| 1 | use core::alloc::LayoutError;
|
| 2 | use core::mem::{self, ManuallyDrop, MaybeUninit};
|
| 3 | use core::ops::Drop;
|
| 4 | use core::ptr::{self, NonNull};
|
| 5 | use core::slice;
|
| 6 | use core::{cmp, fmt};
|
| 7 |
|
| 8 | use super::{
|
| 9 | alloc::{Allocator, Global, Layout},
|
| 10 | assume,
|
| 11 | boxed::Box,
|
| 12 | };
|
| 13 |
|
| 14 | #[cfg (not(no_global_oom_handling))]
|
| 15 | use super::alloc::handle_alloc_error;
|
| 16 |
|
| 17 | /// The error type for `try_reserve` methods.
|
| 18 | #[derive (Clone, PartialEq, Eq, Debug)]
|
| 19 | pub struct TryReserveError {
|
| 20 | kind: TryReserveErrorKind,
|
| 21 | }
|
| 22 |
|
| 23 | impl TryReserveError {
|
| 24 | /// Details about the allocation that caused the error
|
| 25 | pub fn kind(&self) -> TryReserveErrorKind {
|
| 26 | self.kind.clone()
|
| 27 | }
|
| 28 | }
|
| 29 |
|
| 30 | /// Details of the allocation that caused a `TryReserveError`
|
| 31 | #[derive (Clone, PartialEq, Eq, Debug)]
|
| 32 | pub enum TryReserveErrorKind {
|
| 33 | /// Error due to the computed capacity exceeding the collection's maximum
|
| 34 | /// (usually `isize::MAX` bytes).
|
| 35 | CapacityOverflow,
|
| 36 |
|
| 37 | /// The memory allocator returned an error
|
| 38 | AllocError {
|
| 39 | /// The layout of allocation request that failed
|
| 40 | layout: Layout,
|
| 41 |
|
| 42 | #[doc (hidden)]
|
| 43 | non_exhaustive: (),
|
| 44 | },
|
| 45 | }
|
| 46 |
|
| 47 | use TryReserveErrorKind::*;
|
| 48 |
|
| 49 | impl From<TryReserveErrorKind> for TryReserveError {
|
| 50 | #[inline (always)]
|
| 51 | fn from(kind: TryReserveErrorKind) -> Self {
|
| 52 | Self { kind }
|
| 53 | }
|
| 54 | }
|
| 55 |
|
| 56 | impl From<LayoutError> for TryReserveErrorKind {
|
| 57 | /// Always evaluates to [`TryReserveErrorKind::CapacityOverflow`].
|
| 58 | #[inline (always)]
|
| 59 | fn from(_: LayoutError) -> Self {
|
| 60 | TryReserveErrorKind::CapacityOverflow
|
| 61 | }
|
| 62 | }
|
| 63 |
|
| 64 | impl fmt::Display for TryReserveError {
|
| 65 | fn fmt(
|
| 66 | &self,
|
| 67 | fmt: &mut core::fmt::Formatter<'_>,
|
| 68 | ) -> core::result::Result<(), core::fmt::Error> {
|
| 69 | fmt.write_str(data:"memory allocation failed" )?;
|
| 70 | let reason: &'static str = match self.kind {
|
| 71 | TryReserveErrorKind::CapacityOverflow => {
|
| 72 | " because the computed capacity exceeded the collection's maximum"
|
| 73 | }
|
| 74 | TryReserveErrorKind::AllocError { .. } => {
|
| 75 | " because the memory allocator returned an error"
|
| 76 | }
|
| 77 | };
|
| 78 | fmt.write_str(data:reason)
|
| 79 | }
|
| 80 | }
|
| 81 |
|
| 82 | #[cfg (feature = "std" )]
|
| 83 | impl std::error::Error for TryReserveError {}
|
| 84 |
|
| 85 | #[cfg (not(no_global_oom_handling))]
|
| 86 | enum AllocInit {
|
| 87 | /// The contents of the new memory are uninitialized.
|
| 88 | Uninitialized,
|
| 89 | /// The new memory is guaranteed to be zeroed.
|
| 90 | Zeroed,
|
| 91 | }
|
| 92 |
|
| 93 | /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
|
| 94 | /// a buffer of memory on the heap without having to worry about all the corner cases
|
| 95 | /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
|
| 96 | /// In particular:
|
| 97 | ///
|
| 98 | /// * Produces `NonNull::dangling()` on zero-sized types.
|
| 99 | /// * Produces `NonNull::dangling()` on zero-length allocations.
|
| 100 | /// * Avoids freeing `NonNull::dangling()`.
|
| 101 | /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
|
| 102 | /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
|
| 103 | /// * Guards against overflowing your length.
|
| 104 | /// * Calls `handle_alloc_error` for fallible allocations.
|
| 105 | /// * Contains a `ptr::NonNull` and thus endows the user with all related benefits.
|
| 106 | /// * Uses the excess returned from the allocator to use the largest available capacity.
|
| 107 | ///
|
| 108 | /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
|
| 109 | /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
|
| 110 | /// to handle the actual things *stored* inside of a `RawVec`.
|
| 111 | ///
|
| 112 | /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
|
| 113 | /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
|
| 114 | /// `Box<[T]>`, since `capacity()` won't yield the length.
|
| 115 | #[allow (missing_debug_implementations)]
|
| 116 | pub(crate) struct RawVec<T, A: Allocator = Global> {
|
| 117 | ptr: NonNull<T>,
|
| 118 | cap: usize,
|
| 119 | alloc: A,
|
| 120 | }
|
| 121 |
|
| 122 | // Safety: RawVec owns both T and A, so sending is safe if
|
| 123 | // sending is safe for T and A.
|
| 124 | unsafe impl<T, A: Allocator> Send for RawVec<T, A>
|
| 125 | where
|
| 126 | T: Send,
|
| 127 | A: Send,
|
| 128 | {
|
| 129 | }
|
| 130 |
|
| 131 | // Safety: RawVec owns both T and A, so sharing is safe if
|
| 132 | // sharing is safe for T and A.
|
| 133 | unsafe impl<T, A: Allocator> Sync for RawVec<T, A>
|
| 134 | where
|
| 135 | T: Sync,
|
| 136 | A: Sync,
|
| 137 | {
|
| 138 | }
|
| 139 |
|
| 140 | impl<T> RawVec<T, Global> {
|
| 141 | /// Creates the biggest possible `RawVec` (on the system heap)
|
| 142 | /// without allocating. If `T` has positive size, then this makes a
|
| 143 | /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
|
| 144 | /// `RawVec` with capacity `usize::MAX`. Useful for implementing
|
| 145 | /// delayed allocation.
|
| 146 | #[must_use ]
|
| 147 | pub const fn new() -> Self {
|
| 148 | Self::new_in(Global)
|
| 149 | }
|
| 150 |
|
| 151 | /// Creates a `RawVec` (on the system heap) with exactly the
|
| 152 | /// capacity and alignment requirements for a `[T; capacity]`. This is
|
| 153 | /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
|
| 154 | /// zero-sized. Note that if `T` is zero-sized this means you will
|
| 155 | /// *not* get a `RawVec` with the requested capacity.
|
| 156 | ///
|
| 157 | /// # Panics
|
| 158 | ///
|
| 159 | /// Panics if the requested capacity exceeds `isize::MAX` bytes.
|
| 160 | ///
|
| 161 | /// # Aborts
|
| 162 | ///
|
| 163 | /// Aborts on OOM.
|
| 164 | #[cfg (not(no_global_oom_handling))]
|
| 165 | #[must_use ]
|
| 166 | #[inline (always)]
|
| 167 | pub fn with_capacity(capacity: usize) -> Self {
|
| 168 | Self::with_capacity_in(capacity, Global)
|
| 169 | }
|
| 170 |
|
| 171 | /// Like `with_capacity`, but guarantees the buffer is zeroed.
|
| 172 | #[cfg (not(no_global_oom_handling))]
|
| 173 | #[must_use ]
|
| 174 | #[inline (always)]
|
| 175 | pub fn with_capacity_zeroed(capacity: usize) -> Self {
|
| 176 | Self::with_capacity_zeroed_in(capacity, Global)
|
| 177 | }
|
| 178 | }
|
| 179 |
|
| 180 | impl<T, A: Allocator> RawVec<T, A> {
|
| 181 | // Tiny Vecs are dumb. Skip to:
|
| 182 | // - 8 if the element size is 1, because any heap allocators is likely
|
| 183 | // to round up a request of less than 8 bytes to at least 8 bytes.
|
| 184 | // - 4 if elements are moderate-sized (<= 1 KiB).
|
| 185 | // - 1 otherwise, to avoid wasting too much space for very short Vecs.
|
| 186 | pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
|
| 187 | 8
|
| 188 | } else if mem::size_of::<T>() <= 1024 {
|
| 189 | 4
|
| 190 | } else {
|
| 191 | 1
|
| 192 | };
|
| 193 |
|
| 194 | /// Like `new`, but parameterized over the choice of allocator for
|
| 195 | /// the returned `RawVec`.
|
| 196 | #[inline (always)]
|
| 197 | pub const fn new_in(alloc: A) -> Self {
|
| 198 | // `cap: 0` means "unallocated". zero-sized types are ignored.
|
| 199 | Self {
|
| 200 | ptr: NonNull::dangling(),
|
| 201 | cap: 0,
|
| 202 | alloc,
|
| 203 | }
|
| 204 | }
|
| 205 |
|
| 206 | /// Like `with_capacity`, but parameterized over the choice of
|
| 207 | /// allocator for the returned `RawVec`.
|
| 208 | #[cfg (not(no_global_oom_handling))]
|
| 209 | #[inline (always)]
|
| 210 | pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
|
| 211 | Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
|
| 212 | }
|
| 213 |
|
| 214 | /// Like `with_capacity_zeroed`, but parameterized over the choice
|
| 215 | /// of allocator for the returned `RawVec`.
|
| 216 | #[cfg (not(no_global_oom_handling))]
|
| 217 | #[inline (always)]
|
| 218 | pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
|
| 219 | Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
|
| 220 | }
|
| 221 |
|
| 222 | /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
|
| 223 | ///
|
| 224 | /// Note that this will correctly reconstitute any `cap` changes
|
| 225 | /// that may have been performed. (See description of type for details.)
|
| 226 | ///
|
| 227 | /// # Safety
|
| 228 | ///
|
| 229 | /// * `len` must be greater than or equal to the most recently requested capacity, and
|
| 230 | /// * `len` must be less than or equal to `self.capacity()`.
|
| 231 | ///
|
| 232 | /// Note, that the requested capacity and `self.capacity()` could differ, as
|
| 233 | /// an allocator could overallocate and return a greater memory block than requested.
|
| 234 | #[inline (always)]
|
| 235 | pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
|
| 236 | // Sanity-check one half of the safety requirement (we cannot check the other half).
|
| 237 | debug_assert!(
|
| 238 | len <= self.capacity(),
|
| 239 | "`len` must be smaller than or equal to `self.capacity()`"
|
| 240 | );
|
| 241 |
|
| 242 | let me = ManuallyDrop::new(self);
|
| 243 | unsafe {
|
| 244 | let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
|
| 245 | Box::<[MaybeUninit<T>], A>::from_raw_in(slice, ptr::read(&me.alloc))
|
| 246 | }
|
| 247 | }
|
| 248 |
|
| 249 | #[cfg (not(no_global_oom_handling))]
|
| 250 | #[inline (always)]
|
| 251 | fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
|
| 252 | // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
|
| 253 | if mem::size_of::<T>() == 0 || capacity == 0 {
|
| 254 | Self::new_in(alloc)
|
| 255 | } else {
|
| 256 | // We avoid `unwrap_or_else` here because it bloats the amount of
|
| 257 | // LLVM IR generated.
|
| 258 | let layout = match Layout::array::<T>(capacity) {
|
| 259 | Ok(layout) => layout,
|
| 260 | Err(_) => capacity_overflow(),
|
| 261 | };
|
| 262 | match alloc_guard(layout.size()) {
|
| 263 | Ok(_) => {}
|
| 264 | Err(_) => capacity_overflow(),
|
| 265 | }
|
| 266 | let result = match init {
|
| 267 | AllocInit::Uninitialized => alloc.allocate(layout),
|
| 268 | AllocInit::Zeroed => alloc.allocate_zeroed(layout),
|
| 269 | };
|
| 270 | let ptr = match result {
|
| 271 | Ok(ptr) => ptr,
|
| 272 | Err(_) => handle_alloc_error(layout),
|
| 273 | };
|
| 274 |
|
| 275 | // Allocators currently return a `NonNull<[u8]>` whose length
|
| 276 | // matches the size requested. If that ever changes, the capacity
|
| 277 | // here should change to `ptr.len() / mem::size_of::<T>()`.
|
| 278 | Self {
|
| 279 | ptr: unsafe { NonNull::new_unchecked(ptr.cast().as_ptr()) },
|
| 280 | cap: capacity,
|
| 281 | alloc,
|
| 282 | }
|
| 283 | }
|
| 284 | }
|
| 285 |
|
| 286 | /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
|
| 287 | ///
|
| 288 | /// # Safety
|
| 289 | ///
|
| 290 | /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
|
| 291 | /// `capacity`.
|
| 292 | /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
|
| 293 | /// systems). ZST vectors may have a capacity up to `usize::MAX`.
|
| 294 | /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
|
| 295 | /// guaranteed.
|
| 296 | #[inline (always)]
|
| 297 | pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
|
| 298 | Self {
|
| 299 | ptr: unsafe { NonNull::new_unchecked(ptr) },
|
| 300 | cap: capacity,
|
| 301 | alloc,
|
| 302 | }
|
| 303 | }
|
| 304 |
|
| 305 | /// Gets a raw pointer to the start of the allocation. Note that this is
|
| 306 | /// `NonNull::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
|
| 307 | /// be careful.
|
| 308 | #[inline (always)]
|
| 309 | pub fn ptr(&self) -> *mut T {
|
| 310 | self.ptr.as_ptr()
|
| 311 | }
|
| 312 |
|
| 313 | /// Gets the capacity of the allocation.
|
| 314 | ///
|
| 315 | /// This will always be `usize::MAX` if `T` is zero-sized.
|
| 316 | #[inline (always)]
|
| 317 | pub fn capacity(&self) -> usize {
|
| 318 | if mem::size_of::<T>() == 0 {
|
| 319 | usize::MAX
|
| 320 | } else {
|
| 321 | self.cap
|
| 322 | }
|
| 323 | }
|
| 324 |
|
| 325 | /// Returns a shared reference to the allocator backing this `RawVec`.
|
| 326 | #[inline (always)]
|
| 327 | pub fn allocator(&self) -> &A {
|
| 328 | &self.alloc
|
| 329 | }
|
| 330 |
|
| 331 | #[inline (always)]
|
| 332 | fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
|
| 333 | if mem::size_of::<T>() == 0 || self.cap == 0 {
|
| 334 | None
|
| 335 | } else {
|
| 336 | // We have an allocated chunk of memory, so we can bypass runtime
|
| 337 | // checks to get our current layout.
|
| 338 | unsafe {
|
| 339 | let layout = Layout::array::<T>(self.cap).unwrap_unchecked();
|
| 340 | Some((self.ptr.cast(), layout))
|
| 341 | }
|
| 342 | }
|
| 343 | }
|
| 344 |
|
| 345 | /// Ensures that the buffer contains at least enough space to hold `len +
|
| 346 | /// additional` elements. If it doesn't already have enough capacity, will
|
| 347 | /// reallocate enough space plus comfortable slack space to get amortized
|
| 348 | /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
|
| 349 | /// itself to panic.
|
| 350 | ///
|
| 351 | /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
|
| 352 | /// the requested space. This is not really unsafe, but the unsafe
|
| 353 | /// code *you* write that relies on the behavior of this function may break.
|
| 354 | ///
|
| 355 | /// This is ideal for implementing a bulk-push operation like `extend`.
|
| 356 | ///
|
| 357 | /// # Panics
|
| 358 | ///
|
| 359 | /// Panics if the new capacity exceeds `isize::MAX` bytes.
|
| 360 | ///
|
| 361 | /// # Aborts
|
| 362 | ///
|
| 363 | /// Aborts on OOM.
|
| 364 | #[cfg (not(no_global_oom_handling))]
|
| 365 | #[inline (always)]
|
| 366 | pub fn reserve(&mut self, len: usize, additional: usize) {
|
| 367 | // Callers expect this function to be very cheap when there is already sufficient capacity.
|
| 368 | // Therefore, we move all the resizing and error-handling logic from grow_amortized and
|
| 369 | // handle_reserve behind a call, while making sure that this function is likely to be
|
| 370 | // inlined as just a comparison and a call if the comparison fails.
|
| 371 | #[cold ]
|
| 372 | #[inline (always)]
|
| 373 | fn do_reserve_and_handle<T, A: Allocator>(
|
| 374 | slf: &mut RawVec<T, A>,
|
| 375 | len: usize,
|
| 376 | additional: usize,
|
| 377 | ) {
|
| 378 | handle_reserve(slf.grow_amortized(len, additional));
|
| 379 | }
|
| 380 |
|
| 381 | if self.needs_to_grow(len, additional) {
|
| 382 | do_reserve_and_handle(self, len, additional);
|
| 383 | }
|
| 384 | }
|
| 385 |
|
| 386 | /// A specialized version of `reserve()` used only by the hot and
|
| 387 | /// oft-instantiated `Vec::push()`, which does its own capacity check.
|
| 388 | #[cfg (not(no_global_oom_handling))]
|
| 389 | #[inline (always)]
|
| 390 | pub fn reserve_for_push(&mut self, len: usize) {
|
| 391 | handle_reserve(self.grow_amortized(len, 1));
|
| 392 | }
|
| 393 |
|
| 394 | /// The same as `reserve`, but returns on errors instead of panicking or aborting.
|
| 395 | #[inline (always)]
|
| 396 | pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
|
| 397 | if self.needs_to_grow(len, additional) {
|
| 398 | self.grow_amortized(len, additional)
|
| 399 | } else {
|
| 400 | Ok(())
|
| 401 | }
|
| 402 | }
|
| 403 |
|
| 404 | /// Ensures that the buffer contains at least enough space to hold `len +
|
| 405 | /// additional` elements. If it doesn't already, will reallocate the
|
| 406 | /// minimum possible amount of memory necessary. Generally this will be
|
| 407 | /// exactly the amount of memory necessary, but in principle the allocator
|
| 408 | /// is free to give back more than we asked for.
|
| 409 | ///
|
| 410 | /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
|
| 411 | /// the requested space. This is not really unsafe, but the unsafe code
|
| 412 | /// *you* write that relies on the behavior of this function may break.
|
| 413 | ///
|
| 414 | /// # Panics
|
| 415 | ///
|
| 416 | /// Panics if the new capacity exceeds `isize::MAX` bytes.
|
| 417 | ///
|
| 418 | /// # Aborts
|
| 419 | ///
|
| 420 | /// Aborts on OOM.
|
| 421 | #[cfg (not(no_global_oom_handling))]
|
| 422 | #[inline (always)]
|
| 423 | pub fn reserve_exact(&mut self, len: usize, additional: usize) {
|
| 424 | handle_reserve(self.try_reserve_exact(len, additional));
|
| 425 | }
|
| 426 |
|
| 427 | /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
|
| 428 | #[inline (always)]
|
| 429 | pub fn try_reserve_exact(
|
| 430 | &mut self,
|
| 431 | len: usize,
|
| 432 | additional: usize,
|
| 433 | ) -> Result<(), TryReserveError> {
|
| 434 | if self.needs_to_grow(len, additional) {
|
| 435 | self.grow_exact(len, additional)
|
| 436 | } else {
|
| 437 | Ok(())
|
| 438 | }
|
| 439 | }
|
| 440 |
|
| 441 | /// Shrinks the buffer down to the specified capacity. If the given amount
|
| 442 | /// is 0, actually completely deallocates.
|
| 443 | ///
|
| 444 | /// # Panics
|
| 445 | ///
|
| 446 | /// Panics if the given amount is *larger* than the current capacity.
|
| 447 | ///
|
| 448 | /// # Aborts
|
| 449 | ///
|
| 450 | /// Aborts on OOM.
|
| 451 | #[cfg (not(no_global_oom_handling))]
|
| 452 | #[inline (always)]
|
| 453 | pub fn shrink_to_fit(&mut self, cap: usize) {
|
| 454 | handle_reserve(self.shrink(cap));
|
| 455 | }
|
| 456 | }
|
| 457 |
|
| 458 | impl<T, A: Allocator> RawVec<T, A> {
|
| 459 | /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
|
| 460 | /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
|
| 461 | #[inline (always)]
|
| 462 | fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
|
| 463 | additional > self.capacity().wrapping_sub(len)
|
| 464 | }
|
| 465 |
|
| 466 | #[inline (always)]
|
| 467 | fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
|
| 468 | // Allocators currently return a `NonNull<[u8]>` whose length matches
|
| 469 | // the size requested. If that ever changes, the capacity here should
|
| 470 | // change to `ptr.len() / mem::size_of::<T>()`.
|
| 471 | self.ptr = unsafe { NonNull::new_unchecked(ptr.cast().as_ptr()) };
|
| 472 | self.cap = cap;
|
| 473 | }
|
| 474 |
|
| 475 | // This method is usually instantiated many times. So we want it to be as
|
| 476 | // small as possible, to improve compile times. But we also want as much of
|
| 477 | // its contents to be statically computable as possible, to make the
|
| 478 | // generated code run faster. Therefore, this method is carefully written
|
| 479 | // so that all of the code that depends on `T` is within it, while as much
|
| 480 | // of the code that doesn't depend on `T` as possible is in functions that
|
| 481 | // are non-generic over `T`.
|
| 482 | #[inline (always)]
|
| 483 | fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
|
| 484 | // This is ensured by the calling contexts.
|
| 485 | debug_assert!(additional > 0);
|
| 486 |
|
| 487 | if mem::size_of::<T>() == 0 {
|
| 488 | // Since we return a capacity of `usize::MAX` when `elem_size` is
|
| 489 | // 0, getting to here necessarily means the `RawVec` is overfull.
|
| 490 | return Err(CapacityOverflow.into());
|
| 491 | }
|
| 492 |
|
| 493 | // Nothing we can really do about these checks, sadly.
|
| 494 | let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
|
| 495 |
|
| 496 | // This guarantees exponential growth. The doubling cannot overflow
|
| 497 | // because `cap <= isize::MAX` and the type of `cap` is `usize`.
|
| 498 | let cap = cmp::max(self.cap * 2, required_cap);
|
| 499 | let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
|
| 500 |
|
| 501 | let new_layout = Layout::array::<T>(cap);
|
| 502 |
|
| 503 | // `finish_grow` is non-generic over `T`.
|
| 504 | let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
|
| 505 | self.set_ptr_and_cap(ptr, cap);
|
| 506 | Ok(())
|
| 507 | }
|
| 508 |
|
| 509 | // The constraints on this method are much the same as those on
|
| 510 | // `grow_amortized`, but this method is usually instantiated less often so
|
| 511 | // it's less critical.
|
| 512 | #[inline (always)]
|
| 513 | fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
|
| 514 | if mem::size_of::<T>() == 0 {
|
| 515 | // Since we return a capacity of `usize::MAX` when the type size is
|
| 516 | // 0, getting to here necessarily means the `RawVec` is overfull.
|
| 517 | return Err(CapacityOverflow.into());
|
| 518 | }
|
| 519 |
|
| 520 | let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
|
| 521 | let new_layout = Layout::array::<T>(cap);
|
| 522 |
|
| 523 | // `finish_grow` is non-generic over `T`.
|
| 524 | let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
|
| 525 | self.set_ptr_and_cap(ptr, cap);
|
| 526 | Ok(())
|
| 527 | }
|
| 528 |
|
| 529 | #[cfg (not(no_global_oom_handling))]
|
| 530 | #[inline (always)]
|
| 531 | fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
|
| 532 | assert!(
|
| 533 | cap <= self.capacity(),
|
| 534 | "Tried to shrink to a larger capacity"
|
| 535 | );
|
| 536 |
|
| 537 | let (ptr, layout) = if let Some(mem) = self.current_memory() {
|
| 538 | mem
|
| 539 | } else {
|
| 540 | return Ok(());
|
| 541 | };
|
| 542 |
|
| 543 | let ptr = unsafe {
|
| 544 | // `Layout::array` cannot overflow here because it would have
|
| 545 | // overflowed earlier when capacity was larger.
|
| 546 | let new_layout = Layout::array::<T>(cap).unwrap_unchecked();
|
| 547 | self.alloc
|
| 548 | .shrink(ptr, layout, new_layout)
|
| 549 | .map_err(|_| AllocError {
|
| 550 | layout: new_layout,
|
| 551 | non_exhaustive: (),
|
| 552 | })?
|
| 553 | };
|
| 554 | self.set_ptr_and_cap(ptr, cap);
|
| 555 | Ok(())
|
| 556 | }
|
| 557 | }
|
| 558 |
|
| 559 | // This function is outside `RawVec` to minimize compile times. See the comment
|
| 560 | // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
|
| 561 | // significant, because the number of different `A` types seen in practice is
|
| 562 | // much smaller than the number of `T` types.)
|
| 563 | #[inline (always)]
|
| 564 | fn finish_grow<A>(
|
| 565 | new_layout: Result<Layout, LayoutError>,
|
| 566 | current_memory: Option<(NonNull<u8>, Layout)>,
|
| 567 | alloc: &mut A,
|
| 568 | ) -> Result<NonNull<[u8]>, TryReserveError>
|
| 569 | where
|
| 570 | A: Allocator,
|
| 571 | {
|
| 572 | // Check for the error here to minimize the size of `RawVec::grow_*`.
|
| 573 | let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
|
| 574 |
|
| 575 | alloc_guard(new_layout.size())?;
|
| 576 |
|
| 577 | let memory = if let Some((ptr, old_layout)) = current_memory {
|
| 578 | debug_assert_eq!(old_layout.align(), new_layout.align());
|
| 579 | unsafe {
|
| 580 | // The allocator checks for alignment equality
|
| 581 | assume(old_layout.align() == new_layout.align());
|
| 582 | alloc.grow(ptr, old_layout, new_layout)
|
| 583 | }
|
| 584 | } else {
|
| 585 | alloc.allocate(new_layout)
|
| 586 | };
|
| 587 |
|
| 588 | memory.map_err(|_| {
|
| 589 | AllocError {
|
| 590 | layout: new_layout,
|
| 591 | non_exhaustive: (),
|
| 592 | }
|
| 593 | .into()
|
| 594 | })
|
| 595 | }
|
| 596 |
|
| 597 | impl<T, A: Allocator> Drop for RawVec<T, A> {
|
| 598 | /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
|
| 599 | #[inline (always)]
|
| 600 | fn drop(&mut self) {
|
| 601 | if let Some((ptr: NonNull, layout: Layout)) = self.current_memory() {
|
| 602 | unsafe { self.alloc.deallocate(ptr, layout) }
|
| 603 | }
|
| 604 | }
|
| 605 | }
|
| 606 |
|
| 607 | // Central function for reserve error handling.
|
| 608 | #[cfg (not(no_global_oom_handling))]
|
| 609 | #[inline (always)]
|
| 610 | fn handle_reserve(result: Result<(), TryReserveError>) {
|
| 611 | match result.map_err(|e: TryReserveError| e.kind()) {
|
| 612 | Err(CapacityOverflow) => capacity_overflow(),
|
| 613 | Err(AllocError { layout: Layout, .. }) => handle_alloc_error(layout),
|
| 614 | Ok(()) => { /* yay */ }
|
| 615 | }
|
| 616 | }
|
| 617 |
|
| 618 | // We need to guarantee the following:
|
| 619 | // * We don't ever allocate `> isize::MAX` byte-size objects.
|
| 620 | // * We don't overflow `usize::MAX` and actually allocate too little.
|
| 621 | //
|
| 622 | // On 64-bit we just need to check for overflow since trying to allocate
|
| 623 | // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
|
| 624 | // an extra guard for this in case we're running on a platform which can use
|
| 625 | // all 4GB in user-space, e.g., PAE or x32.
|
| 626 |
|
| 627 | #[inline (always)]
|
| 628 | fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
|
| 629 | if usize::BITS < 64 && alloc_size > isize::MAX as usize {
|
| 630 | Err(CapacityOverflow.into())
|
| 631 | } else {
|
| 632 | Ok(())
|
| 633 | }
|
| 634 | }
|
| 635 |
|
| 636 | // One central function responsible for reporting capacity overflows. This'll
|
| 637 | // ensure that the code generation related to these panics is minimal as there's
|
| 638 | // only one location which panics rather than a bunch throughout the module.
|
| 639 | #[cfg (not(no_global_oom_handling))]
|
| 640 | fn capacity_overflow() -> ! {
|
| 641 | panic!("capacity overflow" );
|
| 642 | }
|
| 643 | |