| 1 | //! The `Box<T>` type for heap allocation.
|
| 2 | //!
|
| 3 | //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
|
| 4 | //! heap allocation in Rust. Boxes provide ownership for this allocation, and
|
| 5 | //! drop their contents when they go out of scope. Boxes also ensure that they
|
| 6 | //! never allocate more than `isize::MAX` bytes.
|
| 7 | //!
|
| 8 | //! # Examples
|
| 9 | //!
|
| 10 | //! Move a value from the stack to the heap by creating a [`Box`]:
|
| 11 | //!
|
| 12 | //! ```
|
| 13 | //! let val: u8 = 5;
|
| 14 | //! let boxed: Box<u8> = Box::new(val);
|
| 15 | //! ```
|
| 16 | //!
|
| 17 | //! Move a value from a [`Box`] back to the stack by [dereferencing]:
|
| 18 | //!
|
| 19 | //! ```
|
| 20 | //! let boxed: Box<u8> = Box::new(5);
|
| 21 | //! let val: u8 = *boxed;
|
| 22 | //! ```
|
| 23 | //!
|
| 24 | //! Creating a recursive data structure:
|
| 25 | //!
|
| 26 | //! ```
|
| 27 | //! #[derive(Debug)]
|
| 28 | //! enum List<T> {
|
| 29 | //! Cons(T, Box<List<T>>),
|
| 30 | //! Nil,
|
| 31 | //! }
|
| 32 | //!
|
| 33 | //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
|
| 34 | //! println!("{list:?}" );
|
| 35 | //! ```
|
| 36 | //!
|
| 37 | //! This will print `Cons(1, Cons(2, Nil))`.
|
| 38 | //!
|
| 39 | //! Recursive structures must be boxed, because if the definition of `Cons`
|
| 40 | //! looked like this:
|
| 41 | //!
|
| 42 | //! ```compile_fail,E0072
|
| 43 | //! # enum List<T> {
|
| 44 | //! Cons(T, List<T>),
|
| 45 | //! # }
|
| 46 | //! ```
|
| 47 | //!
|
| 48 | //! It wouldn't work. This is because the size of a `List` depends on how many
|
| 49 | //! elements are in the list, and so we don't know how much memory to allocate
|
| 50 | //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
|
| 51 | //! big `Cons` needs to be.
|
| 52 | //!
|
| 53 | //! # Memory layout
|
| 54 | //!
|
| 55 | //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
|
| 56 | //! its allocation. It is valid to convert both ways between a [`Box`] and a
|
| 57 | //! raw pointer allocated with the [`Global`] allocator, given that the
|
| 58 | //! [`Layout`] used with the allocator is correct for the type. More precisely,
|
| 59 | //! a `value: *mut T` that has been allocated with the [`Global`] allocator
|
| 60 | //! with `Layout::for_value(&*value)` may be converted into a box using
|
| 61 | //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
|
| 62 | //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
|
| 63 | //! [`Global`] allocator with [`Layout::for_value(&*value)`].
|
| 64 | //!
|
| 65 | //! For zero-sized values, the `Box` pointer still has to be [valid] for reads
|
| 66 | //! and writes and sufficiently aligned. In particular, casting any aligned
|
| 67 | //! non-zero integer literal to a raw pointer produces a valid pointer, but a
|
| 68 | //! pointer pointing into previously allocated memory that since got freed is
|
| 69 | //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
|
| 70 | //! be used is to use [`ptr::NonNull::dangling`].
|
| 71 | //!
|
| 72 | //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
|
| 73 | //! as a single pointer and is also ABI-compatible with C pointers
|
| 74 | //! (i.e. the C type `T*`). This means that if you have extern "C"
|
| 75 | //! Rust functions that will be called from C, you can define those
|
| 76 | //! Rust functions using `Box<T>` types, and use `T*` as corresponding
|
| 77 | //! type on the C side. As an example, consider this C header which
|
| 78 | //! declares functions that create and destroy some kind of `Foo`
|
| 79 | //! value:
|
| 80 | //!
|
| 81 | //! ```c
|
| 82 | //! /* C header */
|
| 83 | //!
|
| 84 | //! /* Returns ownership to the caller */
|
| 85 | //! struct Foo* foo_new(void);
|
| 86 | //!
|
| 87 | //! /* Takes ownership from the caller; no-op when invoked with null */
|
| 88 | //! void foo_delete(struct Foo*);
|
| 89 | //! ```
|
| 90 | //!
|
| 91 | //! These two functions might be implemented in Rust as follows. Here, the
|
| 92 | //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
|
| 93 | //! the ownership constraints. Note also that the nullable argument to
|
| 94 | //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
|
| 95 | //! cannot be null.
|
| 96 | //!
|
| 97 | //! ```
|
| 98 | //! #[repr(C)]
|
| 99 | //! pub struct Foo;
|
| 100 | //!
|
| 101 | //! #[no_mangle]
|
| 102 | //! pub extern "C" fn foo_new() -> Box<Foo> {
|
| 103 | //! Box::new(Foo)
|
| 104 | //! }
|
| 105 | //!
|
| 106 | //! #[no_mangle]
|
| 107 | //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
|
| 108 | //! ```
|
| 109 | //!
|
| 110 | //! Even though `Box<T>` has the same representation and C ABI as a C pointer,
|
| 111 | //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
|
| 112 | //! and expect things to work. `Box<T>` values will always be fully aligned,
|
| 113 | //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
|
| 114 | //! free the value with the global allocator. In general, the best practice
|
| 115 | //! is to only use `Box<T>` for pointers that originated from the global
|
| 116 | //! allocator.
|
| 117 | //!
|
| 118 | //! **Important.** At least at present, you should avoid using
|
| 119 | //! `Box<T>` types for functions that are defined in C but invoked
|
| 120 | //! from Rust. In those cases, you should directly mirror the C types
|
| 121 | //! as closely as possible. Using types like `Box<T>` where the C
|
| 122 | //! definition is just using `T*` can lead to undefined behavior, as
|
| 123 | //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
|
| 124 | //!
|
| 125 | //! # Considerations for unsafe code
|
| 126 | //!
|
| 127 | //! **Warning: This section is not normative and is subject to change, possibly
|
| 128 | //! being relaxed in the future! It is a simplified summary of the rules
|
| 129 | //! currently implemented in the compiler.**
|
| 130 | //!
|
| 131 | //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
|
| 132 | //! asserts uniqueness over its content. Using raw pointers derived from a box
|
| 133 | //! after that box has been mutated through, moved or borrowed as `&mut T`
|
| 134 | //! is not allowed. For more guidance on working with box from unsafe code, see
|
| 135 | //! [rust-lang/unsafe-code-guidelines#326][ucg#326].
|
| 136 | //!
|
| 137 | //!
|
| 138 | //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
|
| 139 | //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
|
| 140 | //! [dereferencing]: core::ops::Deref
|
| 141 | //! [`Box::<T>::from_raw(value)`]: Box::from_raw
|
| 142 | //! [`Global`]: crate::alloc::Global
|
| 143 | //! [`Layout`]: crate::alloc::Layout
|
| 144 | //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
|
| 145 | //! [valid]: ptr#safety
|
| 146 |
|
| 147 | use core::any::Any;
|
| 148 | use core::borrow;
|
| 149 | use core::cmp::Ordering;
|
| 150 | use core::convert::{From, TryFrom};
|
| 151 |
|
| 152 | // use core::error::Error;
|
| 153 | use core::fmt;
|
| 154 | use core::future::Future;
|
| 155 | use core::hash::{Hash, Hasher};
|
| 156 | #[cfg (not(no_global_oom_handling))]
|
| 157 | use core::iter::FromIterator;
|
| 158 | use core::iter::{FusedIterator, Iterator};
|
| 159 | use core::marker::Unpin;
|
| 160 | use core::mem::{self, MaybeUninit};
|
| 161 | use core::ops::{Deref, DerefMut};
|
| 162 | use core::pin::Pin;
|
| 163 | use core::ptr::{self, NonNull};
|
| 164 | use core::task::{Context, Poll};
|
| 165 |
|
| 166 | use super::alloc::{AllocError, Allocator, Global, Layout};
|
| 167 | use super::raw_vec::RawVec;
|
| 168 | use super::unique::Unique;
|
| 169 | #[cfg (not(no_global_oom_handling))]
|
| 170 | use super::vec::Vec;
|
| 171 | #[cfg (not(no_global_oom_handling))]
|
| 172 | use alloc_crate::alloc::handle_alloc_error;
|
| 173 |
|
| 174 | /// A pointer type for heap allocation.
|
| 175 | ///
|
| 176 | /// See the [module-level documentation](../../std/boxed/index.html) for more.
|
| 177 | pub struct Box<T: ?Sized, A: Allocator = Global>(Unique<T>, A);
|
| 178 |
|
| 179 | // Safety: Box owns both T and A, so sending is safe if
|
| 180 | // sending is safe for T and A.
|
| 181 | unsafe impl<T: ?Sized, A: Allocator> Send for Box<T, A>
|
| 182 | where
|
| 183 | T: Send,
|
| 184 | A: Send,
|
| 185 | {
|
| 186 | }
|
| 187 |
|
| 188 | // Safety: Box owns both T and A, so sharing is safe if
|
| 189 | // sharing is safe for T and A.
|
| 190 | unsafe impl<T: ?Sized, A: Allocator> Sync for Box<T, A>
|
| 191 | where
|
| 192 | T: Sync,
|
| 193 | A: Sync,
|
| 194 | {
|
| 195 | }
|
| 196 |
|
| 197 | impl<T> Box<T> {
|
| 198 | /// Allocates memory on the heap and then places `x` into it.
|
| 199 | ///
|
| 200 | /// This doesn't actually allocate if `T` is zero-sized.
|
| 201 | ///
|
| 202 | /// # Examples
|
| 203 | ///
|
| 204 | /// ```
|
| 205 | /// let five = Box::new(5);
|
| 206 | /// ```
|
| 207 | #[cfg (all(not(no_global_oom_handling)))]
|
| 208 | #[inline (always)]
|
| 209 | #[must_use ]
|
| 210 | pub fn new(x: T) -> Self {
|
| 211 | Self::new_in(x, Global)
|
| 212 | }
|
| 213 |
|
| 214 | /// Constructs a new box with uninitialized contents.
|
| 215 | ///
|
| 216 | /// # Examples
|
| 217 | ///
|
| 218 | /// ```
|
| 219 | /// #![feature(new_uninit)]
|
| 220 | ///
|
| 221 | /// let mut five = Box::<u32>::new_uninit();
|
| 222 | ///
|
| 223 | /// let five = unsafe {
|
| 224 | /// // Deferred initialization:
|
| 225 | /// five.as_mut_ptr().write(5);
|
| 226 | ///
|
| 227 | /// five.assume_init()
|
| 228 | /// };
|
| 229 | ///
|
| 230 | /// assert_eq!(*five, 5)
|
| 231 | /// ```
|
| 232 | #[cfg (not(no_global_oom_handling))]
|
| 233 | #[must_use ]
|
| 234 | #[inline (always)]
|
| 235 | pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
|
| 236 | Self::new_uninit_in(Global)
|
| 237 | }
|
| 238 |
|
| 239 | /// Constructs a new `Box` with uninitialized contents, with the memory
|
| 240 | /// being filled with `0` bytes.
|
| 241 | ///
|
| 242 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
| 243 | /// of this method.
|
| 244 | ///
|
| 245 | /// # Examples
|
| 246 | ///
|
| 247 | /// ```
|
| 248 | /// #![feature(new_uninit)]
|
| 249 | ///
|
| 250 | /// let zero = Box::<u32>::new_zeroed();
|
| 251 | /// let zero = unsafe { zero.assume_init() };
|
| 252 | ///
|
| 253 | /// assert_eq!(*zero, 0)
|
| 254 | /// ```
|
| 255 | ///
|
| 256 | /// [zeroed]: mem::MaybeUninit::zeroed
|
| 257 | #[cfg (not(no_global_oom_handling))]
|
| 258 | #[must_use ]
|
| 259 | #[inline (always)]
|
| 260 | pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
|
| 261 | Self::new_zeroed_in(Global)
|
| 262 | }
|
| 263 |
|
| 264 | /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
|
| 265 | /// `x` will be pinned in memory and unable to be moved.
|
| 266 | ///
|
| 267 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
|
| 268 | /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
|
| 269 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
|
| 270 | /// construct a (pinned) `Box` in a different way than with [`Box::new`].
|
| 271 | #[cfg (not(no_global_oom_handling))]
|
| 272 | #[must_use ]
|
| 273 | #[inline (always)]
|
| 274 | pub fn pin(x: T) -> Pin<Box<T>> {
|
| 275 | Box::new(x).into()
|
| 276 | }
|
| 277 |
|
| 278 | /// Allocates memory on the heap then places `x` into it,
|
| 279 | /// returning an error if the allocation fails
|
| 280 | ///
|
| 281 | /// This doesn't actually allocate if `T` is zero-sized.
|
| 282 | ///
|
| 283 | /// # Examples
|
| 284 | ///
|
| 285 | /// ```
|
| 286 | /// #![feature(allocator_api)]
|
| 287 | ///
|
| 288 | /// let five = Box::try_new(5)?;
|
| 289 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 290 | /// ```
|
| 291 | #[inline (always)]
|
| 292 | pub fn try_new(x: T) -> Result<Self, AllocError> {
|
| 293 | Self::try_new_in(x, Global)
|
| 294 | }
|
| 295 |
|
| 296 | /// Constructs a new box with uninitialized contents on the heap,
|
| 297 | /// returning an error if the allocation fails
|
| 298 | ///
|
| 299 | /// # Examples
|
| 300 | ///
|
| 301 | /// ```
|
| 302 | /// #![feature(allocator_api, new_uninit)]
|
| 303 | ///
|
| 304 | /// let mut five = Box::<u32>::try_new_uninit()?;
|
| 305 | ///
|
| 306 | /// let five = unsafe {
|
| 307 | /// // Deferred initialization:
|
| 308 | /// five.as_mut_ptr().write(5);
|
| 309 | ///
|
| 310 | /// five.assume_init()
|
| 311 | /// };
|
| 312 | ///
|
| 313 | /// assert_eq!(*five, 5);
|
| 314 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 315 | /// ```
|
| 316 | #[inline (always)]
|
| 317 | pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
|
| 318 | Box::try_new_uninit_in(Global)
|
| 319 | }
|
| 320 |
|
| 321 | /// Constructs a new `Box` with uninitialized contents, with the memory
|
| 322 | /// being filled with `0` bytes on the heap
|
| 323 | ///
|
| 324 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
| 325 | /// of this method.
|
| 326 | ///
|
| 327 | /// # Examples
|
| 328 | ///
|
| 329 | /// ```
|
| 330 | /// #![feature(allocator_api, new_uninit)]
|
| 331 | ///
|
| 332 | /// let zero = Box::<u32>::try_new_zeroed()?;
|
| 333 | /// let zero = unsafe { zero.assume_init() };
|
| 334 | ///
|
| 335 | /// assert_eq!(*zero, 0);
|
| 336 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 337 | /// ```
|
| 338 | ///
|
| 339 | /// [zeroed]: mem::MaybeUninit::zeroed
|
| 340 | #[inline (always)]
|
| 341 | pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
|
| 342 | Box::try_new_zeroed_in(Global)
|
| 343 | }
|
| 344 | }
|
| 345 |
|
| 346 | impl<T, A: Allocator> Box<T, A> {
|
| 347 | /// Allocates memory in the given allocator then places `x` into it.
|
| 348 | ///
|
| 349 | /// This doesn't actually allocate if `T` is zero-sized.
|
| 350 | ///
|
| 351 | /// # Examples
|
| 352 | ///
|
| 353 | /// ```
|
| 354 | /// #![feature(allocator_api)]
|
| 355 | ///
|
| 356 | /// use std::alloc::System;
|
| 357 | ///
|
| 358 | /// let five = Box::new_in(5, System);
|
| 359 | /// ```
|
| 360 | #[cfg (not(no_global_oom_handling))]
|
| 361 | #[must_use ]
|
| 362 | #[inline (always)]
|
| 363 | pub fn new_in(x: T, alloc: A) -> Self
|
| 364 | where
|
| 365 | A: Allocator,
|
| 366 | {
|
| 367 | let mut boxed = Self::new_uninit_in(alloc);
|
| 368 | unsafe {
|
| 369 | boxed.as_mut_ptr().write(x);
|
| 370 | boxed.assume_init()
|
| 371 | }
|
| 372 | }
|
| 373 |
|
| 374 | /// Allocates memory in the given allocator then places `x` into it,
|
| 375 | /// returning an error if the allocation fails
|
| 376 | ///
|
| 377 | /// This doesn't actually allocate if `T` is zero-sized.
|
| 378 | ///
|
| 379 | /// # Examples
|
| 380 | ///
|
| 381 | /// ```
|
| 382 | /// #![feature(allocator_api)]
|
| 383 | ///
|
| 384 | /// use std::alloc::System;
|
| 385 | ///
|
| 386 | /// let five = Box::try_new_in(5, System)?;
|
| 387 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 388 | /// ```
|
| 389 | #[inline (always)]
|
| 390 | pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
|
| 391 | where
|
| 392 | A: Allocator,
|
| 393 | {
|
| 394 | let mut boxed = Self::try_new_uninit_in(alloc)?;
|
| 395 | unsafe {
|
| 396 | boxed.as_mut_ptr().write(x);
|
| 397 | Ok(boxed.assume_init())
|
| 398 | }
|
| 399 | }
|
| 400 |
|
| 401 | /// Constructs a new box with uninitialized contents in the provided allocator.
|
| 402 | ///
|
| 403 | /// # Examples
|
| 404 | ///
|
| 405 | /// ```
|
| 406 | /// #![feature(allocator_api, new_uninit)]
|
| 407 | ///
|
| 408 | /// use std::alloc::System;
|
| 409 | ///
|
| 410 | /// let mut five = Box::<u32, _>::new_uninit_in(System);
|
| 411 | ///
|
| 412 | /// let five = unsafe {
|
| 413 | /// // Deferred initialization:
|
| 414 | /// five.as_mut_ptr().write(5);
|
| 415 | ///
|
| 416 | /// five.assume_init()
|
| 417 | /// };
|
| 418 | ///
|
| 419 | /// assert_eq!(*five, 5)
|
| 420 | /// ```
|
| 421 | #[cfg (not(no_global_oom_handling))]
|
| 422 | #[must_use ]
|
| 423 | // #[unstable(feature = "new_uninit", issue = "63291")]
|
| 424 | #[inline (always)]
|
| 425 | pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
|
| 426 | where
|
| 427 | A: Allocator,
|
| 428 | {
|
| 429 | let layout = Layout::new::<mem::MaybeUninit<T>>();
|
| 430 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
|
| 431 | // That would make code size bigger.
|
| 432 | match Box::try_new_uninit_in(alloc) {
|
| 433 | Ok(m) => m,
|
| 434 | Err(_) => handle_alloc_error(layout),
|
| 435 | }
|
| 436 | }
|
| 437 |
|
| 438 | /// Constructs a new box with uninitialized contents in the provided allocator,
|
| 439 | /// returning an error if the allocation fails
|
| 440 | ///
|
| 441 | /// # Examples
|
| 442 | ///
|
| 443 | /// ```
|
| 444 | /// #![feature(allocator_api, new_uninit)]
|
| 445 | ///
|
| 446 | /// use std::alloc::System;
|
| 447 | ///
|
| 448 | /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
|
| 449 | ///
|
| 450 | /// let five = unsafe {
|
| 451 | /// // Deferred initialization:
|
| 452 | /// five.as_mut_ptr().write(5);
|
| 453 | ///
|
| 454 | /// five.assume_init()
|
| 455 | /// };
|
| 456 | ///
|
| 457 | /// assert_eq!(*five, 5);
|
| 458 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 459 | /// ```
|
| 460 | #[inline (always)]
|
| 461 | pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
|
| 462 | where
|
| 463 | A: Allocator,
|
| 464 | {
|
| 465 | let ptr = if mem::size_of::<T>() == 0 {
|
| 466 | NonNull::dangling()
|
| 467 | } else {
|
| 468 | let layout = Layout::new::<mem::MaybeUninit<T>>();
|
| 469 | alloc.allocate(layout)?.cast()
|
| 470 | };
|
| 471 |
|
| 472 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
|
| 473 | }
|
| 474 |
|
| 475 | /// Constructs a new `Box` with uninitialized contents, with the memory
|
| 476 | /// being filled with `0` bytes in the provided allocator.
|
| 477 | ///
|
| 478 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
| 479 | /// of this method.
|
| 480 | ///
|
| 481 | /// # Examples
|
| 482 | ///
|
| 483 | /// ```
|
| 484 | /// #![feature(allocator_api, new_uninit)]
|
| 485 | ///
|
| 486 | /// use std::alloc::System;
|
| 487 | ///
|
| 488 | /// let zero = Box::<u32, _>::new_zeroed_in(System);
|
| 489 | /// let zero = unsafe { zero.assume_init() };
|
| 490 | ///
|
| 491 | /// assert_eq!(*zero, 0)
|
| 492 | /// ```
|
| 493 | ///
|
| 494 | /// [zeroed]: mem::MaybeUninit::zeroed
|
| 495 | #[cfg (not(no_global_oom_handling))]
|
| 496 | // #[unstable(feature = "new_uninit", issue = "63291")]
|
| 497 | #[must_use ]
|
| 498 | #[inline (always)]
|
| 499 | pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
|
| 500 | where
|
| 501 | A: Allocator,
|
| 502 | {
|
| 503 | let layout = Layout::new::<mem::MaybeUninit<T>>();
|
| 504 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
|
| 505 | // That would make code size bigger.
|
| 506 | match Box::try_new_zeroed_in(alloc) {
|
| 507 | Ok(m) => m,
|
| 508 | Err(_) => handle_alloc_error(layout),
|
| 509 | }
|
| 510 | }
|
| 511 |
|
| 512 | /// Constructs a new `Box` with uninitialized contents, with the memory
|
| 513 | /// being filled with `0` bytes in the provided allocator,
|
| 514 | /// returning an error if the allocation fails,
|
| 515 | ///
|
| 516 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
| 517 | /// of this method.
|
| 518 | ///
|
| 519 | /// # Examples
|
| 520 | ///
|
| 521 | /// ```
|
| 522 | /// #![feature(allocator_api, new_uninit)]
|
| 523 | ///
|
| 524 | /// use std::alloc::System;
|
| 525 | ///
|
| 526 | /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
|
| 527 | /// let zero = unsafe { zero.assume_init() };
|
| 528 | ///
|
| 529 | /// assert_eq!(*zero, 0);
|
| 530 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 531 | /// ```
|
| 532 | ///
|
| 533 | /// [zeroed]: mem::MaybeUninit::zeroed
|
| 534 | #[inline (always)]
|
| 535 | pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
|
| 536 | where
|
| 537 | A: Allocator,
|
| 538 | {
|
| 539 | let ptr = if mem::size_of::<T>() == 0 {
|
| 540 | NonNull::dangling()
|
| 541 | } else {
|
| 542 | let layout = Layout::new::<mem::MaybeUninit<T>>();
|
| 543 | alloc.allocate_zeroed(layout)?.cast()
|
| 544 | };
|
| 545 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
|
| 546 | }
|
| 547 |
|
| 548 | /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
|
| 549 | /// `x` will be pinned in memory and unable to be moved.
|
| 550 | ///
|
| 551 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
|
| 552 | /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
|
| 553 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
|
| 554 | /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
|
| 555 | #[cfg (not(no_global_oom_handling))]
|
| 556 | #[must_use ]
|
| 557 | #[inline (always)]
|
| 558 | pub fn pin_in(x: T, alloc: A) -> Pin<Self>
|
| 559 | where
|
| 560 | A: 'static + Allocator,
|
| 561 | {
|
| 562 | Self::into_pin(Self::new_in(x, alloc))
|
| 563 | }
|
| 564 |
|
| 565 | /// Converts a `Box<T>` into a `Box<[T]>`
|
| 566 | ///
|
| 567 | /// This conversion does not allocate on the heap and happens in place.
|
| 568 | #[inline (always)]
|
| 569 | pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
|
| 570 | let (raw, alloc) = Box::into_raw_with_allocator(boxed);
|
| 571 | unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
|
| 572 | }
|
| 573 |
|
| 574 | /// Consumes the `Box`, returning the wrapped value.
|
| 575 | ///
|
| 576 | /// # Examples
|
| 577 | ///
|
| 578 | /// ```
|
| 579 | /// #![feature(box_into_inner)]
|
| 580 | ///
|
| 581 | /// let c = Box::new(5);
|
| 582 | ///
|
| 583 | /// assert_eq!(Box::into_inner(c), 5);
|
| 584 | /// ```
|
| 585 | #[inline (always)]
|
| 586 | pub fn into_inner(boxed: Self) -> T {
|
| 587 | // Override our default `Drop` implementation.
|
| 588 | // Though the default `Drop` implementation drops the both the pointer and the allocator,
|
| 589 | // here we only want to drop the allocator.
|
| 590 | let boxed = mem::ManuallyDrop::new(boxed);
|
| 591 | let alloc = unsafe { ptr::read(&boxed.1) };
|
| 592 |
|
| 593 | let ptr = boxed.0;
|
| 594 | let unboxed = unsafe { ptr.as_ptr().read() };
|
| 595 | unsafe { alloc.deallocate(ptr.as_non_null_ptr().cast(), Layout::new::<T>()) };
|
| 596 |
|
| 597 | unboxed
|
| 598 | }
|
| 599 | }
|
| 600 |
|
| 601 | impl<T> Box<[T]> {
|
| 602 | /// Constructs a new boxed slice with uninitialized contents.
|
| 603 | ///
|
| 604 | /// # Examples
|
| 605 | ///
|
| 606 | /// ```
|
| 607 | /// #![feature(new_uninit)]
|
| 608 | ///
|
| 609 | /// let mut values = Box::<[u32]>::new_uninit_slice(3);
|
| 610 | ///
|
| 611 | /// let values = unsafe {
|
| 612 | /// // Deferred initialization:
|
| 613 | /// values[0].as_mut_ptr().write(1);
|
| 614 | /// values[1].as_mut_ptr().write(2);
|
| 615 | /// values[2].as_mut_ptr().write(3);
|
| 616 | ///
|
| 617 | /// values.assume_init()
|
| 618 | /// };
|
| 619 | ///
|
| 620 | /// assert_eq!(*values, [1, 2, 3])
|
| 621 | /// ```
|
| 622 | #[cfg (not(no_global_oom_handling))]
|
| 623 | #[must_use ]
|
| 624 | #[inline (always)]
|
| 625 | pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
|
| 626 | unsafe { RawVec::with_capacity(len).into_box(len) }
|
| 627 | }
|
| 628 |
|
| 629 | /// Constructs a new boxed slice with uninitialized contents, with the memory
|
| 630 | /// being filled with `0` bytes.
|
| 631 | ///
|
| 632 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
| 633 | /// of this method.
|
| 634 | ///
|
| 635 | /// # Examples
|
| 636 | ///
|
| 637 | /// ```
|
| 638 | /// #![feature(new_uninit)]
|
| 639 | ///
|
| 640 | /// let values = Box::<[u32]>::new_zeroed_slice(3);
|
| 641 | /// let values = unsafe { values.assume_init() };
|
| 642 | ///
|
| 643 | /// assert_eq!(*values, [0, 0, 0])
|
| 644 | /// ```
|
| 645 | ///
|
| 646 | /// [zeroed]: mem::MaybeUninit::zeroed
|
| 647 | #[cfg (not(no_global_oom_handling))]
|
| 648 | #[must_use ]
|
| 649 | #[inline (always)]
|
| 650 | pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
|
| 651 | unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
|
| 652 | }
|
| 653 |
|
| 654 | /// Constructs a new boxed slice with uninitialized contents. Returns an error if
|
| 655 | /// the allocation fails
|
| 656 | ///
|
| 657 | /// # Examples
|
| 658 | ///
|
| 659 | /// ```
|
| 660 | /// #![feature(allocator_api, new_uninit)]
|
| 661 | ///
|
| 662 | /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
|
| 663 | /// let values = unsafe {
|
| 664 | /// // Deferred initialization:
|
| 665 | /// values[0].as_mut_ptr().write(1);
|
| 666 | /// values[1].as_mut_ptr().write(2);
|
| 667 | /// values[2].as_mut_ptr().write(3);
|
| 668 | /// values.assume_init()
|
| 669 | /// };
|
| 670 | ///
|
| 671 | /// assert_eq!(*values, [1, 2, 3]);
|
| 672 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 673 | /// ```
|
| 674 | #[inline (always)]
|
| 675 | pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
|
| 676 | Self::try_new_uninit_slice_in(len, Global)
|
| 677 | }
|
| 678 |
|
| 679 | /// Constructs a new boxed slice with uninitialized contents, with the memory
|
| 680 | /// being filled with `0` bytes. Returns an error if the allocation fails
|
| 681 | ///
|
| 682 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
| 683 | /// of this method.
|
| 684 | ///
|
| 685 | /// # Examples
|
| 686 | ///
|
| 687 | /// ```
|
| 688 | /// #![feature(allocator_api, new_uninit)]
|
| 689 | ///
|
| 690 | /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
|
| 691 | /// let values = unsafe { values.assume_init() };
|
| 692 | ///
|
| 693 | /// assert_eq!(*values, [0, 0, 0]);
|
| 694 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 695 | /// ```
|
| 696 | ///
|
| 697 | /// [zeroed]: mem::MaybeUninit::zeroed
|
| 698 | #[inline (always)]
|
| 699 | pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
|
| 700 | Self::try_new_zeroed_slice_in(len, Global)
|
| 701 | }
|
| 702 | }
|
| 703 |
|
| 704 | impl<T, A: Allocator> Box<[T], A> {
|
| 705 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
|
| 706 | ///
|
| 707 | /// # Examples
|
| 708 | ///
|
| 709 | /// ```
|
| 710 | /// #![feature(allocator_api, new_uninit)]
|
| 711 | ///
|
| 712 | /// use std::alloc::System;
|
| 713 | ///
|
| 714 | /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
|
| 715 | ///
|
| 716 | /// let values = unsafe {
|
| 717 | /// // Deferred initialization:
|
| 718 | /// values[0].as_mut_ptr().write(1);
|
| 719 | /// values[1].as_mut_ptr().write(2);
|
| 720 | /// values[2].as_mut_ptr().write(3);
|
| 721 | ///
|
| 722 | /// values.assume_init()
|
| 723 | /// };
|
| 724 | ///
|
| 725 | /// assert_eq!(*values, [1, 2, 3])
|
| 726 | /// ```
|
| 727 | #[cfg (not(no_global_oom_handling))]
|
| 728 | #[must_use ]
|
| 729 | #[inline (always)]
|
| 730 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
|
| 731 | unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
|
| 732 | }
|
| 733 |
|
| 734 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
|
| 735 | /// with the memory being filled with `0` bytes.
|
| 736 | ///
|
| 737 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
| 738 | /// of this method.
|
| 739 | ///
|
| 740 | /// # Examples
|
| 741 | ///
|
| 742 | /// ```
|
| 743 | /// #![feature(allocator_api, new_uninit)]
|
| 744 | ///
|
| 745 | /// use std::alloc::System;
|
| 746 | ///
|
| 747 | /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
|
| 748 | /// let values = unsafe { values.assume_init() };
|
| 749 | ///
|
| 750 | /// assert_eq!(*values, [0, 0, 0])
|
| 751 | /// ```
|
| 752 | ///
|
| 753 | /// [zeroed]: mem::MaybeUninit::zeroed
|
| 754 | #[cfg (not(no_global_oom_handling))]
|
| 755 | #[must_use ]
|
| 756 | #[inline (always)]
|
| 757 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
|
| 758 | unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
|
| 759 | }
|
| 760 |
|
| 761 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if
|
| 762 | /// the allocation fails.
|
| 763 | ///
|
| 764 | /// # Examples
|
| 765 | ///
|
| 766 | /// ```
|
| 767 | /// #![feature(allocator_api, new_uninit)]
|
| 768 | ///
|
| 769 | /// use std::alloc::System;
|
| 770 | ///
|
| 771 | /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
|
| 772 | /// let values = unsafe {
|
| 773 | /// // Deferred initialization:
|
| 774 | /// values[0].as_mut_ptr().write(1);
|
| 775 | /// values[1].as_mut_ptr().write(2);
|
| 776 | /// values[2].as_mut_ptr().write(3);
|
| 777 | /// values.assume_init()
|
| 778 | /// };
|
| 779 | ///
|
| 780 | /// assert_eq!(*values, [1, 2, 3]);
|
| 781 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 782 | /// ```
|
| 783 | #[inline ]
|
| 784 | pub fn try_new_uninit_slice_in(
|
| 785 | len: usize,
|
| 786 | alloc: A,
|
| 787 | ) -> Result<Box<[MaybeUninit<T>], A>, AllocError> {
|
| 788 | let ptr = if mem::size_of::<T>() == 0 || len == 0 {
|
| 789 | NonNull::dangling()
|
| 790 | } else {
|
| 791 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
|
| 792 | Ok(l) => l,
|
| 793 | Err(_) => return Err(AllocError),
|
| 794 | };
|
| 795 | alloc.allocate(layout)?.cast()
|
| 796 | };
|
| 797 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
|
| 798 | }
|
| 799 |
|
| 800 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory
|
| 801 | /// being filled with `0` bytes. Returns an error if the allocation fails.
|
| 802 | ///
|
| 803 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
| 804 | /// of this method.
|
| 805 | ///
|
| 806 | /// # Examples
|
| 807 | ///
|
| 808 | /// ```
|
| 809 | /// #![feature(allocator_api, new_uninit)]
|
| 810 | ///
|
| 811 | /// use std::alloc::System;
|
| 812 | ///
|
| 813 | /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
|
| 814 | /// let values = unsafe { values.assume_init() };
|
| 815 | ///
|
| 816 | /// assert_eq!(*values, [0, 0, 0]);
|
| 817 | /// # Ok::<(), std::alloc::AllocError>(())
|
| 818 | /// ```
|
| 819 | ///
|
| 820 | /// [zeroed]: mem::MaybeUninit::zeroed
|
| 821 | #[inline ]
|
| 822 | pub fn try_new_zeroed_slice_in(
|
| 823 | len: usize,
|
| 824 | alloc: A,
|
| 825 | ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
|
| 826 | let ptr = if mem::size_of::<T>() == 0 || len == 0 {
|
| 827 | NonNull::dangling()
|
| 828 | } else {
|
| 829 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
|
| 830 | Ok(l) => l,
|
| 831 | Err(_) => return Err(AllocError),
|
| 832 | };
|
| 833 | alloc.allocate_zeroed(layout)?.cast()
|
| 834 | };
|
| 835 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
|
| 836 | }
|
| 837 |
|
| 838 | /// Converts `self` into a vector without clones or allocation.
|
| 839 | ///
|
| 840 | /// The resulting vector can be converted back into a box via
|
| 841 | /// `Vec<T>`'s `into_boxed_slice` method.
|
| 842 | ///
|
| 843 | /// # Examples
|
| 844 | ///
|
| 845 | /// ```
|
| 846 | /// let s: Box<[i32]> = Box::new([10, 40, 30]);
|
| 847 | /// let x = s.into_vec();
|
| 848 | /// // `s` cannot be used anymore because it has been converted into `x`.
|
| 849 | ///
|
| 850 | /// assert_eq!(x, vec![10, 40, 30]);
|
| 851 | /// ```
|
| 852 | #[inline ]
|
| 853 | pub fn into_vec(self) -> Vec<T, A>
|
| 854 | where
|
| 855 | A: Allocator,
|
| 856 | {
|
| 857 | unsafe {
|
| 858 | let len = self.len();
|
| 859 | let (b, alloc) = Box::into_raw_with_allocator(self);
|
| 860 | Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
|
| 861 | }
|
| 862 | }
|
| 863 | }
|
| 864 |
|
| 865 | impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
|
| 866 | /// Converts to `Box<T, A>`.
|
| 867 | ///
|
| 868 | /// # Safety
|
| 869 | ///
|
| 870 | /// As with [`MaybeUninit::assume_init`],
|
| 871 | /// it is up to the caller to guarantee that the value
|
| 872 | /// really is in an initialized state.
|
| 873 | /// Calling this when the content is not yet fully initialized
|
| 874 | /// causes immediate undefined behavior.
|
| 875 | ///
|
| 876 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
|
| 877 | ///
|
| 878 | /// # Examples
|
| 879 | ///
|
| 880 | /// ```
|
| 881 | /// #![feature(new_uninit)]
|
| 882 | ///
|
| 883 | /// let mut five = Box::<u32>::new_uninit();
|
| 884 | ///
|
| 885 | /// let five: Box<u32> = unsafe {
|
| 886 | /// // Deferred initialization:
|
| 887 | /// five.as_mut_ptr().write(5);
|
| 888 | ///
|
| 889 | /// five.assume_init()
|
| 890 | /// };
|
| 891 | ///
|
| 892 | /// assert_eq!(*five, 5)
|
| 893 | /// ```
|
| 894 | #[inline (always)]
|
| 895 | pub unsafe fn assume_init(self) -> Box<T, A> {
|
| 896 | let (raw, alloc) = Self::into_raw_with_allocator(self);
|
| 897 | unsafe { Box::<T, A>::from_raw_in(raw as *mut T, alloc) }
|
| 898 | }
|
| 899 |
|
| 900 | /// Writes the value and converts to `Box<T, A>`.
|
| 901 | ///
|
| 902 | /// This method converts the box similarly to [`Box::assume_init`] but
|
| 903 | /// writes `value` into it before conversion thus guaranteeing safety.
|
| 904 | /// In some scenarios use of this method may improve performance because
|
| 905 | /// the compiler may be able to optimize copying from stack.
|
| 906 | ///
|
| 907 | /// # Examples
|
| 908 | ///
|
| 909 | /// ```
|
| 910 | /// #![feature(new_uninit)]
|
| 911 | ///
|
| 912 | /// let big_box = Box::<[usize; 1024]>::new_uninit();
|
| 913 | ///
|
| 914 | /// let mut array = [0; 1024];
|
| 915 | /// for (i, place) in array.iter_mut().enumerate() {
|
| 916 | /// *place = i;
|
| 917 | /// }
|
| 918 | ///
|
| 919 | /// // The optimizer may be able to elide this copy, so previous code writes
|
| 920 | /// // to heap directly.
|
| 921 | /// let big_box = Box::write(big_box, array);
|
| 922 | ///
|
| 923 | /// for (i, x) in big_box.iter().enumerate() {
|
| 924 | /// assert_eq!(*x, i);
|
| 925 | /// }
|
| 926 | /// ```
|
| 927 | #[inline (always)]
|
| 928 | pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
|
| 929 | unsafe {
|
| 930 | (*boxed).write(value);
|
| 931 | boxed.assume_init()
|
| 932 | }
|
| 933 | }
|
| 934 | }
|
| 935 |
|
| 936 | impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
|
| 937 | /// Converts to `Box<[T], A>`.
|
| 938 | ///
|
| 939 | /// # Safety
|
| 940 | ///
|
| 941 | /// As with [`MaybeUninit::assume_init`],
|
| 942 | /// it is up to the caller to guarantee that the values
|
| 943 | /// really are in an initialized state.
|
| 944 | /// Calling this when the content is not yet fully initialized
|
| 945 | /// causes immediate undefined behavior.
|
| 946 | ///
|
| 947 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
|
| 948 | ///
|
| 949 | /// # Examples
|
| 950 | ///
|
| 951 | /// ```
|
| 952 | /// #![feature(new_uninit)]
|
| 953 | ///
|
| 954 | /// let mut values = Box::<[u32]>::new_uninit_slice(3);
|
| 955 | ///
|
| 956 | /// let values = unsafe {
|
| 957 | /// // Deferred initialization:
|
| 958 | /// values[0].as_mut_ptr().write(1);
|
| 959 | /// values[1].as_mut_ptr().write(2);
|
| 960 | /// values[2].as_mut_ptr().write(3);
|
| 961 | ///
|
| 962 | /// values.assume_init()
|
| 963 | /// };
|
| 964 | ///
|
| 965 | /// assert_eq!(*values, [1, 2, 3])
|
| 966 | /// ```
|
| 967 | #[inline (always)]
|
| 968 | pub unsafe fn assume_init(self) -> Box<[T], A> {
|
| 969 | let (raw, alloc) = Self::into_raw_with_allocator(self);
|
| 970 | unsafe { Box::<[T], A>::from_raw_in(raw as *mut [T], alloc) }
|
| 971 | }
|
| 972 | }
|
| 973 |
|
| 974 | impl<T: ?Sized> Box<T> {
|
| 975 | /// Constructs a box from a raw pointer.
|
| 976 | ///
|
| 977 | /// After calling this function, the raw pointer is owned by the
|
| 978 | /// resulting `Box`. Specifically, the `Box` destructor will call
|
| 979 | /// the destructor of `T` and free the allocated memory. For this
|
| 980 | /// to be safe, the memory must have been allocated in accordance
|
| 981 | /// with the [memory layout] used by `Box` .
|
| 982 | ///
|
| 983 | /// # Safety
|
| 984 | ///
|
| 985 | /// This function is unsafe because improper use may lead to
|
| 986 | /// memory problems. For example, a double-free may occur if the
|
| 987 | /// function is called twice on the same raw pointer.
|
| 988 | ///
|
| 989 | /// The safety conditions are described in the [memory layout] section.
|
| 990 | ///
|
| 991 | /// # Examples
|
| 992 | ///
|
| 993 | /// Recreate a `Box` which was previously converted to a raw pointer
|
| 994 | /// using [`Box::into_raw`]:
|
| 995 | /// ```
|
| 996 | /// let x = Box::new(5);
|
| 997 | /// let ptr = Box::into_raw(x);
|
| 998 | /// let x = unsafe { Box::from_raw(ptr) };
|
| 999 | /// ```
|
| 1000 | /// Manually create a `Box` from scratch by using the global allocator:
|
| 1001 | /// ```
|
| 1002 | /// use std::alloc::{alloc, Layout};
|
| 1003 | ///
|
| 1004 | /// unsafe {
|
| 1005 | /// let ptr = alloc(Layout::new::<i32>()) as *mut i32;
|
| 1006 | /// // In general .write is required to avoid attempting to destruct
|
| 1007 | /// // the (uninitialized) previous contents of `ptr`, though for this
|
| 1008 | /// // simple example `*ptr = 5` would have worked as well.
|
| 1009 | /// ptr.write(5);
|
| 1010 | /// let x = Box::from_raw(ptr);
|
| 1011 | /// }
|
| 1012 | /// ```
|
| 1013 | ///
|
| 1014 | /// [memory layout]: self#memory-layout
|
| 1015 | /// [`Layout`]: crate::Layout
|
| 1016 | #[must_use = "call `drop(from_raw(ptr))` if you intend to drop the `Box`" ]
|
| 1017 | #[inline (always)]
|
| 1018 | pub unsafe fn from_raw(raw: *mut T) -> Self {
|
| 1019 | unsafe { Self::from_raw_in(raw, Global) }
|
| 1020 | }
|
| 1021 | }
|
| 1022 |
|
| 1023 | impl<T: ?Sized, A: Allocator> Box<T, A> {
|
| 1024 | /// Constructs a box from a raw pointer in the given allocator.
|
| 1025 | ///
|
| 1026 | /// After calling this function, the raw pointer is owned by the
|
| 1027 | /// resulting `Box`. Specifically, the `Box` destructor will call
|
| 1028 | /// the destructor of `T` and free the allocated memory. For this
|
| 1029 | /// to be safe, the memory must have been allocated in accordance
|
| 1030 | /// with the [memory layout] used by `Box` .
|
| 1031 | ///
|
| 1032 | /// # Safety
|
| 1033 | ///
|
| 1034 | /// This function is unsafe because improper use may lead to
|
| 1035 | /// memory problems. For example, a double-free may occur if the
|
| 1036 | /// function is called twice on the same raw pointer.
|
| 1037 | ///
|
| 1038 | ///
|
| 1039 | /// # Examples
|
| 1040 | ///
|
| 1041 | /// Recreate a `Box` which was previously converted to a raw pointer
|
| 1042 | /// using [`Box::into_raw_with_allocator`]:
|
| 1043 | /// ```
|
| 1044 | /// use std::alloc::System;
|
| 1045 | /// # use allocator_api2::boxed::Box;
|
| 1046 | ///
|
| 1047 | /// let x = Box::new_in(5, System);
|
| 1048 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
|
| 1049 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
|
| 1050 | /// ```
|
| 1051 | /// Manually create a `Box` from scratch by using the system allocator:
|
| 1052 | /// ```
|
| 1053 | /// use allocator_api2::alloc::{Allocator, Layout, System};
|
| 1054 | /// # use allocator_api2::boxed::Box;
|
| 1055 | ///
|
| 1056 | /// unsafe {
|
| 1057 | /// let ptr = System.allocate(Layout::new::<i32>())?.as_ptr().cast::<i32>();
|
| 1058 | /// // In general .write is required to avoid attempting to destruct
|
| 1059 | /// // the (uninitialized) previous contents of `ptr`, though for this
|
| 1060 | /// // simple example `*ptr = 5` would have worked as well.
|
| 1061 | /// ptr.write(5);
|
| 1062 | /// let x = Box::from_raw_in(ptr, System);
|
| 1063 | /// }
|
| 1064 | /// # Ok::<(), allocator_api2::alloc::AllocError>(())
|
| 1065 | /// ```
|
| 1066 | ///
|
| 1067 | /// [memory layout]: self#memory-layout
|
| 1068 | /// [`Layout`]: crate::Layout
|
| 1069 | #[inline (always)]
|
| 1070 | pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
|
| 1071 | Box(unsafe { Unique::new_unchecked(raw) }, alloc)
|
| 1072 | }
|
| 1073 |
|
| 1074 | /// Consumes the `Box`, returning a wrapped raw pointer.
|
| 1075 | ///
|
| 1076 | /// The pointer will be properly aligned and non-null.
|
| 1077 | ///
|
| 1078 | /// After calling this function, the caller is responsible for the
|
| 1079 | /// memory previously managed by the `Box`. In particular, the
|
| 1080 | /// caller should properly destroy `T` and release the memory, taking
|
| 1081 | /// into account the [memory layout] used by `Box`. The easiest way to
|
| 1082 | /// do this is to convert the raw pointer back into a `Box` with the
|
| 1083 | /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
|
| 1084 | /// the cleanup.
|
| 1085 | ///
|
| 1086 | /// Note: this is an associated function, which means that you have
|
| 1087 | /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
|
| 1088 | /// is so that there is no conflict with a method on the inner type.
|
| 1089 | ///
|
| 1090 | /// # Examples
|
| 1091 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
|
| 1092 | /// for automatic cleanup:
|
| 1093 | /// ```
|
| 1094 | /// let x = Box::new(String::from("Hello" ));
|
| 1095 | /// let ptr = Box::into_raw(x);
|
| 1096 | /// let x = unsafe { Box::from_raw(ptr) };
|
| 1097 | /// ```
|
| 1098 | /// Manual cleanup by explicitly running the destructor and deallocating
|
| 1099 | /// the memory:
|
| 1100 | /// ```
|
| 1101 | /// use std::alloc::{dealloc, Layout};
|
| 1102 | /// use std::ptr;
|
| 1103 | ///
|
| 1104 | /// let x = Box::new(String::from("Hello" ));
|
| 1105 | /// let p = Box::into_raw(x);
|
| 1106 | /// unsafe {
|
| 1107 | /// ptr::drop_in_place(p);
|
| 1108 | /// dealloc(p as *mut u8, Layout::new::<String>());
|
| 1109 | /// }
|
| 1110 | /// ```
|
| 1111 | ///
|
| 1112 | /// [memory layout]: self#memory-layout
|
| 1113 | #[inline (always)]
|
| 1114 | pub fn into_raw(b: Self) -> *mut T {
|
| 1115 | Self::into_raw_with_allocator(b).0
|
| 1116 | }
|
| 1117 |
|
| 1118 | /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
|
| 1119 | ///
|
| 1120 | /// The pointer will be properly aligned and non-null.
|
| 1121 | ///
|
| 1122 | /// After calling this function, the caller is responsible for the
|
| 1123 | /// memory previously managed by the `Box`. In particular, the
|
| 1124 | /// caller should properly destroy `T` and release the memory, taking
|
| 1125 | /// into account the [memory layout] used by `Box`. The easiest way to
|
| 1126 | /// do this is to convert the raw pointer back into a `Box` with the
|
| 1127 | /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
|
| 1128 | /// the cleanup.
|
| 1129 | ///
|
| 1130 | /// Note: this is an associated function, which means that you have
|
| 1131 | /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
|
| 1132 | /// is so that there is no conflict with a method on the inner type.
|
| 1133 | ///
|
| 1134 | /// # Examples
|
| 1135 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
|
| 1136 | /// for automatic cleanup:
|
| 1137 | /// ```
|
| 1138 | /// #![feature(allocator_api)]
|
| 1139 | ///
|
| 1140 | /// use std::alloc::System;
|
| 1141 | ///
|
| 1142 | /// let x = Box::new_in(String::from("Hello" ), System);
|
| 1143 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
|
| 1144 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
|
| 1145 | /// ```
|
| 1146 | /// Manual cleanup by explicitly running the destructor and deallocating
|
| 1147 | /// the memory:
|
| 1148 | /// ```
|
| 1149 | /// #![feature(allocator_api)]
|
| 1150 | ///
|
| 1151 | /// use std::alloc::{Allocator, Layout, System};
|
| 1152 | /// use std::ptr::{self, NonNull};
|
| 1153 | ///
|
| 1154 | /// let x = Box::new_in(String::from("Hello" ), System);
|
| 1155 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
|
| 1156 | /// unsafe {
|
| 1157 | /// ptr::drop_in_place(ptr);
|
| 1158 | /// let non_null = NonNull::new_unchecked(ptr);
|
| 1159 | /// alloc.deallocate(non_null.cast(), Layout::new::<String>());
|
| 1160 | /// }
|
| 1161 | /// ```
|
| 1162 | ///
|
| 1163 | /// [memory layout]: self#memory-layout
|
| 1164 | #[inline (always)]
|
| 1165 | pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
|
| 1166 | let (leaked, alloc) = Box::into_non_null(b);
|
| 1167 | (leaked.as_ptr(), alloc)
|
| 1168 | }
|
| 1169 |
|
| 1170 | #[inline (always)]
|
| 1171 | pub fn into_non_null(b: Self) -> (NonNull<T>, A) {
|
| 1172 | // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
|
| 1173 | // raw pointer for the type system. Turning it directly into a raw pointer would not be
|
| 1174 | // recognized as "releasing" the unique pointer to permit aliased raw accesses,
|
| 1175 | // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
|
| 1176 | // behaves correctly.
|
| 1177 | let alloc = unsafe { ptr::read(&b.1) };
|
| 1178 | (NonNull::from(Box::leak(b)), alloc)
|
| 1179 | }
|
| 1180 |
|
| 1181 | /// Returns a reference to the underlying allocator.
|
| 1182 | ///
|
| 1183 | /// Note: this is an associated function, which means that you have
|
| 1184 | /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
|
| 1185 | /// is so that there is no conflict with a method on the inner type.
|
| 1186 | #[inline (always)]
|
| 1187 | pub const fn allocator(b: &Self) -> &A {
|
| 1188 | &b.1
|
| 1189 | }
|
| 1190 |
|
| 1191 | /// Consumes and leaks the `Box`, returning a mutable reference,
|
| 1192 | /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
|
| 1193 | /// `'a`. If the type has only static references, or none at all, then this
|
| 1194 | /// may be chosen to be `'static`.
|
| 1195 | ///
|
| 1196 | /// This function is mainly useful for data that lives for the remainder of
|
| 1197 | /// the program's life. Dropping the returned reference will cause a memory
|
| 1198 | /// leak. If this is not acceptable, the reference should first be wrapped
|
| 1199 | /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
|
| 1200 | /// then be dropped which will properly destroy `T` and release the
|
| 1201 | /// allocated memory.
|
| 1202 | ///
|
| 1203 | /// Note: this is an associated function, which means that you have
|
| 1204 | /// to call it as `Box::leak(b)` instead of `b.leak()`. This
|
| 1205 | /// is so that there is no conflict with a method on the inner type.
|
| 1206 | ///
|
| 1207 | /// # Examples
|
| 1208 | ///
|
| 1209 | /// Simple usage:
|
| 1210 | ///
|
| 1211 | /// ```
|
| 1212 | /// let x = Box::new(41);
|
| 1213 | /// let static_ref: &'static mut usize = Box::leak(x);
|
| 1214 | /// *static_ref += 1;
|
| 1215 | /// assert_eq!(*static_ref, 42);
|
| 1216 | /// ```
|
| 1217 | ///
|
| 1218 | /// Unsized data:
|
| 1219 | ///
|
| 1220 | /// ```
|
| 1221 | /// let x = vec![1, 2, 3].into_boxed_slice();
|
| 1222 | /// let static_ref = Box::leak(x);
|
| 1223 | /// static_ref[0] = 4;
|
| 1224 | /// assert_eq!(*static_ref, [4, 2, 3]);
|
| 1225 | /// ```
|
| 1226 | #[inline (always)]
|
| 1227 | pub fn leak<'a>(b: Self) -> &'a mut T
|
| 1228 | where
|
| 1229 | A: 'a,
|
| 1230 | {
|
| 1231 | unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
|
| 1232 | }
|
| 1233 |
|
| 1234 | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
|
| 1235 | /// `*boxed` will be pinned in memory and unable to be moved.
|
| 1236 | ///
|
| 1237 | /// This conversion does not allocate on the heap and happens in place.
|
| 1238 | ///
|
| 1239 | /// This is also available via [`From`].
|
| 1240 | ///
|
| 1241 | /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
|
| 1242 | /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
|
| 1243 | /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
|
| 1244 | /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
|
| 1245 | ///
|
| 1246 | /// # Notes
|
| 1247 | ///
|
| 1248 | /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
|
| 1249 | /// as it'll introduce an ambiguity when calling `Pin::from`.
|
| 1250 | /// A demonstration of such a poor impl is shown below.
|
| 1251 | ///
|
| 1252 | /// ```compile_fail
|
| 1253 | /// # use std::pin::Pin;
|
| 1254 | /// struct Foo; // A type defined in this crate.
|
| 1255 | /// impl From<Box<()>> for Pin<Foo> {
|
| 1256 | /// fn from(_: Box<()>) -> Pin<Foo> {
|
| 1257 | /// Pin::new(Foo)
|
| 1258 | /// }
|
| 1259 | /// }
|
| 1260 | ///
|
| 1261 | /// let foo = Box::new(());
|
| 1262 | /// let bar = Pin::from(foo);
|
| 1263 | /// ```
|
| 1264 | #[inline (always)]
|
| 1265 | pub fn into_pin(boxed: Self) -> Pin<Self>
|
| 1266 | where
|
| 1267 | A: 'static,
|
| 1268 | {
|
| 1269 | // It's not possible to move or replace the insides of a `Pin<Box<T>>`
|
| 1270 | // when `T: !Unpin`, so it's safe to pin it directly without any
|
| 1271 | // additional requirements.
|
| 1272 | unsafe { Pin::new_unchecked(boxed) }
|
| 1273 | }
|
| 1274 | }
|
| 1275 |
|
| 1276 | impl<T: ?Sized, A: Allocator> Drop for Box<T, A> {
|
| 1277 | #[inline (always)]
|
| 1278 | fn drop(&mut self) {
|
| 1279 | let layout: Layout = Layout::for_value::<T>(&**self);
|
| 1280 | unsafe {
|
| 1281 | ptr::drop_in_place(self.0.as_mut());
|
| 1282 | self.1.deallocate(self.0.as_non_null_ptr().cast(), layout);
|
| 1283 | }
|
| 1284 | }
|
| 1285 | }
|
| 1286 |
|
| 1287 | #[cfg (not(no_global_oom_handling))]
|
| 1288 | impl<T: Default> Default for Box<T> {
|
| 1289 | /// Creates a `Box<T>`, with the `Default` value for T.
|
| 1290 | #[inline (always)]
|
| 1291 | fn default() -> Self {
|
| 1292 | Box::new(T::default())
|
| 1293 | }
|
| 1294 | }
|
| 1295 |
|
| 1296 | impl<T, A: Allocator + Default> Default for Box<[T], A> {
|
| 1297 | #[inline (always)]
|
| 1298 | fn default() -> Self {
|
| 1299 | let ptr: NonNull<[T]> = NonNull::<[T; 0]>::dangling();
|
| 1300 | Box(unsafe { Unique::new_unchecked(ptr.as_ptr()) }, A::default())
|
| 1301 | }
|
| 1302 | }
|
| 1303 |
|
| 1304 | impl<A: Allocator + Default> Default for Box<str, A> {
|
| 1305 | #[inline (always)]
|
| 1306 | fn default() -> Self {
|
| 1307 | // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
|
| 1308 | let ptr: Unique<str> = unsafe {
|
| 1309 | let bytes: NonNull<[u8]> = NonNull::<[u8; 0]>::dangling();
|
| 1310 | Unique::new_unchecked(bytes.as_ptr() as *mut str)
|
| 1311 | };
|
| 1312 | Box(ptr, A::default())
|
| 1313 | }
|
| 1314 | }
|
| 1315 |
|
| 1316 | #[cfg (not(no_global_oom_handling))]
|
| 1317 | impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
|
| 1318 | /// Returns a new box with a `clone()` of this box's contents.
|
| 1319 | ///
|
| 1320 | /// # Examples
|
| 1321 | ///
|
| 1322 | /// ```
|
| 1323 | /// let x = Box::new(5);
|
| 1324 | /// let y = x.clone();
|
| 1325 | ///
|
| 1326 | /// // The value is the same
|
| 1327 | /// assert_eq!(x, y);
|
| 1328 | ///
|
| 1329 | /// // But they are unique objects
|
| 1330 | /// assert_ne!(&*x as *const i32, &*y as *const i32);
|
| 1331 | /// ```
|
| 1332 | #[inline (always)]
|
| 1333 | fn clone(&self) -> Self {
|
| 1334 | // Pre-allocate memory to allow writing the cloned value directly.
|
| 1335 | let mut boxed = Self::new_uninit_in(self.1.clone());
|
| 1336 | unsafe {
|
| 1337 | boxed.write((**self).clone());
|
| 1338 | boxed.assume_init()
|
| 1339 | }
|
| 1340 | }
|
| 1341 |
|
| 1342 | /// Copies `source`'s contents into `self` without creating a new allocation.
|
| 1343 | ///
|
| 1344 | /// # Examples
|
| 1345 | ///
|
| 1346 | /// ```
|
| 1347 | /// let x = Box::new(5);
|
| 1348 | /// let mut y = Box::new(10);
|
| 1349 | /// let yp: *const i32 = &*y;
|
| 1350 | ///
|
| 1351 | /// y.clone_from(&x);
|
| 1352 | ///
|
| 1353 | /// // The value is the same
|
| 1354 | /// assert_eq!(x, y);
|
| 1355 | ///
|
| 1356 | /// // And no allocation occurred
|
| 1357 | /// assert_eq!(yp, &*y);
|
| 1358 | /// ```
|
| 1359 | #[inline (always)]
|
| 1360 | fn clone_from(&mut self, source: &Self) {
|
| 1361 | (**self).clone_from(&(**source));
|
| 1362 | }
|
| 1363 | }
|
| 1364 |
|
| 1365 | #[cfg (not(no_global_oom_handling))]
|
| 1366 | impl Clone for Box<str> {
|
| 1367 | #[inline (always)]
|
| 1368 | fn clone(&self) -> Self {
|
| 1369 | // this makes a copy of the data
|
| 1370 | let buf: Box<[u8]> = self.as_bytes().into();
|
| 1371 | unsafe { Box::from_raw(Box::into_raw(buf) as *mut str) }
|
| 1372 | }
|
| 1373 | }
|
| 1374 |
|
| 1375 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
|
| 1376 | #[inline (always)]
|
| 1377 | fn eq(&self, other: &Self) -> bool {
|
| 1378 | PartialEq::eq(&**self, &**other)
|
| 1379 | }
|
| 1380 | #[inline (always)]
|
| 1381 | fn ne(&self, other: &Self) -> bool {
|
| 1382 | PartialEq::ne(&**self, &**other)
|
| 1383 | }
|
| 1384 | }
|
| 1385 |
|
| 1386 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
|
| 1387 | #[inline (always)]
|
| 1388 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
| 1389 | PartialOrd::partial_cmp(&**self, &**other)
|
| 1390 | }
|
| 1391 | #[inline (always)]
|
| 1392 | fn lt(&self, other: &Self) -> bool {
|
| 1393 | PartialOrd::lt(&**self, &**other)
|
| 1394 | }
|
| 1395 | #[inline (always)]
|
| 1396 | fn le(&self, other: &Self) -> bool {
|
| 1397 | PartialOrd::le(&**self, &**other)
|
| 1398 | }
|
| 1399 | #[inline (always)]
|
| 1400 | fn ge(&self, other: &Self) -> bool {
|
| 1401 | PartialOrd::ge(&**self, &**other)
|
| 1402 | }
|
| 1403 | #[inline (always)]
|
| 1404 | fn gt(&self, other: &Self) -> bool {
|
| 1405 | PartialOrd::gt(&**self, &**other)
|
| 1406 | }
|
| 1407 | }
|
| 1408 |
|
| 1409 | impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
|
| 1410 | #[inline (always)]
|
| 1411 | fn cmp(&self, other: &Self) -> Ordering {
|
| 1412 | Ord::cmp(&**self, &**other)
|
| 1413 | }
|
| 1414 | }
|
| 1415 |
|
| 1416 | impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
|
| 1417 |
|
| 1418 | impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
|
| 1419 | #[inline (always)]
|
| 1420 | fn hash<H: Hasher>(&self, state: &mut H) {
|
| 1421 | (**self).hash(state);
|
| 1422 | }
|
| 1423 | }
|
| 1424 |
|
| 1425 | impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
|
| 1426 | #[inline (always)]
|
| 1427 | fn finish(&self) -> u64 {
|
| 1428 | (**self).finish()
|
| 1429 | }
|
| 1430 | #[inline (always)]
|
| 1431 | fn write(&mut self, bytes: &[u8]) {
|
| 1432 | (**self).write(bytes)
|
| 1433 | }
|
| 1434 | #[inline (always)]
|
| 1435 | fn write_u8(&mut self, i: u8) {
|
| 1436 | (**self).write_u8(i)
|
| 1437 | }
|
| 1438 | #[inline (always)]
|
| 1439 | fn write_u16(&mut self, i: u16) {
|
| 1440 | (**self).write_u16(i)
|
| 1441 | }
|
| 1442 | #[inline (always)]
|
| 1443 | fn write_u32(&mut self, i: u32) {
|
| 1444 | (**self).write_u32(i)
|
| 1445 | }
|
| 1446 | #[inline (always)]
|
| 1447 | fn write_u64(&mut self, i: u64) {
|
| 1448 | (**self).write_u64(i)
|
| 1449 | }
|
| 1450 | #[inline (always)]
|
| 1451 | fn write_u128(&mut self, i: u128) {
|
| 1452 | (**self).write_u128(i)
|
| 1453 | }
|
| 1454 | #[inline (always)]
|
| 1455 | fn write_usize(&mut self, i: usize) {
|
| 1456 | (**self).write_usize(i)
|
| 1457 | }
|
| 1458 | #[inline (always)]
|
| 1459 | fn write_i8(&mut self, i: i8) {
|
| 1460 | (**self).write_i8(i)
|
| 1461 | }
|
| 1462 | #[inline (always)]
|
| 1463 | fn write_i16(&mut self, i: i16) {
|
| 1464 | (**self).write_i16(i)
|
| 1465 | }
|
| 1466 | #[inline (always)]
|
| 1467 | fn write_i32(&mut self, i: i32) {
|
| 1468 | (**self).write_i32(i)
|
| 1469 | }
|
| 1470 | #[inline (always)]
|
| 1471 | fn write_i64(&mut self, i: i64) {
|
| 1472 | (**self).write_i64(i)
|
| 1473 | }
|
| 1474 | #[inline (always)]
|
| 1475 | fn write_i128(&mut self, i: i128) {
|
| 1476 | (**self).write_i128(i)
|
| 1477 | }
|
| 1478 | #[inline (always)]
|
| 1479 | fn write_isize(&mut self, i: isize) {
|
| 1480 | (**self).write_isize(i)
|
| 1481 | }
|
| 1482 | }
|
| 1483 |
|
| 1484 | #[cfg (not(no_global_oom_handling))]
|
| 1485 | impl<T> From<T> for Box<T> {
|
| 1486 | /// Converts a `T` into a `Box<T>`
|
| 1487 | ///
|
| 1488 | /// The conversion allocates on the heap and moves `t`
|
| 1489 | /// from the stack into it.
|
| 1490 | ///
|
| 1491 | /// # Examples
|
| 1492 | ///
|
| 1493 | /// ```rust
|
| 1494 | /// let x = 5;
|
| 1495 | /// let boxed = Box::new(5);
|
| 1496 | ///
|
| 1497 | /// assert_eq!(Box::from(x), boxed);
|
| 1498 | /// ```
|
| 1499 | #[inline (always)]
|
| 1500 | fn from(t: T) -> Self {
|
| 1501 | Box::new(t)
|
| 1502 | }
|
| 1503 | }
|
| 1504 |
|
| 1505 | impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
|
| 1506 | where
|
| 1507 | A: 'static,
|
| 1508 | {
|
| 1509 | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
|
| 1510 | /// `*boxed` will be pinned in memory and unable to be moved.
|
| 1511 | ///
|
| 1512 | /// This conversion does not allocate on the heap and happens in place.
|
| 1513 | ///
|
| 1514 | /// This is also available via [`Box::into_pin`].
|
| 1515 | ///
|
| 1516 | /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
|
| 1517 | /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
|
| 1518 | /// This `From` implementation is useful if you already have a `Box<T>`, or you are
|
| 1519 | /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
|
| 1520 | #[inline (always)]
|
| 1521 | fn from(boxed: Box<T, A>) -> Self {
|
| 1522 | Box::into_pin(boxed)
|
| 1523 | }
|
| 1524 | }
|
| 1525 |
|
| 1526 | #[cfg (not(no_global_oom_handling))]
|
| 1527 | impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A> {
|
| 1528 | /// Converts a `&[T]` into a `Box<[T]>`
|
| 1529 | ///
|
| 1530 | /// This conversion allocates on the heap
|
| 1531 | /// and performs a copy of `slice` and its contents.
|
| 1532 | ///
|
| 1533 | /// # Examples
|
| 1534 | /// ```rust
|
| 1535 | /// // create a &[u8] which will be used to create a Box<[u8]>
|
| 1536 | /// let slice: &[u8] = &[104, 101, 108, 108, 111];
|
| 1537 | /// let boxed_slice: Box<[u8]> = Box::from(slice);
|
| 1538 | ///
|
| 1539 | /// println!("{boxed_slice:?}" );
|
| 1540 | /// ```
|
| 1541 | #[inline (always)]
|
| 1542 | fn from(slice: &[T]) -> Box<[T], A> {
|
| 1543 | let len: usize = slice.len();
|
| 1544 | let buf: RawVec = RawVec::with_capacity_in(capacity:len, A::default());
|
| 1545 | unsafe {
|
| 1546 | ptr::copy_nonoverlapping(src:slice.as_ptr(), dst:buf.ptr(), count:len);
|
| 1547 | buf.into_box(slice.len()).assume_init()
|
| 1548 | }
|
| 1549 | }
|
| 1550 | }
|
| 1551 |
|
| 1552 | #[cfg (not(no_global_oom_handling))]
|
| 1553 | impl<A: Allocator + Default> From<&str> for Box<str, A> {
|
| 1554 | /// Converts a `&str` into a `Box<str>`
|
| 1555 | ///
|
| 1556 | /// This conversion allocates on the heap
|
| 1557 | /// and performs a copy of `s`.
|
| 1558 | ///
|
| 1559 | /// # Examples
|
| 1560 | ///
|
| 1561 | /// ```rust
|
| 1562 | /// let boxed: Box<str> = Box::from("hello" );
|
| 1563 | /// println!("{boxed}" );
|
| 1564 | /// ```
|
| 1565 | #[inline (always)]
|
| 1566 | fn from(s: &str) -> Box<str, A> {
|
| 1567 | let (raw: *mut [u8], alloc: A) = Box::into_raw_with_allocator(Box::<[u8], A>::from(s.as_bytes()));
|
| 1568 | unsafe { Box::from_raw_in(raw as *mut str, alloc) }
|
| 1569 | }
|
| 1570 | }
|
| 1571 |
|
| 1572 | impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
|
| 1573 | /// Converts a `Box<str>` into a `Box<[u8]>`
|
| 1574 | ///
|
| 1575 | /// This conversion does not allocate on the heap and happens in place.
|
| 1576 | ///
|
| 1577 | /// # Examples
|
| 1578 | /// ```rust
|
| 1579 | /// // create a Box<str> which will be used to create a Box<[u8]>
|
| 1580 | /// let boxed: Box<str> = Box::from("hello" );
|
| 1581 | /// let boxed_str: Box<[u8]> = Box::from(boxed);
|
| 1582 | ///
|
| 1583 | /// // create a &[u8] which will be used to create a Box<[u8]>
|
| 1584 | /// let slice: &[u8] = &[104, 101, 108, 108, 111];
|
| 1585 | /// let boxed_slice = Box::from(slice);
|
| 1586 | ///
|
| 1587 | /// assert_eq!(boxed_slice, boxed_str);
|
| 1588 | /// ```
|
| 1589 | #[inline (always)]
|
| 1590 | fn from(s: Box<str, A>) -> Self {
|
| 1591 | let (raw: *mut str, alloc: A) = Box::into_raw_with_allocator(s);
|
| 1592 | unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
|
| 1593 | }
|
| 1594 | }
|
| 1595 |
|
| 1596 | impl<T, A: Allocator, const N: usize> Box<[T; N], A> {
|
| 1597 | #[inline (always)]
|
| 1598 | pub fn slice(b: Self) -> Box<[T], A> {
|
| 1599 | let (ptr: *mut [T; N], alloc: A) = Box::into_raw_with_allocator(b);
|
| 1600 | unsafe { Box::from_raw_in(raw:ptr, alloc) }
|
| 1601 | }
|
| 1602 |
|
| 1603 | pub fn into_vec(self) -> Vec<T, A>
|
| 1604 | where
|
| 1605 | A: Allocator,
|
| 1606 | {
|
| 1607 | unsafe {
|
| 1608 | let (b: *mut [T; N], alloc: A) = Box::into_raw_with_allocator(self);
|
| 1609 | Vec::from_raw_parts_in(ptr:b as *mut T, N, N, alloc)
|
| 1610 | }
|
| 1611 | }
|
| 1612 | }
|
| 1613 |
|
| 1614 | #[cfg (not(no_global_oom_handling))]
|
| 1615 | impl<T, const N: usize> From<[T; N]> for Box<[T]> {
|
| 1616 | /// Converts a `[T; N]` into a `Box<[T]>`
|
| 1617 | ///
|
| 1618 | /// This conversion moves the array to newly heap-allocated memory.
|
| 1619 | ///
|
| 1620 | /// # Examples
|
| 1621 | ///
|
| 1622 | /// ```rust
|
| 1623 | /// let boxed: Box<[u8]> = Box::from([4, 2]);
|
| 1624 | /// println!("{boxed:?}" );
|
| 1625 | /// ```
|
| 1626 | #[inline (always)]
|
| 1627 | fn from(array: [T; N]) -> Box<[T]> {
|
| 1628 | Box::slice(Box::new(array))
|
| 1629 | }
|
| 1630 | }
|
| 1631 |
|
| 1632 | impl<T, A: Allocator, const N: usize> TryFrom<Box<[T], A>> for Box<[T; N], A> {
|
| 1633 | type Error = Box<[T], A>;
|
| 1634 |
|
| 1635 | /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
|
| 1636 | ///
|
| 1637 | /// The conversion occurs in-place and does not require a
|
| 1638 | /// new memory allocation.
|
| 1639 | ///
|
| 1640 | /// # Errors
|
| 1641 | ///
|
| 1642 | /// Returns the old `Box<[T]>` in the `Err` variant if
|
| 1643 | /// `boxed_slice.len()` does not equal `N`.
|
| 1644 | #[inline (always)]
|
| 1645 | fn try_from(boxed_slice: Box<[T], A>) -> Result<Self, Self::Error> {
|
| 1646 | if boxed_slice.len() == N {
|
| 1647 | let (ptr: *mut [T], alloc: A) = Box::into_raw_with_allocator(boxed_slice);
|
| 1648 | Ok(unsafe { Box::from_raw_in(raw:ptr as *mut [T; N], alloc) })
|
| 1649 | } else {
|
| 1650 | Err(boxed_slice)
|
| 1651 | }
|
| 1652 | }
|
| 1653 | }
|
| 1654 |
|
| 1655 | impl<A: Allocator> Box<dyn Any, A> {
|
| 1656 | /// Attempt to downcast the box to a concrete type.
|
| 1657 | ///
|
| 1658 | /// # Examples
|
| 1659 | ///
|
| 1660 | /// ```
|
| 1661 | /// use std::any::Any;
|
| 1662 | ///
|
| 1663 | /// fn print_if_string(value: Box<dyn Any>) {
|
| 1664 | /// if let Ok(string) = value.downcast::<String>() {
|
| 1665 | /// println!("String ({}): {}" , string.len(), string);
|
| 1666 | /// }
|
| 1667 | /// }
|
| 1668 | ///
|
| 1669 | /// let my_string = "Hello World" .to_string();
|
| 1670 | /// print_if_string(Box::new(my_string));
|
| 1671 | /// print_if_string(Box::new(0i8));
|
| 1672 | /// ```
|
| 1673 | #[inline (always)]
|
| 1674 | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
|
| 1675 | if self.is::<T>() {
|
| 1676 | unsafe { Ok(self.downcast_unchecked::<T>()) }
|
| 1677 | } else {
|
| 1678 | Err(self)
|
| 1679 | }
|
| 1680 | }
|
| 1681 |
|
| 1682 | /// Downcasts the box to a concrete type.
|
| 1683 | ///
|
| 1684 | /// For a safe alternative see [`downcast`].
|
| 1685 | ///
|
| 1686 | /// # Examples
|
| 1687 | ///
|
| 1688 | /// ```
|
| 1689 | /// #![feature(downcast_unchecked)]
|
| 1690 | ///
|
| 1691 | /// use std::any::Any;
|
| 1692 | ///
|
| 1693 | /// let x: Box<dyn Any> = Box::new(1_usize);
|
| 1694 | ///
|
| 1695 | /// unsafe {
|
| 1696 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
|
| 1697 | /// }
|
| 1698 | /// ```
|
| 1699 | ///
|
| 1700 | /// # Safety
|
| 1701 | ///
|
| 1702 | /// The contained value must be of type `T`. Calling this method
|
| 1703 | /// with the incorrect type is *undefined behavior*.
|
| 1704 | ///
|
| 1705 | /// [`downcast`]: Self::downcast
|
| 1706 | #[inline (always)]
|
| 1707 | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
|
| 1708 | debug_assert!(self.is::<T>());
|
| 1709 | unsafe {
|
| 1710 | let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
|
| 1711 | Box::from_raw_in(raw as *mut T, alloc)
|
| 1712 | }
|
| 1713 | }
|
| 1714 | }
|
| 1715 |
|
| 1716 | impl<A: Allocator> Box<dyn Any + Send, A> {
|
| 1717 | /// Attempt to downcast the box to a concrete type.
|
| 1718 | ///
|
| 1719 | /// # Examples
|
| 1720 | ///
|
| 1721 | /// ```
|
| 1722 | /// use std::any::Any;
|
| 1723 | ///
|
| 1724 | /// fn print_if_string(value: Box<dyn Any + Send>) {
|
| 1725 | /// if let Ok(string) = value.downcast::<String>() {
|
| 1726 | /// println!("String ({}): {}" , string.len(), string);
|
| 1727 | /// }
|
| 1728 | /// }
|
| 1729 | ///
|
| 1730 | /// let my_string = "Hello World" .to_string();
|
| 1731 | /// print_if_string(Box::new(my_string));
|
| 1732 | /// print_if_string(Box::new(0i8));
|
| 1733 | /// ```
|
| 1734 | #[inline (always)]
|
| 1735 | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
|
| 1736 | if self.is::<T>() {
|
| 1737 | unsafe { Ok(self.downcast_unchecked::<T>()) }
|
| 1738 | } else {
|
| 1739 | Err(self)
|
| 1740 | }
|
| 1741 | }
|
| 1742 |
|
| 1743 | /// Downcasts the box to a concrete type.
|
| 1744 | ///
|
| 1745 | /// For a safe alternative see [`downcast`].
|
| 1746 | ///
|
| 1747 | /// # Examples
|
| 1748 | ///
|
| 1749 | /// ```
|
| 1750 | /// #![feature(downcast_unchecked)]
|
| 1751 | ///
|
| 1752 | /// use std::any::Any;
|
| 1753 | ///
|
| 1754 | /// let x: Box<dyn Any + Send> = Box::new(1_usize);
|
| 1755 | ///
|
| 1756 | /// unsafe {
|
| 1757 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
|
| 1758 | /// }
|
| 1759 | /// ```
|
| 1760 | ///
|
| 1761 | /// # Safety
|
| 1762 | ///
|
| 1763 | /// The contained value must be of type `T`. Calling this method
|
| 1764 | /// with the incorrect type is *undefined behavior*.
|
| 1765 | ///
|
| 1766 | /// [`downcast`]: Self::downcast
|
| 1767 | #[inline (always)]
|
| 1768 | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
|
| 1769 | debug_assert!(self.is::<T>());
|
| 1770 | unsafe {
|
| 1771 | let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
|
| 1772 | Box::from_raw_in(raw as *mut T, alloc)
|
| 1773 | }
|
| 1774 | }
|
| 1775 | }
|
| 1776 |
|
| 1777 | impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
|
| 1778 | /// Attempt to downcast the box to a concrete type.
|
| 1779 | ///
|
| 1780 | /// # Examples
|
| 1781 | ///
|
| 1782 | /// ```
|
| 1783 | /// use std::any::Any;
|
| 1784 | ///
|
| 1785 | /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
|
| 1786 | /// if let Ok(string) = value.downcast::<String>() {
|
| 1787 | /// println!("String ({}): {}" , string.len(), string);
|
| 1788 | /// }
|
| 1789 | /// }
|
| 1790 | ///
|
| 1791 | /// let my_string = "Hello World" .to_string();
|
| 1792 | /// print_if_string(Box::new(my_string));
|
| 1793 | /// print_if_string(Box::new(0i8));
|
| 1794 | /// ```
|
| 1795 | #[inline (always)]
|
| 1796 | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
|
| 1797 | if self.is::<T>() {
|
| 1798 | unsafe { Ok(self.downcast_unchecked::<T>()) }
|
| 1799 | } else {
|
| 1800 | Err(self)
|
| 1801 | }
|
| 1802 | }
|
| 1803 |
|
| 1804 | /// Downcasts the box to a concrete type.
|
| 1805 | ///
|
| 1806 | /// For a safe alternative see [`downcast`].
|
| 1807 | ///
|
| 1808 | /// # Examples
|
| 1809 | ///
|
| 1810 | /// ```
|
| 1811 | /// #![feature(downcast_unchecked)]
|
| 1812 | ///
|
| 1813 | /// use std::any::Any;
|
| 1814 | ///
|
| 1815 | /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
|
| 1816 | ///
|
| 1817 | /// unsafe {
|
| 1818 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
|
| 1819 | /// }
|
| 1820 | /// ```
|
| 1821 | ///
|
| 1822 | /// # Safety
|
| 1823 | ///
|
| 1824 | /// The contained value must be of type `T`. Calling this method
|
| 1825 | /// with the incorrect type is *undefined behavior*.
|
| 1826 | ///
|
| 1827 | /// [`downcast`]: Self::downcast
|
| 1828 | #[inline (always)]
|
| 1829 | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
|
| 1830 | debug_assert!(self.is::<T>());
|
| 1831 | unsafe {
|
| 1832 | let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
|
| 1833 | Box::into_raw_with_allocator(self);
|
| 1834 | Box::from_raw_in(raw as *mut T, alloc)
|
| 1835 | }
|
| 1836 | }
|
| 1837 | }
|
| 1838 |
|
| 1839 | impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
|
| 1840 | #[inline (always)]
|
| 1841 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
| 1842 | fmt::Display::fmt(&**self, f)
|
| 1843 | }
|
| 1844 | }
|
| 1845 |
|
| 1846 | impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
|
| 1847 | #[inline (always)]
|
| 1848 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
| 1849 | fmt::Debug::fmt(&**self, f)
|
| 1850 | }
|
| 1851 | }
|
| 1852 |
|
| 1853 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
|
| 1854 | #[inline (always)]
|
| 1855 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
| 1856 | // It's not possible to extract the inner Uniq directly from the Box,
|
| 1857 | // instead we cast it to a *const which aliases the Unique
|
| 1858 | let ptr: *const T = &**self;
|
| 1859 | fmt::Pointer::fmt(&ptr, f)
|
| 1860 | }
|
| 1861 | }
|
| 1862 |
|
| 1863 | impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
|
| 1864 | type Target = T;
|
| 1865 |
|
| 1866 | #[inline (always)]
|
| 1867 | fn deref(&self) -> &T {
|
| 1868 | unsafe { self.0.as_ref() }
|
| 1869 | }
|
| 1870 | }
|
| 1871 |
|
| 1872 | impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
|
| 1873 | #[inline (always)]
|
| 1874 | fn deref_mut(&mut self) -> &mut T {
|
| 1875 | unsafe { self.0.as_mut() }
|
| 1876 | }
|
| 1877 | }
|
| 1878 |
|
| 1879 | impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
|
| 1880 | type Item = I::Item;
|
| 1881 |
|
| 1882 | #[inline (always)]
|
| 1883 | fn next(&mut self) -> Option<I::Item> {
|
| 1884 | (**self).next()
|
| 1885 | }
|
| 1886 |
|
| 1887 | #[inline (always)]
|
| 1888 | fn size_hint(&self) -> (usize, Option<usize>) {
|
| 1889 | (**self).size_hint()
|
| 1890 | }
|
| 1891 |
|
| 1892 | #[inline (always)]
|
| 1893 | fn nth(&mut self, n: usize) -> Option<I::Item> {
|
| 1894 | (**self).nth(n)
|
| 1895 | }
|
| 1896 |
|
| 1897 | #[inline (always)]
|
| 1898 | fn last(self) -> Option<I::Item> {
|
| 1899 | BoxIter::last(self)
|
| 1900 | }
|
| 1901 | }
|
| 1902 |
|
| 1903 | trait BoxIter {
|
| 1904 | type Item;
|
| 1905 | fn last(self) -> Option<Self::Item>;
|
| 1906 | }
|
| 1907 |
|
| 1908 | impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
|
| 1909 | type Item = I::Item;
|
| 1910 |
|
| 1911 | #[inline (always)]
|
| 1912 | fn last(self) -> Option<I::Item> {
|
| 1913 | #[inline (always)]
|
| 1914 | fn some<T>(_: Option<T>, x: T) -> Option<T> {
|
| 1915 | Some(x)
|
| 1916 | }
|
| 1917 |
|
| 1918 | self.fold(init:None, f:some)
|
| 1919 | }
|
| 1920 | }
|
| 1921 |
|
| 1922 | impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
|
| 1923 | #[inline (always)]
|
| 1924 | fn next_back(&mut self) -> Option<I::Item> {
|
| 1925 | (**self).next_back()
|
| 1926 | }
|
| 1927 | #[inline (always)]
|
| 1928 | fn nth_back(&mut self, n: usize) -> Option<I::Item> {
|
| 1929 | (**self).nth_back(n)
|
| 1930 | }
|
| 1931 | }
|
| 1932 |
|
| 1933 | impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
|
| 1934 | #[inline (always)]
|
| 1935 | fn len(&self) -> usize {
|
| 1936 | (**self).len()
|
| 1937 | }
|
| 1938 | }
|
| 1939 |
|
| 1940 | impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
|
| 1941 |
|
| 1942 | #[cfg (not(no_global_oom_handling))]
|
| 1943 | impl<I> FromIterator<I> for Box<[I]> {
|
| 1944 | #[inline (always)]
|
| 1945 | fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
|
| 1946 | iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
|
| 1947 | }
|
| 1948 | }
|
| 1949 |
|
| 1950 | #[cfg (not(no_global_oom_handling))]
|
| 1951 | impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
|
| 1952 | #[inline (always)]
|
| 1953 | fn clone(&self) -> Self {
|
| 1954 | let alloc: A = Box::allocator(self).clone();
|
| 1955 | let mut vec: Vec = Vec::with_capacity_in(self.len(), alloc);
|
| 1956 | vec.extend_from_slice(self);
|
| 1957 | vec.into_boxed_slice()
|
| 1958 | }
|
| 1959 |
|
| 1960 | #[inline (always)]
|
| 1961 | fn clone_from(&mut self, other: &Self) {
|
| 1962 | if self.len() == other.len() {
|
| 1963 | self.clone_from_slice(src:other);
|
| 1964 | } else {
|
| 1965 | *self = other.clone();
|
| 1966 | }
|
| 1967 | }
|
| 1968 | }
|
| 1969 |
|
| 1970 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
|
| 1971 | #[inline (always)]
|
| 1972 | fn borrow(&self) -> &T {
|
| 1973 | self
|
| 1974 | }
|
| 1975 | }
|
| 1976 |
|
| 1977 | impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
|
| 1978 | #[inline (always)]
|
| 1979 | fn borrow_mut(&mut self) -> &mut T {
|
| 1980 | self
|
| 1981 | }
|
| 1982 | }
|
| 1983 |
|
| 1984 | impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
|
| 1985 | #[inline (always)]
|
| 1986 | fn as_ref(&self) -> &T {
|
| 1987 | self
|
| 1988 | }
|
| 1989 | }
|
| 1990 |
|
| 1991 | impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
|
| 1992 | #[inline (always)]
|
| 1993 | fn as_mut(&mut self) -> &mut T {
|
| 1994 | self
|
| 1995 | }
|
| 1996 | }
|
| 1997 |
|
| 1998 | /* Nota bene
|
| 1999 | *
|
| 2000 | * We could have chosen not to add this impl, and instead have written a
|
| 2001 | * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
|
| 2002 | * because Box<T> implements Unpin even when T does not, as a result of
|
| 2003 | * this impl.
|
| 2004 | *
|
| 2005 | * We chose this API instead of the alternative for a few reasons:
|
| 2006 | * - Logically, it is helpful to understand pinning in regard to the
|
| 2007 | * memory region being pointed to. For this reason none of the
|
| 2008 | * standard library pointer types support projecting through a pin
|
| 2009 | * (Box<T> is the only pointer type in std for which this would be
|
| 2010 | * safe.)
|
| 2011 | * - It is in practice very useful to have Box<T> be unconditionally
|
| 2012 | * Unpin because of trait objects, for which the structural auto
|
| 2013 | * trait functionality does not apply (e.g., Box<dyn Foo> would
|
| 2014 | * otherwise not be Unpin).
|
| 2015 | *
|
| 2016 | * Another type with the same semantics as Box but only a conditional
|
| 2017 | * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
|
| 2018 | * could have a method to project a Pin<T> from it.
|
| 2019 | */
|
| 2020 | impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
|
| 2021 |
|
| 2022 | impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
|
| 2023 | where
|
| 2024 | A: 'static,
|
| 2025 | {
|
| 2026 | type Output = F::Output;
|
| 2027 |
|
| 2028 | #[inline (always)]
|
| 2029 | fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
| 2030 | F::poll(self:Pin::new(&mut *self), cx)
|
| 2031 | }
|
| 2032 | }
|
| 2033 |
|
| 2034 | #[cfg (feature = "std" )]
|
| 2035 | mod error {
|
| 2036 | use std::error::Error;
|
| 2037 |
|
| 2038 | use super::Box;
|
| 2039 |
|
| 2040 | #[cfg (not(no_global_oom_handling))]
|
| 2041 | impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
|
| 2042 | /// Converts a type of [`Error`] into a box of dyn [`Error`].
|
| 2043 | ///
|
| 2044 | /// # Examples
|
| 2045 | ///
|
| 2046 | /// ```
|
| 2047 | /// use std::error::Error;
|
| 2048 | /// use std::fmt;
|
| 2049 | /// use std::mem;
|
| 2050 | ///
|
| 2051 | /// #[derive(Debug)]
|
| 2052 | /// struct AnError;
|
| 2053 | ///
|
| 2054 | /// impl fmt::Display for AnError {
|
| 2055 | /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
| 2056 | /// write!(f, "An error")
|
| 2057 | /// }
|
| 2058 | /// }
|
| 2059 | ///
|
| 2060 | /// impl Error for AnError {}
|
| 2061 | ///
|
| 2062 | /// let an_error = AnError;
|
| 2063 | /// assert!(0 == mem::size_of_val(&an_error));
|
| 2064 | /// let a_boxed_error = Box::<dyn Error>::from(an_error);
|
| 2065 | /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
|
| 2066 | /// ```
|
| 2067 | #[inline (always)]
|
| 2068 | fn from(err: E) -> Box<dyn Error + 'a> {
|
| 2069 | unsafe { Box::from_raw(Box::leak(Box::new(err))) }
|
| 2070 | }
|
| 2071 | }
|
| 2072 |
|
| 2073 | #[cfg (not(no_global_oom_handling))]
|
| 2074 | impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
|
| 2075 | /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
|
| 2076 | /// dyn [`Error`] + [`Send`] + [`Sync`].
|
| 2077 | ///
|
| 2078 | /// # Examples
|
| 2079 | ///
|
| 2080 | /// ```
|
| 2081 | /// use std::error::Error;
|
| 2082 | /// use std::fmt;
|
| 2083 | /// use std::mem;
|
| 2084 | ///
|
| 2085 | /// #[derive(Debug)]
|
| 2086 | /// struct AnError;
|
| 2087 | ///
|
| 2088 | /// impl fmt::Display for AnError {
|
| 2089 | /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
| 2090 | /// write!(f, "An error")
|
| 2091 | /// }
|
| 2092 | /// }
|
| 2093 | ///
|
| 2094 | /// impl Error for AnError {}
|
| 2095 | ///
|
| 2096 | /// unsafe impl Send for AnError {}
|
| 2097 | ///
|
| 2098 | /// unsafe impl Sync for AnError {}
|
| 2099 | ///
|
| 2100 | /// let an_error = AnError;
|
| 2101 | /// assert!(0 == mem::size_of_val(&an_error));
|
| 2102 | /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
|
| 2103 | /// assert!(
|
| 2104 | /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
|
| 2105 | /// ```
|
| 2106 | #[inline (always)]
|
| 2107 | fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
|
| 2108 | unsafe { Box::from_raw(Box::leak(Box::new(err))) }
|
| 2109 | }
|
| 2110 | }
|
| 2111 |
|
| 2112 | impl<T: Error> Error for Box<T> {
|
| 2113 | #[inline (always)]
|
| 2114 | fn source(&self) -> Option<&(dyn Error + 'static)> {
|
| 2115 | Error::source(&**self)
|
| 2116 | }
|
| 2117 | }
|
| 2118 | }
|
| 2119 |
|
| 2120 | #[cfg (feature = "std" )]
|
| 2121 | impl<R: std::io::Read + ?Sized, A: Allocator> std::io::Read for Box<R, A> {
|
| 2122 | #[inline ]
|
| 2123 | fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
|
| 2124 | (**self).read(buf)
|
| 2125 | }
|
| 2126 |
|
| 2127 | #[inline ]
|
| 2128 | fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
|
| 2129 | (**self).read_to_end(buf)
|
| 2130 | }
|
| 2131 |
|
| 2132 | #[inline ]
|
| 2133 | fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> {
|
| 2134 | (**self).read_to_string(buf)
|
| 2135 | }
|
| 2136 |
|
| 2137 | #[inline ]
|
| 2138 | fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
|
| 2139 | (**self).read_exact(buf)
|
| 2140 | }
|
| 2141 | }
|
| 2142 |
|
| 2143 | #[cfg (feature = "std" )]
|
| 2144 | impl<W: std::io::Write + ?Sized, A: Allocator> std::io::Write for Box<W, A> {
|
| 2145 | #[inline ]
|
| 2146 | fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
|
| 2147 | (**self).write(buf)
|
| 2148 | }
|
| 2149 |
|
| 2150 | #[inline ]
|
| 2151 | fn flush(&mut self) -> std::io::Result<()> {
|
| 2152 | (**self).flush()
|
| 2153 | }
|
| 2154 |
|
| 2155 | #[inline ]
|
| 2156 | fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> {
|
| 2157 | (**self).write_all(buf)
|
| 2158 | }
|
| 2159 |
|
| 2160 | #[inline ]
|
| 2161 | fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> std::io::Result<()> {
|
| 2162 | (**self).write_fmt(fmt)
|
| 2163 | }
|
| 2164 | }
|
| 2165 |
|
| 2166 | #[cfg (feature = "std" )]
|
| 2167 | impl<S: std::io::Seek + ?Sized, A: Allocator> std::io::Seek for Box<S, A> {
|
| 2168 | #[inline ]
|
| 2169 | fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
|
| 2170 | (**self).seek(pos)
|
| 2171 | }
|
| 2172 |
|
| 2173 | #[inline ]
|
| 2174 | fn stream_position(&mut self) -> std::io::Result<u64> {
|
| 2175 | (**self).stream_position()
|
| 2176 | }
|
| 2177 | }
|
| 2178 |
|
| 2179 | #[cfg (feature = "std" )]
|
| 2180 | impl<B: std::io::BufRead + ?Sized, A: Allocator> std::io::BufRead for Box<B, A> {
|
| 2181 | #[inline ]
|
| 2182 | fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
|
| 2183 | (**self).fill_buf()
|
| 2184 | }
|
| 2185 |
|
| 2186 | #[inline ]
|
| 2187 | fn consume(&mut self, amt: usize) {
|
| 2188 | (**self).consume(amt)
|
| 2189 | }
|
| 2190 |
|
| 2191 | #[inline ]
|
| 2192 | fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
|
| 2193 | (**self).read_until(byte, buf)
|
| 2194 | }
|
| 2195 |
|
| 2196 | #[inline ]
|
| 2197 | fn read_line(&mut self, buf: &mut std::string::String) -> std::io::Result<usize> {
|
| 2198 | (**self).read_line(buf)
|
| 2199 | }
|
| 2200 | }
|
| 2201 |
|
| 2202 | #[cfg (feature = "alloc" )]
|
| 2203 | impl<A: Allocator> Extend<Box<str, A>> for alloc_crate::string::String {
|
| 2204 | fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
|
| 2205 | iter.into_iter().for_each(move |s: Box| self.push_str(&s));
|
| 2206 | }
|
| 2207 | }
|
| 2208 |
|
| 2209 | #[cfg (not(no_global_oom_handling))]
|
| 2210 | #[cfg (feature = "std" )]
|
| 2211 | impl Clone for Box<std::ffi::CStr> {
|
| 2212 | #[inline ]
|
| 2213 | fn clone(&self) -> Self {
|
| 2214 | (**self).into()
|
| 2215 | }
|
| 2216 | }
|
| 2217 |
|
| 2218 | #[cfg (not(no_global_oom_handling))]
|
| 2219 | #[cfg (feature = "std" )]
|
| 2220 | impl From<&std::ffi::CStr> for Box<std::ffi::CStr> {
|
| 2221 | /// Converts a `&CStr` into a `Box<CStr>`,
|
| 2222 | /// by copying the contents into a newly allocated [`Box`].
|
| 2223 | fn from(s: &std::ffi::CStr) -> Box<std::ffi::CStr> {
|
| 2224 | let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
|
| 2225 | unsafe { Box::from_raw(Box::into_raw(boxed) as *mut std::ffi::CStr) }
|
| 2226 | }
|
| 2227 | }
|
| 2228 |
|
| 2229 | #[cfg (not(no_global_oom_handling))]
|
| 2230 | #[cfg (feature = "fresh-rust" )]
|
| 2231 | impl Clone for Box<core::ffi::CStr> {
|
| 2232 | #[inline ]
|
| 2233 | fn clone(&self) -> Self {
|
| 2234 | (**self).into()
|
| 2235 | }
|
| 2236 | }
|
| 2237 |
|
| 2238 | #[cfg (not(no_global_oom_handling))]
|
| 2239 | #[cfg (feature = "fresh-rust" )]
|
| 2240 | impl From<&core::ffi::CStr> for Box<core::ffi::CStr> {
|
| 2241 | /// Converts a `&CStr` into a `Box<CStr>`,
|
| 2242 | /// by copying the contents into a newly allocated [`Box`].
|
| 2243 | fn from(s: &core::ffi::CStr) -> Box<core::ffi::CStr> {
|
| 2244 | let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
|
| 2245 | unsafe { Box::from_raw(Box::into_raw(boxed) as *mut core::ffi::CStr) }
|
| 2246 | }
|
| 2247 | }
|
| 2248 |
|
| 2249 | #[cfg (feature = "serde" )]
|
| 2250 | impl<T, A> serde::Serialize for Box<T, A>
|
| 2251 | where
|
| 2252 | T: serde::Serialize,
|
| 2253 | A: Allocator,
|
| 2254 | {
|
| 2255 | #[inline (always)]
|
| 2256 | fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
|
| 2257 | (**self).serialize(serializer)
|
| 2258 | }
|
| 2259 | }
|
| 2260 |
|
| 2261 | #[cfg (feature = "serde" )]
|
| 2262 | impl<'de, T, A> serde::Deserialize<'de> for Box<T, A>
|
| 2263 | where
|
| 2264 | T: serde::Deserialize<'de>,
|
| 2265 | A: Allocator + Default,
|
| 2266 | {
|
| 2267 | #[inline (always)]
|
| 2268 | fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
|
| 2269 | let value = T::deserialize(deserializer)?;
|
| 2270 | Ok(Box::new_in(value, A::default()))
|
| 2271 | }
|
| 2272 | }
|
| 2273 | |