poly8x16_t, poly8x16x2_t, poly8x16x3_t, poly8x16x4_t, poly16x4_t, poly16x8_t, |
| 8036 | poly64x1_t, poly64x2_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t, uint8x16_t, |
| 8037 | uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t, |
| 8038 | uint64x1_t, uint64x2_t |
| 8039 | ); |
| 8040 | #[cfg (all(feature = "simd-nightly" , target_arch = "arm" ))] |
| 8041 | #[rustfmt::skip] |
| 8042 | test_simd_arch_mod!(arm, int8x4_t, uint8x4_t); |
| 8043 | } |
| 8044 | } |
| 8045 | } |
| 8046 | |
| 8047 | #[cfg (kani)] |
| 8048 | mod proofs { |
| 8049 | use super::*; |
| 8050 | |
| 8051 | impl kani::Arbitrary for DstLayout { |
| 8052 | fn any() -> Self { |
| 8053 | let align: NonZeroUsize = kani::any(); |
| 8054 | let size_info: SizeInfo = kani::any(); |
| 8055 | |
| 8056 | kani::assume(align.is_power_of_two()); |
| 8057 | kani::assume(align < DstLayout::THEORETICAL_MAX_ALIGN); |
| 8058 | |
| 8059 | // For testing purposes, we most care about instantiations of |
| 8060 | // `DstLayout` that can correspond to actual Rust types. We use |
| 8061 | // `Layout` to verify that our `DstLayout` satisfies the validity |
| 8062 | // conditions of Rust layouts. |
| 8063 | kani::assume( |
| 8064 | match size_info { |
| 8065 | SizeInfo::Sized { _size } => Layout::from_size_align(_size, align.get()), |
| 8066 | SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) => { |
| 8067 | // `SliceDst`` cannot encode an exact size, but we know |
| 8068 | // it is at least `_offset` bytes. |
| 8069 | Layout::from_size_align(_offset, align.get()) |
| 8070 | } |
| 8071 | } |
| 8072 | .is_ok(), |
| 8073 | ); |
| 8074 | |
| 8075 | Self { align: align, size_info: size_info } |
| 8076 | } |
| 8077 | } |
| 8078 | |
| 8079 | impl kani::Arbitrary for SizeInfo { |
| 8080 | fn any() -> Self { |
| 8081 | let is_sized: bool = kani::any(); |
| 8082 | |
| 8083 | match is_sized { |
| 8084 | true => { |
| 8085 | let size: usize = kani::any(); |
| 8086 | |
| 8087 | kani::assume(size <= isize::MAX as _); |
| 8088 | |
| 8089 | SizeInfo::Sized { _size: size } |
| 8090 | } |
| 8091 | false => SizeInfo::SliceDst(kani::any()), |
| 8092 | } |
| 8093 | } |
| 8094 | } |
| 8095 | |
| 8096 | impl kani::Arbitrary for TrailingSliceLayout { |
| 8097 | fn any() -> Self { |
| 8098 | let elem_size: usize = kani::any(); |
| 8099 | let offset: usize = kani::any(); |
| 8100 | |
| 8101 | kani::assume(elem_size < isize::MAX as _); |
| 8102 | kani::assume(offset < isize::MAX as _); |
| 8103 | |
| 8104 | TrailingSliceLayout { _elem_size: elem_size, _offset: offset } |
| 8105 | } |
| 8106 | } |
| 8107 | |
| 8108 | #[kani::proof] |
| 8109 | fn prove_dst_layout_extend() { |
| 8110 | use crate::util::{core_layout::padding_needed_for, max, min}; |
| 8111 | |
| 8112 | let base: DstLayout = kani::any(); |
| 8113 | let field: DstLayout = kani::any(); |
| 8114 | let packed: Option<NonZeroUsize> = kani::any(); |
| 8115 | |
| 8116 | if let Some(max_align) = packed { |
| 8117 | kani::assume(max_align.is_power_of_two()); |
| 8118 | kani::assume(base.align <= max_align); |
| 8119 | } |
| 8120 | |
| 8121 | // The base can only be extended if it's sized. |
| 8122 | kani::assume(matches!(base.size_info, SizeInfo::Sized { .. })); |
| 8123 | let base_size = if let SizeInfo::Sized { _size: size } = base.size_info { |
| 8124 | size |
| 8125 | } else { |
| 8126 | unreachable!(); |
| 8127 | }; |
| 8128 | |
| 8129 | // Under the above conditions, `DstLayout::extend` will not panic. |
| 8130 | let composite = base.extend(field, packed); |
| 8131 | |
| 8132 | // The field's alignment is clamped by `max_align` (i.e., the |
| 8133 | // `packed` attribute, if any) [1]. |
| 8134 | // |
| 8135 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| 8136 | // |
| 8137 | // The alignments of each field, for the purpose of positioning |
| 8138 | // fields, is the smaller of the specified alignment and the |
| 8139 | // alignment of the field's type. |
| 8140 | let field_align = min(field.align, packed.unwrap_or(DstLayout::THEORETICAL_MAX_ALIGN)); |
| 8141 | |
| 8142 | // The struct's alignment is the maximum of its previous alignment and |
| 8143 | // `field_align`. |
| 8144 | assert_eq!(composite.align, max(base.align, field_align)); |
| 8145 | |
| 8146 | // Compute the minimum amount of inter-field padding needed to |
| 8147 | // satisfy the field's alignment, and offset of the trailing field. |
| 8148 | // [1] |
| 8149 | // |
| 8150 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| 8151 | // |
| 8152 | // Inter-field padding is guaranteed to be the minimum required in |
| 8153 | // order to satisfy each field's (possibly altered) alignment. |
| 8154 | let padding = padding_needed_for(base_size, field_align); |
| 8155 | let offset = base_size + padding; |
| 8156 | |
| 8157 | // For testing purposes, we'll also construct `alloc::Layout` |
| 8158 | // stand-ins for `DstLayout`, and show that `extend` behaves |
| 8159 | // comparably on both types. |
| 8160 | let base_analog = Layout::from_size_align(base_size, base.align.get()).unwrap(); |
| 8161 | |
| 8162 | match field.size_info { |
| 8163 | SizeInfo::Sized { _size: field_size } => { |
| 8164 | if let SizeInfo::Sized { _size: composite_size } = composite.size_info { |
| 8165 | // If the trailing field is sized, the resulting layout |
| 8166 | // will be sized. Its size will be the sum of the |
| 8167 | // preceeding layout, the size of the new field, and the |
| 8168 | // size of inter-field padding between the two. |
| 8169 | assert_eq!(composite_size, offset + field_size); |
| 8170 | |
| 8171 | let field_analog = |
| 8172 | Layout::from_size_align(field_size, field_align.get()).unwrap(); |
| 8173 | |
| 8174 | if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
| 8175 | { |
| 8176 | assert_eq!(actual_offset, offset); |
| 8177 | assert_eq!(actual_composite.size(), composite_size); |
| 8178 | assert_eq!(actual_composite.align(), composite.align.get()); |
| 8179 | } else { |
| 8180 | // An error here reflects that composite of `base` |
| 8181 | // and `field` cannot correspond to a real Rust type |
| 8182 | // fragment, because such a fragment would violate |
| 8183 | // the basic invariants of a valid Rust layout. At |
| 8184 | // the time of writing, `DstLayout` is a little more |
| 8185 | // permissive than `Layout`, so we don't assert |
| 8186 | // anything in this branch (e.g., unreachability). |
| 8187 | } |
| 8188 | } else { |
| 8189 | panic!("The composite of two sized layouts must be sized." ) |
| 8190 | } |
| 8191 | } |
| 8192 | SizeInfo::SliceDst(TrailingSliceLayout { |
| 8193 | _offset: field_offset, |
| 8194 | _elem_size: field_elem_size, |
| 8195 | }) => { |
| 8196 | if let SizeInfo::SliceDst(TrailingSliceLayout { |
| 8197 | _offset: composite_offset, |
| 8198 | _elem_size: composite_elem_size, |
| 8199 | }) = composite.size_info |
| 8200 | { |
| 8201 | // The offset of the trailing slice component is the sum |
| 8202 | // of the offset of the trailing field and the trailing |
| 8203 | // slice offset within that field. |
| 8204 | assert_eq!(composite_offset, offset + field_offset); |
| 8205 | // The elem size is unchanged. |
| 8206 | assert_eq!(composite_elem_size, field_elem_size); |
| 8207 | |
| 8208 | let field_analog = |
| 8209 | Layout::from_size_align(field_offset, field_align.get()).unwrap(); |
| 8210 | |
| 8211 | if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
| 8212 | { |
| 8213 | assert_eq!(actual_offset, offset); |
| 8214 | assert_eq!(actual_composite.size(), composite_offset); |
| 8215 | assert_eq!(actual_composite.align(), composite.align.get()); |
| 8216 | } else { |
| 8217 | // An error here reflects that composite of `base` |
| 8218 | // and `field` cannot correspond to a real Rust type |
| 8219 | // fragment, because such a fragment would violate |
| 8220 | // the basic invariants of a valid Rust layout. At |
| 8221 | // the time of writing, `DstLayout` is a little more |
| 8222 | // permissive than `Layout`, so we don't assert |
| 8223 | // anything in this branch (e.g., unreachability). |
| 8224 | } |
| 8225 | } else { |
| 8226 | panic!("The extension of a layout with a DST must result in a DST." ) |
| 8227 | } |
| 8228 | } |
| 8229 | } |
| 8230 | } |
| 8231 | |
| 8232 | #[kani::proof] |
| 8233 | #[kani::should_panic] |
| 8234 | fn prove_dst_layout_extend_dst_panics() { |
| 8235 | let base: DstLayout = kani::any(); |
| 8236 | let field: DstLayout = kani::any(); |
| 8237 | let packed: Option<NonZeroUsize> = kani::any(); |
| 8238 | |
| 8239 | if let Some(max_align) = packed { |
| 8240 | kani::assume(max_align.is_power_of_two()); |
| 8241 | kani::assume(base.align <= max_align); |
| 8242 | } |
| 8243 | |
| 8244 | kani::assume(matches!(base.size_info, SizeInfo::SliceDst(..))); |
| 8245 | |
| 8246 | let _ = base.extend(field, packed); |
| 8247 | } |
| 8248 | |
| 8249 | #[kani::proof] |
| 8250 | fn prove_dst_layout_pad_to_align() { |
| 8251 | use crate::util::core_layout::padding_needed_for; |
| 8252 | |
| 8253 | let layout: DstLayout = kani::any(); |
| 8254 | |
| 8255 | let padded: DstLayout = layout.pad_to_align(); |
| 8256 | |
| 8257 | // Calling `pad_to_align` does not alter the `DstLayout`'s alignment. |
| 8258 | assert_eq!(padded.align, layout.align); |
| 8259 | |
| 8260 | if let SizeInfo::Sized { _size: unpadded_size } = layout.size_info { |
| 8261 | if let SizeInfo::Sized { _size: padded_size } = padded.size_info { |
| 8262 | // If the layout is sized, it will remain sized after padding is |
| 8263 | // added. Its sum will be its unpadded size and the size of the |
| 8264 | // trailing padding needed to satisfy its alignment |
| 8265 | // requirements. |
| 8266 | let padding = padding_needed_for(unpadded_size, layout.align); |
| 8267 | assert_eq!(padded_size, unpadded_size + padding); |
| 8268 | |
| 8269 | // Prove that calling `DstLayout::pad_to_align` behaves |
| 8270 | // identically to `Layout::pad_to_align`. |
| 8271 | let layout_analog = |
| 8272 | Layout::from_size_align(unpadded_size, layout.align.get()).unwrap(); |
| 8273 | let padded_analog = layout_analog.pad_to_align(); |
| 8274 | assert_eq!(padded_analog.align(), layout.align.get()); |
| 8275 | assert_eq!(padded_analog.size(), padded_size); |
| 8276 | } else { |
| 8277 | panic!("The padding of a sized layout must result in a sized layout." ) |
| 8278 | } |
| 8279 | } else { |
| 8280 | // If the layout is a DST, padding cannot be statically added. |
| 8281 | assert_eq!(padded.size_info, layout.size_info); |
| 8282 | } |
| 8283 | } |
| 8284 | } |
| 8285 | |