1 | //! The `Box<T>` type for heap allocation.
|
2 | //!
|
3 | //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
|
4 | //! heap allocation in Rust. Boxes provide ownership for this allocation, and
|
5 | //! drop their contents when they go out of scope. Boxes also ensure that they
|
6 | //! never allocate more than `isize::MAX` bytes.
|
7 | //!
|
8 | //! # Examples
|
9 | //!
|
10 | //! Move a value from the stack to the heap by creating a [`Box`]:
|
11 | //!
|
12 | //! ```
|
13 | //! let val: u8 = 5;
|
14 | //! let boxed: Box<u8> = Box::new(val);
|
15 | //! ```
|
16 | //!
|
17 | //! Move a value from a [`Box`] back to the stack by [dereferencing]:
|
18 | //!
|
19 | //! ```
|
20 | //! let boxed: Box<u8> = Box::new(5);
|
21 | //! let val: u8 = *boxed;
|
22 | //! ```
|
23 | //!
|
24 | //! Creating a recursive data structure:
|
25 | //!
|
26 | //! ```
|
27 | //! #[derive(Debug)]
|
28 | //! enum List<T> {
|
29 | //! Cons(T, Box<List<T>>),
|
30 | //! Nil,
|
31 | //! }
|
32 | //!
|
33 | //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
|
34 | //! println!("{list:?}" );
|
35 | //! ```
|
36 | //!
|
37 | //! This will print `Cons(1, Cons(2, Nil))`.
|
38 | //!
|
39 | //! Recursive structures must be boxed, because if the definition of `Cons`
|
40 | //! looked like this:
|
41 | //!
|
42 | //! ```compile_fail,E0072
|
43 | //! # enum List<T> {
|
44 | //! Cons(T, List<T>),
|
45 | //! # }
|
46 | //! ```
|
47 | //!
|
48 | //! It wouldn't work. This is because the size of a `List` depends on how many
|
49 | //! elements are in the list, and so we don't know how much memory to allocate
|
50 | //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
|
51 | //! big `Cons` needs to be.
|
52 | //!
|
53 | //! # Memory layout
|
54 | //!
|
55 | //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
|
56 | //! its allocation. It is valid to convert both ways between a [`Box`] and a
|
57 | //! raw pointer allocated with the [`Global`] allocator, given that the
|
58 | //! [`Layout`] used with the allocator is correct for the type. More precisely,
|
59 | //! a `value: *mut T` that has been allocated with the [`Global`] allocator
|
60 | //! with `Layout::for_value(&*value)` may be converted into a box using
|
61 | //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
|
62 | //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
|
63 | //! [`Global`] allocator with [`Layout::for_value(&*value)`].
|
64 | //!
|
65 | //! For zero-sized values, the `Box` pointer still has to be [valid] for reads
|
66 | //! and writes and sufficiently aligned. In particular, casting any aligned
|
67 | //! non-zero integer literal to a raw pointer produces a valid pointer, but a
|
68 | //! pointer pointing into previously allocated memory that since got freed is
|
69 | //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
|
70 | //! be used is to use [`ptr::NonNull::dangling`].
|
71 | //!
|
72 | //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
|
73 | //! as a single pointer and is also ABI-compatible with C pointers
|
74 | //! (i.e. the C type `T*`). This means that if you have extern "C"
|
75 | //! Rust functions that will be called from C, you can define those
|
76 | //! Rust functions using `Box<T>` types, and use `T*` as corresponding
|
77 | //! type on the C side. As an example, consider this C header which
|
78 | //! declares functions that create and destroy some kind of `Foo`
|
79 | //! value:
|
80 | //!
|
81 | //! ```c
|
82 | //! /* C header */
|
83 | //!
|
84 | //! /* Returns ownership to the caller */
|
85 | //! struct Foo* foo_new(void);
|
86 | //!
|
87 | //! /* Takes ownership from the caller; no-op when invoked with null */
|
88 | //! void foo_delete(struct Foo*);
|
89 | //! ```
|
90 | //!
|
91 | //! These two functions might be implemented in Rust as follows. Here, the
|
92 | //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
|
93 | //! the ownership constraints. Note also that the nullable argument to
|
94 | //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
|
95 | //! cannot be null.
|
96 | //!
|
97 | //! ```
|
98 | //! #[repr(C)]
|
99 | //! pub struct Foo;
|
100 | //!
|
101 | //! #[no_mangle]
|
102 | //! pub extern "C" fn foo_new() -> Box<Foo> {
|
103 | //! Box::new(Foo)
|
104 | //! }
|
105 | //!
|
106 | //! #[no_mangle]
|
107 | //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
|
108 | //! ```
|
109 | //!
|
110 | //! Even though `Box<T>` has the same representation and C ABI as a C pointer,
|
111 | //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
|
112 | //! and expect things to work. `Box<T>` values will always be fully aligned,
|
113 | //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
|
114 | //! free the value with the global allocator. In general, the best practice
|
115 | //! is to only use `Box<T>` for pointers that originated from the global
|
116 | //! allocator.
|
117 | //!
|
118 | //! **Important.** At least at present, you should avoid using
|
119 | //! `Box<T>` types for functions that are defined in C but invoked
|
120 | //! from Rust. In those cases, you should directly mirror the C types
|
121 | //! as closely as possible. Using types like `Box<T>` where the C
|
122 | //! definition is just using `T*` can lead to undefined behavior, as
|
123 | //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
|
124 | //!
|
125 | //! # Considerations for unsafe code
|
126 | //!
|
127 | //! **Warning: This section is not normative and is subject to change, possibly
|
128 | //! being relaxed in the future! It is a simplified summary of the rules
|
129 | //! currently implemented in the compiler.**
|
130 | //!
|
131 | //! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
|
132 | //! asserts uniqueness over its content. Using raw pointers derived from a box
|
133 | //! after that box has been mutated through, moved or borrowed as `&mut T`
|
134 | //! is not allowed. For more guidance on working with box from unsafe code, see
|
135 | //! [rust-lang/unsafe-code-guidelines#326][ucg#326].
|
136 | //!
|
137 | //!
|
138 | //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
|
139 | //! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
|
140 | //! [dereferencing]: core::ops::Deref
|
141 | //! [`Box::<T>::from_raw(value)`]: Box::from_raw
|
142 | //! [`Global`]: crate::alloc::Global
|
143 | //! [`Layout`]: crate::alloc::Layout
|
144 | //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
|
145 | //! [valid]: ptr#safety
|
146 |
|
147 | use core::any::Any;
|
148 | use core::borrow;
|
149 | use core::cmp::Ordering;
|
150 | use core::convert::{From, TryFrom};
|
151 |
|
152 | // use core::error::Error;
|
153 | use core::fmt;
|
154 | use core::future::Future;
|
155 | use core::hash::{Hash, Hasher};
|
156 | #[cfg (not(no_global_oom_handling))]
|
157 | use core::iter::FromIterator;
|
158 | use core::iter::{FusedIterator, Iterator};
|
159 | use core::marker::Unpin;
|
160 | use core::mem::{self, MaybeUninit};
|
161 | use core::ops::{Deref, DerefMut};
|
162 | use core::pin::Pin;
|
163 | use core::ptr::{self, NonNull};
|
164 | use core::task::{Context, Poll};
|
165 |
|
166 | use super::alloc::{AllocError, Allocator, Global, Layout};
|
167 | use super::raw_vec::RawVec;
|
168 | use super::unique::Unique;
|
169 | #[cfg (not(no_global_oom_handling))]
|
170 | use super::vec::Vec;
|
171 | #[cfg (not(no_global_oom_handling))]
|
172 | use alloc_crate::alloc::handle_alloc_error;
|
173 |
|
174 | /// A pointer type for heap allocation.
|
175 | ///
|
176 | /// See the [module-level documentation](../../std/boxed/index.html) for more.
|
177 | pub struct Box<T: ?Sized, A: Allocator = Global>(Unique<T>, A);
|
178 |
|
179 | // Safety: Box owns both T and A, so sending is safe if
|
180 | // sending is safe for T and A.
|
181 | unsafe impl<T: ?Sized, A: Allocator> Send for Box<T, A>
|
182 | where
|
183 | T: Send,
|
184 | A: Send,
|
185 | {
|
186 | }
|
187 |
|
188 | // Safety: Box owns both T and A, so sharing is safe if
|
189 | // sharing is safe for T and A.
|
190 | unsafe impl<T: ?Sized, A: Allocator> Sync for Box<T, A>
|
191 | where
|
192 | T: Sync,
|
193 | A: Sync,
|
194 | {
|
195 | }
|
196 |
|
197 | impl<T> Box<T> {
|
198 | /// Allocates memory on the heap and then places `x` into it.
|
199 | ///
|
200 | /// This doesn't actually allocate if `T` is zero-sized.
|
201 | ///
|
202 | /// # Examples
|
203 | ///
|
204 | /// ```
|
205 | /// let five = Box::new(5);
|
206 | /// ```
|
207 | #[cfg (all(not(no_global_oom_handling)))]
|
208 | #[inline (always)]
|
209 | #[must_use ]
|
210 | pub fn new(x: T) -> Self {
|
211 | Self::new_in(x, Global)
|
212 | }
|
213 |
|
214 | /// Constructs a new box with uninitialized contents.
|
215 | ///
|
216 | /// # Examples
|
217 | ///
|
218 | /// ```
|
219 | /// #![feature(new_uninit)]
|
220 | ///
|
221 | /// let mut five = Box::<u32>::new_uninit();
|
222 | ///
|
223 | /// let five = unsafe {
|
224 | /// // Deferred initialization:
|
225 | /// five.as_mut_ptr().write(5);
|
226 | ///
|
227 | /// five.assume_init()
|
228 | /// };
|
229 | ///
|
230 | /// assert_eq!(*five, 5)
|
231 | /// ```
|
232 | #[cfg (not(no_global_oom_handling))]
|
233 | #[must_use ]
|
234 | #[inline (always)]
|
235 | pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
|
236 | Self::new_uninit_in(Global)
|
237 | }
|
238 |
|
239 | /// Constructs a new `Box` with uninitialized contents, with the memory
|
240 | /// being filled with `0` bytes.
|
241 | ///
|
242 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
243 | /// of this method.
|
244 | ///
|
245 | /// # Examples
|
246 | ///
|
247 | /// ```
|
248 | /// #![feature(new_uninit)]
|
249 | ///
|
250 | /// let zero = Box::<u32>::new_zeroed();
|
251 | /// let zero = unsafe { zero.assume_init() };
|
252 | ///
|
253 | /// assert_eq!(*zero, 0)
|
254 | /// ```
|
255 | ///
|
256 | /// [zeroed]: mem::MaybeUninit::zeroed
|
257 | #[cfg (not(no_global_oom_handling))]
|
258 | #[must_use ]
|
259 | #[inline (always)]
|
260 | pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
|
261 | Self::new_zeroed_in(Global)
|
262 | }
|
263 |
|
264 | /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
|
265 | /// `x` will be pinned in memory and unable to be moved.
|
266 | ///
|
267 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
|
268 | /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
|
269 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
|
270 | /// construct a (pinned) `Box` in a different way than with [`Box::new`].
|
271 | #[cfg (not(no_global_oom_handling))]
|
272 | #[must_use ]
|
273 | #[inline (always)]
|
274 | pub fn pin(x: T) -> Pin<Box<T>> {
|
275 | Box::new(x).into()
|
276 | }
|
277 |
|
278 | /// Allocates memory on the heap then places `x` into it,
|
279 | /// returning an error if the allocation fails
|
280 | ///
|
281 | /// This doesn't actually allocate if `T` is zero-sized.
|
282 | ///
|
283 | /// # Examples
|
284 | ///
|
285 | /// ```
|
286 | /// #![feature(allocator_api)]
|
287 | ///
|
288 | /// let five = Box::try_new(5)?;
|
289 | /// # Ok::<(), std::alloc::AllocError>(())
|
290 | /// ```
|
291 | #[inline (always)]
|
292 | pub fn try_new(x: T) -> Result<Self, AllocError> {
|
293 | Self::try_new_in(x, Global)
|
294 | }
|
295 |
|
296 | /// Constructs a new box with uninitialized contents on the heap,
|
297 | /// returning an error if the allocation fails
|
298 | ///
|
299 | /// # Examples
|
300 | ///
|
301 | /// ```
|
302 | /// #![feature(allocator_api, new_uninit)]
|
303 | ///
|
304 | /// let mut five = Box::<u32>::try_new_uninit()?;
|
305 | ///
|
306 | /// let five = unsafe {
|
307 | /// // Deferred initialization:
|
308 | /// five.as_mut_ptr().write(5);
|
309 | ///
|
310 | /// five.assume_init()
|
311 | /// };
|
312 | ///
|
313 | /// assert_eq!(*five, 5);
|
314 | /// # Ok::<(), std::alloc::AllocError>(())
|
315 | /// ```
|
316 | #[inline (always)]
|
317 | pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
|
318 | Box::try_new_uninit_in(Global)
|
319 | }
|
320 |
|
321 | /// Constructs a new `Box` with uninitialized contents, with the memory
|
322 | /// being filled with `0` bytes on the heap
|
323 | ///
|
324 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
325 | /// of this method.
|
326 | ///
|
327 | /// # Examples
|
328 | ///
|
329 | /// ```
|
330 | /// #![feature(allocator_api, new_uninit)]
|
331 | ///
|
332 | /// let zero = Box::<u32>::try_new_zeroed()?;
|
333 | /// let zero = unsafe { zero.assume_init() };
|
334 | ///
|
335 | /// assert_eq!(*zero, 0);
|
336 | /// # Ok::<(), std::alloc::AllocError>(())
|
337 | /// ```
|
338 | ///
|
339 | /// [zeroed]: mem::MaybeUninit::zeroed
|
340 | #[inline (always)]
|
341 | pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
|
342 | Box::try_new_zeroed_in(Global)
|
343 | }
|
344 | }
|
345 |
|
346 | impl<T, A: Allocator> Box<T, A> {
|
347 | /// Allocates memory in the given allocator then places `x` into it.
|
348 | ///
|
349 | /// This doesn't actually allocate if `T` is zero-sized.
|
350 | ///
|
351 | /// # Examples
|
352 | ///
|
353 | /// ```
|
354 | /// #![feature(allocator_api)]
|
355 | ///
|
356 | /// use std::alloc::System;
|
357 | ///
|
358 | /// let five = Box::new_in(5, System);
|
359 | /// ```
|
360 | #[cfg (not(no_global_oom_handling))]
|
361 | #[must_use ]
|
362 | #[inline (always)]
|
363 | pub fn new_in(x: T, alloc: A) -> Self
|
364 | where
|
365 | A: Allocator,
|
366 | {
|
367 | let mut boxed = Self::new_uninit_in(alloc);
|
368 | unsafe {
|
369 | boxed.as_mut_ptr().write(x);
|
370 | boxed.assume_init()
|
371 | }
|
372 | }
|
373 |
|
374 | /// Allocates memory in the given allocator then places `x` into it,
|
375 | /// returning an error if the allocation fails
|
376 | ///
|
377 | /// This doesn't actually allocate if `T` is zero-sized.
|
378 | ///
|
379 | /// # Examples
|
380 | ///
|
381 | /// ```
|
382 | /// #![feature(allocator_api)]
|
383 | ///
|
384 | /// use std::alloc::System;
|
385 | ///
|
386 | /// let five = Box::try_new_in(5, System)?;
|
387 | /// # Ok::<(), std::alloc::AllocError>(())
|
388 | /// ```
|
389 | #[inline (always)]
|
390 | pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
|
391 | where
|
392 | A: Allocator,
|
393 | {
|
394 | let mut boxed = Self::try_new_uninit_in(alloc)?;
|
395 | unsafe {
|
396 | boxed.as_mut_ptr().write(x);
|
397 | Ok(boxed.assume_init())
|
398 | }
|
399 | }
|
400 |
|
401 | /// Constructs a new box with uninitialized contents in the provided allocator.
|
402 | ///
|
403 | /// # Examples
|
404 | ///
|
405 | /// ```
|
406 | /// #![feature(allocator_api, new_uninit)]
|
407 | ///
|
408 | /// use std::alloc::System;
|
409 | ///
|
410 | /// let mut five = Box::<u32, _>::new_uninit_in(System);
|
411 | ///
|
412 | /// let five = unsafe {
|
413 | /// // Deferred initialization:
|
414 | /// five.as_mut_ptr().write(5);
|
415 | ///
|
416 | /// five.assume_init()
|
417 | /// };
|
418 | ///
|
419 | /// assert_eq!(*five, 5)
|
420 | /// ```
|
421 | #[cfg (not(no_global_oom_handling))]
|
422 | #[must_use ]
|
423 | // #[unstable(feature = "new_uninit", issue = "63291")]
|
424 | #[inline (always)]
|
425 | pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
|
426 | where
|
427 | A: Allocator,
|
428 | {
|
429 | let layout = Layout::new::<mem::MaybeUninit<T>>();
|
430 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
|
431 | // That would make code size bigger.
|
432 | match Box::try_new_uninit_in(alloc) {
|
433 | Ok(m) => m,
|
434 | Err(_) => handle_alloc_error(layout),
|
435 | }
|
436 | }
|
437 |
|
438 | /// Constructs a new box with uninitialized contents in the provided allocator,
|
439 | /// returning an error if the allocation fails
|
440 | ///
|
441 | /// # Examples
|
442 | ///
|
443 | /// ```
|
444 | /// #![feature(allocator_api, new_uninit)]
|
445 | ///
|
446 | /// use std::alloc::System;
|
447 | ///
|
448 | /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
|
449 | ///
|
450 | /// let five = unsafe {
|
451 | /// // Deferred initialization:
|
452 | /// five.as_mut_ptr().write(5);
|
453 | ///
|
454 | /// five.assume_init()
|
455 | /// };
|
456 | ///
|
457 | /// assert_eq!(*five, 5);
|
458 | /// # Ok::<(), std::alloc::AllocError>(())
|
459 | /// ```
|
460 | #[inline (always)]
|
461 | pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
|
462 | where
|
463 | A: Allocator,
|
464 | {
|
465 | let ptr = if mem::size_of::<T>() == 0 {
|
466 | NonNull::dangling()
|
467 | } else {
|
468 | let layout = Layout::new::<mem::MaybeUninit<T>>();
|
469 | alloc.allocate(layout)?.cast()
|
470 | };
|
471 |
|
472 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
|
473 | }
|
474 |
|
475 | /// Constructs a new `Box` with uninitialized contents, with the memory
|
476 | /// being filled with `0` bytes in the provided allocator.
|
477 | ///
|
478 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
479 | /// of this method.
|
480 | ///
|
481 | /// # Examples
|
482 | ///
|
483 | /// ```
|
484 | /// #![feature(allocator_api, new_uninit)]
|
485 | ///
|
486 | /// use std::alloc::System;
|
487 | ///
|
488 | /// let zero = Box::<u32, _>::new_zeroed_in(System);
|
489 | /// let zero = unsafe { zero.assume_init() };
|
490 | ///
|
491 | /// assert_eq!(*zero, 0)
|
492 | /// ```
|
493 | ///
|
494 | /// [zeroed]: mem::MaybeUninit::zeroed
|
495 | #[cfg (not(no_global_oom_handling))]
|
496 | // #[unstable(feature = "new_uninit", issue = "63291")]
|
497 | #[must_use ]
|
498 | #[inline (always)]
|
499 | pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
|
500 | where
|
501 | A: Allocator,
|
502 | {
|
503 | let layout = Layout::new::<mem::MaybeUninit<T>>();
|
504 | // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
|
505 | // That would make code size bigger.
|
506 | match Box::try_new_zeroed_in(alloc) {
|
507 | Ok(m) => m,
|
508 | Err(_) => handle_alloc_error(layout),
|
509 | }
|
510 | }
|
511 |
|
512 | /// Constructs a new `Box` with uninitialized contents, with the memory
|
513 | /// being filled with `0` bytes in the provided allocator,
|
514 | /// returning an error if the allocation fails,
|
515 | ///
|
516 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
517 | /// of this method.
|
518 | ///
|
519 | /// # Examples
|
520 | ///
|
521 | /// ```
|
522 | /// #![feature(allocator_api, new_uninit)]
|
523 | ///
|
524 | /// use std::alloc::System;
|
525 | ///
|
526 | /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
|
527 | /// let zero = unsafe { zero.assume_init() };
|
528 | ///
|
529 | /// assert_eq!(*zero, 0);
|
530 | /// # Ok::<(), std::alloc::AllocError>(())
|
531 | /// ```
|
532 | ///
|
533 | /// [zeroed]: mem::MaybeUninit::zeroed
|
534 | #[inline (always)]
|
535 | pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
|
536 | where
|
537 | A: Allocator,
|
538 | {
|
539 | let ptr = if mem::size_of::<T>() == 0 {
|
540 | NonNull::dangling()
|
541 | } else {
|
542 | let layout = Layout::new::<mem::MaybeUninit<T>>();
|
543 | alloc.allocate_zeroed(layout)?.cast()
|
544 | };
|
545 | unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
|
546 | }
|
547 |
|
548 | /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
|
549 | /// `x` will be pinned in memory and unable to be moved.
|
550 | ///
|
551 | /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
|
552 | /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
|
553 | /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
|
554 | /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
|
555 | #[cfg (not(no_global_oom_handling))]
|
556 | #[must_use ]
|
557 | #[inline (always)]
|
558 | pub fn pin_in(x: T, alloc: A) -> Pin<Self>
|
559 | where
|
560 | A: 'static + Allocator,
|
561 | {
|
562 | Self::into_pin(Self::new_in(x, alloc))
|
563 | }
|
564 |
|
565 | /// Converts a `Box<T>` into a `Box<[T]>`
|
566 | ///
|
567 | /// This conversion does not allocate on the heap and happens in place.
|
568 | #[inline (always)]
|
569 | pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
|
570 | let (raw, alloc) = Box::into_raw_with_allocator(boxed);
|
571 | unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
|
572 | }
|
573 |
|
574 | /// Consumes the `Box`, returning the wrapped value.
|
575 | ///
|
576 | /// # Examples
|
577 | ///
|
578 | /// ```
|
579 | /// #![feature(box_into_inner)]
|
580 | ///
|
581 | /// let c = Box::new(5);
|
582 | ///
|
583 | /// assert_eq!(Box::into_inner(c), 5);
|
584 | /// ```
|
585 | #[inline (always)]
|
586 | pub fn into_inner(boxed: Self) -> T {
|
587 | // Override our default `Drop` implementation.
|
588 | // Though the default `Drop` implementation drops the both the pointer and the allocator,
|
589 | // here we only want to drop the allocator.
|
590 | let boxed = mem::ManuallyDrop::new(boxed);
|
591 | let alloc = unsafe { ptr::read(&boxed.1) };
|
592 |
|
593 | let ptr = boxed.0;
|
594 | let unboxed = unsafe { ptr.as_ptr().read() };
|
595 | unsafe { alloc.deallocate(ptr.as_non_null_ptr().cast(), Layout::new::<T>()) };
|
596 |
|
597 | unboxed
|
598 | }
|
599 | }
|
600 |
|
601 | impl<T> Box<[T]> {
|
602 | /// Constructs a new boxed slice with uninitialized contents.
|
603 | ///
|
604 | /// # Examples
|
605 | ///
|
606 | /// ```
|
607 | /// #![feature(new_uninit)]
|
608 | ///
|
609 | /// let mut values = Box::<[u32]>::new_uninit_slice(3);
|
610 | ///
|
611 | /// let values = unsafe {
|
612 | /// // Deferred initialization:
|
613 | /// values[0].as_mut_ptr().write(1);
|
614 | /// values[1].as_mut_ptr().write(2);
|
615 | /// values[2].as_mut_ptr().write(3);
|
616 | ///
|
617 | /// values.assume_init()
|
618 | /// };
|
619 | ///
|
620 | /// assert_eq!(*values, [1, 2, 3])
|
621 | /// ```
|
622 | #[cfg (not(no_global_oom_handling))]
|
623 | #[must_use ]
|
624 | #[inline (always)]
|
625 | pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
|
626 | unsafe { RawVec::with_capacity(len).into_box(len) }
|
627 | }
|
628 |
|
629 | /// Constructs a new boxed slice with uninitialized contents, with the memory
|
630 | /// being filled with `0` bytes.
|
631 | ///
|
632 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
633 | /// of this method.
|
634 | ///
|
635 | /// # Examples
|
636 | ///
|
637 | /// ```
|
638 | /// #![feature(new_uninit)]
|
639 | ///
|
640 | /// let values = Box::<[u32]>::new_zeroed_slice(3);
|
641 | /// let values = unsafe { values.assume_init() };
|
642 | ///
|
643 | /// assert_eq!(*values, [0, 0, 0])
|
644 | /// ```
|
645 | ///
|
646 | /// [zeroed]: mem::MaybeUninit::zeroed
|
647 | #[cfg (not(no_global_oom_handling))]
|
648 | #[must_use ]
|
649 | #[inline (always)]
|
650 | pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
|
651 | unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
|
652 | }
|
653 |
|
654 | /// Constructs a new boxed slice with uninitialized contents. Returns an error if
|
655 | /// the allocation fails
|
656 | ///
|
657 | /// # Examples
|
658 | ///
|
659 | /// ```
|
660 | /// #![feature(allocator_api, new_uninit)]
|
661 | ///
|
662 | /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
|
663 | /// let values = unsafe {
|
664 | /// // Deferred initialization:
|
665 | /// values[0].as_mut_ptr().write(1);
|
666 | /// values[1].as_mut_ptr().write(2);
|
667 | /// values[2].as_mut_ptr().write(3);
|
668 | /// values.assume_init()
|
669 | /// };
|
670 | ///
|
671 | /// assert_eq!(*values, [1, 2, 3]);
|
672 | /// # Ok::<(), std::alloc::AllocError>(())
|
673 | /// ```
|
674 | #[inline (always)]
|
675 | pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
|
676 | Self::try_new_uninit_slice_in(len, Global)
|
677 | }
|
678 |
|
679 | /// Constructs a new boxed slice with uninitialized contents, with the memory
|
680 | /// being filled with `0` bytes. Returns an error if the allocation fails
|
681 | ///
|
682 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
683 | /// of this method.
|
684 | ///
|
685 | /// # Examples
|
686 | ///
|
687 | /// ```
|
688 | /// #![feature(allocator_api, new_uninit)]
|
689 | ///
|
690 | /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
|
691 | /// let values = unsafe { values.assume_init() };
|
692 | ///
|
693 | /// assert_eq!(*values, [0, 0, 0]);
|
694 | /// # Ok::<(), std::alloc::AllocError>(())
|
695 | /// ```
|
696 | ///
|
697 | /// [zeroed]: mem::MaybeUninit::zeroed
|
698 | #[inline (always)]
|
699 | pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
|
700 | Self::try_new_zeroed_slice_in(len, Global)
|
701 | }
|
702 | }
|
703 |
|
704 | impl<T, A: Allocator> Box<[T], A> {
|
705 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
|
706 | ///
|
707 | /// # Examples
|
708 | ///
|
709 | /// ```
|
710 | /// #![feature(allocator_api, new_uninit)]
|
711 | ///
|
712 | /// use std::alloc::System;
|
713 | ///
|
714 | /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
|
715 | ///
|
716 | /// let values = unsafe {
|
717 | /// // Deferred initialization:
|
718 | /// values[0].as_mut_ptr().write(1);
|
719 | /// values[1].as_mut_ptr().write(2);
|
720 | /// values[2].as_mut_ptr().write(3);
|
721 | ///
|
722 | /// values.assume_init()
|
723 | /// };
|
724 | ///
|
725 | /// assert_eq!(*values, [1, 2, 3])
|
726 | /// ```
|
727 | #[cfg (not(no_global_oom_handling))]
|
728 | #[must_use ]
|
729 | #[inline (always)]
|
730 | pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
|
731 | unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
|
732 | }
|
733 |
|
734 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
|
735 | /// with the memory being filled with `0` bytes.
|
736 | ///
|
737 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
738 | /// of this method.
|
739 | ///
|
740 | /// # Examples
|
741 | ///
|
742 | /// ```
|
743 | /// #![feature(allocator_api, new_uninit)]
|
744 | ///
|
745 | /// use std::alloc::System;
|
746 | ///
|
747 | /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
|
748 | /// let values = unsafe { values.assume_init() };
|
749 | ///
|
750 | /// assert_eq!(*values, [0, 0, 0])
|
751 | /// ```
|
752 | ///
|
753 | /// [zeroed]: mem::MaybeUninit::zeroed
|
754 | #[cfg (not(no_global_oom_handling))]
|
755 | #[must_use ]
|
756 | #[inline (always)]
|
757 | pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
|
758 | unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
|
759 | }
|
760 |
|
761 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if
|
762 | /// the allocation fails.
|
763 | ///
|
764 | /// # Examples
|
765 | ///
|
766 | /// ```
|
767 | /// #![feature(allocator_api, new_uninit)]
|
768 | ///
|
769 | /// use std::alloc::System;
|
770 | ///
|
771 | /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
|
772 | /// let values = unsafe {
|
773 | /// // Deferred initialization:
|
774 | /// values[0].as_mut_ptr().write(1);
|
775 | /// values[1].as_mut_ptr().write(2);
|
776 | /// values[2].as_mut_ptr().write(3);
|
777 | /// values.assume_init()
|
778 | /// };
|
779 | ///
|
780 | /// assert_eq!(*values, [1, 2, 3]);
|
781 | /// # Ok::<(), std::alloc::AllocError>(())
|
782 | /// ```
|
783 | #[inline ]
|
784 | pub fn try_new_uninit_slice_in(
|
785 | len: usize,
|
786 | alloc: A,
|
787 | ) -> Result<Box<[MaybeUninit<T>], A>, AllocError> {
|
788 | let ptr = if mem::size_of::<T>() == 0 || len == 0 {
|
789 | NonNull::dangling()
|
790 | } else {
|
791 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
|
792 | Ok(l) => l,
|
793 | Err(_) => return Err(AllocError),
|
794 | };
|
795 | alloc.allocate(layout)?.cast()
|
796 | };
|
797 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
|
798 | }
|
799 |
|
800 | /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory
|
801 | /// being filled with `0` bytes. Returns an error if the allocation fails.
|
802 | ///
|
803 | /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
|
804 | /// of this method.
|
805 | ///
|
806 | /// # Examples
|
807 | ///
|
808 | /// ```
|
809 | /// #![feature(allocator_api, new_uninit)]
|
810 | ///
|
811 | /// use std::alloc::System;
|
812 | ///
|
813 | /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
|
814 | /// let values = unsafe { values.assume_init() };
|
815 | ///
|
816 | /// assert_eq!(*values, [0, 0, 0]);
|
817 | /// # Ok::<(), std::alloc::AllocError>(())
|
818 | /// ```
|
819 | ///
|
820 | /// [zeroed]: mem::MaybeUninit::zeroed
|
821 | #[inline ]
|
822 | pub fn try_new_zeroed_slice_in(
|
823 | len: usize,
|
824 | alloc: A,
|
825 | ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
|
826 | let ptr = if mem::size_of::<T>() == 0 || len == 0 {
|
827 | NonNull::dangling()
|
828 | } else {
|
829 | let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
|
830 | Ok(l) => l,
|
831 | Err(_) => return Err(AllocError),
|
832 | };
|
833 | alloc.allocate_zeroed(layout)?.cast()
|
834 | };
|
835 | unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
|
836 | }
|
837 |
|
838 | /// Converts `self` into a vector without clones or allocation.
|
839 | ///
|
840 | /// The resulting vector can be converted back into a box via
|
841 | /// `Vec<T>`'s `into_boxed_slice` method.
|
842 | ///
|
843 | /// # Examples
|
844 | ///
|
845 | /// ```
|
846 | /// let s: Box<[i32]> = Box::new([10, 40, 30]);
|
847 | /// let x = s.into_vec();
|
848 | /// // `s` cannot be used anymore because it has been converted into `x`.
|
849 | ///
|
850 | /// assert_eq!(x, vec![10, 40, 30]);
|
851 | /// ```
|
852 | #[inline ]
|
853 | pub fn into_vec(self) -> Vec<T, A>
|
854 | where
|
855 | A: Allocator,
|
856 | {
|
857 | unsafe {
|
858 | let len = self.len();
|
859 | let (b, alloc) = Box::into_raw_with_allocator(self);
|
860 | Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
|
861 | }
|
862 | }
|
863 | }
|
864 |
|
865 | impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
|
866 | /// Converts to `Box<T, A>`.
|
867 | ///
|
868 | /// # Safety
|
869 | ///
|
870 | /// As with [`MaybeUninit::assume_init`],
|
871 | /// it is up to the caller to guarantee that the value
|
872 | /// really is in an initialized state.
|
873 | /// Calling this when the content is not yet fully initialized
|
874 | /// causes immediate undefined behavior.
|
875 | ///
|
876 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
|
877 | ///
|
878 | /// # Examples
|
879 | ///
|
880 | /// ```
|
881 | /// #![feature(new_uninit)]
|
882 | ///
|
883 | /// let mut five = Box::<u32>::new_uninit();
|
884 | ///
|
885 | /// let five: Box<u32> = unsafe {
|
886 | /// // Deferred initialization:
|
887 | /// five.as_mut_ptr().write(5);
|
888 | ///
|
889 | /// five.assume_init()
|
890 | /// };
|
891 | ///
|
892 | /// assert_eq!(*five, 5)
|
893 | /// ```
|
894 | #[inline (always)]
|
895 | pub unsafe fn assume_init(self) -> Box<T, A> {
|
896 | let (raw, alloc) = Self::into_raw_with_allocator(self);
|
897 | unsafe { Box::<T, A>::from_raw_in(raw as *mut T, alloc) }
|
898 | }
|
899 |
|
900 | /// Writes the value and converts to `Box<T, A>`.
|
901 | ///
|
902 | /// This method converts the box similarly to [`Box::assume_init`] but
|
903 | /// writes `value` into it before conversion thus guaranteeing safety.
|
904 | /// In some scenarios use of this method may improve performance because
|
905 | /// the compiler may be able to optimize copying from stack.
|
906 | ///
|
907 | /// # Examples
|
908 | ///
|
909 | /// ```
|
910 | /// #![feature(new_uninit)]
|
911 | ///
|
912 | /// let big_box = Box::<[usize; 1024]>::new_uninit();
|
913 | ///
|
914 | /// let mut array = [0; 1024];
|
915 | /// for (i, place) in array.iter_mut().enumerate() {
|
916 | /// *place = i;
|
917 | /// }
|
918 | ///
|
919 | /// // The optimizer may be able to elide this copy, so previous code writes
|
920 | /// // to heap directly.
|
921 | /// let big_box = Box::write(big_box, array);
|
922 | ///
|
923 | /// for (i, x) in big_box.iter().enumerate() {
|
924 | /// assert_eq!(*x, i);
|
925 | /// }
|
926 | /// ```
|
927 | #[inline (always)]
|
928 | pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
|
929 | unsafe {
|
930 | (*boxed).write(value);
|
931 | boxed.assume_init()
|
932 | }
|
933 | }
|
934 | }
|
935 |
|
936 | impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
|
937 | /// Converts to `Box<[T], A>`.
|
938 | ///
|
939 | /// # Safety
|
940 | ///
|
941 | /// As with [`MaybeUninit::assume_init`],
|
942 | /// it is up to the caller to guarantee that the values
|
943 | /// really are in an initialized state.
|
944 | /// Calling this when the content is not yet fully initialized
|
945 | /// causes immediate undefined behavior.
|
946 | ///
|
947 | /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
|
948 | ///
|
949 | /// # Examples
|
950 | ///
|
951 | /// ```
|
952 | /// #![feature(new_uninit)]
|
953 | ///
|
954 | /// let mut values = Box::<[u32]>::new_uninit_slice(3);
|
955 | ///
|
956 | /// let values = unsafe {
|
957 | /// // Deferred initialization:
|
958 | /// values[0].as_mut_ptr().write(1);
|
959 | /// values[1].as_mut_ptr().write(2);
|
960 | /// values[2].as_mut_ptr().write(3);
|
961 | ///
|
962 | /// values.assume_init()
|
963 | /// };
|
964 | ///
|
965 | /// assert_eq!(*values, [1, 2, 3])
|
966 | /// ```
|
967 | #[inline (always)]
|
968 | pub unsafe fn assume_init(self) -> Box<[T], A> {
|
969 | let (raw, alloc) = Self::into_raw_with_allocator(self);
|
970 | unsafe { Box::<[T], A>::from_raw_in(raw as *mut [T], alloc) }
|
971 | }
|
972 | }
|
973 |
|
974 | impl<T: ?Sized> Box<T> {
|
975 | /// Constructs a box from a raw pointer.
|
976 | ///
|
977 | /// After calling this function, the raw pointer is owned by the
|
978 | /// resulting `Box`. Specifically, the `Box` destructor will call
|
979 | /// the destructor of `T` and free the allocated memory. For this
|
980 | /// to be safe, the memory must have been allocated in accordance
|
981 | /// with the [memory layout] used by `Box` .
|
982 | ///
|
983 | /// # Safety
|
984 | ///
|
985 | /// This function is unsafe because improper use may lead to
|
986 | /// memory problems. For example, a double-free may occur if the
|
987 | /// function is called twice on the same raw pointer.
|
988 | ///
|
989 | /// The safety conditions are described in the [memory layout] section.
|
990 | ///
|
991 | /// # Examples
|
992 | ///
|
993 | /// Recreate a `Box` which was previously converted to a raw pointer
|
994 | /// using [`Box::into_raw`]:
|
995 | /// ```
|
996 | /// let x = Box::new(5);
|
997 | /// let ptr = Box::into_raw(x);
|
998 | /// let x = unsafe { Box::from_raw(ptr) };
|
999 | /// ```
|
1000 | /// Manually create a `Box` from scratch by using the global allocator:
|
1001 | /// ```
|
1002 | /// use std::alloc::{alloc, Layout};
|
1003 | ///
|
1004 | /// unsafe {
|
1005 | /// let ptr = alloc(Layout::new::<i32>()) as *mut i32;
|
1006 | /// // In general .write is required to avoid attempting to destruct
|
1007 | /// // the (uninitialized) previous contents of `ptr`, though for this
|
1008 | /// // simple example `*ptr = 5` would have worked as well.
|
1009 | /// ptr.write(5);
|
1010 | /// let x = Box::from_raw(ptr);
|
1011 | /// }
|
1012 | /// ```
|
1013 | ///
|
1014 | /// [memory layout]: self#memory-layout
|
1015 | /// [`Layout`]: crate::Layout
|
1016 | #[must_use = "call `drop(from_raw(ptr))` if you intend to drop the `Box`" ]
|
1017 | #[inline (always)]
|
1018 | pub unsafe fn from_raw(raw: *mut T) -> Self {
|
1019 | unsafe { Self::from_raw_in(raw, Global) }
|
1020 | }
|
1021 | }
|
1022 |
|
1023 | impl<T: ?Sized, A: Allocator> Box<T, A> {
|
1024 | /// Constructs a box from a raw pointer in the given allocator.
|
1025 | ///
|
1026 | /// After calling this function, the raw pointer is owned by the
|
1027 | /// resulting `Box`. Specifically, the `Box` destructor will call
|
1028 | /// the destructor of `T` and free the allocated memory. For this
|
1029 | /// to be safe, the memory must have been allocated in accordance
|
1030 | /// with the [memory layout] used by `Box` .
|
1031 | ///
|
1032 | /// # Safety
|
1033 | ///
|
1034 | /// This function is unsafe because improper use may lead to
|
1035 | /// memory problems. For example, a double-free may occur if the
|
1036 | /// function is called twice on the same raw pointer.
|
1037 | ///
|
1038 | ///
|
1039 | /// # Examples
|
1040 | ///
|
1041 | /// Recreate a `Box` which was previously converted to a raw pointer
|
1042 | /// using [`Box::into_raw_with_allocator`]:
|
1043 | /// ```
|
1044 | /// use std::alloc::System;
|
1045 | /// # use allocator_api2::boxed::Box;
|
1046 | ///
|
1047 | /// let x = Box::new_in(5, System);
|
1048 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
|
1049 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
|
1050 | /// ```
|
1051 | /// Manually create a `Box` from scratch by using the system allocator:
|
1052 | /// ```
|
1053 | /// use allocator_api2::alloc::{Allocator, Layout, System};
|
1054 | /// # use allocator_api2::boxed::Box;
|
1055 | ///
|
1056 | /// unsafe {
|
1057 | /// let ptr = System.allocate(Layout::new::<i32>())?.as_ptr().cast::<i32>();
|
1058 | /// // In general .write is required to avoid attempting to destruct
|
1059 | /// // the (uninitialized) previous contents of `ptr`, though for this
|
1060 | /// // simple example `*ptr = 5` would have worked as well.
|
1061 | /// ptr.write(5);
|
1062 | /// let x = Box::from_raw_in(ptr, System);
|
1063 | /// }
|
1064 | /// # Ok::<(), allocator_api2::alloc::AllocError>(())
|
1065 | /// ```
|
1066 | ///
|
1067 | /// [memory layout]: self#memory-layout
|
1068 | /// [`Layout`]: crate::Layout
|
1069 | #[inline (always)]
|
1070 | pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
|
1071 | Box(unsafe { Unique::new_unchecked(raw) }, alloc)
|
1072 | }
|
1073 |
|
1074 | /// Consumes the `Box`, returning a wrapped raw pointer.
|
1075 | ///
|
1076 | /// The pointer will be properly aligned and non-null.
|
1077 | ///
|
1078 | /// After calling this function, the caller is responsible for the
|
1079 | /// memory previously managed by the `Box`. In particular, the
|
1080 | /// caller should properly destroy `T` and release the memory, taking
|
1081 | /// into account the [memory layout] used by `Box`. The easiest way to
|
1082 | /// do this is to convert the raw pointer back into a `Box` with the
|
1083 | /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
|
1084 | /// the cleanup.
|
1085 | ///
|
1086 | /// Note: this is an associated function, which means that you have
|
1087 | /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
|
1088 | /// is so that there is no conflict with a method on the inner type.
|
1089 | ///
|
1090 | /// # Examples
|
1091 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
|
1092 | /// for automatic cleanup:
|
1093 | /// ```
|
1094 | /// let x = Box::new(String::from("Hello" ));
|
1095 | /// let ptr = Box::into_raw(x);
|
1096 | /// let x = unsafe { Box::from_raw(ptr) };
|
1097 | /// ```
|
1098 | /// Manual cleanup by explicitly running the destructor and deallocating
|
1099 | /// the memory:
|
1100 | /// ```
|
1101 | /// use std::alloc::{dealloc, Layout};
|
1102 | /// use std::ptr;
|
1103 | ///
|
1104 | /// let x = Box::new(String::from("Hello" ));
|
1105 | /// let p = Box::into_raw(x);
|
1106 | /// unsafe {
|
1107 | /// ptr::drop_in_place(p);
|
1108 | /// dealloc(p as *mut u8, Layout::new::<String>());
|
1109 | /// }
|
1110 | /// ```
|
1111 | ///
|
1112 | /// [memory layout]: self#memory-layout
|
1113 | #[inline (always)]
|
1114 | pub fn into_raw(b: Self) -> *mut T {
|
1115 | Self::into_raw_with_allocator(b).0
|
1116 | }
|
1117 |
|
1118 | /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
|
1119 | ///
|
1120 | /// The pointer will be properly aligned and non-null.
|
1121 | ///
|
1122 | /// After calling this function, the caller is responsible for the
|
1123 | /// memory previously managed by the `Box`. In particular, the
|
1124 | /// caller should properly destroy `T` and release the memory, taking
|
1125 | /// into account the [memory layout] used by `Box`. The easiest way to
|
1126 | /// do this is to convert the raw pointer back into a `Box` with the
|
1127 | /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
|
1128 | /// the cleanup.
|
1129 | ///
|
1130 | /// Note: this is an associated function, which means that you have
|
1131 | /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
|
1132 | /// is so that there is no conflict with a method on the inner type.
|
1133 | ///
|
1134 | /// # Examples
|
1135 | /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
|
1136 | /// for automatic cleanup:
|
1137 | /// ```
|
1138 | /// #![feature(allocator_api)]
|
1139 | ///
|
1140 | /// use std::alloc::System;
|
1141 | ///
|
1142 | /// let x = Box::new_in(String::from("Hello" ), System);
|
1143 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
|
1144 | /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
|
1145 | /// ```
|
1146 | /// Manual cleanup by explicitly running the destructor and deallocating
|
1147 | /// the memory:
|
1148 | /// ```
|
1149 | /// #![feature(allocator_api)]
|
1150 | ///
|
1151 | /// use std::alloc::{Allocator, Layout, System};
|
1152 | /// use std::ptr::{self, NonNull};
|
1153 | ///
|
1154 | /// let x = Box::new_in(String::from("Hello" ), System);
|
1155 | /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
|
1156 | /// unsafe {
|
1157 | /// ptr::drop_in_place(ptr);
|
1158 | /// let non_null = NonNull::new_unchecked(ptr);
|
1159 | /// alloc.deallocate(non_null.cast(), Layout::new::<String>());
|
1160 | /// }
|
1161 | /// ```
|
1162 | ///
|
1163 | /// [memory layout]: self#memory-layout
|
1164 | #[inline (always)]
|
1165 | pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
|
1166 | let (leaked, alloc) = Box::into_non_null(b);
|
1167 | (leaked.as_ptr(), alloc)
|
1168 | }
|
1169 |
|
1170 | #[inline (always)]
|
1171 | pub fn into_non_null(b: Self) -> (NonNull<T>, A) {
|
1172 | // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
|
1173 | // raw pointer for the type system. Turning it directly into a raw pointer would not be
|
1174 | // recognized as "releasing" the unique pointer to permit aliased raw accesses,
|
1175 | // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
|
1176 | // behaves correctly.
|
1177 | let alloc = unsafe { ptr::read(&b.1) };
|
1178 | (NonNull::from(Box::leak(b)), alloc)
|
1179 | }
|
1180 |
|
1181 | /// Returns a reference to the underlying allocator.
|
1182 | ///
|
1183 | /// Note: this is an associated function, which means that you have
|
1184 | /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
|
1185 | /// is so that there is no conflict with a method on the inner type.
|
1186 | #[inline (always)]
|
1187 | pub const fn allocator(b: &Self) -> &A {
|
1188 | &b.1
|
1189 | }
|
1190 |
|
1191 | /// Consumes and leaks the `Box`, returning a mutable reference,
|
1192 | /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
|
1193 | /// `'a`. If the type has only static references, or none at all, then this
|
1194 | /// may be chosen to be `'static`.
|
1195 | ///
|
1196 | /// This function is mainly useful for data that lives for the remainder of
|
1197 | /// the program's life. Dropping the returned reference will cause a memory
|
1198 | /// leak. If this is not acceptable, the reference should first be wrapped
|
1199 | /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
|
1200 | /// then be dropped which will properly destroy `T` and release the
|
1201 | /// allocated memory.
|
1202 | ///
|
1203 | /// Note: this is an associated function, which means that you have
|
1204 | /// to call it as `Box::leak(b)` instead of `b.leak()`. This
|
1205 | /// is so that there is no conflict with a method on the inner type.
|
1206 | ///
|
1207 | /// # Examples
|
1208 | ///
|
1209 | /// Simple usage:
|
1210 | ///
|
1211 | /// ```
|
1212 | /// let x = Box::new(41);
|
1213 | /// let static_ref: &'static mut usize = Box::leak(x);
|
1214 | /// *static_ref += 1;
|
1215 | /// assert_eq!(*static_ref, 42);
|
1216 | /// ```
|
1217 | ///
|
1218 | /// Unsized data:
|
1219 | ///
|
1220 | /// ```
|
1221 | /// let x = vec![1, 2, 3].into_boxed_slice();
|
1222 | /// let static_ref = Box::leak(x);
|
1223 | /// static_ref[0] = 4;
|
1224 | /// assert_eq!(*static_ref, [4, 2, 3]);
|
1225 | /// ```
|
1226 | #[inline (always)]
|
1227 | pub fn leak<'a>(b: Self) -> &'a mut T
|
1228 | where
|
1229 | A: 'a,
|
1230 | {
|
1231 | unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
|
1232 | }
|
1233 |
|
1234 | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
|
1235 | /// `*boxed` will be pinned in memory and unable to be moved.
|
1236 | ///
|
1237 | /// This conversion does not allocate on the heap and happens in place.
|
1238 | ///
|
1239 | /// This is also available via [`From`].
|
1240 | ///
|
1241 | /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
|
1242 | /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
|
1243 | /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
|
1244 | /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
|
1245 | ///
|
1246 | /// # Notes
|
1247 | ///
|
1248 | /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
|
1249 | /// as it'll introduce an ambiguity when calling `Pin::from`.
|
1250 | /// A demonstration of such a poor impl is shown below.
|
1251 | ///
|
1252 | /// ```compile_fail
|
1253 | /// # use std::pin::Pin;
|
1254 | /// struct Foo; // A type defined in this crate.
|
1255 | /// impl From<Box<()>> for Pin<Foo> {
|
1256 | /// fn from(_: Box<()>) -> Pin<Foo> {
|
1257 | /// Pin::new(Foo)
|
1258 | /// }
|
1259 | /// }
|
1260 | ///
|
1261 | /// let foo = Box::new(());
|
1262 | /// let bar = Pin::from(foo);
|
1263 | /// ```
|
1264 | #[inline (always)]
|
1265 | pub fn into_pin(boxed: Self) -> Pin<Self>
|
1266 | where
|
1267 | A: 'static,
|
1268 | {
|
1269 | // It's not possible to move or replace the insides of a `Pin<Box<T>>`
|
1270 | // when `T: !Unpin`, so it's safe to pin it directly without any
|
1271 | // additional requirements.
|
1272 | unsafe { Pin::new_unchecked(boxed) }
|
1273 | }
|
1274 | }
|
1275 |
|
1276 | impl<T: ?Sized, A: Allocator> Drop for Box<T, A> {
|
1277 | #[inline (always)]
|
1278 | fn drop(&mut self) {
|
1279 | let layout: Layout = Layout::for_value::<T>(&**self);
|
1280 | unsafe {
|
1281 | ptr::drop_in_place(self.0.as_mut());
|
1282 | self.1.deallocate(self.0.as_non_null_ptr().cast(), layout);
|
1283 | }
|
1284 | }
|
1285 | }
|
1286 |
|
1287 | #[cfg (not(no_global_oom_handling))]
|
1288 | impl<T: Default> Default for Box<T> {
|
1289 | /// Creates a `Box<T>`, with the `Default` value for T.
|
1290 | #[inline (always)]
|
1291 | fn default() -> Self {
|
1292 | Box::new(T::default())
|
1293 | }
|
1294 | }
|
1295 |
|
1296 | impl<T, A: Allocator + Default> Default for Box<[T], A> {
|
1297 | #[inline (always)]
|
1298 | fn default() -> Self {
|
1299 | let ptr: NonNull<[T]> = NonNull::<[T; 0]>::dangling();
|
1300 | Box(unsafe { Unique::new_unchecked(ptr.as_ptr()) }, A::default())
|
1301 | }
|
1302 | }
|
1303 |
|
1304 | impl<A: Allocator + Default> Default for Box<str, A> {
|
1305 | #[inline (always)]
|
1306 | fn default() -> Self {
|
1307 | // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
|
1308 | let ptr: Unique<str> = unsafe {
|
1309 | let bytes: NonNull<[u8]> = NonNull::<[u8; 0]>::dangling();
|
1310 | Unique::new_unchecked(bytes.as_ptr() as *mut str)
|
1311 | };
|
1312 | Box(ptr, A::default())
|
1313 | }
|
1314 | }
|
1315 |
|
1316 | #[cfg (not(no_global_oom_handling))]
|
1317 | impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
|
1318 | /// Returns a new box with a `clone()` of this box's contents.
|
1319 | ///
|
1320 | /// # Examples
|
1321 | ///
|
1322 | /// ```
|
1323 | /// let x = Box::new(5);
|
1324 | /// let y = x.clone();
|
1325 | ///
|
1326 | /// // The value is the same
|
1327 | /// assert_eq!(x, y);
|
1328 | ///
|
1329 | /// // But they are unique objects
|
1330 | /// assert_ne!(&*x as *const i32, &*y as *const i32);
|
1331 | /// ```
|
1332 | #[inline (always)]
|
1333 | fn clone(&self) -> Self {
|
1334 | // Pre-allocate memory to allow writing the cloned value directly.
|
1335 | let mut boxed = Self::new_uninit_in(self.1.clone());
|
1336 | unsafe {
|
1337 | boxed.write((**self).clone());
|
1338 | boxed.assume_init()
|
1339 | }
|
1340 | }
|
1341 |
|
1342 | /// Copies `source`'s contents into `self` without creating a new allocation.
|
1343 | ///
|
1344 | /// # Examples
|
1345 | ///
|
1346 | /// ```
|
1347 | /// let x = Box::new(5);
|
1348 | /// let mut y = Box::new(10);
|
1349 | /// let yp: *const i32 = &*y;
|
1350 | ///
|
1351 | /// y.clone_from(&x);
|
1352 | ///
|
1353 | /// // The value is the same
|
1354 | /// assert_eq!(x, y);
|
1355 | ///
|
1356 | /// // And no allocation occurred
|
1357 | /// assert_eq!(yp, &*y);
|
1358 | /// ```
|
1359 | #[inline (always)]
|
1360 | fn clone_from(&mut self, source: &Self) {
|
1361 | (**self).clone_from(&(**source));
|
1362 | }
|
1363 | }
|
1364 |
|
1365 | #[cfg (not(no_global_oom_handling))]
|
1366 | impl Clone for Box<str> {
|
1367 | #[inline (always)]
|
1368 | fn clone(&self) -> Self {
|
1369 | // this makes a copy of the data
|
1370 | let buf: Box<[u8]> = self.as_bytes().into();
|
1371 | unsafe { Box::from_raw(Box::into_raw(buf) as *mut str) }
|
1372 | }
|
1373 | }
|
1374 |
|
1375 | impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
|
1376 | #[inline (always)]
|
1377 | fn eq(&self, other: &Self) -> bool {
|
1378 | PartialEq::eq(&**self, &**other)
|
1379 | }
|
1380 | #[inline (always)]
|
1381 | fn ne(&self, other: &Self) -> bool {
|
1382 | PartialEq::ne(&**self, &**other)
|
1383 | }
|
1384 | }
|
1385 |
|
1386 | impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
|
1387 | #[inline (always)]
|
1388 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
1389 | PartialOrd::partial_cmp(&**self, &**other)
|
1390 | }
|
1391 | #[inline (always)]
|
1392 | fn lt(&self, other: &Self) -> bool {
|
1393 | PartialOrd::lt(&**self, &**other)
|
1394 | }
|
1395 | #[inline (always)]
|
1396 | fn le(&self, other: &Self) -> bool {
|
1397 | PartialOrd::le(&**self, &**other)
|
1398 | }
|
1399 | #[inline (always)]
|
1400 | fn ge(&self, other: &Self) -> bool {
|
1401 | PartialOrd::ge(&**self, &**other)
|
1402 | }
|
1403 | #[inline (always)]
|
1404 | fn gt(&self, other: &Self) -> bool {
|
1405 | PartialOrd::gt(&**self, &**other)
|
1406 | }
|
1407 | }
|
1408 |
|
1409 | impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
|
1410 | #[inline (always)]
|
1411 | fn cmp(&self, other: &Self) -> Ordering {
|
1412 | Ord::cmp(&**self, &**other)
|
1413 | }
|
1414 | }
|
1415 |
|
1416 | impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
|
1417 |
|
1418 | impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
|
1419 | #[inline (always)]
|
1420 | fn hash<H: Hasher>(&self, state: &mut H) {
|
1421 | (**self).hash(state);
|
1422 | }
|
1423 | }
|
1424 |
|
1425 | impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
|
1426 | #[inline (always)]
|
1427 | fn finish(&self) -> u64 {
|
1428 | (**self).finish()
|
1429 | }
|
1430 | #[inline (always)]
|
1431 | fn write(&mut self, bytes: &[u8]) {
|
1432 | (**self).write(bytes)
|
1433 | }
|
1434 | #[inline (always)]
|
1435 | fn write_u8(&mut self, i: u8) {
|
1436 | (**self).write_u8(i)
|
1437 | }
|
1438 | #[inline (always)]
|
1439 | fn write_u16(&mut self, i: u16) {
|
1440 | (**self).write_u16(i)
|
1441 | }
|
1442 | #[inline (always)]
|
1443 | fn write_u32(&mut self, i: u32) {
|
1444 | (**self).write_u32(i)
|
1445 | }
|
1446 | #[inline (always)]
|
1447 | fn write_u64(&mut self, i: u64) {
|
1448 | (**self).write_u64(i)
|
1449 | }
|
1450 | #[inline (always)]
|
1451 | fn write_u128(&mut self, i: u128) {
|
1452 | (**self).write_u128(i)
|
1453 | }
|
1454 | #[inline (always)]
|
1455 | fn write_usize(&mut self, i: usize) {
|
1456 | (**self).write_usize(i)
|
1457 | }
|
1458 | #[inline (always)]
|
1459 | fn write_i8(&mut self, i: i8) {
|
1460 | (**self).write_i8(i)
|
1461 | }
|
1462 | #[inline (always)]
|
1463 | fn write_i16(&mut self, i: i16) {
|
1464 | (**self).write_i16(i)
|
1465 | }
|
1466 | #[inline (always)]
|
1467 | fn write_i32(&mut self, i: i32) {
|
1468 | (**self).write_i32(i)
|
1469 | }
|
1470 | #[inline (always)]
|
1471 | fn write_i64(&mut self, i: i64) {
|
1472 | (**self).write_i64(i)
|
1473 | }
|
1474 | #[inline (always)]
|
1475 | fn write_i128(&mut self, i: i128) {
|
1476 | (**self).write_i128(i)
|
1477 | }
|
1478 | #[inline (always)]
|
1479 | fn write_isize(&mut self, i: isize) {
|
1480 | (**self).write_isize(i)
|
1481 | }
|
1482 | }
|
1483 |
|
1484 | #[cfg (not(no_global_oom_handling))]
|
1485 | impl<T> From<T> for Box<T> {
|
1486 | /// Converts a `T` into a `Box<T>`
|
1487 | ///
|
1488 | /// The conversion allocates on the heap and moves `t`
|
1489 | /// from the stack into it.
|
1490 | ///
|
1491 | /// # Examples
|
1492 | ///
|
1493 | /// ```rust
|
1494 | /// let x = 5;
|
1495 | /// let boxed = Box::new(5);
|
1496 | ///
|
1497 | /// assert_eq!(Box::from(x), boxed);
|
1498 | /// ```
|
1499 | #[inline (always)]
|
1500 | fn from(t: T) -> Self {
|
1501 | Box::new(t)
|
1502 | }
|
1503 | }
|
1504 |
|
1505 | impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
|
1506 | where
|
1507 | A: 'static,
|
1508 | {
|
1509 | /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
|
1510 | /// `*boxed` will be pinned in memory and unable to be moved.
|
1511 | ///
|
1512 | /// This conversion does not allocate on the heap and happens in place.
|
1513 | ///
|
1514 | /// This is also available via [`Box::into_pin`].
|
1515 | ///
|
1516 | /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
|
1517 | /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
|
1518 | /// This `From` implementation is useful if you already have a `Box<T>`, or you are
|
1519 | /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
|
1520 | #[inline (always)]
|
1521 | fn from(boxed: Box<T, A>) -> Self {
|
1522 | Box::into_pin(boxed)
|
1523 | }
|
1524 | }
|
1525 |
|
1526 | #[cfg (not(no_global_oom_handling))]
|
1527 | impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A> {
|
1528 | /// Converts a `&[T]` into a `Box<[T]>`
|
1529 | ///
|
1530 | /// This conversion allocates on the heap
|
1531 | /// and performs a copy of `slice` and its contents.
|
1532 | ///
|
1533 | /// # Examples
|
1534 | /// ```rust
|
1535 | /// // create a &[u8] which will be used to create a Box<[u8]>
|
1536 | /// let slice: &[u8] = &[104, 101, 108, 108, 111];
|
1537 | /// let boxed_slice: Box<[u8]> = Box::from(slice);
|
1538 | ///
|
1539 | /// println!("{boxed_slice:?}" );
|
1540 | /// ```
|
1541 | #[inline (always)]
|
1542 | fn from(slice: &[T]) -> Box<[T], A> {
|
1543 | let len: usize = slice.len();
|
1544 | let buf: RawVec = RawVec::with_capacity_in(capacity:len, A::default());
|
1545 | unsafe {
|
1546 | ptr::copy_nonoverlapping(src:slice.as_ptr(), dst:buf.ptr(), count:len);
|
1547 | buf.into_box(slice.len()).assume_init()
|
1548 | }
|
1549 | }
|
1550 | }
|
1551 |
|
1552 | #[cfg (not(no_global_oom_handling))]
|
1553 | impl<A: Allocator + Default> From<&str> for Box<str, A> {
|
1554 | /// Converts a `&str` into a `Box<str>`
|
1555 | ///
|
1556 | /// This conversion allocates on the heap
|
1557 | /// and performs a copy of `s`.
|
1558 | ///
|
1559 | /// # Examples
|
1560 | ///
|
1561 | /// ```rust
|
1562 | /// let boxed: Box<str> = Box::from("hello" );
|
1563 | /// println!("{boxed}" );
|
1564 | /// ```
|
1565 | #[inline (always)]
|
1566 | fn from(s: &str) -> Box<str, A> {
|
1567 | let (raw: *mut [u8], alloc: A) = Box::into_raw_with_allocator(Box::<[u8], A>::from(s.as_bytes()));
|
1568 | unsafe { Box::from_raw_in(raw as *mut str, alloc) }
|
1569 | }
|
1570 | }
|
1571 |
|
1572 | impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
|
1573 | /// Converts a `Box<str>` into a `Box<[u8]>`
|
1574 | ///
|
1575 | /// This conversion does not allocate on the heap and happens in place.
|
1576 | ///
|
1577 | /// # Examples
|
1578 | /// ```rust
|
1579 | /// // create a Box<str> which will be used to create a Box<[u8]>
|
1580 | /// let boxed: Box<str> = Box::from("hello" );
|
1581 | /// let boxed_str: Box<[u8]> = Box::from(boxed);
|
1582 | ///
|
1583 | /// // create a &[u8] which will be used to create a Box<[u8]>
|
1584 | /// let slice: &[u8] = &[104, 101, 108, 108, 111];
|
1585 | /// let boxed_slice = Box::from(slice);
|
1586 | ///
|
1587 | /// assert_eq!(boxed_slice, boxed_str);
|
1588 | /// ```
|
1589 | #[inline (always)]
|
1590 | fn from(s: Box<str, A>) -> Self {
|
1591 | let (raw: *mut str, alloc: A) = Box::into_raw_with_allocator(s);
|
1592 | unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
|
1593 | }
|
1594 | }
|
1595 |
|
1596 | impl<T, A: Allocator, const N: usize> Box<[T; N], A> {
|
1597 | #[inline (always)]
|
1598 | pub fn slice(b: Self) -> Box<[T], A> {
|
1599 | let (ptr: *mut [T; N], alloc: A) = Box::into_raw_with_allocator(b);
|
1600 | unsafe { Box::from_raw_in(raw:ptr, alloc) }
|
1601 | }
|
1602 |
|
1603 | pub fn into_vec(self) -> Vec<T, A>
|
1604 | where
|
1605 | A: Allocator,
|
1606 | {
|
1607 | unsafe {
|
1608 | let (b: *mut [T; N], alloc: A) = Box::into_raw_with_allocator(self);
|
1609 | Vec::from_raw_parts_in(ptr:b as *mut T, N, N, alloc)
|
1610 | }
|
1611 | }
|
1612 | }
|
1613 |
|
1614 | #[cfg (not(no_global_oom_handling))]
|
1615 | impl<T, const N: usize> From<[T; N]> for Box<[T]> {
|
1616 | /// Converts a `[T; N]` into a `Box<[T]>`
|
1617 | ///
|
1618 | /// This conversion moves the array to newly heap-allocated memory.
|
1619 | ///
|
1620 | /// # Examples
|
1621 | ///
|
1622 | /// ```rust
|
1623 | /// let boxed: Box<[u8]> = Box::from([4, 2]);
|
1624 | /// println!("{boxed:?}" );
|
1625 | /// ```
|
1626 | #[inline (always)]
|
1627 | fn from(array: [T; N]) -> Box<[T]> {
|
1628 | Box::slice(Box::new(array))
|
1629 | }
|
1630 | }
|
1631 |
|
1632 | impl<T, A: Allocator, const N: usize> TryFrom<Box<[T], A>> for Box<[T; N], A> {
|
1633 | type Error = Box<[T], A>;
|
1634 |
|
1635 | /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
|
1636 | ///
|
1637 | /// The conversion occurs in-place and does not require a
|
1638 | /// new memory allocation.
|
1639 | ///
|
1640 | /// # Errors
|
1641 | ///
|
1642 | /// Returns the old `Box<[T]>` in the `Err` variant if
|
1643 | /// `boxed_slice.len()` does not equal `N`.
|
1644 | #[inline (always)]
|
1645 | fn try_from(boxed_slice: Box<[T], A>) -> Result<Self, Self::Error> {
|
1646 | if boxed_slice.len() == N {
|
1647 | let (ptr: *mut [T], alloc: A) = Box::into_raw_with_allocator(boxed_slice);
|
1648 | Ok(unsafe { Box::from_raw_in(raw:ptr as *mut [T; N], alloc) })
|
1649 | } else {
|
1650 | Err(boxed_slice)
|
1651 | }
|
1652 | }
|
1653 | }
|
1654 |
|
1655 | impl<A: Allocator> Box<dyn Any, A> {
|
1656 | /// Attempt to downcast the box to a concrete type.
|
1657 | ///
|
1658 | /// # Examples
|
1659 | ///
|
1660 | /// ```
|
1661 | /// use std::any::Any;
|
1662 | ///
|
1663 | /// fn print_if_string(value: Box<dyn Any>) {
|
1664 | /// if let Ok(string) = value.downcast::<String>() {
|
1665 | /// println!("String ({}): {}" , string.len(), string);
|
1666 | /// }
|
1667 | /// }
|
1668 | ///
|
1669 | /// let my_string = "Hello World" .to_string();
|
1670 | /// print_if_string(Box::new(my_string));
|
1671 | /// print_if_string(Box::new(0i8));
|
1672 | /// ```
|
1673 | #[inline (always)]
|
1674 | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
|
1675 | if self.is::<T>() {
|
1676 | unsafe { Ok(self.downcast_unchecked::<T>()) }
|
1677 | } else {
|
1678 | Err(self)
|
1679 | }
|
1680 | }
|
1681 |
|
1682 | /// Downcasts the box to a concrete type.
|
1683 | ///
|
1684 | /// For a safe alternative see [`downcast`].
|
1685 | ///
|
1686 | /// # Examples
|
1687 | ///
|
1688 | /// ```
|
1689 | /// #![feature(downcast_unchecked)]
|
1690 | ///
|
1691 | /// use std::any::Any;
|
1692 | ///
|
1693 | /// let x: Box<dyn Any> = Box::new(1_usize);
|
1694 | ///
|
1695 | /// unsafe {
|
1696 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
|
1697 | /// }
|
1698 | /// ```
|
1699 | ///
|
1700 | /// # Safety
|
1701 | ///
|
1702 | /// The contained value must be of type `T`. Calling this method
|
1703 | /// with the incorrect type is *undefined behavior*.
|
1704 | ///
|
1705 | /// [`downcast`]: Self::downcast
|
1706 | #[inline (always)]
|
1707 | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
|
1708 | debug_assert!(self.is::<T>());
|
1709 | unsafe {
|
1710 | let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
|
1711 | Box::from_raw_in(raw as *mut T, alloc)
|
1712 | }
|
1713 | }
|
1714 | }
|
1715 |
|
1716 | impl<A: Allocator> Box<dyn Any + Send, A> {
|
1717 | /// Attempt to downcast the box to a concrete type.
|
1718 | ///
|
1719 | /// # Examples
|
1720 | ///
|
1721 | /// ```
|
1722 | /// use std::any::Any;
|
1723 | ///
|
1724 | /// fn print_if_string(value: Box<dyn Any + Send>) {
|
1725 | /// if let Ok(string) = value.downcast::<String>() {
|
1726 | /// println!("String ({}): {}" , string.len(), string);
|
1727 | /// }
|
1728 | /// }
|
1729 | ///
|
1730 | /// let my_string = "Hello World" .to_string();
|
1731 | /// print_if_string(Box::new(my_string));
|
1732 | /// print_if_string(Box::new(0i8));
|
1733 | /// ```
|
1734 | #[inline (always)]
|
1735 | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
|
1736 | if self.is::<T>() {
|
1737 | unsafe { Ok(self.downcast_unchecked::<T>()) }
|
1738 | } else {
|
1739 | Err(self)
|
1740 | }
|
1741 | }
|
1742 |
|
1743 | /// Downcasts the box to a concrete type.
|
1744 | ///
|
1745 | /// For a safe alternative see [`downcast`].
|
1746 | ///
|
1747 | /// # Examples
|
1748 | ///
|
1749 | /// ```
|
1750 | /// #![feature(downcast_unchecked)]
|
1751 | ///
|
1752 | /// use std::any::Any;
|
1753 | ///
|
1754 | /// let x: Box<dyn Any + Send> = Box::new(1_usize);
|
1755 | ///
|
1756 | /// unsafe {
|
1757 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
|
1758 | /// }
|
1759 | /// ```
|
1760 | ///
|
1761 | /// # Safety
|
1762 | ///
|
1763 | /// The contained value must be of type `T`. Calling this method
|
1764 | /// with the incorrect type is *undefined behavior*.
|
1765 | ///
|
1766 | /// [`downcast`]: Self::downcast
|
1767 | #[inline (always)]
|
1768 | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
|
1769 | debug_assert!(self.is::<T>());
|
1770 | unsafe {
|
1771 | let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
|
1772 | Box::from_raw_in(raw as *mut T, alloc)
|
1773 | }
|
1774 | }
|
1775 | }
|
1776 |
|
1777 | impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
|
1778 | /// Attempt to downcast the box to a concrete type.
|
1779 | ///
|
1780 | /// # Examples
|
1781 | ///
|
1782 | /// ```
|
1783 | /// use std::any::Any;
|
1784 | ///
|
1785 | /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
|
1786 | /// if let Ok(string) = value.downcast::<String>() {
|
1787 | /// println!("String ({}): {}" , string.len(), string);
|
1788 | /// }
|
1789 | /// }
|
1790 | ///
|
1791 | /// let my_string = "Hello World" .to_string();
|
1792 | /// print_if_string(Box::new(my_string));
|
1793 | /// print_if_string(Box::new(0i8));
|
1794 | /// ```
|
1795 | #[inline (always)]
|
1796 | pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
|
1797 | if self.is::<T>() {
|
1798 | unsafe { Ok(self.downcast_unchecked::<T>()) }
|
1799 | } else {
|
1800 | Err(self)
|
1801 | }
|
1802 | }
|
1803 |
|
1804 | /// Downcasts the box to a concrete type.
|
1805 | ///
|
1806 | /// For a safe alternative see [`downcast`].
|
1807 | ///
|
1808 | /// # Examples
|
1809 | ///
|
1810 | /// ```
|
1811 | /// #![feature(downcast_unchecked)]
|
1812 | ///
|
1813 | /// use std::any::Any;
|
1814 | ///
|
1815 | /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
|
1816 | ///
|
1817 | /// unsafe {
|
1818 | /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
|
1819 | /// }
|
1820 | /// ```
|
1821 | ///
|
1822 | /// # Safety
|
1823 | ///
|
1824 | /// The contained value must be of type `T`. Calling this method
|
1825 | /// with the incorrect type is *undefined behavior*.
|
1826 | ///
|
1827 | /// [`downcast`]: Self::downcast
|
1828 | #[inline (always)]
|
1829 | pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
|
1830 | debug_assert!(self.is::<T>());
|
1831 | unsafe {
|
1832 | let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
|
1833 | Box::into_raw_with_allocator(self);
|
1834 | Box::from_raw_in(raw as *mut T, alloc)
|
1835 | }
|
1836 | }
|
1837 | }
|
1838 |
|
1839 | impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
|
1840 | #[inline (always)]
|
1841 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
1842 | fmt::Display::fmt(&**self, f)
|
1843 | }
|
1844 | }
|
1845 |
|
1846 | impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
|
1847 | #[inline (always)]
|
1848 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
1849 | fmt::Debug::fmt(&**self, f)
|
1850 | }
|
1851 | }
|
1852 |
|
1853 | impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
|
1854 | #[inline (always)]
|
1855 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
1856 | // It's not possible to extract the inner Uniq directly from the Box,
|
1857 | // instead we cast it to a *const which aliases the Unique
|
1858 | let ptr: *const T = &**self;
|
1859 | fmt::Pointer::fmt(&ptr, f)
|
1860 | }
|
1861 | }
|
1862 |
|
1863 | impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
|
1864 | type Target = T;
|
1865 |
|
1866 | #[inline (always)]
|
1867 | fn deref(&self) -> &T {
|
1868 | unsafe { self.0.as_ref() }
|
1869 | }
|
1870 | }
|
1871 |
|
1872 | impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
|
1873 | #[inline (always)]
|
1874 | fn deref_mut(&mut self) -> &mut T {
|
1875 | unsafe { self.0.as_mut() }
|
1876 | }
|
1877 | }
|
1878 |
|
1879 | impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
|
1880 | type Item = I::Item;
|
1881 |
|
1882 | #[inline (always)]
|
1883 | fn next(&mut self) -> Option<I::Item> {
|
1884 | (**self).next()
|
1885 | }
|
1886 |
|
1887 | #[inline (always)]
|
1888 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1889 | (**self).size_hint()
|
1890 | }
|
1891 |
|
1892 | #[inline (always)]
|
1893 | fn nth(&mut self, n: usize) -> Option<I::Item> {
|
1894 | (**self).nth(n)
|
1895 | }
|
1896 |
|
1897 | #[inline (always)]
|
1898 | fn last(self) -> Option<I::Item> {
|
1899 | BoxIter::last(self)
|
1900 | }
|
1901 | }
|
1902 |
|
1903 | trait BoxIter {
|
1904 | type Item;
|
1905 | fn last(self) -> Option<Self::Item>;
|
1906 | }
|
1907 |
|
1908 | impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
|
1909 | type Item = I::Item;
|
1910 |
|
1911 | #[inline (always)]
|
1912 | fn last(self) -> Option<I::Item> {
|
1913 | #[inline (always)]
|
1914 | fn some<T>(_: Option<T>, x: T) -> Option<T> {
|
1915 | Some(x)
|
1916 | }
|
1917 |
|
1918 | self.fold(init:None, f:some)
|
1919 | }
|
1920 | }
|
1921 |
|
1922 | impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
|
1923 | #[inline (always)]
|
1924 | fn next_back(&mut self) -> Option<I::Item> {
|
1925 | (**self).next_back()
|
1926 | }
|
1927 | #[inline (always)]
|
1928 | fn nth_back(&mut self, n: usize) -> Option<I::Item> {
|
1929 | (**self).nth_back(n)
|
1930 | }
|
1931 | }
|
1932 |
|
1933 | impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
|
1934 | #[inline (always)]
|
1935 | fn len(&self) -> usize {
|
1936 | (**self).len()
|
1937 | }
|
1938 | }
|
1939 |
|
1940 | impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
|
1941 |
|
1942 | #[cfg (not(no_global_oom_handling))]
|
1943 | impl<I> FromIterator<I> for Box<[I]> {
|
1944 | #[inline (always)]
|
1945 | fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
|
1946 | iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
|
1947 | }
|
1948 | }
|
1949 |
|
1950 | #[cfg (not(no_global_oom_handling))]
|
1951 | impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
|
1952 | #[inline (always)]
|
1953 | fn clone(&self) -> Self {
|
1954 | let alloc: A = Box::allocator(self).clone();
|
1955 | let mut vec: Vec = Vec::with_capacity_in(self.len(), alloc);
|
1956 | vec.extend_from_slice(self);
|
1957 | vec.into_boxed_slice()
|
1958 | }
|
1959 |
|
1960 | #[inline (always)]
|
1961 | fn clone_from(&mut self, other: &Self) {
|
1962 | if self.len() == other.len() {
|
1963 | self.clone_from_slice(src:other);
|
1964 | } else {
|
1965 | *self = other.clone();
|
1966 | }
|
1967 | }
|
1968 | }
|
1969 |
|
1970 | impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
|
1971 | #[inline (always)]
|
1972 | fn borrow(&self) -> &T {
|
1973 | self
|
1974 | }
|
1975 | }
|
1976 |
|
1977 | impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
|
1978 | #[inline (always)]
|
1979 | fn borrow_mut(&mut self) -> &mut T {
|
1980 | self
|
1981 | }
|
1982 | }
|
1983 |
|
1984 | impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
|
1985 | #[inline (always)]
|
1986 | fn as_ref(&self) -> &T {
|
1987 | self
|
1988 | }
|
1989 | }
|
1990 |
|
1991 | impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
|
1992 | #[inline (always)]
|
1993 | fn as_mut(&mut self) -> &mut T {
|
1994 | self
|
1995 | }
|
1996 | }
|
1997 |
|
1998 | /* Nota bene
|
1999 | *
|
2000 | * We could have chosen not to add this impl, and instead have written a
|
2001 | * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
|
2002 | * because Box<T> implements Unpin even when T does not, as a result of
|
2003 | * this impl.
|
2004 | *
|
2005 | * We chose this API instead of the alternative for a few reasons:
|
2006 | * - Logically, it is helpful to understand pinning in regard to the
|
2007 | * memory region being pointed to. For this reason none of the
|
2008 | * standard library pointer types support projecting through a pin
|
2009 | * (Box<T> is the only pointer type in std for which this would be
|
2010 | * safe.)
|
2011 | * - It is in practice very useful to have Box<T> be unconditionally
|
2012 | * Unpin because of trait objects, for which the structural auto
|
2013 | * trait functionality does not apply (e.g., Box<dyn Foo> would
|
2014 | * otherwise not be Unpin).
|
2015 | *
|
2016 | * Another type with the same semantics as Box but only a conditional
|
2017 | * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
|
2018 | * could have a method to project a Pin<T> from it.
|
2019 | */
|
2020 | impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
|
2021 |
|
2022 | impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
|
2023 | where
|
2024 | A: 'static,
|
2025 | {
|
2026 | type Output = F::Output;
|
2027 |
|
2028 | #[inline (always)]
|
2029 | fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
|
2030 | F::poll(self:Pin::new(&mut *self), cx)
|
2031 | }
|
2032 | }
|
2033 |
|
2034 | #[cfg (feature = "std" )]
|
2035 | mod error {
|
2036 | use std::error::Error;
|
2037 |
|
2038 | use super::Box;
|
2039 |
|
2040 | #[cfg (not(no_global_oom_handling))]
|
2041 | impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
|
2042 | /// Converts a type of [`Error`] into a box of dyn [`Error`].
|
2043 | ///
|
2044 | /// # Examples
|
2045 | ///
|
2046 | /// ```
|
2047 | /// use std::error::Error;
|
2048 | /// use std::fmt;
|
2049 | /// use std::mem;
|
2050 | ///
|
2051 | /// #[derive(Debug)]
|
2052 | /// struct AnError;
|
2053 | ///
|
2054 | /// impl fmt::Display for AnError {
|
2055 | /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
2056 | /// write!(f, "An error")
|
2057 | /// }
|
2058 | /// }
|
2059 | ///
|
2060 | /// impl Error for AnError {}
|
2061 | ///
|
2062 | /// let an_error = AnError;
|
2063 | /// assert!(0 == mem::size_of_val(&an_error));
|
2064 | /// let a_boxed_error = Box::<dyn Error>::from(an_error);
|
2065 | /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
|
2066 | /// ```
|
2067 | #[inline (always)]
|
2068 | fn from(err: E) -> Box<dyn Error + 'a> {
|
2069 | unsafe { Box::from_raw(Box::leak(Box::new(err))) }
|
2070 | }
|
2071 | }
|
2072 |
|
2073 | #[cfg (not(no_global_oom_handling))]
|
2074 | impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
|
2075 | /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
|
2076 | /// dyn [`Error`] + [`Send`] + [`Sync`].
|
2077 | ///
|
2078 | /// # Examples
|
2079 | ///
|
2080 | /// ```
|
2081 | /// use std::error::Error;
|
2082 | /// use std::fmt;
|
2083 | /// use std::mem;
|
2084 | ///
|
2085 | /// #[derive(Debug)]
|
2086 | /// struct AnError;
|
2087 | ///
|
2088 | /// impl fmt::Display for AnError {
|
2089 | /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
2090 | /// write!(f, "An error")
|
2091 | /// }
|
2092 | /// }
|
2093 | ///
|
2094 | /// impl Error for AnError {}
|
2095 | ///
|
2096 | /// unsafe impl Send for AnError {}
|
2097 | ///
|
2098 | /// unsafe impl Sync for AnError {}
|
2099 | ///
|
2100 | /// let an_error = AnError;
|
2101 | /// assert!(0 == mem::size_of_val(&an_error));
|
2102 | /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
|
2103 | /// assert!(
|
2104 | /// mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
|
2105 | /// ```
|
2106 | #[inline (always)]
|
2107 | fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
|
2108 | unsafe { Box::from_raw(Box::leak(Box::new(err))) }
|
2109 | }
|
2110 | }
|
2111 |
|
2112 | impl<T: Error> Error for Box<T> {
|
2113 | #[inline (always)]
|
2114 | fn source(&self) -> Option<&(dyn Error + 'static)> {
|
2115 | Error::source(&**self)
|
2116 | }
|
2117 | }
|
2118 | }
|
2119 |
|
2120 | #[cfg (feature = "std" )]
|
2121 | impl<R: std::io::Read + ?Sized, A: Allocator> std::io::Read for Box<R, A> {
|
2122 | #[inline ]
|
2123 | fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
|
2124 | (**self).read(buf)
|
2125 | }
|
2126 |
|
2127 | #[inline ]
|
2128 | fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
|
2129 | (**self).read_to_end(buf)
|
2130 | }
|
2131 |
|
2132 | #[inline ]
|
2133 | fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> {
|
2134 | (**self).read_to_string(buf)
|
2135 | }
|
2136 |
|
2137 | #[inline ]
|
2138 | fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
|
2139 | (**self).read_exact(buf)
|
2140 | }
|
2141 | }
|
2142 |
|
2143 | #[cfg (feature = "std" )]
|
2144 | impl<W: std::io::Write + ?Sized, A: Allocator> std::io::Write for Box<W, A> {
|
2145 | #[inline ]
|
2146 | fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
|
2147 | (**self).write(buf)
|
2148 | }
|
2149 |
|
2150 | #[inline ]
|
2151 | fn flush(&mut self) -> std::io::Result<()> {
|
2152 | (**self).flush()
|
2153 | }
|
2154 |
|
2155 | #[inline ]
|
2156 | fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> {
|
2157 | (**self).write_all(buf)
|
2158 | }
|
2159 |
|
2160 | #[inline ]
|
2161 | fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> std::io::Result<()> {
|
2162 | (**self).write_fmt(fmt)
|
2163 | }
|
2164 | }
|
2165 |
|
2166 | #[cfg (feature = "std" )]
|
2167 | impl<S: std::io::Seek + ?Sized, A: Allocator> std::io::Seek for Box<S, A> {
|
2168 | #[inline ]
|
2169 | fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
|
2170 | (**self).seek(pos)
|
2171 | }
|
2172 |
|
2173 | #[inline ]
|
2174 | fn stream_position(&mut self) -> std::io::Result<u64> {
|
2175 | (**self).stream_position()
|
2176 | }
|
2177 | }
|
2178 |
|
2179 | #[cfg (feature = "std" )]
|
2180 | impl<B: std::io::BufRead + ?Sized, A: Allocator> std::io::BufRead for Box<B, A> {
|
2181 | #[inline ]
|
2182 | fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
|
2183 | (**self).fill_buf()
|
2184 | }
|
2185 |
|
2186 | #[inline ]
|
2187 | fn consume(&mut self, amt: usize) {
|
2188 | (**self).consume(amt)
|
2189 | }
|
2190 |
|
2191 | #[inline ]
|
2192 | fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
|
2193 | (**self).read_until(byte, buf)
|
2194 | }
|
2195 |
|
2196 | #[inline ]
|
2197 | fn read_line(&mut self, buf: &mut std::string::String) -> std::io::Result<usize> {
|
2198 | (**self).read_line(buf)
|
2199 | }
|
2200 | }
|
2201 |
|
2202 | #[cfg (feature = "alloc" )]
|
2203 | impl<A: Allocator> Extend<Box<str, A>> for alloc_crate::string::String {
|
2204 | fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
|
2205 | iter.into_iter().for_each(move |s: Box| self.push_str(&s));
|
2206 | }
|
2207 | }
|
2208 |
|
2209 | #[cfg (not(no_global_oom_handling))]
|
2210 | #[cfg (feature = "std" )]
|
2211 | impl Clone for Box<std::ffi::CStr> {
|
2212 | #[inline ]
|
2213 | fn clone(&self) -> Self {
|
2214 | (**self).into()
|
2215 | }
|
2216 | }
|
2217 |
|
2218 | #[cfg (not(no_global_oom_handling))]
|
2219 | #[cfg (feature = "std" )]
|
2220 | impl From<&std::ffi::CStr> for Box<std::ffi::CStr> {
|
2221 | /// Converts a `&CStr` into a `Box<CStr>`,
|
2222 | /// by copying the contents into a newly allocated [`Box`].
|
2223 | fn from(s: &std::ffi::CStr) -> Box<std::ffi::CStr> {
|
2224 | let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
|
2225 | unsafe { Box::from_raw(Box::into_raw(boxed) as *mut std::ffi::CStr) }
|
2226 | }
|
2227 | }
|
2228 |
|
2229 | #[cfg (not(no_global_oom_handling))]
|
2230 | #[cfg (feature = "fresh-rust" )]
|
2231 | impl Clone for Box<core::ffi::CStr> {
|
2232 | #[inline ]
|
2233 | fn clone(&self) -> Self {
|
2234 | (**self).into()
|
2235 | }
|
2236 | }
|
2237 |
|
2238 | #[cfg (not(no_global_oom_handling))]
|
2239 | #[cfg (feature = "fresh-rust" )]
|
2240 | impl From<&core::ffi::CStr> for Box<core::ffi::CStr> {
|
2241 | /// Converts a `&CStr` into a `Box<CStr>`,
|
2242 | /// by copying the contents into a newly allocated [`Box`].
|
2243 | fn from(s: &core::ffi::CStr) -> Box<core::ffi::CStr> {
|
2244 | let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
|
2245 | unsafe { Box::from_raw(Box::into_raw(boxed) as *mut core::ffi::CStr) }
|
2246 | }
|
2247 | }
|
2248 |
|
2249 | #[cfg (feature = "serde" )]
|
2250 | impl<T, A> serde::Serialize for Box<T, A>
|
2251 | where
|
2252 | T: serde::Serialize,
|
2253 | A: Allocator,
|
2254 | {
|
2255 | #[inline (always)]
|
2256 | fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
|
2257 | (**self).serialize(serializer)
|
2258 | }
|
2259 | }
|
2260 |
|
2261 | #[cfg (feature = "serde" )]
|
2262 | impl<'de, T, A> serde::Deserialize<'de> for Box<T, A>
|
2263 | where
|
2264 | T: serde::Deserialize<'de>,
|
2265 | A: Allocator + Default,
|
2266 | {
|
2267 | #[inline (always)]
|
2268 | fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
|
2269 | let value = T::deserialize(deserializer)?;
|
2270 | Ok(Box::new_in(value, A::default()))
|
2271 | }
|
2272 | }
|
2273 | |