| 1 | // Copyright 2023 The Fuchsia Authors |
| 2 | // |
| 3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
| 4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| 5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| 6 | // This file may not be copied, modified, or distributed except according to |
| 7 | // those terms. |
| 8 | |
| 9 | use core::{ |
| 10 | cmp::Ordering, |
| 11 | fmt::{self, Debug, Display, Formatter}, |
| 12 | hash::Hash, |
| 13 | mem::{self, ManuallyDrop}, |
| 14 | ops::{Deref, DerefMut}, |
| 15 | ptr, |
| 16 | }; |
| 17 | |
| 18 | use super::*; |
| 19 | |
| 20 | /// A type with no alignment requirement. |
| 21 | /// |
| 22 | /// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>` |
| 23 | /// has the same size and bit validity as `T`, but not necessarily the same |
| 24 | /// alignment [or ABI]. This is useful if a type with an alignment requirement |
| 25 | /// needs to be read from a chunk of memory which provides no alignment |
| 26 | /// guarantees. |
| 27 | /// |
| 28 | /// Since `Unalign` has no alignment requirement, the inner `T` may not be |
| 29 | /// properly aligned in memory. There are five ways to access the inner `T`: |
| 30 | /// - by value, using [`get`] or [`into_inner`] |
| 31 | /// - by reference inside of a callback, using [`update`] |
| 32 | /// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can |
| 33 | /// fail if the `Unalign` does not satisfy `T`'s alignment requirement at |
| 34 | /// runtime |
| 35 | /// - unsafely by reference, using [`deref_unchecked`] or |
| 36 | /// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that |
| 37 | /// the `Unalign` satisfies `T`'s alignment requirement |
| 38 | /// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or |
| 39 | /// [`DerefMut::deref_mut`] |
| 40 | /// |
| 41 | /// [or ABI]: https://github.com/google/zerocopy/issues/164 |
| 42 | /// [`get`]: Unalign::get |
| 43 | /// [`into_inner`]: Unalign::into_inner |
| 44 | /// [`update`]: Unalign::update |
| 45 | /// [`try_deref`]: Unalign::try_deref |
| 46 | /// [`try_deref_mut`]: Unalign::try_deref_mut |
| 47 | /// [`deref_unchecked`]: Unalign::deref_unchecked |
| 48 | /// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked |
| 49 | // NOTE: This type is sound to use with types that need to be dropped. The |
| 50 | // reason is that the compiler-generated drop code automatically moves all |
| 51 | // values to aligned memory slots before dropping them in-place. This is not |
| 52 | // well-documented, but it's hinted at in places like [1] and [2]. However, this |
| 53 | // also means that `T` must be `Sized`; unless something changes, we can never |
| 54 | // support unsized `T`. [3] |
| 55 | // |
| 56 | // [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646 |
| 57 | // [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323 |
| 58 | // [3] https://github.com/google/zerocopy/issues/209 |
| 59 | #[allow (missing_debug_implementations)] |
| 60 | #[derive (Default, Copy)] |
| 61 | #[cfg_attr ( |
| 62 | any(feature = "derive" , test), |
| 63 | derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned) |
| 64 | )] |
| 65 | #[repr (C, packed)] |
| 66 | pub struct Unalign<T>(T); |
| 67 | |
| 68 | #[cfg (not(any(feature = "derive" , test)))] |
| 69 | impl_known_layout!(T => Unalign<T>); |
| 70 | |
| 71 | safety_comment! { |
| 72 | /// SAFETY: |
| 73 | /// - `Unalign<T>` is `repr(packed)`, so it is unaligned regardless of the |
| 74 | /// alignment of `T`, and so we don't require that `T: Unaligned` |
| 75 | /// - `Unalign<T>` has the same bit validity as `T`, and so it is |
| 76 | /// `FromZeroes`, `FromBytes`, or `AsBytes` exactly when `T` is as well. |
| 77 | impl_or_verify!(T => Unaligned for Unalign<T>); |
| 78 | impl_or_verify!(T: FromZeroes => FromZeroes for Unalign<T>); |
| 79 | impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>); |
| 80 | impl_or_verify!(T: AsBytes => AsBytes for Unalign<T>); |
| 81 | } |
| 82 | |
| 83 | // Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be |
| 84 | // aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound |
| 85 | // is not sufficient to implement `Clone` for `Unalign`. |
| 86 | impl<T: Copy> Clone for Unalign<T> { |
| 87 | #[inline (always)] |
| 88 | fn clone(&self) -> Unalign<T> { |
| 89 | *self |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | impl<T> Unalign<T> { |
| 94 | /// Constructs a new `Unalign`. |
| 95 | #[inline (always)] |
| 96 | pub const fn new(val: T) -> Unalign<T> { |
| 97 | Unalign(val) |
| 98 | } |
| 99 | |
| 100 | /// Consumes `self`, returning the inner `T`. |
| 101 | #[inline (always)] |
| 102 | pub const fn into_inner(self) -> T { |
| 103 | // Use this instead of `mem::transmute` since the latter can't tell |
| 104 | // that `Unalign<T>` and `T` have the same size. |
| 105 | #[repr (C)] |
| 106 | union Transmute<T> { |
| 107 | u: ManuallyDrop<Unalign<T>>, |
| 108 | t: ManuallyDrop<T>, |
| 109 | } |
| 110 | |
| 111 | // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same |
| 112 | // layout as `T`. `ManuallyDrop<U>` is guaranteed to have the same |
| 113 | // layout as `U`, and so `ManuallyDrop<Unalign<T>>` has the same layout |
| 114 | // as `ManuallyDrop<T>`. Since `Transmute<T>` is `#[repr(C)]`, its `t` |
| 115 | // and `u` fields both start at the same offset (namely, 0) within the |
| 116 | // union. |
| 117 | // |
| 118 | // We do this instead of just destructuring in order to prevent |
| 119 | // `Unalign`'s `Drop::drop` from being run, since dropping is not |
| 120 | // supported in `const fn`s. |
| 121 | // |
| 122 | // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure |
| 123 | // instead of using unsafe. |
| 124 | unsafe { ManuallyDrop::into_inner(Transmute { u: ManuallyDrop::new(self) }.t) } |
| 125 | } |
| 126 | |
| 127 | /// Attempts to return a reference to the wrapped `T`, failing if `self` is |
| 128 | /// not properly aligned. |
| 129 | /// |
| 130 | /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to |
| 131 | /// return a reference to the wrapped `T`, and `try_deref` returns `None`. |
| 132 | /// |
| 133 | /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers |
| 134 | /// may prefer [`Deref::deref`], which is infallible. |
| 135 | #[inline (always)] |
| 136 | pub fn try_deref(&self) -> Option<&T> { |
| 137 | if !util::aligned_to::<_, T>(self) { |
| 138 | return None; |
| 139 | } |
| 140 | |
| 141 | // SAFETY: `deref_unchecked`'s safety requirement is that `self` is |
| 142 | // aligned to `align_of::<T>()`, which we just checked. |
| 143 | unsafe { Some(self.deref_unchecked()) } |
| 144 | } |
| 145 | |
| 146 | /// Attempts to return a mutable reference to the wrapped `T`, failing if |
| 147 | /// `self` is not properly aligned. |
| 148 | /// |
| 149 | /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to |
| 150 | /// return a reference to the wrapped `T`, and `try_deref_mut` returns |
| 151 | /// `None`. |
| 152 | /// |
| 153 | /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and |
| 154 | /// callers may prefer [`DerefMut::deref_mut`], which is infallible. |
| 155 | #[inline (always)] |
| 156 | pub fn try_deref_mut(&mut self) -> Option<&mut T> { |
| 157 | if !util::aligned_to::<_, T>(&*self) { |
| 158 | return None; |
| 159 | } |
| 160 | |
| 161 | // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is |
| 162 | // aligned to `align_of::<T>()`, which we just checked. |
| 163 | unsafe { Some(self.deref_mut_unchecked()) } |
| 164 | } |
| 165 | |
| 166 | /// Returns a reference to the wrapped `T` without checking alignment. |
| 167 | /// |
| 168 | /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers |
| 169 | /// may prefer [`Deref::deref`], which is safe. |
| 170 | /// |
| 171 | /// # Safety |
| 172 | /// |
| 173 | /// If `self` does not satisfy `mem::align_of::<T>()`, then |
| 174 | /// `self.deref_unchecked()` may cause undefined behavior. |
| 175 | #[inline (always)] |
| 176 | pub const unsafe fn deref_unchecked(&self) -> &T { |
| 177 | // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T` |
| 178 | // at the same memory location as `self`. It has no alignment guarantee, |
| 179 | // but the caller has promised that `self` is properly aligned, so we |
| 180 | // know that it is sound to create a reference to `T` at this memory |
| 181 | // location. |
| 182 | // |
| 183 | // We use `mem::transmute` instead of `&*self.get_ptr()` because |
| 184 | // dereferencing pointers is not stable in `const` on our current MSRV |
| 185 | // (1.56 as of this writing). |
| 186 | unsafe { mem::transmute(self) } |
| 187 | } |
| 188 | |
| 189 | /// Returns a mutable reference to the wrapped `T` without checking |
| 190 | /// alignment. |
| 191 | /// |
| 192 | /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and |
| 193 | /// callers may prefer [`DerefMut::deref_mut`], which is safe. |
| 194 | /// |
| 195 | /// # Safety |
| 196 | /// |
| 197 | /// If `self` does not satisfy `mem::align_of::<T>()`, then |
| 198 | /// `self.deref_mut_unchecked()` may cause undefined behavior. |
| 199 | #[inline (always)] |
| 200 | pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T { |
| 201 | // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at |
| 202 | // the same memory location as `self`. It has no alignment guarantee, |
| 203 | // but the caller has promised that `self` is properly aligned, so we |
| 204 | // know that the pointer itself is aligned, and thus that it is sound to |
| 205 | // create a reference to a `T` at this memory location. |
| 206 | unsafe { &mut *self.get_mut_ptr() } |
| 207 | } |
| 208 | |
| 209 | /// Gets an unaligned raw pointer to the inner `T`. |
| 210 | /// |
| 211 | /// # Safety |
| 212 | /// |
| 213 | /// The returned raw pointer is not necessarily aligned to |
| 214 | /// `align_of::<T>()`. Most functions which operate on raw pointers require |
| 215 | /// those pointers to be aligned, so calling those functions with the result |
| 216 | /// of `get_ptr` will be undefined behavior if alignment is not guaranteed |
| 217 | /// using some out-of-band mechanism. In general, the only functions which |
| 218 | /// are safe to call with this pointer are those which are explicitly |
| 219 | /// documented as being sound to use with an unaligned pointer, such as |
| 220 | /// [`read_unaligned`]. |
| 221 | /// |
| 222 | /// [`read_unaligned`]: core::ptr::read_unaligned |
| 223 | #[inline (always)] |
| 224 | pub const fn get_ptr(&self) -> *const T { |
| 225 | ptr::addr_of!(self.0) |
| 226 | } |
| 227 | |
| 228 | /// Gets an unaligned mutable raw pointer to the inner `T`. |
| 229 | /// |
| 230 | /// # Safety |
| 231 | /// |
| 232 | /// The returned raw pointer is not necessarily aligned to |
| 233 | /// `align_of::<T>()`. Most functions which operate on raw pointers require |
| 234 | /// those pointers to be aligned, so calling those functions with the result |
| 235 | /// of `get_ptr` will be undefined behavior if alignment is not guaranteed |
| 236 | /// using some out-of-band mechanism. In general, the only functions which |
| 237 | /// are safe to call with this pointer are those which are explicitly |
| 238 | /// documented as being sound to use with an unaligned pointer, such as |
| 239 | /// [`read_unaligned`]. |
| 240 | /// |
| 241 | /// [`read_unaligned`]: core::ptr::read_unaligned |
| 242 | // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. |
| 243 | #[inline (always)] |
| 244 | pub fn get_mut_ptr(&mut self) -> *mut T { |
| 245 | ptr::addr_of_mut!(self.0) |
| 246 | } |
| 247 | |
| 248 | /// Sets the inner `T`, dropping the previous value. |
| 249 | // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. |
| 250 | #[inline (always)] |
| 251 | pub fn set(&mut self, t: T) { |
| 252 | *self = Unalign::new(t); |
| 253 | } |
| 254 | |
| 255 | /// Updates the inner `T` by calling a function on it. |
| 256 | /// |
| 257 | /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that |
| 258 | /// impl should be preferred over this method when performing updates, as it |
| 259 | /// will usually be faster and more ergonomic. |
| 260 | /// |
| 261 | /// For large types, this method may be expensive, as it requires copying |
| 262 | /// `2 * size_of::<T>()` bytes. \[1\] |
| 263 | /// |
| 264 | /// \[1\] Since the inner `T` may not be aligned, it would not be sound to |
| 265 | /// invoke `f` on it directly. Instead, `update` moves it into a |
| 266 | /// properly-aligned location in the local stack frame, calls `f` on it, and |
| 267 | /// then moves it back to its original location in `self`. |
| 268 | /// |
| 269 | /// [`T: Unaligned`]: Unaligned |
| 270 | #[inline ] |
| 271 | pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O { |
| 272 | // On drop, this moves `copy` out of itself and uses `ptr::write` to |
| 273 | // overwrite `slf`. |
| 274 | struct WriteBackOnDrop<T> { |
| 275 | copy: ManuallyDrop<T>, |
| 276 | slf: *mut Unalign<T>, |
| 277 | } |
| 278 | |
| 279 | impl<T> Drop for WriteBackOnDrop<T> { |
| 280 | fn drop(&mut self) { |
| 281 | // SAFETY: We never use `copy` again as required by |
| 282 | // `ManuallyDrop::take`. |
| 283 | let copy = unsafe { ManuallyDrop::take(&mut self.copy) }; |
| 284 | // SAFETY: `slf` is the raw pointer value of `self`. We know it |
| 285 | // is valid for writes and properly aligned because `self` is a |
| 286 | // mutable reference, which guarantees both of these properties. |
| 287 | unsafe { ptr::write(self.slf, Unalign::new(copy)) }; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | // SAFETY: We know that `self` is valid for reads, properly aligned, and |
| 292 | // points to an initialized `Unalign<T>` because it is a mutable |
| 293 | // reference, which guarantees all of these properties. |
| 294 | // |
| 295 | // Since `T: !Copy`, it would be unsound in the general case to allow |
| 296 | // both the original `Unalign<T>` and the copy to be used by safe code. |
| 297 | // We guarantee that the copy is used to overwrite the original in the |
| 298 | // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is |
| 299 | // called before any other safe code executes, soundness is upheld. |
| 300 | // While this method can terminate in two ways (by returning normally or |
| 301 | // by unwinding due to a panic in `f`), in both cases, `write_back` is |
| 302 | // dropped - and its `drop` called - before any other safe code can |
| 303 | // execute. |
| 304 | let copy = unsafe { ptr::read(self) }.into_inner(); |
| 305 | let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self }; |
| 306 | |
| 307 | let ret = f(&mut write_back.copy); |
| 308 | |
| 309 | drop(write_back); |
| 310 | ret |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | impl<T: Copy> Unalign<T> { |
| 315 | /// Gets a copy of the inner `T`. |
| 316 | // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. |
| 317 | #[inline (always)] |
| 318 | pub fn get(&self) -> T { |
| 319 | let Unalign(val: T) = *self; |
| 320 | val |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | impl<T: Unaligned> Deref for Unalign<T> { |
| 325 | type Target = T; |
| 326 | |
| 327 | #[inline (always)] |
| 328 | fn deref(&self) -> &T { |
| 329 | // SAFETY: `deref_unchecked`'s safety requirement is that `self` is |
| 330 | // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that |
| 331 | // `align_of::<T>() == 1`, and all pointers are one-aligned because all |
| 332 | // addresses are divisible by 1. |
| 333 | unsafe { self.deref_unchecked() } |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | impl<T: Unaligned> DerefMut for Unalign<T> { |
| 338 | #[inline (always)] |
| 339 | fn deref_mut(&mut self) -> &mut T { |
| 340 | // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is |
| 341 | // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that |
| 342 | // `align_of::<T>() == 1`, and all pointers are one-aligned because all |
| 343 | // addresses are divisible by 1. |
| 344 | unsafe { self.deref_mut_unchecked() } |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> { |
| 349 | #[inline (always)] |
| 350 | fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> { |
| 351 | PartialOrd::partial_cmp(self.deref(), other.deref()) |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | impl<T: Unaligned + Ord> Ord for Unalign<T> { |
| 356 | #[inline (always)] |
| 357 | fn cmp(&self, other: &Unalign<T>) -> Ordering { |
| 358 | Ord::cmp(self.deref(), other.deref()) |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> { |
| 363 | #[inline (always)] |
| 364 | fn eq(&self, other: &Unalign<T>) -> bool { |
| 365 | PartialEq::eq(self.deref(), other.deref()) |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | impl<T: Unaligned + Eq> Eq for Unalign<T> {} |
| 370 | |
| 371 | impl<T: Unaligned + Hash> Hash for Unalign<T> { |
| 372 | #[inline (always)] |
| 373 | fn hash<H>(&self, state: &mut H) |
| 374 | where |
| 375 | H: Hasher, |
| 376 | { |
| 377 | self.deref().hash(state); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | impl<T: Unaligned + Debug> Debug for Unalign<T> { |
| 382 | #[inline (always)] |
| 383 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| 384 | Debug::fmt(self.deref(), f) |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | impl<T: Unaligned + Display> Display for Unalign<T> { |
| 389 | #[inline (always)] |
| 390 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| 391 | Display::fmt(self.deref(), f) |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | #[cfg (test)] |
| 396 | mod tests { |
| 397 | use core::panic::AssertUnwindSafe; |
| 398 | |
| 399 | use super::*; |
| 400 | use crate::util::testutil::*; |
| 401 | |
| 402 | /// A `T` which is guaranteed not to satisfy `align_of::<A>()`. |
| 403 | /// |
| 404 | /// It must be the case that `align_of::<T>() < align_of::<A>()` in order |
| 405 | /// fot this type to work properly. |
| 406 | #[repr (C)] |
| 407 | struct ForceUnalign<T, A> { |
| 408 | // The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is |
| 409 | // placed at the minimum offset that guarantees its alignment. If |
| 410 | // `align_of::<T>() < align_of::<A>()`, then that offset will be |
| 411 | // guaranteed *not* to satisfy `align_of::<A>()`. |
| 412 | _u: u8, |
| 413 | t: T, |
| 414 | _a: [A; 0], |
| 415 | } |
| 416 | |
| 417 | impl<T, A> ForceUnalign<T, A> { |
| 418 | const fn new(t: T) -> ForceUnalign<T, A> { |
| 419 | ForceUnalign { _u: 0, t, _a: [] } |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | #[test ] |
| 424 | fn test_unalign() { |
| 425 | // Test methods that don't depend on alignment. |
| 426 | let mut u = Unalign::new(AU64(123)); |
| 427 | assert_eq!(u.get(), AU64(123)); |
| 428 | assert_eq!(u.into_inner(), AU64(123)); |
| 429 | assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u)); |
| 430 | assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u)); |
| 431 | u.set(AU64(321)); |
| 432 | assert_eq!(u.get(), AU64(321)); |
| 433 | |
| 434 | // Test methods that depend on alignment (when alignment is satisfied). |
| 435 | let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); |
| 436 | assert_eq!(u.t.try_deref(), Some(&AU64(123))); |
| 437 | assert_eq!(u.t.try_deref_mut(), Some(&mut AU64(123))); |
| 438 | // SAFETY: The `Align<_, AU64>` guarantees proper alignment. |
| 439 | assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123)); |
| 440 | // SAFETY: The `Align<_, AU64>` guarantees proper alignment. |
| 441 | assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123)); |
| 442 | *u.t.try_deref_mut().unwrap() = AU64(321); |
| 443 | assert_eq!(u.t.get(), AU64(321)); |
| 444 | |
| 445 | // Test methods that depend on alignment (when alignment is not |
| 446 | // satisfied). |
| 447 | let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123))); |
| 448 | assert_eq!(u.t.try_deref(), None); |
| 449 | assert_eq!(u.t.try_deref_mut(), None); |
| 450 | |
| 451 | // Test methods that depend on `T: Unaligned`. |
| 452 | let mut u = Unalign::new(123u8); |
| 453 | assert_eq!(u.try_deref(), Some(&123)); |
| 454 | assert_eq!(u.try_deref_mut(), Some(&mut 123)); |
| 455 | assert_eq!(u.deref(), &123); |
| 456 | assert_eq!(u.deref_mut(), &mut 123); |
| 457 | *u = 21; |
| 458 | assert_eq!(u.get(), 21); |
| 459 | |
| 460 | // Test that some `Unalign` functions and methods are `const`. |
| 461 | const _UNALIGN: Unalign<u64> = Unalign::new(0); |
| 462 | const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr(); |
| 463 | const _U64: u64 = _UNALIGN.into_inner(); |
| 464 | // Make sure all code is considered "used". |
| 465 | // |
| 466 | // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this |
| 467 | // attribute. |
| 468 | #[allow (dead_code)] |
| 469 | const _: () = { |
| 470 | let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); |
| 471 | // Make sure that `deref_unchecked` is `const`. |
| 472 | // |
| 473 | // SAFETY: The `Align<_, AU64>` guarantees proper alignment. |
| 474 | let au64 = unsafe { x.t.deref_unchecked() }; |
| 475 | match au64 { |
| 476 | AU64(123) => {} |
| 477 | _ => unreachable!(), |
| 478 | } |
| 479 | }; |
| 480 | } |
| 481 | |
| 482 | #[test ] |
| 483 | fn test_unalign_update() { |
| 484 | let mut u = Unalign::new(AU64(123)); |
| 485 | u.update(|a| a.0 += 1); |
| 486 | assert_eq!(u.get(), AU64(124)); |
| 487 | |
| 488 | // Test that, even if the callback panics, the original is still |
| 489 | // correctly overwritten. Use a `Box` so that Miri is more likely to |
| 490 | // catch any unsoundness (which would likely result in two `Box`es for |
| 491 | // the same heap object, which is the sort of thing that Miri would |
| 492 | // probably catch). |
| 493 | let mut u = Unalign::new(Box::new(AU64(123))); |
| 494 | let res = std::panic::catch_unwind(AssertUnwindSafe(|| { |
| 495 | u.update(|a| { |
| 496 | a.0 += 1; |
| 497 | panic!(); |
| 498 | }) |
| 499 | })); |
| 500 | assert!(res.is_err()); |
| 501 | assert_eq!(u.into_inner(), Box::new(AU64(124))); |
| 502 | } |
| 503 | } |
| 504 | |