| 1 | // Copyright 2021 The AccessKit Authors. All rights reserved. |
| 2 | // Licensed under the Apache License, Version 2.0 (found in |
| 3 | // the LICENSE-APACHE file) or the MIT license (found in |
| 4 | // the LICENSE-MIT file), at your option. |
| 5 | |
| 6 | // Derived from Chromium's accessibility abstraction. |
| 7 | // Copyright 2018 The Chromium Authors. All rights reserved. |
| 8 | // Use of this source code is governed by a BSD-style license that can be |
| 9 | // found in the LICENSE.chromium file. |
| 10 | |
| 11 | use core::iter::FusedIterator; |
| 12 | |
| 13 | use accesskit::NodeId; |
| 14 | |
| 15 | use crate::{filters::FilterResult, node::Node, tree::State as TreeState}; |
| 16 | |
| 17 | /// An iterator that yields following siblings of a node. |
| 18 | /// |
| 19 | /// This struct is created by the [`following_siblings`](Node::following_siblings) method on [`Node`]. |
| 20 | pub struct FollowingSiblings<'a> { |
| 21 | back_position: usize, |
| 22 | done: bool, |
| 23 | front_position: usize, |
| 24 | parent: Option<Node<'a>>, |
| 25 | } |
| 26 | |
| 27 | impl<'a> FollowingSiblings<'a> { |
| 28 | pub(crate) fn new(node: Node<'a>) -> Self { |
| 29 | let parent_and_index: Option<(Node<'_>, usize)> = node.parent_and_index(); |
| 30 | let (back_position: usize, front_position: usize, done: bool) = |
| 31 | if let Some((ref parent: &Node<'a>, index: usize)) = parent_and_index { |
| 32 | let back_position: usize = parent.data().children().len() - 1; |
| 33 | let front_position: usize = index + 1; |
| 34 | ( |
| 35 | back_position, |
| 36 | front_position, |
| 37 | front_position > back_position, |
| 38 | ) |
| 39 | } else { |
| 40 | (0, 0, true) |
| 41 | }; |
| 42 | Self { |
| 43 | back_position, |
| 44 | done, |
| 45 | front_position, |
| 46 | parent: parent_and_index.map(|(parent: Node<'a>, _)| parent), |
| 47 | } |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | impl<'a> Iterator for FollowingSiblings<'a> { |
| 52 | type Item = NodeId; |
| 53 | |
| 54 | fn next(&mut self) -> Option<Self::Item> { |
| 55 | if self.done { |
| 56 | None |
| 57 | } else { |
| 58 | self.done = self.front_position == self.back_position; |
| 59 | let child = self |
| 60 | .parent |
| 61 | .as_ref()? |
| 62 | .data() |
| 63 | .children() |
| 64 | .get(self.front_position)?; |
| 65 | self.front_position += 1; |
| 66 | Some(*child) |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 71 | let len = match self.done { |
| 72 | true => 0, |
| 73 | _ => self.back_position + 1 - self.front_position, |
| 74 | }; |
| 75 | (len, Some(len)) |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | impl<'a> DoubleEndedIterator for FollowingSiblings<'a> { |
| 80 | fn next_back(&mut self) -> Option<Self::Item> { |
| 81 | if self.done { |
| 82 | None |
| 83 | } else { |
| 84 | self.done = self.back_position == self.front_position; |
| 85 | let child: &NodeId = self |
| 86 | .parent |
| 87 | .as_ref()? |
| 88 | .data() |
| 89 | .children() |
| 90 | .get(self.back_position)?; |
| 91 | self.back_position -= 1; |
| 92 | Some(*child) |
| 93 | } |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | impl<'a> ExactSizeIterator for FollowingSiblings<'a> {} |
| 98 | |
| 99 | impl<'a> FusedIterator for FollowingSiblings<'a> {} |
| 100 | |
| 101 | /// An iterator that yields preceding siblings of a node. |
| 102 | /// |
| 103 | /// This struct is created by the [`preceding_siblings`](Node::preceding_siblings) method on [`Node`]. |
| 104 | pub struct PrecedingSiblings<'a> { |
| 105 | back_position: usize, |
| 106 | done: bool, |
| 107 | front_position: usize, |
| 108 | parent: Option<Node<'a>>, |
| 109 | } |
| 110 | |
| 111 | impl<'a> PrecedingSiblings<'a> { |
| 112 | pub(crate) fn new(node: Node<'a>) -> Self { |
| 113 | let parent_and_index: Option<(Node<'_>, usize)> = node.parent_and_index(); |
| 114 | let (back_position: usize, front_position: usize, done: bool) = if let Some((_, index: usize)) = parent_and_index { |
| 115 | let front_position: usize = index.saturating_sub(1); |
| 116 | (0, front_position, index == 0) |
| 117 | } else { |
| 118 | (0, 0, true) |
| 119 | }; |
| 120 | Self { |
| 121 | back_position, |
| 122 | done, |
| 123 | front_position, |
| 124 | parent: parent_and_index.map(|(parent: Node<'a>, _)| parent), |
| 125 | } |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | impl<'a> Iterator for PrecedingSiblings<'a> { |
| 130 | type Item = NodeId; |
| 131 | |
| 132 | fn next(&mut self) -> Option<Self::Item> { |
| 133 | if self.done { |
| 134 | None |
| 135 | } else { |
| 136 | self.done = self.front_position == self.back_position; |
| 137 | let child = self |
| 138 | .parent |
| 139 | .as_ref()? |
| 140 | .data() |
| 141 | .children() |
| 142 | .get(self.front_position)?; |
| 143 | if !self.done { |
| 144 | self.front_position -= 1; |
| 145 | } |
| 146 | Some(*child) |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 151 | let len = match self.done { |
| 152 | true => 0, |
| 153 | _ => self.front_position + 1 - self.back_position, |
| 154 | }; |
| 155 | (len, Some(len)) |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | impl<'a> DoubleEndedIterator for PrecedingSiblings<'a> { |
| 160 | fn next_back(&mut self) -> Option<Self::Item> { |
| 161 | if self.done { |
| 162 | None |
| 163 | } else { |
| 164 | self.done = self.back_position == self.front_position; |
| 165 | let child: &NodeId = self |
| 166 | .parent |
| 167 | .as_ref()? |
| 168 | .data() |
| 169 | .children() |
| 170 | .get(self.back_position)?; |
| 171 | self.back_position += 1; |
| 172 | Some(*child) |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | impl<'a> ExactSizeIterator for PrecedingSiblings<'a> {} |
| 178 | |
| 179 | impl<'a> FusedIterator for PrecedingSiblings<'a> {} |
| 180 | |
| 181 | fn next_filtered_sibling<'a>( |
| 182 | node: Option<Node<'a>>, |
| 183 | filter: &impl Fn(&Node) -> FilterResult, |
| 184 | ) -> Option<Node<'a>> { |
| 185 | let mut next = node; |
| 186 | let mut consider_children = false; |
| 187 | while let Some(current) = next { |
| 188 | if let Some(Some(child)) = consider_children.then(|| current.children().next()) { |
| 189 | let result = filter(&child); |
| 190 | next = Some(child); |
| 191 | if result == FilterResult::Include { |
| 192 | return next; |
| 193 | } |
| 194 | consider_children = result == FilterResult::ExcludeNode; |
| 195 | } else if let Some(sibling) = current.following_siblings().next() { |
| 196 | let result = filter(&sibling); |
| 197 | next = Some(sibling); |
| 198 | if result == FilterResult::Include { |
| 199 | return next; |
| 200 | } |
| 201 | if result == FilterResult::ExcludeNode { |
| 202 | consider_children = true; |
| 203 | } |
| 204 | } else { |
| 205 | let parent = current.parent(); |
| 206 | next = parent; |
| 207 | if let Some(parent) = parent { |
| 208 | if filter(&parent) != FilterResult::ExcludeNode { |
| 209 | return None; |
| 210 | } |
| 211 | consider_children = false; |
| 212 | } else { |
| 213 | return None; |
| 214 | } |
| 215 | } |
| 216 | } |
| 217 | None |
| 218 | } |
| 219 | |
| 220 | fn previous_filtered_sibling<'a>( |
| 221 | node: Option<Node<'a>>, |
| 222 | filter: &impl Fn(&Node) -> FilterResult, |
| 223 | ) -> Option<Node<'a>> { |
| 224 | let mut previous = node; |
| 225 | let mut consider_children = false; |
| 226 | while let Some(current) = previous { |
| 227 | if let Some(Some(child)) = consider_children.then(|| current.children().next_back()) { |
| 228 | let result = filter(&child); |
| 229 | previous = Some(child); |
| 230 | if result == FilterResult::Include { |
| 231 | return previous; |
| 232 | } |
| 233 | consider_children = result == FilterResult::ExcludeNode; |
| 234 | } else if let Some(sibling) = current.preceding_siblings().next() { |
| 235 | let result = filter(&sibling); |
| 236 | previous = Some(sibling); |
| 237 | if result == FilterResult::Include { |
| 238 | return previous; |
| 239 | } |
| 240 | if result == FilterResult::ExcludeNode { |
| 241 | consider_children = true; |
| 242 | } |
| 243 | } else { |
| 244 | let parent = current.parent(); |
| 245 | previous = parent; |
| 246 | if let Some(parent) = parent { |
| 247 | if filter(&parent) != FilterResult::ExcludeNode { |
| 248 | return None; |
| 249 | } |
| 250 | consider_children = false; |
| 251 | } else { |
| 252 | return None; |
| 253 | } |
| 254 | } |
| 255 | } |
| 256 | None |
| 257 | } |
| 258 | |
| 259 | /// An iterator that yields following siblings of a node according to the |
| 260 | /// specified filter. |
| 261 | /// |
| 262 | /// This struct is created by the [`following_filtered_siblings`](Node::following_filtered_siblings) method on [`Node`]. |
| 263 | pub struct FollowingFilteredSiblings<'a, Filter: Fn(&Node) -> FilterResult> { |
| 264 | filter: Filter, |
| 265 | back: Option<Node<'a>>, |
| 266 | done: bool, |
| 267 | front: Option<Node<'a>>, |
| 268 | } |
| 269 | |
| 270 | impl<'a, Filter: Fn(&Node) -> FilterResult> FollowingFilteredSiblings<'a, Filter> { |
| 271 | pub(crate) fn new(node: Node<'a>, filter: Filter) -> Self { |
| 272 | let front: Option> = next_filtered_sibling(node:Some(node), &filter); |
| 273 | let back: Option> = nodeOption> |
| 274 | .filtered_parent(&filter) |
| 275 | .and_then(|parent: Node<'a>| parent.last_filtered_child(&filter)); |
| 276 | Self { |
| 277 | filter, |
| 278 | back, |
| 279 | done: back.is_none() || front.is_none(), |
| 280 | front, |
| 281 | } |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | impl<'a, Filter: Fn(&Node) -> FilterResult> Iterator for FollowingFilteredSiblings<'a, Filter> { |
| 286 | type Item = Node<'a>; |
| 287 | |
| 288 | fn next(&mut self) -> Option<Self::Item> { |
| 289 | if self.done { |
| 290 | None |
| 291 | } else { |
| 292 | self.done = self.front.as_ref().unwrap().id() == self.back.as_ref().unwrap().id(); |
| 293 | let current: Option> = self.front; |
| 294 | self.front = next_filtered_sibling(self.front, &self.filter); |
| 295 | current |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | impl<'a, Filter: Fn(&Node) -> FilterResult> DoubleEndedIterator |
| 301 | for FollowingFilteredSiblings<'a, Filter> |
| 302 | { |
| 303 | fn next_back(&mut self) -> Option<Self::Item> { |
| 304 | if self.done { |
| 305 | None |
| 306 | } else { |
| 307 | self.done = self.back.as_ref().unwrap().id() == self.front.as_ref().unwrap().id(); |
| 308 | let current: Option> = self.back; |
| 309 | self.back = previous_filtered_sibling(self.back, &self.filter); |
| 310 | current |
| 311 | } |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | impl<'a, Filter: Fn(&Node) -> FilterResult> FusedIterator |
| 316 | for FollowingFilteredSiblings<'a, Filter> |
| 317 | { |
| 318 | } |
| 319 | |
| 320 | /// An iterator that yields preceding siblings of a node according to the |
| 321 | /// specified filter. |
| 322 | /// |
| 323 | /// This struct is created by the [`preceding_filtered_siblings`](Node::preceding_filtered_siblings) method on [`Node`]. |
| 324 | pub struct PrecedingFilteredSiblings<'a, Filter: Fn(&Node) -> FilterResult> { |
| 325 | filter: Filter, |
| 326 | back: Option<Node<'a>>, |
| 327 | done: bool, |
| 328 | front: Option<Node<'a>>, |
| 329 | } |
| 330 | |
| 331 | impl<'a, Filter: Fn(&Node) -> FilterResult> PrecedingFilteredSiblings<'a, Filter> { |
| 332 | pub(crate) fn new(node: Node<'a>, filter: Filter) -> Self { |
| 333 | let front: Option> = previous_filtered_sibling(node:Some(node), &filter); |
| 334 | let back: Option> = nodeOption> |
| 335 | .filtered_parent(&filter) |
| 336 | .and_then(|parent: Node<'a>| parent.first_filtered_child(&filter)); |
| 337 | Self { |
| 338 | filter, |
| 339 | back, |
| 340 | done: back.is_none() || front.is_none(), |
| 341 | front, |
| 342 | } |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | impl<'a, Filter: Fn(&Node) -> FilterResult> Iterator for PrecedingFilteredSiblings<'a, Filter> { |
| 347 | type Item = Node<'a>; |
| 348 | |
| 349 | fn next(&mut self) -> Option<Self::Item> { |
| 350 | if self.done { |
| 351 | None |
| 352 | } else { |
| 353 | self.done = self.front.as_ref().unwrap().id() == self.back.as_ref().unwrap().id(); |
| 354 | let current: Option> = self.front; |
| 355 | self.front = previous_filtered_sibling(self.front, &self.filter); |
| 356 | current |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | impl<'a, Filter: Fn(&Node) -> FilterResult> DoubleEndedIterator |
| 362 | for PrecedingFilteredSiblings<'a, Filter> |
| 363 | { |
| 364 | fn next_back(&mut self) -> Option<Self::Item> { |
| 365 | if self.done { |
| 366 | None |
| 367 | } else { |
| 368 | self.done = self.back.as_ref().unwrap().id() == self.front.as_ref().unwrap().id(); |
| 369 | let current: Option> = self.back; |
| 370 | self.back = next_filtered_sibling(self.back, &self.filter); |
| 371 | current |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | impl<'a, Filter: Fn(&Node) -> FilterResult> FusedIterator |
| 377 | for PrecedingFilteredSiblings<'a, Filter> |
| 378 | { |
| 379 | } |
| 380 | |
| 381 | /// An iterator that yields children of a node according to the specified |
| 382 | /// filter. |
| 383 | /// |
| 384 | /// This struct is created by the [`filtered_children`](Node::filtered_children) method on [`Node`]. |
| 385 | pub struct FilteredChildren<'a, Filter: Fn(&Node) -> FilterResult> { |
| 386 | filter: Filter, |
| 387 | back: Option<Node<'a>>, |
| 388 | done: bool, |
| 389 | front: Option<Node<'a>>, |
| 390 | } |
| 391 | |
| 392 | impl<'a, Filter: Fn(&Node) -> FilterResult> FilteredChildren<'a, Filter> { |
| 393 | pub(crate) fn new(node: Node<'a>, filter: Filter) -> Self { |
| 394 | let front: Option> = node.first_filtered_child(&filter); |
| 395 | let back: Option> = node.last_filtered_child(&filter); |
| 396 | Self { |
| 397 | filter, |
| 398 | back, |
| 399 | done: back.is_none() || front.is_none(), |
| 400 | front, |
| 401 | } |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | impl<'a, Filter: Fn(&Node) -> FilterResult> Iterator for FilteredChildren<'a, Filter> { |
| 406 | type Item = Node<'a>; |
| 407 | |
| 408 | fn next(&mut self) -> Option<Self::Item> { |
| 409 | if self.done { |
| 410 | None |
| 411 | } else { |
| 412 | self.done = self.front.as_ref().unwrap().id() == self.back.as_ref().unwrap().id(); |
| 413 | let current: Option> = self.front; |
| 414 | self.front = next_filtered_sibling(self.front, &self.filter); |
| 415 | current |
| 416 | } |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | impl<'a, Filter: Fn(&Node) -> FilterResult> DoubleEndedIterator for FilteredChildren<'a, Filter> { |
| 421 | fn next_back(&mut self) -> Option<Self::Item> { |
| 422 | if self.done { |
| 423 | None |
| 424 | } else { |
| 425 | self.done = self.back.as_ref().unwrap().id() == self.front.as_ref().unwrap().id(); |
| 426 | let current: Option> = self.back; |
| 427 | self.back = previous_filtered_sibling(self.back, &self.filter); |
| 428 | current |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | impl<'a, Filter: Fn(&Node) -> FilterResult> FusedIterator for FilteredChildren<'a, Filter> {} |
| 434 | |
| 435 | pub(crate) enum LabelledBy<'a, Filter: Fn(&Node) -> FilterResult> { |
| 436 | FromDescendants(FilteredChildren<'a, Filter>), |
| 437 | Explicit { |
| 438 | ids: core::slice::Iter<'a, NodeId>, |
| 439 | tree_state: &'a TreeState, |
| 440 | }, |
| 441 | } |
| 442 | |
| 443 | impl<'a, Filter: Fn(&Node) -> FilterResult> Iterator for LabelledBy<'a, Filter> { |
| 444 | type Item = Node<'a>; |
| 445 | |
| 446 | fn next(&mut self) -> Option<Self::Item> { |
| 447 | match self { |
| 448 | Self::FromDescendants(iter: &mut FilteredChildren<'a, Filter>) => iter.next(), |
| 449 | Self::Explicit { ids: &mut Iter<'a, NodeId>, tree_state: &mut &'a State } => { |
| 450 | ids.next().map(|id: &'a NodeId| tree_state.node_by_id(*id).unwrap()) |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 456 | match self { |
| 457 | Self::FromDescendants(iter: &FilteredChildren<'a, Filter>) => iter.size_hint(), |
| 458 | Self::Explicit { ids: &Iter<'a, NodeId>, .. } => ids.size_hint(), |
| 459 | } |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | impl<'a, Filter: Fn(&Node) -> FilterResult> DoubleEndedIterator for LabelledBy<'a, Filter> { |
| 464 | fn next_back(&mut self) -> Option<Self::Item> { |
| 465 | match self { |
| 466 | Self::FromDescendants(iter: &mut FilteredChildren<'a, Filter>) => iter.next_back(), |
| 467 | Self::Explicit { ids: &mut Iter<'a, NodeId>, tree_state: &mut &'a State } => idsOption<&'a NodeId> |
| 468 | .next_back() |
| 469 | .map(|id: &'a NodeId| tree_state.node_by_id(*id).unwrap()), |
| 470 | } |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | impl<'a, Filter: Fn(&Node) -> FilterResult> FusedIterator for LabelledBy<'a, Filter> {} |
| 475 | |
| 476 | #[cfg (test)] |
| 477 | mod tests { |
| 478 | use crate::tests::*; |
| 479 | use accesskit::NodeId; |
| 480 | use alloc::vec::Vec; |
| 481 | |
| 482 | #[test ] |
| 483 | fn following_siblings() { |
| 484 | let tree = test_tree(); |
| 485 | assert!(tree.state().root().following_siblings().next().is_none()); |
| 486 | assert_eq!(0, tree.state().root().following_siblings().len()); |
| 487 | assert_eq!( |
| 488 | [ |
| 489 | PARAGRAPH_1_IGNORED_ID, |
| 490 | PARAGRAPH_2_ID, |
| 491 | PARAGRAPH_3_IGNORED_ID |
| 492 | ], |
| 493 | tree.state() |
| 494 | .node_by_id(PARAGRAPH_0_ID) |
| 495 | .unwrap() |
| 496 | .following_siblings() |
| 497 | .map(|node| node.id()) |
| 498 | .collect::<Vec<NodeId>>()[..] |
| 499 | ); |
| 500 | assert_eq!( |
| 501 | 3, |
| 502 | tree.state() |
| 503 | .node_by_id(PARAGRAPH_0_ID) |
| 504 | .unwrap() |
| 505 | .following_siblings() |
| 506 | .len() |
| 507 | ); |
| 508 | assert!(tree |
| 509 | .state() |
| 510 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 511 | .unwrap() |
| 512 | .following_siblings() |
| 513 | .next() |
| 514 | .is_none()); |
| 515 | assert_eq!( |
| 516 | 0, |
| 517 | tree.state() |
| 518 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 519 | .unwrap() |
| 520 | .following_siblings() |
| 521 | .len() |
| 522 | ); |
| 523 | } |
| 524 | |
| 525 | #[test ] |
| 526 | fn following_siblings_reversed() { |
| 527 | let tree = test_tree(); |
| 528 | assert!(tree |
| 529 | .state() |
| 530 | .root() |
| 531 | .following_siblings() |
| 532 | .next_back() |
| 533 | .is_none()); |
| 534 | assert_eq!( |
| 535 | [ |
| 536 | PARAGRAPH_3_IGNORED_ID, |
| 537 | PARAGRAPH_2_ID, |
| 538 | PARAGRAPH_1_IGNORED_ID |
| 539 | ], |
| 540 | tree.state() |
| 541 | .node_by_id(PARAGRAPH_0_ID) |
| 542 | .unwrap() |
| 543 | .following_siblings() |
| 544 | .rev() |
| 545 | .map(|node| node.id()) |
| 546 | .collect::<Vec<NodeId>>()[..] |
| 547 | ); |
| 548 | assert!(tree |
| 549 | .state() |
| 550 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 551 | .unwrap() |
| 552 | .following_siblings() |
| 553 | .next_back() |
| 554 | .is_none()); |
| 555 | } |
| 556 | |
| 557 | #[test ] |
| 558 | fn preceding_siblings() { |
| 559 | let tree = test_tree(); |
| 560 | assert!(tree.state().root().preceding_siblings().next().is_none()); |
| 561 | assert_eq!(0, tree.state().root().preceding_siblings().len()); |
| 562 | assert_eq!( |
| 563 | [PARAGRAPH_2_ID, PARAGRAPH_1_IGNORED_ID, PARAGRAPH_0_ID], |
| 564 | tree.state() |
| 565 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 566 | .unwrap() |
| 567 | .preceding_siblings() |
| 568 | .map(|node| node.id()) |
| 569 | .collect::<Vec<NodeId>>()[..] |
| 570 | ); |
| 571 | assert_eq!( |
| 572 | 3, |
| 573 | tree.state() |
| 574 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 575 | .unwrap() |
| 576 | .preceding_siblings() |
| 577 | .len() |
| 578 | ); |
| 579 | assert!(tree |
| 580 | .state() |
| 581 | .node_by_id(PARAGRAPH_0_ID) |
| 582 | .unwrap() |
| 583 | .preceding_siblings() |
| 584 | .next() |
| 585 | .is_none()); |
| 586 | assert_eq!( |
| 587 | 0, |
| 588 | tree.state() |
| 589 | .node_by_id(PARAGRAPH_0_ID) |
| 590 | .unwrap() |
| 591 | .preceding_siblings() |
| 592 | .len() |
| 593 | ); |
| 594 | } |
| 595 | |
| 596 | #[test ] |
| 597 | fn preceding_siblings_reversed() { |
| 598 | let tree = test_tree(); |
| 599 | assert!(tree |
| 600 | .state() |
| 601 | .root() |
| 602 | .preceding_siblings() |
| 603 | .next_back() |
| 604 | .is_none()); |
| 605 | assert_eq!( |
| 606 | [PARAGRAPH_0_ID, PARAGRAPH_1_IGNORED_ID, PARAGRAPH_2_ID], |
| 607 | tree.state() |
| 608 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 609 | .unwrap() |
| 610 | .preceding_siblings() |
| 611 | .rev() |
| 612 | .map(|node| node.id()) |
| 613 | .collect::<Vec<NodeId>>()[..] |
| 614 | ); |
| 615 | assert!(tree |
| 616 | .state() |
| 617 | .node_by_id(PARAGRAPH_0_ID) |
| 618 | .unwrap() |
| 619 | .preceding_siblings() |
| 620 | .next_back() |
| 621 | .is_none()); |
| 622 | } |
| 623 | |
| 624 | #[test ] |
| 625 | fn following_filtered_siblings() { |
| 626 | let tree = test_tree(); |
| 627 | assert!(tree |
| 628 | .state() |
| 629 | .root() |
| 630 | .following_filtered_siblings(test_tree_filter) |
| 631 | .next() |
| 632 | .is_none()); |
| 633 | assert_eq!( |
| 634 | [LABEL_1_1_ID, PARAGRAPH_2_ID, LABEL_3_1_0_ID, BUTTON_3_2_ID], |
| 635 | tree.state() |
| 636 | .node_by_id(PARAGRAPH_0_ID) |
| 637 | .unwrap() |
| 638 | .following_filtered_siblings(test_tree_filter) |
| 639 | .map(|node| node.id()) |
| 640 | .collect::<Vec<NodeId>>()[..] |
| 641 | ); |
| 642 | assert_eq!( |
| 643 | [BUTTON_3_2_ID], |
| 644 | tree.state() |
| 645 | .node_by_id(LABEL_3_1_0_ID) |
| 646 | .unwrap() |
| 647 | .following_filtered_siblings(test_tree_filter) |
| 648 | .map(|node| node.id()) |
| 649 | .collect::<Vec<NodeId>>()[..] |
| 650 | ); |
| 651 | assert!(tree |
| 652 | .state() |
| 653 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 654 | .unwrap() |
| 655 | .following_filtered_siblings(test_tree_filter) |
| 656 | .next() |
| 657 | .is_none()); |
| 658 | } |
| 659 | |
| 660 | #[test ] |
| 661 | fn following_filtered_siblings_reversed() { |
| 662 | let tree = test_tree(); |
| 663 | assert!(tree |
| 664 | .state() |
| 665 | .root() |
| 666 | .following_filtered_siblings(test_tree_filter) |
| 667 | .next_back() |
| 668 | .is_none()); |
| 669 | assert_eq!( |
| 670 | [BUTTON_3_2_ID, LABEL_3_1_0_ID, PARAGRAPH_2_ID, LABEL_1_1_ID], |
| 671 | tree.state() |
| 672 | .node_by_id(PARAGRAPH_0_ID) |
| 673 | .unwrap() |
| 674 | .following_filtered_siblings(test_tree_filter) |
| 675 | .rev() |
| 676 | .map(|node| node.id()) |
| 677 | .collect::<Vec<NodeId>>()[..] |
| 678 | ); |
| 679 | assert_eq!( |
| 680 | [BUTTON_3_2_ID,], |
| 681 | tree.state() |
| 682 | .node_by_id(LABEL_3_1_0_ID) |
| 683 | .unwrap() |
| 684 | .following_filtered_siblings(test_tree_filter) |
| 685 | .rev() |
| 686 | .map(|node| node.id()) |
| 687 | .collect::<Vec<NodeId>>()[..] |
| 688 | ); |
| 689 | assert!(tree |
| 690 | .state() |
| 691 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 692 | .unwrap() |
| 693 | .following_filtered_siblings(test_tree_filter) |
| 694 | .next_back() |
| 695 | .is_none()); |
| 696 | } |
| 697 | |
| 698 | #[test ] |
| 699 | fn preceding_filtered_siblings() { |
| 700 | let tree = test_tree(); |
| 701 | assert!(tree |
| 702 | .state() |
| 703 | .root() |
| 704 | .preceding_filtered_siblings(test_tree_filter) |
| 705 | .next() |
| 706 | .is_none()); |
| 707 | assert_eq!( |
| 708 | [PARAGRAPH_2_ID, LABEL_1_1_ID, PARAGRAPH_0_ID], |
| 709 | tree.state() |
| 710 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 711 | .unwrap() |
| 712 | .preceding_filtered_siblings(test_tree_filter) |
| 713 | .map(|node| node.id()) |
| 714 | .collect::<Vec<NodeId>>()[..] |
| 715 | ); |
| 716 | assert_eq!( |
| 717 | [PARAGRAPH_2_ID, LABEL_1_1_ID, PARAGRAPH_0_ID], |
| 718 | tree.state() |
| 719 | .node_by_id(LABEL_3_1_0_ID) |
| 720 | .unwrap() |
| 721 | .preceding_filtered_siblings(test_tree_filter) |
| 722 | .map(|node| node.id()) |
| 723 | .collect::<Vec<NodeId>>()[..] |
| 724 | ); |
| 725 | assert!(tree |
| 726 | .state() |
| 727 | .node_by_id(PARAGRAPH_0_ID) |
| 728 | .unwrap() |
| 729 | .preceding_filtered_siblings(test_tree_filter) |
| 730 | .next() |
| 731 | .is_none()); |
| 732 | } |
| 733 | |
| 734 | #[test ] |
| 735 | fn preceding_filtered_siblings_reversed() { |
| 736 | let tree = test_tree(); |
| 737 | assert!(tree |
| 738 | .state() |
| 739 | .root() |
| 740 | .preceding_filtered_siblings(test_tree_filter) |
| 741 | .next_back() |
| 742 | .is_none()); |
| 743 | assert_eq!( |
| 744 | [PARAGRAPH_0_ID, LABEL_1_1_ID, PARAGRAPH_2_ID], |
| 745 | tree.state() |
| 746 | .node_by_id(PARAGRAPH_3_IGNORED_ID) |
| 747 | .unwrap() |
| 748 | .preceding_filtered_siblings(test_tree_filter) |
| 749 | .rev() |
| 750 | .map(|node| node.id()) |
| 751 | .collect::<Vec<NodeId>>()[..] |
| 752 | ); |
| 753 | assert_eq!( |
| 754 | [PARAGRAPH_0_ID, LABEL_1_1_ID, PARAGRAPH_2_ID], |
| 755 | tree.state() |
| 756 | .node_by_id(LABEL_3_1_0_ID) |
| 757 | .unwrap() |
| 758 | .preceding_filtered_siblings(test_tree_filter) |
| 759 | .rev() |
| 760 | .map(|node| node.id()) |
| 761 | .collect::<Vec<NodeId>>()[..] |
| 762 | ); |
| 763 | assert!(tree |
| 764 | .state() |
| 765 | .node_by_id(PARAGRAPH_0_ID) |
| 766 | .unwrap() |
| 767 | .preceding_filtered_siblings(test_tree_filter) |
| 768 | .next_back() |
| 769 | .is_none()); |
| 770 | } |
| 771 | |
| 772 | #[test ] |
| 773 | fn filtered_children() { |
| 774 | let tree = test_tree(); |
| 775 | assert_eq!( |
| 776 | [ |
| 777 | PARAGRAPH_0_ID, |
| 778 | LABEL_1_1_ID, |
| 779 | PARAGRAPH_2_ID, |
| 780 | LABEL_3_1_0_ID, |
| 781 | BUTTON_3_2_ID |
| 782 | ], |
| 783 | tree.state() |
| 784 | .root() |
| 785 | .filtered_children(test_tree_filter) |
| 786 | .map(|node| node.id()) |
| 787 | .collect::<Vec<NodeId>>()[..] |
| 788 | ); |
| 789 | assert!(tree |
| 790 | .state() |
| 791 | .node_by_id(PARAGRAPH_0_ID) |
| 792 | .unwrap() |
| 793 | .filtered_children(test_tree_filter) |
| 794 | .next() |
| 795 | .is_none()); |
| 796 | assert!(tree |
| 797 | .state() |
| 798 | .node_by_id(LABEL_0_0_IGNORED_ID) |
| 799 | .unwrap() |
| 800 | .filtered_children(test_tree_filter) |
| 801 | .next() |
| 802 | .is_none()); |
| 803 | } |
| 804 | |
| 805 | #[test ] |
| 806 | fn filtered_children_reversed() { |
| 807 | let tree = test_tree(); |
| 808 | assert_eq!( |
| 809 | [ |
| 810 | BUTTON_3_2_ID, |
| 811 | LABEL_3_1_0_ID, |
| 812 | PARAGRAPH_2_ID, |
| 813 | LABEL_1_1_ID, |
| 814 | PARAGRAPH_0_ID |
| 815 | ], |
| 816 | tree.state() |
| 817 | .root() |
| 818 | .filtered_children(test_tree_filter) |
| 819 | .rev() |
| 820 | .map(|node| node.id()) |
| 821 | .collect::<Vec<NodeId>>()[..] |
| 822 | ); |
| 823 | assert!(tree |
| 824 | .state() |
| 825 | .node_by_id(PARAGRAPH_0_ID) |
| 826 | .unwrap() |
| 827 | .filtered_children(test_tree_filter) |
| 828 | .next_back() |
| 829 | .is_none()); |
| 830 | assert!(tree |
| 831 | .state() |
| 832 | .node_by_id(LABEL_0_0_IGNORED_ID) |
| 833 | .unwrap() |
| 834 | .filtered_children(test_tree_filter) |
| 835 | .next_back() |
| 836 | .is_none()); |
| 837 | } |
| 838 | } |
| 839 | |