1 | // NOTE: The descriptions for each of the vector methods on the traits below |
2 | // are pretty inscrutable. For this reason, there are tests for every method |
3 | // on for every trait impl below. If you're confused about what an op does, |
4 | // consult its test. (They probably should be doc tests, but I couldn't figure |
5 | // out how to write them in a non-annoying way.) |
6 | |
7 | use core::{ |
8 | fmt::Debug, |
9 | panic::{RefUnwindSafe, UnwindSafe}, |
10 | }; |
11 | |
12 | /// A trait for describing vector operations used by vectorized searchers. |
13 | /// |
14 | /// The trait is highly constrained to low level vector operations needed for |
15 | /// the specific algorithms used in this crate. In general, it was invented |
16 | /// mostly to be generic over x86's __m128i and __m256i types. At time of |
17 | /// writing, it also supports wasm and aarch64 128-bit vector types as well. |
18 | /// |
19 | /// # Safety |
20 | /// |
21 | /// All methods are not safe since they are intended to be implemented using |
22 | /// vendor intrinsics, which are also not safe. Callers must ensure that |
23 | /// the appropriate target features are enabled in the calling function, |
24 | /// and that the current CPU supports them. All implementations should |
25 | /// avoid marking the routines with `#[target_feature]` and instead mark |
26 | /// them as `#[inline(always)]` to ensure they get appropriately inlined. |
27 | /// (`inline(always)` cannot be used with target_feature.) |
28 | pub(crate) trait Vector: |
29 | Copy + Debug + Send + Sync + UnwindSafe + RefUnwindSafe |
30 | { |
31 | /// The number of bits in the vector. |
32 | const BITS: usize; |
33 | /// The number of bytes in the vector. That is, this is the size of the |
34 | /// vector in memory. |
35 | const BYTES: usize; |
36 | |
37 | /// Create a vector with 8-bit lanes with the given byte repeated into each |
38 | /// lane. |
39 | /// |
40 | /// # Safety |
41 | /// |
42 | /// Callers must ensure that this is okay to call in the current target for |
43 | /// the current CPU. |
44 | unsafe fn splat(byte: u8) -> Self; |
45 | |
46 | /// Read a vector-size number of bytes from the given pointer. The pointer |
47 | /// does not need to be aligned. |
48 | /// |
49 | /// # Safety |
50 | /// |
51 | /// Callers must ensure that this is okay to call in the current target for |
52 | /// the current CPU. |
53 | /// |
54 | /// Callers must guarantee that at least `BYTES` bytes are readable from |
55 | /// `data`. |
56 | unsafe fn load_unaligned(data: *const u8) -> Self; |
57 | |
58 | /// Returns true if and only if this vector has zero in all of its lanes. |
59 | /// |
60 | /// # Safety |
61 | /// |
62 | /// Callers must ensure that this is okay to call in the current target for |
63 | /// the current CPU. |
64 | unsafe fn is_zero(self) -> bool; |
65 | |
66 | /// Do an 8-bit pairwise equality check. If lane `i` is equal in this |
67 | /// vector and the one given, then lane `i` in the resulting vector is set |
68 | /// to `0xFF`. Otherwise, it is set to `0x00`. |
69 | /// |
70 | /// # Safety |
71 | /// |
72 | /// Callers must ensure that this is okay to call in the current target for |
73 | /// the current CPU. |
74 | unsafe fn cmpeq(self, vector2: Self) -> Self; |
75 | |
76 | /// Perform a bitwise 'and' of this vector and the one given and return |
77 | /// the result. |
78 | /// |
79 | /// # Safety |
80 | /// |
81 | /// Callers must ensure that this is okay to call in the current target for |
82 | /// the current CPU. |
83 | unsafe fn and(self, vector2: Self) -> Self; |
84 | |
85 | /// Perform a bitwise 'or' of this vector and the one given and return |
86 | /// the result. |
87 | /// |
88 | /// # Safety |
89 | /// |
90 | /// Callers must ensure that this is okay to call in the current target for |
91 | /// the current CPU. |
92 | #[allow (dead_code)] // unused, but useful enough to keep around? |
93 | unsafe fn or(self, vector2: Self) -> Self; |
94 | |
95 | /// Shift each 8-bit lane in this vector to the right by the number of |
96 | /// bits indictated by the `BITS` type parameter. |
97 | /// |
98 | /// # Safety |
99 | /// |
100 | /// Callers must ensure that this is okay to call in the current target for |
101 | /// the current CPU. |
102 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self; |
103 | |
104 | /// Shift this vector to the left by one byte and shift the most |
105 | /// significant byte of `vector2` into the least significant position of |
106 | /// this vector. |
107 | /// |
108 | /// Stated differently, this behaves as if `self` and `vector2` were |
109 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
110 | /// right by `Self::BYTES - 1` bytes. |
111 | /// |
112 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
113 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
114 | /// immediately following it. This permits combining the last two bytes |
115 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 1` |
116 | /// bytes from the current chunk. This permits aligning the result of |
117 | /// various shuffles so that they can be and-ed together and a possible |
118 | /// candidate discovered. |
119 | /// |
120 | /// # Safety |
121 | /// |
122 | /// Callers must ensure that this is okay to call in the current target for |
123 | /// the current CPU. |
124 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self; |
125 | |
126 | /// Shift this vector to the left by two bytes and shift the two most |
127 | /// significant bytes of `vector2` into the least significant position of |
128 | /// this vector. |
129 | /// |
130 | /// Stated differently, this behaves as if `self` and `vector2` were |
131 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
132 | /// right by `Self::BYTES - 2` bytes. |
133 | /// |
134 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
135 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
136 | /// immediately following it. This permits combining the last two bytes |
137 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 2` |
138 | /// bytes from the current chunk. This permits aligning the result of |
139 | /// various shuffles so that they can be and-ed together and a possible |
140 | /// candidate discovered. |
141 | /// |
142 | /// # Safety |
143 | /// |
144 | /// Callers must ensure that this is okay to call in the current target for |
145 | /// the current CPU. |
146 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self; |
147 | |
148 | /// Shift this vector to the left by three bytes and shift the three most |
149 | /// significant bytes of `vector2` into the least significant position of |
150 | /// this vector. |
151 | /// |
152 | /// Stated differently, this behaves as if `self` and `vector2` were |
153 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
154 | /// right by `Self::BYTES - 3` bytes. |
155 | /// |
156 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
157 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
158 | /// immediately following it. This permits combining the last three bytes |
159 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 3` |
160 | /// bytes from the current chunk. This permits aligning the result of |
161 | /// various shuffles so that they can be and-ed together and a possible |
162 | /// candidate discovered. |
163 | /// |
164 | /// # Safety |
165 | /// |
166 | /// Callers must ensure that this is okay to call in the current target for |
167 | /// the current CPU. |
168 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self; |
169 | |
170 | /// Shuffles the bytes in this vector according to the indices in each of |
171 | /// the corresponding lanes in `indices`. |
172 | /// |
173 | /// If `i` is the index of corresponding lanes, `A` is this vector, `B` is |
174 | /// indices and `C` is the resulting vector, then `C = A[B[i]]`. |
175 | /// |
176 | /// # Safety |
177 | /// |
178 | /// Callers must ensure that this is okay to call in the current target for |
179 | /// the current CPU. |
180 | unsafe fn shuffle_bytes(self, indices: Self) -> Self; |
181 | |
182 | /// Call the provided function for each 64-bit lane in this vector. The |
183 | /// given function is provided the lane index and lane value as a `u64`. |
184 | /// |
185 | /// If `f` returns `Some`, then iteration over the lanes is stopped and the |
186 | /// value is returned. Otherwise, this returns `None`. |
187 | /// |
188 | /// # Notes |
189 | /// |
190 | /// Conceptually it would be nice if we could have a |
191 | /// `unpack64(self) -> [u64; BITS / 64]` method, but defining that is |
192 | /// tricky given Rust's [current support for const generics][support]. |
193 | /// And even if we could, it would be tricky to write generic code over |
194 | /// it. (Not impossible. We could introduce another layer that requires |
195 | /// `AsRef<[u64]>` or something.) |
196 | /// |
197 | /// [support]: https://github.com/rust-lang/rust/issues/60551 |
198 | /// |
199 | /// # Safety |
200 | /// |
201 | /// Callers must ensure that this is okay to call in the current target for |
202 | /// the current CPU. |
203 | unsafe fn for_each_64bit_lane<T>( |
204 | self, |
205 | f: impl FnMut(usize, u64) -> Option<T>, |
206 | ) -> Option<T>; |
207 | } |
208 | |
209 | /// This trait extends the `Vector` trait with additional operations to support |
210 | /// Fat Teddy. |
211 | /// |
212 | /// Fat Teddy uses 16 buckets instead of 8, but reads half as many bytes (as |
213 | /// the vector size) instead of the full size of a vector per iteration. For |
214 | /// example, when using a 256-bit vector, Slim Teddy reads 32 bytes at a timr |
215 | /// but Fat Teddy reads 16 bytes at a time. |
216 | /// |
217 | /// Fat Teddy is useful when searching for a large number of literals. |
218 | /// The extra number of buckets spreads the literals out more and reduces |
219 | /// verification time. |
220 | /// |
221 | /// Currently we only implement this for AVX on x86_64. It would be nice to |
222 | /// implement this for SSE on x86_64 and NEON on aarch64, with the latter two |
223 | /// only reading 8 bytes at a time. It's not clear how well it would work, but |
224 | /// there are some tricky things to figure out in terms of implementation. The |
225 | /// `half_shift_in_{one,two,three}_bytes` methods in particular are probably |
226 | /// the trickiest of the bunch. For AVX2, these are implemented by taking |
227 | /// advantage of the fact that `_mm256_alignr_epi8` operates on each 128-bit |
228 | /// half instead of the full 256-bit vector. (Where as `_mm_alignr_epi8` |
229 | /// operates on the full 128-bit vector and not on each 64-bit half.) I didn't |
230 | /// do a careful survey of NEON to see if it could easily support these |
231 | /// operations. |
232 | pub(crate) trait FatVector: Vector { |
233 | type Half: Vector; |
234 | |
235 | /// Read a half-vector-size number of bytes from the given pointer, and |
236 | /// broadcast it across both halfs of a full vector. The pointer does not |
237 | /// need to be aligned. |
238 | /// |
239 | /// # Safety |
240 | /// |
241 | /// Callers must ensure that this is okay to call in the current target for |
242 | /// the current CPU. |
243 | /// |
244 | /// Callers must guarantee that at least `Self::HALF::BYTES` bytes are |
245 | /// readable from `data`. |
246 | unsafe fn load_half_unaligned(data: *const u8) -> Self; |
247 | |
248 | /// Like `Vector::shift_in_one_byte`, except this is done for each half |
249 | /// of the vector instead. |
250 | /// |
251 | /// # Safety |
252 | /// |
253 | /// Callers must ensure that this is okay to call in the current target for |
254 | /// the current CPU. |
255 | unsafe fn half_shift_in_one_byte(self, vector2: Self) -> Self; |
256 | |
257 | /// Like `Vector::shift_in_two_bytes`, except this is done for each half |
258 | /// of the vector instead. |
259 | /// |
260 | /// # Safety |
261 | /// |
262 | /// Callers must ensure that this is okay to call in the current target for |
263 | /// the current CPU. |
264 | unsafe fn half_shift_in_two_bytes(self, vector2: Self) -> Self; |
265 | |
266 | /// Like `Vector::shift_in_two_bytes`, except this is done for each half |
267 | /// of the vector instead. |
268 | /// |
269 | /// # Safety |
270 | /// |
271 | /// Callers must ensure that this is okay to call in the current target for |
272 | /// the current CPU. |
273 | unsafe fn half_shift_in_three_bytes(self, vector2: Self) -> Self; |
274 | |
275 | /// Swap the 128-bit lanes in this vector. |
276 | /// |
277 | /// # Safety |
278 | /// |
279 | /// Callers must ensure that this is okay to call in the current target for |
280 | /// the current CPU. |
281 | unsafe fn swap_halves(self) -> Self; |
282 | |
283 | /// Unpack and interleave the 8-bit lanes from the low 128 bits of each |
284 | /// vector and return the result. |
285 | /// |
286 | /// # Safety |
287 | /// |
288 | /// Callers must ensure that this is okay to call in the current target for |
289 | /// the current CPU. |
290 | unsafe fn interleave_low_8bit_lanes(self, vector2: Self) -> Self; |
291 | |
292 | /// Unpack and interleave the 8-bit lanes from the high 128 bits of each |
293 | /// vector and return the result. |
294 | /// |
295 | /// # Safety |
296 | /// |
297 | /// Callers must ensure that this is okay to call in the current target for |
298 | /// the current CPU. |
299 | unsafe fn interleave_high_8bit_lanes(self, vector2: Self) -> Self; |
300 | |
301 | /// Call the provided function for each 64-bit lane in the lower half |
302 | /// of this vector and then in the other vector. The given function is |
303 | /// provided the lane index and lane value as a `u64`. (The high 128-bits |
304 | /// of each vector are ignored.) |
305 | /// |
306 | /// If `f` returns `Some`, then iteration over the lanes is stopped and the |
307 | /// value is returned. Otherwise, this returns `None`. |
308 | /// |
309 | /// # Safety |
310 | /// |
311 | /// Callers must ensure that this is okay to call in the current target for |
312 | /// the current CPU. |
313 | unsafe fn for_each_low_64bit_lane<T>( |
314 | self, |
315 | vector2: Self, |
316 | f: impl FnMut(usize, u64) -> Option<T>, |
317 | ) -> Option<T>; |
318 | } |
319 | |
320 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
321 | mod x86_64_ssse3 { |
322 | use core::arch::x86_64::*; |
323 | |
324 | use crate::util::int::{I32, I8}; |
325 | |
326 | use super::Vector; |
327 | |
328 | impl Vector for __m128i { |
329 | const BITS: usize = 128; |
330 | const BYTES: usize = 16; |
331 | |
332 | #[inline (always)] |
333 | unsafe fn splat(byte: u8) -> __m128i { |
334 | _mm_set1_epi8(i8::from_bits(byte)) |
335 | } |
336 | |
337 | #[inline (always)] |
338 | unsafe fn load_unaligned(data: *const u8) -> __m128i { |
339 | _mm_loadu_si128(data.cast::<__m128i>()) |
340 | } |
341 | |
342 | #[inline (always)] |
343 | unsafe fn is_zero(self) -> bool { |
344 | let cmp = self.cmpeq(Self::splat(0)); |
345 | _mm_movemask_epi8(cmp).to_bits() == 0xFFFF |
346 | } |
347 | |
348 | #[inline (always)] |
349 | unsafe fn cmpeq(self, vector2: Self) -> __m128i { |
350 | _mm_cmpeq_epi8(self, vector2) |
351 | } |
352 | |
353 | #[inline (always)] |
354 | unsafe fn and(self, vector2: Self) -> __m128i { |
355 | _mm_and_si128(self, vector2) |
356 | } |
357 | |
358 | #[inline (always)] |
359 | unsafe fn or(self, vector2: Self) -> __m128i { |
360 | _mm_or_si128(self, vector2) |
361 | } |
362 | |
363 | #[inline (always)] |
364 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
365 | // Apparently there is no _mm_srli_epi8, so we emulate it by |
366 | // shifting 16-bit integers and masking out the high nybble of each |
367 | // 8-bit lane (since that nybble will contain bits from the low |
368 | // nybble of the previous lane). |
369 | let lomask = Self::splat(0xF); |
370 | _mm_srli_epi16(self, BITS).and(lomask) |
371 | } |
372 | |
373 | #[inline (always)] |
374 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
375 | _mm_alignr_epi8(self, vector2, 15) |
376 | } |
377 | |
378 | #[inline (always)] |
379 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
380 | _mm_alignr_epi8(self, vector2, 14) |
381 | } |
382 | |
383 | #[inline (always)] |
384 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
385 | _mm_alignr_epi8(self, vector2, 13) |
386 | } |
387 | |
388 | #[inline (always)] |
389 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
390 | _mm_shuffle_epi8(self, indices) |
391 | } |
392 | |
393 | #[inline (always)] |
394 | unsafe fn for_each_64bit_lane<T>( |
395 | self, |
396 | mut f: impl FnMut(usize, u64) -> Option<T>, |
397 | ) -> Option<T> { |
398 | // We could just use _mm_extract_epi64 here, but that requires |
399 | // SSE 4.1. It isn't necessarily a problem to just require SSE 4.1, |
400 | // but everything else works with SSSE3 so we stick to that subset. |
401 | let lanes: [u64; 2] = core::mem::transmute(self); |
402 | if let Some(t) = f(0, lanes[0]) { |
403 | return Some(t); |
404 | } |
405 | if let Some(t) = f(1, lanes[1]) { |
406 | return Some(t); |
407 | } |
408 | None |
409 | } |
410 | } |
411 | } |
412 | |
413 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
414 | mod x86_64_avx2 { |
415 | use core::arch::x86_64::*; |
416 | |
417 | use crate::util::int::{I32, I64, I8}; |
418 | |
419 | use super::{FatVector, Vector}; |
420 | |
421 | impl Vector for __m256i { |
422 | const BITS: usize = 256; |
423 | const BYTES: usize = 32; |
424 | |
425 | #[inline (always)] |
426 | unsafe fn splat(byte: u8) -> __m256i { |
427 | _mm256_set1_epi8(i8::from_bits(byte)) |
428 | } |
429 | |
430 | #[inline (always)] |
431 | unsafe fn load_unaligned(data: *const u8) -> __m256i { |
432 | _mm256_loadu_si256(data.cast::<__m256i>()) |
433 | } |
434 | |
435 | #[inline (always)] |
436 | unsafe fn is_zero(self) -> bool { |
437 | let cmp = self.cmpeq(Self::splat(0)); |
438 | _mm256_movemask_epi8(cmp).to_bits() == 0xFFFFFFFF |
439 | } |
440 | |
441 | #[inline (always)] |
442 | unsafe fn cmpeq(self, vector2: Self) -> __m256i { |
443 | _mm256_cmpeq_epi8(self, vector2) |
444 | } |
445 | |
446 | #[inline (always)] |
447 | unsafe fn and(self, vector2: Self) -> __m256i { |
448 | _mm256_and_si256(self, vector2) |
449 | } |
450 | |
451 | #[inline (always)] |
452 | unsafe fn or(self, vector2: Self) -> __m256i { |
453 | _mm256_or_si256(self, vector2) |
454 | } |
455 | |
456 | #[inline (always)] |
457 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
458 | let lomask = Self::splat(0xF); |
459 | _mm256_srli_epi16(self, BITS).and(lomask) |
460 | } |
461 | |
462 | #[inline (always)] |
463 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
464 | // Credit goes to jneem for figuring this out: |
465 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
466 | // |
467 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
468 | // PALIGNR instructions, which is not what we want, so we need to |
469 | // do some extra shuffling. |
470 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
471 | _mm256_alignr_epi8(self, v, 15) |
472 | } |
473 | |
474 | #[inline (always)] |
475 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
476 | // Credit goes to jneem for figuring this out: |
477 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
478 | // |
479 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
480 | // PALIGNR instructions, which is not what we want, so we need to |
481 | // do some extra shuffling. |
482 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
483 | _mm256_alignr_epi8(self, v, 14) |
484 | } |
485 | |
486 | #[inline (always)] |
487 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
488 | // Credit goes to jneem for figuring this out: |
489 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
490 | // |
491 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
492 | // PALIGNR instructions, which is not what we want, so we need to |
493 | // do some extra shuffling. |
494 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
495 | _mm256_alignr_epi8(self, v, 13) |
496 | } |
497 | |
498 | #[inline (always)] |
499 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
500 | _mm256_shuffle_epi8(self, indices) |
501 | } |
502 | |
503 | #[inline (always)] |
504 | unsafe fn for_each_64bit_lane<T>( |
505 | self, |
506 | mut f: impl FnMut(usize, u64) -> Option<T>, |
507 | ) -> Option<T> { |
508 | // NOTE: At one point in the past, I used transmute to this to |
509 | // get a [u64; 4], but it turned out to lead to worse codegen IIRC. |
510 | // I've tried it more recently, and it looks like that's no longer |
511 | // the case. But since there's no difference, we stick with the |
512 | // slightly more complicated but transmute-free version. |
513 | let lane = _mm256_extract_epi64(self, 0).to_bits(); |
514 | if let Some(t) = f(0, lane) { |
515 | return Some(t); |
516 | } |
517 | let lane = _mm256_extract_epi64(self, 1).to_bits(); |
518 | if let Some(t) = f(1, lane) { |
519 | return Some(t); |
520 | } |
521 | let lane = _mm256_extract_epi64(self, 2).to_bits(); |
522 | if let Some(t) = f(2, lane) { |
523 | return Some(t); |
524 | } |
525 | let lane = _mm256_extract_epi64(self, 3).to_bits(); |
526 | if let Some(t) = f(3, lane) { |
527 | return Some(t); |
528 | } |
529 | None |
530 | } |
531 | } |
532 | |
533 | impl FatVector for __m256i { |
534 | type Half = __m128i; |
535 | |
536 | #[inline (always)] |
537 | unsafe fn load_half_unaligned(data: *const u8) -> Self { |
538 | let half = Self::Half::load_unaligned(data); |
539 | _mm256_broadcastsi128_si256(half) |
540 | } |
541 | |
542 | #[inline (always)] |
543 | unsafe fn half_shift_in_one_byte(self, vector2: Self) -> Self { |
544 | _mm256_alignr_epi8(self, vector2, 15) |
545 | } |
546 | |
547 | #[inline (always)] |
548 | unsafe fn half_shift_in_two_bytes(self, vector2: Self) -> Self { |
549 | _mm256_alignr_epi8(self, vector2, 14) |
550 | } |
551 | |
552 | #[inline (always)] |
553 | unsafe fn half_shift_in_three_bytes(self, vector2: Self) -> Self { |
554 | _mm256_alignr_epi8(self, vector2, 13) |
555 | } |
556 | |
557 | #[inline (always)] |
558 | unsafe fn swap_halves(self) -> Self { |
559 | _mm256_permute4x64_epi64(self, 0x4E) |
560 | } |
561 | |
562 | #[inline (always)] |
563 | unsafe fn interleave_low_8bit_lanes(self, vector2: Self) -> Self { |
564 | _mm256_unpacklo_epi8(self, vector2) |
565 | } |
566 | |
567 | #[inline (always)] |
568 | unsafe fn interleave_high_8bit_lanes(self, vector2: Self) -> Self { |
569 | _mm256_unpackhi_epi8(self, vector2) |
570 | } |
571 | |
572 | #[inline (always)] |
573 | unsafe fn for_each_low_64bit_lane<T>( |
574 | self, |
575 | vector2: Self, |
576 | mut f: impl FnMut(usize, u64) -> Option<T>, |
577 | ) -> Option<T> { |
578 | let lane = _mm256_extract_epi64(self, 0).to_bits(); |
579 | if let Some(t) = f(0, lane) { |
580 | return Some(t); |
581 | } |
582 | let lane = _mm256_extract_epi64(self, 1).to_bits(); |
583 | if let Some(t) = f(1, lane) { |
584 | return Some(t); |
585 | } |
586 | let lane = _mm256_extract_epi64(vector2, 0).to_bits(); |
587 | if let Some(t) = f(2, lane) { |
588 | return Some(t); |
589 | } |
590 | let lane = _mm256_extract_epi64(vector2, 1).to_bits(); |
591 | if let Some(t) = f(3, lane) { |
592 | return Some(t); |
593 | } |
594 | None |
595 | } |
596 | } |
597 | } |
598 | |
599 | #[cfg (all( |
600 | target_arch = "aarch64" , |
601 | target_feature = "neon" , |
602 | target_endian = "little" |
603 | ))] |
604 | mod aarch64_neon { |
605 | use core::arch::aarch64::*; |
606 | |
607 | use super::Vector; |
608 | |
609 | impl Vector for uint8x16_t { |
610 | const BITS: usize = 128; |
611 | const BYTES: usize = 16; |
612 | |
613 | #[inline (always)] |
614 | unsafe fn splat(byte: u8) -> uint8x16_t { |
615 | vdupq_n_u8(byte) |
616 | } |
617 | |
618 | #[inline (always)] |
619 | unsafe fn load_unaligned(data: *const u8) -> uint8x16_t { |
620 | vld1q_u8(data) |
621 | } |
622 | |
623 | #[inline (always)] |
624 | unsafe fn is_zero(self) -> bool { |
625 | // Could also use vmaxvq_u8. |
626 | // ... I tried that and couldn't observe any meaningful difference |
627 | // in benchmarks. |
628 | let maxes = vreinterpretq_u64_u8(vpmaxq_u8(self, self)); |
629 | vgetq_lane_u64(maxes, 0) == 0 |
630 | } |
631 | |
632 | #[inline (always)] |
633 | unsafe fn cmpeq(self, vector2: Self) -> uint8x16_t { |
634 | vceqq_u8(self, vector2) |
635 | } |
636 | |
637 | #[inline (always)] |
638 | unsafe fn and(self, vector2: Self) -> uint8x16_t { |
639 | vandq_u8(self, vector2) |
640 | } |
641 | |
642 | #[inline (always)] |
643 | unsafe fn or(self, vector2: Self) -> uint8x16_t { |
644 | vorrq_u8(self, vector2) |
645 | } |
646 | |
647 | #[inline (always)] |
648 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
649 | debug_assert!(BITS <= 7); |
650 | vshrq_n_u8(self, BITS) |
651 | } |
652 | |
653 | #[inline (always)] |
654 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
655 | vextq_u8(vector2, self, 15) |
656 | } |
657 | |
658 | #[inline (always)] |
659 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
660 | vextq_u8(vector2, self, 14) |
661 | } |
662 | |
663 | #[inline (always)] |
664 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
665 | vextq_u8(vector2, self, 13) |
666 | } |
667 | |
668 | #[inline (always)] |
669 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
670 | vqtbl1q_u8(self, indices) |
671 | } |
672 | |
673 | #[inline (always)] |
674 | unsafe fn for_each_64bit_lane<T>( |
675 | self, |
676 | mut f: impl FnMut(usize, u64) -> Option<T>, |
677 | ) -> Option<T> { |
678 | let this = vreinterpretq_u64_u8(self); |
679 | let lane = vgetq_lane_u64(this, 0); |
680 | if let Some(t) = f(0, lane) { |
681 | return Some(t); |
682 | } |
683 | let lane = vgetq_lane_u64(this, 1); |
684 | if let Some(t) = f(1, lane) { |
685 | return Some(t); |
686 | } |
687 | None |
688 | } |
689 | } |
690 | } |
691 | |
692 | #[cfg (all(test, target_arch = "x86_64" , target_feature = "sse2" ))] |
693 | mod tests_x86_64_ssse3 { |
694 | use core::arch::x86_64::*; |
695 | |
696 | use crate::util::int::{I32, U32}; |
697 | |
698 | use super::*; |
699 | |
700 | fn is_runnable() -> bool { |
701 | std::is_x86_feature_detected!("ssse3" ) |
702 | } |
703 | |
704 | #[target_feature (enable = "ssse3" )] |
705 | unsafe fn load(lanes: [u8; 16]) -> __m128i { |
706 | __m128i::load_unaligned(&lanes as *const u8) |
707 | } |
708 | |
709 | #[target_feature (enable = "ssse3" )] |
710 | unsafe fn unload(v: __m128i) -> [u8; 16] { |
711 | [ |
712 | _mm_extract_epi8(v, 0).to_bits().low_u8(), |
713 | _mm_extract_epi8(v, 1).to_bits().low_u8(), |
714 | _mm_extract_epi8(v, 2).to_bits().low_u8(), |
715 | _mm_extract_epi8(v, 3).to_bits().low_u8(), |
716 | _mm_extract_epi8(v, 4).to_bits().low_u8(), |
717 | _mm_extract_epi8(v, 5).to_bits().low_u8(), |
718 | _mm_extract_epi8(v, 6).to_bits().low_u8(), |
719 | _mm_extract_epi8(v, 7).to_bits().low_u8(), |
720 | _mm_extract_epi8(v, 8).to_bits().low_u8(), |
721 | _mm_extract_epi8(v, 9).to_bits().low_u8(), |
722 | _mm_extract_epi8(v, 10).to_bits().low_u8(), |
723 | _mm_extract_epi8(v, 11).to_bits().low_u8(), |
724 | _mm_extract_epi8(v, 12).to_bits().low_u8(), |
725 | _mm_extract_epi8(v, 13).to_bits().low_u8(), |
726 | _mm_extract_epi8(v, 14).to_bits().low_u8(), |
727 | _mm_extract_epi8(v, 15).to_bits().low_u8(), |
728 | ] |
729 | } |
730 | |
731 | #[test ] |
732 | fn vector_splat() { |
733 | #[target_feature (enable = "ssse3" )] |
734 | unsafe fn test() { |
735 | let v = __m128i::splat(0xAF); |
736 | assert_eq!( |
737 | unload(v), |
738 | [ |
739 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
740 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF |
741 | ] |
742 | ); |
743 | } |
744 | if !is_runnable() { |
745 | return; |
746 | } |
747 | unsafe { test () } |
748 | } |
749 | |
750 | #[test ] |
751 | fn vector_is_zero() { |
752 | #[target_feature (enable = "ssse3" )] |
753 | unsafe fn test() { |
754 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
755 | assert!(!v.is_zero()); |
756 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
757 | assert!(v.is_zero()); |
758 | } |
759 | if !is_runnable() { |
760 | return; |
761 | } |
762 | unsafe { test () } |
763 | } |
764 | |
765 | #[test ] |
766 | fn vector_cmpeq() { |
767 | #[target_feature (enable = "ssse3" )] |
768 | unsafe fn test() { |
769 | let v1 = |
770 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1]); |
771 | let v2 = |
772 | load([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); |
773 | assert_eq!( |
774 | unload(v1.cmpeq(v2)), |
775 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF] |
776 | ); |
777 | } |
778 | if !is_runnable() { |
779 | return; |
780 | } |
781 | unsafe { test () } |
782 | } |
783 | |
784 | #[test ] |
785 | fn vector_and() { |
786 | #[target_feature (enable = "ssse3" )] |
787 | unsafe fn test() { |
788 | let v1 = |
789 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
790 | let v2 = |
791 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
792 | assert_eq!( |
793 | unload(v1.and(v2)), |
794 | [0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
795 | ); |
796 | } |
797 | if !is_runnable() { |
798 | return; |
799 | } |
800 | unsafe { test () } |
801 | } |
802 | |
803 | #[test ] |
804 | fn vector_or() { |
805 | #[target_feature (enable = "ssse3" )] |
806 | unsafe fn test() { |
807 | let v1 = |
808 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
809 | let v2 = |
810 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
811 | assert_eq!( |
812 | unload(v1.or(v2)), |
813 | [0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
814 | ); |
815 | } |
816 | if !is_runnable() { |
817 | return; |
818 | } |
819 | unsafe { test () } |
820 | } |
821 | |
822 | #[test ] |
823 | fn vector_shift_8bit_lane_right() { |
824 | #[target_feature (enable = "ssse3" )] |
825 | unsafe fn test() { |
826 | let v = load([ |
827 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
828 | ]); |
829 | assert_eq!( |
830 | unload(v.shift_8bit_lane_right::<2>()), |
831 | [0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
832 | ); |
833 | } |
834 | if !is_runnable() { |
835 | return; |
836 | } |
837 | unsafe { test () } |
838 | } |
839 | |
840 | #[test ] |
841 | fn vector_shift_in_one_byte() { |
842 | #[target_feature (enable = "ssse3" )] |
843 | unsafe fn test() { |
844 | let v1 = |
845 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
846 | let v2 = load([ |
847 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
848 | ]); |
849 | assert_eq!( |
850 | unload(v1.shift_in_one_byte(v2)), |
851 | [32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], |
852 | ); |
853 | } |
854 | if !is_runnable() { |
855 | return; |
856 | } |
857 | unsafe { test () } |
858 | } |
859 | |
860 | #[test ] |
861 | fn vector_shift_in_two_bytes() { |
862 | #[target_feature (enable = "ssse3" )] |
863 | unsafe fn test() { |
864 | let v1 = |
865 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
866 | let v2 = load([ |
867 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
868 | ]); |
869 | assert_eq!( |
870 | unload(v1.shift_in_two_bytes(v2)), |
871 | [31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
872 | ); |
873 | } |
874 | if !is_runnable() { |
875 | return; |
876 | } |
877 | unsafe { test () } |
878 | } |
879 | |
880 | #[test ] |
881 | fn vector_shift_in_three_bytes() { |
882 | #[target_feature (enable = "ssse3" )] |
883 | unsafe fn test() { |
884 | let v1 = |
885 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
886 | let v2 = load([ |
887 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
888 | ]); |
889 | assert_eq!( |
890 | unload(v1.shift_in_three_bytes(v2)), |
891 | [30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], |
892 | ); |
893 | } |
894 | if !is_runnable() { |
895 | return; |
896 | } |
897 | unsafe { test () } |
898 | } |
899 | |
900 | #[test ] |
901 | fn vector_shuffle_bytes() { |
902 | #[target_feature (enable = "ssse3" )] |
903 | unsafe fn test() { |
904 | let v1 = |
905 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
906 | let v2 = |
907 | load([0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]); |
908 | assert_eq!( |
909 | unload(v1.shuffle_bytes(v2)), |
910 | [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13], |
911 | ); |
912 | } |
913 | if !is_runnable() { |
914 | return; |
915 | } |
916 | unsafe { test () } |
917 | } |
918 | |
919 | #[test ] |
920 | fn vector_for_each_64bit_lane() { |
921 | #[target_feature (enable = "ssse3" )] |
922 | unsafe fn test() { |
923 | let v = load([ |
924 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
925 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, |
926 | ]); |
927 | let mut lanes = [0u64; 2]; |
928 | v.for_each_64bit_lane(|i, lane| { |
929 | lanes[i] = lane; |
930 | None::<()> |
931 | }); |
932 | assert_eq!(lanes, [0x0807060504030201, 0x100F0E0D0C0B0A09],); |
933 | } |
934 | if !is_runnable() { |
935 | return; |
936 | } |
937 | unsafe { test () } |
938 | } |
939 | } |
940 | |
941 | #[cfg (all(test, target_arch = "x86_64" , target_feature = "sse2" ))] |
942 | mod tests_x86_64_avx2 { |
943 | use core::arch::x86_64::*; |
944 | |
945 | use crate::util::int::{I32, U32}; |
946 | |
947 | use super::*; |
948 | |
949 | fn is_runnable() -> bool { |
950 | std::is_x86_feature_detected!("avx2" ) |
951 | } |
952 | |
953 | #[target_feature (enable = "avx2" )] |
954 | unsafe fn load(lanes: [u8; 32]) -> __m256i { |
955 | __m256i::load_unaligned(&lanes as *const u8) |
956 | } |
957 | |
958 | #[target_feature (enable = "avx2" )] |
959 | unsafe fn load_half(lanes: [u8; 16]) -> __m256i { |
960 | __m256i::load_half_unaligned(&lanes as *const u8) |
961 | } |
962 | |
963 | #[target_feature (enable = "avx2" )] |
964 | unsafe fn unload(v: __m256i) -> [u8; 32] { |
965 | [ |
966 | _mm256_extract_epi8(v, 0).to_bits().low_u8(), |
967 | _mm256_extract_epi8(v, 1).to_bits().low_u8(), |
968 | _mm256_extract_epi8(v, 2).to_bits().low_u8(), |
969 | _mm256_extract_epi8(v, 3).to_bits().low_u8(), |
970 | _mm256_extract_epi8(v, 4).to_bits().low_u8(), |
971 | _mm256_extract_epi8(v, 5).to_bits().low_u8(), |
972 | _mm256_extract_epi8(v, 6).to_bits().low_u8(), |
973 | _mm256_extract_epi8(v, 7).to_bits().low_u8(), |
974 | _mm256_extract_epi8(v, 8).to_bits().low_u8(), |
975 | _mm256_extract_epi8(v, 9).to_bits().low_u8(), |
976 | _mm256_extract_epi8(v, 10).to_bits().low_u8(), |
977 | _mm256_extract_epi8(v, 11).to_bits().low_u8(), |
978 | _mm256_extract_epi8(v, 12).to_bits().low_u8(), |
979 | _mm256_extract_epi8(v, 13).to_bits().low_u8(), |
980 | _mm256_extract_epi8(v, 14).to_bits().low_u8(), |
981 | _mm256_extract_epi8(v, 15).to_bits().low_u8(), |
982 | _mm256_extract_epi8(v, 16).to_bits().low_u8(), |
983 | _mm256_extract_epi8(v, 17).to_bits().low_u8(), |
984 | _mm256_extract_epi8(v, 18).to_bits().low_u8(), |
985 | _mm256_extract_epi8(v, 19).to_bits().low_u8(), |
986 | _mm256_extract_epi8(v, 20).to_bits().low_u8(), |
987 | _mm256_extract_epi8(v, 21).to_bits().low_u8(), |
988 | _mm256_extract_epi8(v, 22).to_bits().low_u8(), |
989 | _mm256_extract_epi8(v, 23).to_bits().low_u8(), |
990 | _mm256_extract_epi8(v, 24).to_bits().low_u8(), |
991 | _mm256_extract_epi8(v, 25).to_bits().low_u8(), |
992 | _mm256_extract_epi8(v, 26).to_bits().low_u8(), |
993 | _mm256_extract_epi8(v, 27).to_bits().low_u8(), |
994 | _mm256_extract_epi8(v, 28).to_bits().low_u8(), |
995 | _mm256_extract_epi8(v, 29).to_bits().low_u8(), |
996 | _mm256_extract_epi8(v, 30).to_bits().low_u8(), |
997 | _mm256_extract_epi8(v, 31).to_bits().low_u8(), |
998 | ] |
999 | } |
1000 | |
1001 | #[test ] |
1002 | fn vector_splat() { |
1003 | #[target_feature (enable = "avx2" )] |
1004 | unsafe fn test() { |
1005 | let v = __m256i::splat(0xAF); |
1006 | assert_eq!( |
1007 | unload(v), |
1008 | [ |
1009 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1010 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1011 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1012 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1013 | ] |
1014 | ); |
1015 | } |
1016 | if !is_runnable() { |
1017 | return; |
1018 | } |
1019 | unsafe { test () } |
1020 | } |
1021 | |
1022 | #[test ] |
1023 | fn vector_is_zero() { |
1024 | #[target_feature (enable = "avx2" )] |
1025 | unsafe fn test() { |
1026 | let v = load([ |
1027 | 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1028 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1029 | ]); |
1030 | assert!(!v.is_zero()); |
1031 | let v = load([ |
1032 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1033 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1034 | ]); |
1035 | assert!(v.is_zero()); |
1036 | } |
1037 | if !is_runnable() { |
1038 | return; |
1039 | } |
1040 | unsafe { test () } |
1041 | } |
1042 | |
1043 | #[test ] |
1044 | fn vector_cmpeq() { |
1045 | #[target_feature (enable = "avx2" )] |
1046 | unsafe fn test() { |
1047 | let v1 = load([ |
1048 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1049 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, |
1050 | ]); |
1051 | let v2 = load([ |
1052 | 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, |
1053 | 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, |
1054 | ]); |
1055 | assert_eq!( |
1056 | unload(v1.cmpeq(v2)), |
1057 | [ |
1058 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1059 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF |
1060 | ] |
1061 | ); |
1062 | } |
1063 | if !is_runnable() { |
1064 | return; |
1065 | } |
1066 | unsafe { test () } |
1067 | } |
1068 | |
1069 | #[test ] |
1070 | fn vector_and() { |
1071 | #[target_feature (enable = "avx2" )] |
1072 | unsafe fn test() { |
1073 | let v1 = load([ |
1074 | 0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1075 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1076 | ]); |
1077 | let v2 = load([ |
1078 | 0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1079 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1080 | ]); |
1081 | assert_eq!( |
1082 | unload(v1.and(v2)), |
1083 | [ |
1084 | 0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1085 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1086 | ] |
1087 | ); |
1088 | } |
1089 | if !is_runnable() { |
1090 | return; |
1091 | } |
1092 | unsafe { test () } |
1093 | } |
1094 | |
1095 | #[test ] |
1096 | fn vector_or() { |
1097 | #[target_feature (enable = "avx2" )] |
1098 | unsafe fn test() { |
1099 | let v1 = load([ |
1100 | 0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1101 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1102 | ]); |
1103 | let v2 = load([ |
1104 | 0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1105 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1106 | ]); |
1107 | assert_eq!( |
1108 | unload(v1.or(v2)), |
1109 | [ |
1110 | 0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1111 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1112 | ] |
1113 | ); |
1114 | } |
1115 | if !is_runnable() { |
1116 | return; |
1117 | } |
1118 | unsafe { test () } |
1119 | } |
1120 | |
1121 | #[test ] |
1122 | fn vector_shift_8bit_lane_right() { |
1123 | #[target_feature (enable = "avx2" )] |
1124 | unsafe fn test() { |
1125 | let v = load([ |
1126 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1127 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1128 | ]); |
1129 | assert_eq!( |
1130 | unload(v.shift_8bit_lane_right::<2>()), |
1131 | [ |
1132 | 0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1133 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1134 | ] |
1135 | ); |
1136 | } |
1137 | if !is_runnable() { |
1138 | return; |
1139 | } |
1140 | unsafe { test () } |
1141 | } |
1142 | |
1143 | #[test ] |
1144 | fn vector_shift_in_one_byte() { |
1145 | #[target_feature (enable = "avx2" )] |
1146 | unsafe fn test() { |
1147 | let v1 = load([ |
1148 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1149 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1150 | ]); |
1151 | let v2 = load([ |
1152 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1153 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1154 | 63, 64, |
1155 | ]); |
1156 | assert_eq!( |
1157 | unload(v1.shift_in_one_byte(v2)), |
1158 | [ |
1159 | 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
1160 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
1161 | 31, |
1162 | ], |
1163 | ); |
1164 | } |
1165 | if !is_runnable() { |
1166 | return; |
1167 | } |
1168 | unsafe { test () } |
1169 | } |
1170 | |
1171 | #[test ] |
1172 | fn vector_shift_in_two_bytes() { |
1173 | #[target_feature (enable = "avx2" )] |
1174 | unsafe fn test() { |
1175 | let v1 = load([ |
1176 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1177 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1178 | ]); |
1179 | let v2 = load([ |
1180 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1181 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1182 | 63, 64, |
1183 | ]); |
1184 | assert_eq!( |
1185 | unload(v1.shift_in_two_bytes(v2)), |
1186 | [ |
1187 | 63, 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
1188 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, |
1189 | 30, |
1190 | ], |
1191 | ); |
1192 | } |
1193 | if !is_runnable() { |
1194 | return; |
1195 | } |
1196 | unsafe { test () } |
1197 | } |
1198 | |
1199 | #[test ] |
1200 | fn vector_shift_in_three_bytes() { |
1201 | #[target_feature (enable = "avx2" )] |
1202 | unsafe fn test() { |
1203 | let v1 = load([ |
1204 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1205 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1206 | ]); |
1207 | let v2 = load([ |
1208 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1209 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1210 | 63, 64, |
1211 | ]); |
1212 | assert_eq!( |
1213 | unload(v1.shift_in_three_bytes(v2)), |
1214 | [ |
1215 | 62, 63, 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
1216 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, |
1217 | 29, |
1218 | ], |
1219 | ); |
1220 | } |
1221 | if !is_runnable() { |
1222 | return; |
1223 | } |
1224 | unsafe { test () } |
1225 | } |
1226 | |
1227 | #[test ] |
1228 | fn vector_shuffle_bytes() { |
1229 | #[target_feature (enable = "avx2" )] |
1230 | unsafe fn test() { |
1231 | let v1 = load([ |
1232 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1233 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1234 | ]); |
1235 | let v2 = load([ |
1236 | 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, |
1237 | 16, 16, 20, 20, 20, 20, 24, 24, 24, 24, 28, 28, 28, 28, |
1238 | ]); |
1239 | assert_eq!( |
1240 | unload(v1.shuffle_bytes(v2)), |
1241 | [ |
1242 | 1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13, 17, |
1243 | 17, 17, 17, 21, 21, 21, 21, 25, 25, 25, 25, 29, 29, 29, |
1244 | 29 |
1245 | ], |
1246 | ); |
1247 | } |
1248 | if !is_runnable() { |
1249 | return; |
1250 | } |
1251 | unsafe { test () } |
1252 | } |
1253 | |
1254 | #[test ] |
1255 | fn vector_for_each_64bit_lane() { |
1256 | #[target_feature (enable = "avx2" )] |
1257 | unsafe fn test() { |
1258 | let v = load([ |
1259 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
1260 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, |
1261 | 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, |
1262 | 0x1F, 0x20, |
1263 | ]); |
1264 | let mut lanes = [0u64; 4]; |
1265 | v.for_each_64bit_lane(|i, lane| { |
1266 | lanes[i] = lane; |
1267 | None::<()> |
1268 | }); |
1269 | assert_eq!( |
1270 | lanes, |
1271 | [ |
1272 | 0x0807060504030201, |
1273 | 0x100F0E0D0C0B0A09, |
1274 | 0x1817161514131211, |
1275 | 0x201F1E1D1C1B1A19 |
1276 | ] |
1277 | ); |
1278 | } |
1279 | if !is_runnable() { |
1280 | return; |
1281 | } |
1282 | unsafe { test () } |
1283 | } |
1284 | |
1285 | #[test ] |
1286 | fn fat_vector_half_shift_in_one_byte() { |
1287 | #[target_feature (enable = "avx2" )] |
1288 | unsafe fn test() { |
1289 | let v1 = load_half([ |
1290 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
1291 | ]); |
1292 | let v2 = load_half([ |
1293 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1294 | ]); |
1295 | assert_eq!( |
1296 | unload(v1.half_shift_in_one_byte(v2)), |
1297 | [ |
1298 | 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, |
1299 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
1300 | ], |
1301 | ); |
1302 | } |
1303 | if !is_runnable() { |
1304 | return; |
1305 | } |
1306 | unsafe { test () } |
1307 | } |
1308 | |
1309 | #[test ] |
1310 | fn fat_vector_half_shift_in_two_bytes() { |
1311 | #[target_feature (enable = "avx2" )] |
1312 | unsafe fn test() { |
1313 | let v1 = load_half([ |
1314 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
1315 | ]); |
1316 | let v2 = load_half([ |
1317 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1318 | ]); |
1319 | assert_eq!( |
1320 | unload(v1.half_shift_in_two_bytes(v2)), |
1321 | [ |
1322 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31, |
1323 | 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
1324 | ], |
1325 | ); |
1326 | } |
1327 | if !is_runnable() { |
1328 | return; |
1329 | } |
1330 | unsafe { test () } |
1331 | } |
1332 | |
1333 | #[test ] |
1334 | fn fat_vector_half_shift_in_three_bytes() { |
1335 | #[target_feature (enable = "avx2" )] |
1336 | unsafe fn test() { |
1337 | let v1 = load_half([ |
1338 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
1339 | ]); |
1340 | let v2 = load_half([ |
1341 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1342 | ]); |
1343 | assert_eq!( |
1344 | unload(v1.half_shift_in_three_bytes(v2)), |
1345 | [ |
1346 | 30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 30, |
1347 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |
1348 | ], |
1349 | ); |
1350 | } |
1351 | if !is_runnable() { |
1352 | return; |
1353 | } |
1354 | unsafe { test () } |
1355 | } |
1356 | |
1357 | #[test ] |
1358 | fn fat_vector_swap_halves() { |
1359 | #[target_feature (enable = "avx2" )] |
1360 | unsafe fn test() { |
1361 | let v = load([ |
1362 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1363 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1364 | ]); |
1365 | assert_eq!( |
1366 | unload(v.swap_halves()), |
1367 | [ |
1368 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
1369 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
1370 | 16, |
1371 | ], |
1372 | ); |
1373 | } |
1374 | if !is_runnable() { |
1375 | return; |
1376 | } |
1377 | unsafe { test () } |
1378 | } |
1379 | |
1380 | #[test ] |
1381 | fn fat_vector_interleave_low_8bit_lanes() { |
1382 | #[target_feature (enable = "avx2" )] |
1383 | unsafe fn test() { |
1384 | let v1 = load([ |
1385 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1386 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1387 | ]); |
1388 | let v2 = load([ |
1389 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1390 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1391 | 63, 64, |
1392 | ]); |
1393 | assert_eq!( |
1394 | unload(v1.interleave_low_8bit_lanes(v2)), |
1395 | [ |
1396 | 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39, 8, 40, |
1397 | 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55, |
1398 | 24, 56, |
1399 | ], |
1400 | ); |
1401 | } |
1402 | if !is_runnable() { |
1403 | return; |
1404 | } |
1405 | unsafe { test () } |
1406 | } |
1407 | |
1408 | #[test ] |
1409 | fn fat_vector_interleave_high_8bit_lanes() { |
1410 | #[target_feature (enable = "avx2" )] |
1411 | unsafe fn test() { |
1412 | let v1 = load([ |
1413 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
1414 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1415 | ]); |
1416 | let v2 = load([ |
1417 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
1418 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
1419 | 63, 64, |
1420 | ]); |
1421 | assert_eq!( |
1422 | unload(v1.interleave_high_8bit_lanes(v2)), |
1423 | [ |
1424 | 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47, 16, |
1425 | 48, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, |
1426 | 63, 32, 64, |
1427 | ], |
1428 | ); |
1429 | } |
1430 | if !is_runnable() { |
1431 | return; |
1432 | } |
1433 | unsafe { test () } |
1434 | } |
1435 | |
1436 | #[test ] |
1437 | fn fat_vector_for_each_low_64bit_lane() { |
1438 | #[target_feature (enable = "avx2" )] |
1439 | unsafe fn test() { |
1440 | let v1 = load([ |
1441 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
1442 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, |
1443 | 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, |
1444 | 0x1F, 0x20, |
1445 | ]); |
1446 | let v2 = load([ |
1447 | 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, |
1448 | 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, |
1449 | 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, |
1450 | 0x3F, 0x40, |
1451 | ]); |
1452 | let mut lanes = [0u64; 4]; |
1453 | v1.for_each_low_64bit_lane(v2, |i, lane| { |
1454 | lanes[i] = lane; |
1455 | None::<()> |
1456 | }); |
1457 | assert_eq!( |
1458 | lanes, |
1459 | [ |
1460 | 0x0807060504030201, |
1461 | 0x100F0E0D0C0B0A09, |
1462 | 0x2827262524232221, |
1463 | 0x302F2E2D2C2B2A29 |
1464 | ] |
1465 | ); |
1466 | } |
1467 | if !is_runnable() { |
1468 | return; |
1469 | } |
1470 | unsafe { test () } |
1471 | } |
1472 | } |
1473 | |
1474 | #[cfg (all(test, target_arch = "aarch64" , target_feature = "neon" ))] |
1475 | mod tests_aarch64_neon { |
1476 | use core::arch::aarch64::*; |
1477 | |
1478 | use super::*; |
1479 | |
1480 | #[target_feature (enable = "neon" )] |
1481 | unsafe fn load(lanes: [u8; 16]) -> uint8x16_t { |
1482 | uint8x16_t::load_unaligned(&lanes as *const u8) |
1483 | } |
1484 | |
1485 | #[target_feature (enable = "neon" )] |
1486 | unsafe fn unload(v: uint8x16_t) -> [u8; 16] { |
1487 | [ |
1488 | vgetq_lane_u8(v, 0), |
1489 | vgetq_lane_u8(v, 1), |
1490 | vgetq_lane_u8(v, 2), |
1491 | vgetq_lane_u8(v, 3), |
1492 | vgetq_lane_u8(v, 4), |
1493 | vgetq_lane_u8(v, 5), |
1494 | vgetq_lane_u8(v, 6), |
1495 | vgetq_lane_u8(v, 7), |
1496 | vgetq_lane_u8(v, 8), |
1497 | vgetq_lane_u8(v, 9), |
1498 | vgetq_lane_u8(v, 10), |
1499 | vgetq_lane_u8(v, 11), |
1500 | vgetq_lane_u8(v, 12), |
1501 | vgetq_lane_u8(v, 13), |
1502 | vgetq_lane_u8(v, 14), |
1503 | vgetq_lane_u8(v, 15), |
1504 | ] |
1505 | } |
1506 | |
1507 | // Example functions. These don't test the Vector traits, but rather, |
1508 | // specific NEON instructions. They are basically little experiments I |
1509 | // wrote to figure out what an instruction does since their descriptions |
1510 | // are so dense. I decided to keep the experiments around as example tests |
1511 | // in case there' useful. |
1512 | |
1513 | #[test ] |
1514 | fn example_vmaxvq_u8_non_zero() { |
1515 | #[target_feature (enable = "neon" )] |
1516 | unsafe fn example() { |
1517 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1518 | assert_eq!(vmaxvq_u8(v), 1); |
1519 | } |
1520 | unsafe { example() } |
1521 | } |
1522 | |
1523 | #[test ] |
1524 | fn example_vmaxvq_u8_zero() { |
1525 | #[target_feature (enable = "neon" )] |
1526 | unsafe fn example() { |
1527 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1528 | assert_eq!(vmaxvq_u8(v), 0); |
1529 | } |
1530 | unsafe { example() } |
1531 | } |
1532 | |
1533 | #[test ] |
1534 | fn example_vpmaxq_u8_non_zero() { |
1535 | #[target_feature (enable = "neon" )] |
1536 | unsafe fn example() { |
1537 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1538 | let r = vpmaxq_u8(v, v); |
1539 | assert_eq!( |
1540 | unload(r), |
1541 | [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] |
1542 | ); |
1543 | } |
1544 | unsafe { example() } |
1545 | } |
1546 | |
1547 | #[test ] |
1548 | fn example_vpmaxq_u8_self() { |
1549 | #[target_feature (enable = "neon" )] |
1550 | unsafe fn example() { |
1551 | let v = |
1552 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1553 | let r = vpmaxq_u8(v, v); |
1554 | assert_eq!( |
1555 | unload(r), |
1556 | [2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16] |
1557 | ); |
1558 | } |
1559 | unsafe { example() } |
1560 | } |
1561 | |
1562 | #[test ] |
1563 | fn example_vpmaxq_u8_other() { |
1564 | #[target_feature (enable = "neon" )] |
1565 | unsafe fn example() { |
1566 | let v1 = |
1567 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1568 | let v2 = load([ |
1569 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1570 | ]); |
1571 | let r = vpmaxq_u8(v1, v2); |
1572 | assert_eq!( |
1573 | unload(r), |
1574 | [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] |
1575 | ); |
1576 | } |
1577 | unsafe { example() } |
1578 | } |
1579 | |
1580 | // Now we test the actual methods on the Vector trait. |
1581 | |
1582 | #[test ] |
1583 | fn vector_splat() { |
1584 | #[target_feature (enable = "neon" )] |
1585 | unsafe fn test() { |
1586 | let v = uint8x16_t::splat(0xAF); |
1587 | assert_eq!( |
1588 | unload(v), |
1589 | [ |
1590 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
1591 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF |
1592 | ] |
1593 | ); |
1594 | } |
1595 | unsafe { test () } |
1596 | } |
1597 | |
1598 | #[test ] |
1599 | fn vector_is_zero() { |
1600 | #[target_feature (enable = "neon" )] |
1601 | unsafe fn test() { |
1602 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1603 | assert!(!v.is_zero()); |
1604 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1605 | assert!(v.is_zero()); |
1606 | } |
1607 | unsafe { test () } |
1608 | } |
1609 | |
1610 | #[test ] |
1611 | fn vector_cmpeq() { |
1612 | #[target_feature (enable = "neon" )] |
1613 | unsafe fn test() { |
1614 | let v1 = |
1615 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1]); |
1616 | let v2 = |
1617 | load([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); |
1618 | assert_eq!( |
1619 | unload(v1.cmpeq(v2)), |
1620 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF] |
1621 | ); |
1622 | } |
1623 | unsafe { test () } |
1624 | } |
1625 | |
1626 | #[test ] |
1627 | fn vector_and() { |
1628 | #[target_feature (enable = "neon" )] |
1629 | unsafe fn test() { |
1630 | let v1 = |
1631 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1632 | let v2 = |
1633 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1634 | assert_eq!( |
1635 | unload(v1.and(v2)), |
1636 | [0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
1637 | ); |
1638 | } |
1639 | unsafe { test () } |
1640 | } |
1641 | |
1642 | #[test ] |
1643 | fn vector_or() { |
1644 | #[target_feature (enable = "neon" )] |
1645 | unsafe fn test() { |
1646 | let v1 = |
1647 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1648 | let v2 = |
1649 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
1650 | assert_eq!( |
1651 | unload(v1.or(v2)), |
1652 | [0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
1653 | ); |
1654 | } |
1655 | unsafe { test () } |
1656 | } |
1657 | |
1658 | #[test ] |
1659 | fn vector_shift_8bit_lane_right() { |
1660 | #[target_feature (enable = "neon" )] |
1661 | unsafe fn test() { |
1662 | let v = load([ |
1663 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
1664 | ]); |
1665 | assert_eq!( |
1666 | unload(v.shift_8bit_lane_right::<2>()), |
1667 | [0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
1668 | ); |
1669 | } |
1670 | unsafe { test () } |
1671 | } |
1672 | |
1673 | #[test ] |
1674 | fn vector_shift_in_one_byte() { |
1675 | #[target_feature (enable = "neon" )] |
1676 | unsafe fn test() { |
1677 | let v1 = |
1678 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1679 | let v2 = load([ |
1680 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1681 | ]); |
1682 | assert_eq!( |
1683 | unload(v1.shift_in_one_byte(v2)), |
1684 | [32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], |
1685 | ); |
1686 | } |
1687 | unsafe { test () } |
1688 | } |
1689 | |
1690 | #[test ] |
1691 | fn vector_shift_in_two_bytes() { |
1692 | #[target_feature (enable = "neon" )] |
1693 | unsafe fn test() { |
1694 | let v1 = |
1695 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1696 | let v2 = load([ |
1697 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1698 | ]); |
1699 | assert_eq!( |
1700 | unload(v1.shift_in_two_bytes(v2)), |
1701 | [31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
1702 | ); |
1703 | } |
1704 | unsafe { test () } |
1705 | } |
1706 | |
1707 | #[test ] |
1708 | fn vector_shift_in_three_bytes() { |
1709 | #[target_feature (enable = "neon" )] |
1710 | unsafe fn test() { |
1711 | let v1 = |
1712 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1713 | let v2 = load([ |
1714 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
1715 | ]); |
1716 | assert_eq!( |
1717 | unload(v1.shift_in_three_bytes(v2)), |
1718 | [30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], |
1719 | ); |
1720 | } |
1721 | unsafe { test () } |
1722 | } |
1723 | |
1724 | #[test ] |
1725 | fn vector_shuffle_bytes() { |
1726 | #[target_feature (enable = "neon" )] |
1727 | unsafe fn test() { |
1728 | let v1 = |
1729 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
1730 | let v2 = |
1731 | load([0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]); |
1732 | assert_eq!( |
1733 | unload(v1.shuffle_bytes(v2)), |
1734 | [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13], |
1735 | ); |
1736 | } |
1737 | unsafe { test () } |
1738 | } |
1739 | |
1740 | #[test ] |
1741 | fn vector_for_each_64bit_lane() { |
1742 | #[target_feature (enable = "neon" )] |
1743 | unsafe fn test() { |
1744 | let v = load([ |
1745 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
1746 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, |
1747 | ]); |
1748 | let mut lanes = [0u64; 2]; |
1749 | v.for_each_64bit_lane(|i, lane| { |
1750 | lanes[i] = lane; |
1751 | None::<()> |
1752 | }); |
1753 | assert_eq!(lanes, [0x0807060504030201, 0x100F0E0D0C0B0A09],); |
1754 | } |
1755 | unsafe { test () } |
1756 | } |
1757 | } |
1758 | |