| 1 | //! A contiguous growable array type with heap-allocated contents, written
|
| 2 | //! `Vec<T>`.
|
| 3 | //!
|
| 4 | //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
|
| 5 | //! *O*(1) pop (from the end).
|
| 6 | //!
|
| 7 | //! Vectors ensure they never allocate more than `isize::MAX` bytes.
|
| 8 | //!
|
| 9 | //! # Examples
|
| 10 | //!
|
| 11 | //! You can explicitly create a [`Vec`] with [`Vec::new`]:
|
| 12 | //!
|
| 13 | //! ```
|
| 14 | //! let v: Vec<i32> = Vec::new();
|
| 15 | //! ```
|
| 16 | //!
|
| 17 | //! ...or by using the [`vec!`] macro:
|
| 18 | //!
|
| 19 | //! ```
|
| 20 | //! let v: Vec<i32> = vec![];
|
| 21 | //!
|
| 22 | //! let v = vec![1, 2, 3, 4, 5];
|
| 23 | //!
|
| 24 | //! let v = vec![0; 10]; // ten zeroes
|
| 25 | //! ```
|
| 26 | //!
|
| 27 | //! You can [`push`] values onto the end of a vector (which will grow the vector
|
| 28 | //! as needed):
|
| 29 | //!
|
| 30 | //! ```
|
| 31 | //! let mut v = vec![1, 2];
|
| 32 | //!
|
| 33 | //! v.push(3);
|
| 34 | //! ```
|
| 35 | //!
|
| 36 | //! Popping values works in much the same way:
|
| 37 | //!
|
| 38 | //! ```
|
| 39 | //! let mut v = vec![1, 2];
|
| 40 | //!
|
| 41 | //! let two = v.pop();
|
| 42 | //! ```
|
| 43 | //!
|
| 44 | //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
|
| 45 | //!
|
| 46 | //! ```
|
| 47 | //! let mut v = vec![1, 2, 3];
|
| 48 | //! let three = v[2];
|
| 49 | //! v[1] = v[1] + 5;
|
| 50 | //! ```
|
| 51 | //!
|
| 52 | //! [`push`]: Vec::push
|
| 53 |
|
| 54 | #[cfg (not(no_global_oom_handling))]
|
| 55 | use core::cmp;
|
| 56 | use core::cmp::Ordering;
|
| 57 | use core::convert::TryFrom;
|
| 58 | use core::fmt;
|
| 59 | use core::hash::{Hash, Hasher};
|
| 60 | #[cfg (not(no_global_oom_handling))]
|
| 61 | use core::iter;
|
| 62 | #[cfg (not(no_global_oom_handling))]
|
| 63 | use core::iter::FromIterator;
|
| 64 | use core::marker::PhantomData;
|
| 65 | use core::mem::{self, size_of, ManuallyDrop, MaybeUninit};
|
| 66 | use core::ops::{self, Bound, Index, IndexMut, RangeBounds};
|
| 67 | use core::ptr::{self, NonNull};
|
| 68 | use core::slice::{self, SliceIndex};
|
| 69 |
|
| 70 | #[cfg (feature = "std" )]
|
| 71 | use std::io;
|
| 72 |
|
| 73 | use super::{
|
| 74 | alloc::{Allocator, Global},
|
| 75 | assume,
|
| 76 | boxed::Box,
|
| 77 | raw_vec::{RawVec, TryReserveError},
|
| 78 | };
|
| 79 |
|
| 80 | #[cfg (not(no_global_oom_handling))]
|
| 81 | pub use self::splice::Splice;
|
| 82 |
|
| 83 | #[cfg (not(no_global_oom_handling))]
|
| 84 | mod splice;
|
| 85 |
|
| 86 | pub use self::drain::Drain;
|
| 87 |
|
| 88 | mod drain;
|
| 89 |
|
| 90 | pub use self::into_iter::IntoIter;
|
| 91 |
|
| 92 | mod into_iter;
|
| 93 |
|
| 94 | mod partial_eq;
|
| 95 |
|
| 96 | #[cfg (not(no_global_oom_handling))]
|
| 97 | mod set_len_on_drop;
|
| 98 |
|
| 99 | #[cfg (not(no_global_oom_handling))]
|
| 100 | use self::set_len_on_drop::SetLenOnDrop;
|
| 101 |
|
| 102 | /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
|
| 103 | ///
|
| 104 | /// # Examples
|
| 105 | ///
|
| 106 | /// ```
|
| 107 | /// let mut vec = Vec::new();
|
| 108 | /// vec.push(1);
|
| 109 | /// vec.push(2);
|
| 110 | ///
|
| 111 | /// assert_eq!(vec.len(), 2);
|
| 112 | /// assert_eq!(vec[0], 1);
|
| 113 | ///
|
| 114 | /// assert_eq!(vec.pop(), Some(2));
|
| 115 | /// assert_eq!(vec.len(), 1);
|
| 116 | ///
|
| 117 | /// vec[0] = 7;
|
| 118 | /// assert_eq!(vec[0], 7);
|
| 119 | ///
|
| 120 | /// vec.extend([1, 2, 3].iter().copied());
|
| 121 | ///
|
| 122 | /// for x in &vec {
|
| 123 | /// println!("{x}" );
|
| 124 | /// }
|
| 125 | /// assert_eq!(vec, [7, 1, 2, 3]);
|
| 126 | /// ```
|
| 127 | ///
|
| 128 | /// The [`vec!`] macro is provided for convenient initialization:
|
| 129 | ///
|
| 130 | /// ```
|
| 131 | /// let mut vec1 = vec![1, 2, 3];
|
| 132 | /// vec1.push(4);
|
| 133 | /// let vec2 = Vec::from([1, 2, 3, 4]);
|
| 134 | /// assert_eq!(vec1, vec2);
|
| 135 | /// ```
|
| 136 | ///
|
| 137 | /// It can also initialize each element of a `Vec<T>` with a given value.
|
| 138 | /// This may be more efficient than performing allocation and initialization
|
| 139 | /// in separate steps, especially when initializing a vector of zeros:
|
| 140 | ///
|
| 141 | /// ```
|
| 142 | /// let vec = vec![0; 5];
|
| 143 | /// assert_eq!(vec, [0, 0, 0, 0, 0]);
|
| 144 | ///
|
| 145 | /// // The following is equivalent, but potentially slower:
|
| 146 | /// let mut vec = Vec::with_capacity(5);
|
| 147 | /// vec.resize(5, 0);
|
| 148 | /// assert_eq!(vec, [0, 0, 0, 0, 0]);
|
| 149 | /// ```
|
| 150 | ///
|
| 151 | /// For more information, see
|
| 152 | /// [Capacity and Reallocation](#capacity-and-reallocation).
|
| 153 | ///
|
| 154 | /// Use a `Vec<T>` as an efficient stack:
|
| 155 | ///
|
| 156 | /// ```
|
| 157 | /// let mut stack = Vec::new();
|
| 158 | ///
|
| 159 | /// stack.push(1);
|
| 160 | /// stack.push(2);
|
| 161 | /// stack.push(3);
|
| 162 | ///
|
| 163 | /// while let Some(top) = stack.pop() {
|
| 164 | /// // Prints 3, 2, 1
|
| 165 | /// println!("{top}" );
|
| 166 | /// }
|
| 167 | /// ```
|
| 168 | ///
|
| 169 | /// # Indexing
|
| 170 | ///
|
| 171 | /// The `Vec` type allows to access values by index, because it implements the
|
| 172 | /// [`Index`] trait. An example will be more explicit:
|
| 173 | ///
|
| 174 | /// ```
|
| 175 | /// let v = vec![0, 2, 4, 6];
|
| 176 | /// println!("{}" , v[1]); // it will display '2'
|
| 177 | /// ```
|
| 178 | ///
|
| 179 | /// However be careful: if you try to access an index which isn't in the `Vec`,
|
| 180 | /// your software will panic! You cannot do this:
|
| 181 | ///
|
| 182 | /// ```should_panic
|
| 183 | /// let v = vec![0, 2, 4, 6];
|
| 184 | /// println!("{}" , v[6]); // it will panic!
|
| 185 | /// ```
|
| 186 | ///
|
| 187 | /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
|
| 188 | /// the `Vec`.
|
| 189 | ///
|
| 190 | /// # Slicing
|
| 191 | ///
|
| 192 | /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
|
| 193 | /// To get a [slice][prim@slice], use [`&`]. Example:
|
| 194 | ///
|
| 195 | /// ```
|
| 196 | /// fn read_slice(slice: &[usize]) {
|
| 197 | /// // ...
|
| 198 | /// }
|
| 199 | ///
|
| 200 | /// let v = vec![0, 1];
|
| 201 | /// read_slice(&v);
|
| 202 | ///
|
| 203 | /// // ... and that's all!
|
| 204 | /// // you can also do it like this:
|
| 205 | /// let u: &[usize] = &v;
|
| 206 | /// // or like this:
|
| 207 | /// let u: &[_] = &v;
|
| 208 | /// ```
|
| 209 | ///
|
| 210 | /// In Rust, it's more common to pass slices as arguments rather than vectors
|
| 211 | /// when you just want to provide read access. The same goes for [`String`] and
|
| 212 | /// [`&str`].
|
| 213 | ///
|
| 214 | /// # Capacity and reallocation
|
| 215 | ///
|
| 216 | /// The capacity of a vector is the amount of space allocated for any future
|
| 217 | /// elements that will be added onto the vector. This is not to be confused with
|
| 218 | /// the *length* of a vector, which specifies the number of actual elements
|
| 219 | /// within the vector. If a vector's length exceeds its capacity, its capacity
|
| 220 | /// will automatically be increased, but its elements will have to be
|
| 221 | /// reallocated.
|
| 222 | ///
|
| 223 | /// For example, a vector with capacity 10 and length 0 would be an empty vector
|
| 224 | /// with space for 10 more elements. Pushing 10 or fewer elements onto the
|
| 225 | /// vector will not change its capacity or cause reallocation to occur. However,
|
| 226 | /// if the vector's length is increased to 11, it will have to reallocate, which
|
| 227 | /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
|
| 228 | /// whenever possible to specify how big the vector is expected to get.
|
| 229 | ///
|
| 230 | /// # Guarantees
|
| 231 | ///
|
| 232 | /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
|
| 233 | /// about its design. This ensures that it's as low-overhead as possible in
|
| 234 | /// the general case, and can be correctly manipulated in primitive ways
|
| 235 | /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
|
| 236 | /// If additional type parameters are added (e.g., to support custom allocators),
|
| 237 | /// overriding their defaults may change the behavior.
|
| 238 | ///
|
| 239 | /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
|
| 240 | /// triplet. No more, no less. The order of these fields is completely
|
| 241 | /// unspecified, and you should use the appropriate methods to modify these.
|
| 242 | /// The pointer will never be null, so this type is null-pointer-optimized.
|
| 243 | ///
|
| 244 | /// However, the pointer might not actually point to allocated memory. In particular,
|
| 245 | /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
|
| 246 | /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
|
| 247 | /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
|
| 248 | /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
|
| 249 | /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
|
| 250 | /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
|
| 251 | /// details are very subtle --- if you intend to allocate memory using a `Vec`
|
| 252 | /// and use it for something else (either to pass to unsafe code, or to build your
|
| 253 | /// own memory-backed collection), be sure to deallocate this memory by using
|
| 254 | /// `from_raw_parts` to recover the `Vec` and then dropping it.
|
| 255 | ///
|
| 256 | /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
|
| 257 | /// (as defined by the allocator Rust is configured to use by default), and its
|
| 258 | /// pointer points to [`len`] initialized, contiguous elements in order (what
|
| 259 | /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
|
| 260 | /// logically uninitialized, contiguous elements.
|
| 261 | ///
|
| 262 | /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
|
| 263 | /// visualized as below. The top part is the `Vec` struct, it contains a
|
| 264 | /// pointer to the head of the allocation in the heap, length and capacity.
|
| 265 | /// The bottom part is the allocation on the heap, a contiguous memory block.
|
| 266 | ///
|
| 267 | /// ```text
|
| 268 | /// ptr len capacity
|
| 269 | /// +--------+--------+--------+
|
| 270 | /// | 0x0123 | 2 | 4 |
|
| 271 | /// +--------+--------+--------+
|
| 272 | /// |
|
| 273 | /// v
|
| 274 | /// Heap +--------+--------+--------+--------+
|
| 275 | /// | 'a' | 'b' | uninit | uninit |
|
| 276 | /// +--------+--------+--------+--------+
|
| 277 | /// ```
|
| 278 | ///
|
| 279 | /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
|
| 280 | /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
|
| 281 | /// layout (including the order of fields).
|
| 282 | ///
|
| 283 | /// `Vec` will never perform a "small optimization" where elements are actually
|
| 284 | /// stored on the stack for two reasons:
|
| 285 | ///
|
| 286 | /// * It would make it more difficult for unsafe code to correctly manipulate
|
| 287 | /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
|
| 288 | /// only moved, and it would be more difficult to determine if a `Vec` had
|
| 289 | /// actually allocated memory.
|
| 290 | ///
|
| 291 | /// * It would penalize the general case, incurring an additional branch
|
| 292 | /// on every access.
|
| 293 | ///
|
| 294 | /// `Vec` will never automatically shrink itself, even if completely empty. This
|
| 295 | /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
|
| 296 | /// and then filling it back up to the same [`len`] should incur no calls to
|
| 297 | /// the allocator. If you wish to free up unused memory, use
|
| 298 | /// [`shrink_to_fit`] or [`shrink_to`].
|
| 299 | ///
|
| 300 | /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
|
| 301 | /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
|
| 302 | /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
|
| 303 | /// accurate, and can be relied on. It can even be used to manually free the memory
|
| 304 | /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
|
| 305 | /// when not necessary.
|
| 306 | ///
|
| 307 | /// `Vec` does not guarantee any particular growth strategy when reallocating
|
| 308 | /// when full, nor when [`reserve`] is called. The current strategy is basic
|
| 309 | /// and it may prove desirable to use a non-constant growth factor. Whatever
|
| 310 | /// strategy is used will of course guarantee *O*(1) amortized [`push`].
|
| 311 | ///
|
| 312 | /// `vec![x; n]`, `vec![a, b, c, d]`, and
|
| 313 | /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
|
| 314 | /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
|
| 315 | /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
|
| 316 | /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
|
| 317 | ///
|
| 318 | /// `Vec` will not specifically overwrite any data that is removed from it,
|
| 319 | /// but also won't specifically preserve it. Its uninitialized memory is
|
| 320 | /// scratch space that it may use however it wants. It will generally just do
|
| 321 | /// whatever is most efficient or otherwise easy to implement. Do not rely on
|
| 322 | /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
|
| 323 | /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
|
| 324 | /// first, that might not actually happen because the optimizer does not consider
|
| 325 | /// this a side-effect that must be preserved. There is one case which we will
|
| 326 | /// not break, however: using `unsafe` code to write to the excess capacity,
|
| 327 | /// and then increasing the length to match, is always valid.
|
| 328 | ///
|
| 329 | /// Currently, `Vec` does not guarantee the order in which elements are dropped.
|
| 330 | /// The order has changed in the past and may change again.
|
| 331 | ///
|
| 332 | /// [`get`]: ../../std/vec/struct.Vec.html#method.get
|
| 333 | /// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
|
| 334 | /// [`String`]: alloc_crate::string::String
|
| 335 | /// [`&str`]: type@str
|
| 336 | /// [`shrink_to_fit`]: Vec::shrink_to_fit
|
| 337 | /// [`shrink_to`]: Vec::shrink_to
|
| 338 | /// [capacity]: Vec::capacity
|
| 339 | /// [`capacity`]: Vec::capacity
|
| 340 | /// [mem::size_of::\<T>]: core::mem::size_of
|
| 341 | /// [len]: Vec::len
|
| 342 | /// [`len`]: Vec::len
|
| 343 | /// [`push`]: Vec::push
|
| 344 | /// [`insert`]: Vec::insert
|
| 345 | /// [`reserve`]: Vec::reserve
|
| 346 | /// [`MaybeUninit`]: core::mem::MaybeUninit
|
| 347 | /// [owned slice]: Box
|
| 348 | pub struct Vec<T, A: Allocator = Global> {
|
| 349 | buf: RawVec<T, A>,
|
| 350 | len: usize,
|
| 351 | }
|
| 352 |
|
| 353 | ////////////////////////////////////////////////////////////////////////////////
|
| 354 | // Inherent methods
|
| 355 | ////////////////////////////////////////////////////////////////////////////////
|
| 356 |
|
| 357 | impl<T> Vec<T> {
|
| 358 | /// Constructs a new, empty `Vec<T>`.
|
| 359 | ///
|
| 360 | /// The vector will not allocate until elements are pushed onto it.
|
| 361 | ///
|
| 362 | /// # Examples
|
| 363 | ///
|
| 364 | /// ```
|
| 365 | /// # #![allow (unused_mut)]
|
| 366 | /// let mut vec: Vec<i32> = Vec::new();
|
| 367 | /// ```
|
| 368 | #[inline (always)]
|
| 369 | #[must_use ]
|
| 370 | pub const fn new() -> Self {
|
| 371 | Vec {
|
| 372 | buf: RawVec::new(),
|
| 373 | len: 0,
|
| 374 | }
|
| 375 | }
|
| 376 |
|
| 377 | /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
|
| 378 | ///
|
| 379 | /// The vector will be able to hold at least `capacity` elements without
|
| 380 | /// reallocating. This method is allowed to allocate for more elements than
|
| 381 | /// `capacity`. If `capacity` is 0, the vector will not allocate.
|
| 382 | ///
|
| 383 | /// It is important to note that although the returned vector has the
|
| 384 | /// minimum *capacity* specified, the vector will have a zero *length*. For
|
| 385 | /// an explanation of the difference between length and capacity, see
|
| 386 | /// *[Capacity and reallocation]*.
|
| 387 | ///
|
| 388 | /// If it is important to know the exact allocated capacity of a `Vec`,
|
| 389 | /// always use the [`capacity`] method after construction.
|
| 390 | ///
|
| 391 | /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
|
| 392 | /// and the capacity will always be `usize::MAX`.
|
| 393 | ///
|
| 394 | /// [Capacity and reallocation]: #capacity-and-reallocation
|
| 395 | /// [`capacity`]: Vec::capacity
|
| 396 | ///
|
| 397 | /// # Panics
|
| 398 | ///
|
| 399 | /// Panics if the new capacity exceeds `isize::MAX` bytes.
|
| 400 | ///
|
| 401 | /// # Examples
|
| 402 | ///
|
| 403 | /// ```
|
| 404 | /// let mut vec = Vec::with_capacity(10);
|
| 405 | ///
|
| 406 | /// // The vector contains no items, even though it has capacity for more
|
| 407 | /// assert_eq!(vec.len(), 0);
|
| 408 | /// assert!(vec.capacity() >= 10);
|
| 409 | ///
|
| 410 | /// // These are all done without reallocating...
|
| 411 | /// for i in 0..10 {
|
| 412 | /// vec.push(i);
|
| 413 | /// }
|
| 414 | /// assert_eq!(vec.len(), 10);
|
| 415 | /// assert!(vec.capacity() >= 10);
|
| 416 | ///
|
| 417 | /// // ...but this may make the vector reallocate
|
| 418 | /// vec.push(11);
|
| 419 | /// assert_eq!(vec.len(), 11);
|
| 420 | /// assert!(vec.capacity() >= 11);
|
| 421 | ///
|
| 422 | /// // A vector of a zero-sized type will always over-allocate, since no
|
| 423 | /// // allocation is necessary
|
| 424 | /// let vec_units = Vec::<()>::with_capacity(10);
|
| 425 | /// assert_eq!(vec_units.capacity(), usize::MAX);
|
| 426 | /// ```
|
| 427 | #[cfg (not(no_global_oom_handling))]
|
| 428 | #[inline (always)]
|
| 429 | #[must_use ]
|
| 430 | pub fn with_capacity(capacity: usize) -> Self {
|
| 431 | Self::with_capacity_in(capacity, Global)
|
| 432 | }
|
| 433 |
|
| 434 | /// Creates a `Vec<T>` directly from a pointer, a capacity, and a length.
|
| 435 | ///
|
| 436 | /// # Safety
|
| 437 | ///
|
| 438 | /// This is highly unsafe, due to the number of invariants that aren't
|
| 439 | /// checked:
|
| 440 | ///
|
| 441 | /// * `T` needs to have the same alignment as what `ptr` was allocated with.
|
| 442 | /// (`T` having a less strict alignment is not sufficient, the alignment really
|
| 443 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
|
| 444 | /// allocated and deallocated with the same layout.)
|
| 445 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
|
| 446 | /// to be the same size as the pointer was allocated with. (Because similar to
|
| 447 | /// alignment, [`dealloc`] must be called with the same layout `size`.)
|
| 448 | /// * `length` needs to be less than or equal to `capacity`.
|
| 449 | /// * The first `length` values must be properly initialized values of type `T`.
|
| 450 | /// * `capacity` needs to be the capacity that the pointer was allocated with.
|
| 451 | /// * The allocated size in bytes must be no larger than `isize::MAX`.
|
| 452 | /// See the safety documentation of [`pointer::offset`](https://doc.rust-lang.org/nightly/std/primitive.pointer.html#method.offset).
|
| 453 | ///
|
| 454 | /// These requirements are always upheld by any `ptr` that has been allocated
|
| 455 | /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
|
| 456 | /// upheld.
|
| 457 | ///
|
| 458 | /// Violating these may cause problems like corrupting the allocator's
|
| 459 | /// internal data structures. For example it is normally **not** safe
|
| 460 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length
|
| 461 | /// `size_t`, doing so is only safe if the array was initially allocated by
|
| 462 | /// a `Vec` or `String`.
|
| 463 | /// It's also not safe to build one from a `Vec<u16>` and its length, because
|
| 464 | /// the allocator cares about the alignment, and these two types have different
|
| 465 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
|
| 466 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
|
| 467 | /// these issues, it is often preferable to do casting/transmuting using
|
| 468 | /// [`slice::from_raw_parts`] instead.
|
| 469 | ///
|
| 470 | /// The ownership of `ptr` is effectively transferred to the
|
| 471 | /// `Vec<T>` which may then deallocate, reallocate or change the
|
| 472 | /// contents of memory pointed to by the pointer at will. Ensure
|
| 473 | /// that nothing else uses the pointer after calling this
|
| 474 | /// function.
|
| 475 | ///
|
| 476 | /// [`String`]: alloc_crate::string::String
|
| 477 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
|
| 478 | ///
|
| 479 | /// # Examples
|
| 480 | ///
|
| 481 | /// ```
|
| 482 | /// use std::ptr;
|
| 483 | /// use std::mem;
|
| 484 | ///
|
| 485 | /// let v = vec![1, 2, 3];
|
| 486 | ///
|
| 487 | // FIXME Update this when vec_into_raw_parts is stabilized
|
| 488 | /// // Prevent running `v`'s destructor so we are in complete control
|
| 489 | /// // of the allocation.
|
| 490 | /// let mut v = mem::ManuallyDrop::new(v);
|
| 491 | ///
|
| 492 | /// // Pull out the various important pieces of information about `v`
|
| 493 | /// let p = v.as_mut_ptr();
|
| 494 | /// let len = v.len();
|
| 495 | /// let cap = v.capacity();
|
| 496 | ///
|
| 497 | /// unsafe {
|
| 498 | /// // Overwrite memory with 4, 5, 6
|
| 499 | /// for i in 0..len {
|
| 500 | /// ptr::write(p.add(i), 4 + i);
|
| 501 | /// }
|
| 502 | ///
|
| 503 | /// // Put everything back together into a Vec
|
| 504 | /// let rebuilt = Vec::from_raw_parts(p, len, cap);
|
| 505 | /// assert_eq!(rebuilt, [4, 5, 6]);
|
| 506 | /// }
|
| 507 | /// ```
|
| 508 | ///
|
| 509 | /// Using memory that was allocated elsewhere:
|
| 510 | ///
|
| 511 | /// ```rust
|
| 512 | /// #![feature(allocator_api)]
|
| 513 | ///
|
| 514 | /// use std::alloc::{AllocError, Allocator, Global, Layout};
|
| 515 | ///
|
| 516 | /// fn main() {
|
| 517 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" );
|
| 518 | ///
|
| 519 | /// let vec = unsafe {
|
| 520 | /// let mem = match Global.allocate(layout) {
|
| 521 | /// Ok(mem) => mem.cast::<u32>().as_ptr(),
|
| 522 | /// Err(AllocError) => return,
|
| 523 | /// };
|
| 524 | ///
|
| 525 | /// mem.write(1_000_000);
|
| 526 | ///
|
| 527 | /// Vec::from_raw_parts_in(mem, 1, 16, Global)
|
| 528 | /// };
|
| 529 | ///
|
| 530 | /// assert_eq!(vec, &[1_000_000]);
|
| 531 | /// assert_eq!(vec.capacity(), 16);
|
| 532 | /// }
|
| 533 | /// ```
|
| 534 | #[inline (always)]
|
| 535 | pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
|
| 536 | unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
|
| 537 | }
|
| 538 | }
|
| 539 |
|
| 540 | impl<T, A: Allocator> Vec<T, A> {
|
| 541 | /// Constructs a new, empty `Vec<T, A>`.
|
| 542 | ///
|
| 543 | /// The vector will not allocate until elements are pushed onto it.
|
| 544 | ///
|
| 545 | /// # Examples
|
| 546 | ///
|
| 547 | /// ```
|
| 548 | /// use std::alloc::System;
|
| 549 | ///
|
| 550 | /// # #[allow (unused_mut)]
|
| 551 | /// let mut vec: Vec<i32, _> = Vec::new_in(System);
|
| 552 | /// ```
|
| 553 | #[inline (always)]
|
| 554 | pub const fn new_in(alloc: A) -> Self {
|
| 555 | Vec {
|
| 556 | buf: RawVec::new_in(alloc),
|
| 557 | len: 0,
|
| 558 | }
|
| 559 | }
|
| 560 |
|
| 561 | /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
|
| 562 | /// with the provided allocator.
|
| 563 | ///
|
| 564 | /// The vector will be able to hold at least `capacity` elements without
|
| 565 | /// reallocating. This method is allowed to allocate for more elements than
|
| 566 | /// `capacity`. If `capacity` is 0, the vector will not allocate.
|
| 567 | ///
|
| 568 | /// It is important to note that although the returned vector has the
|
| 569 | /// minimum *capacity* specified, the vector will have a zero *length*. For
|
| 570 | /// an explanation of the difference between length and capacity, see
|
| 571 | /// *[Capacity and reallocation]*.
|
| 572 | ///
|
| 573 | /// If it is important to know the exact allocated capacity of a `Vec`,
|
| 574 | /// always use the [`capacity`] method after construction.
|
| 575 | ///
|
| 576 | /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
|
| 577 | /// and the capacity will always be `usize::MAX`.
|
| 578 | ///
|
| 579 | /// [Capacity and reallocation]: #capacity-and-reallocation
|
| 580 | /// [`capacity`]: Vec::capacity
|
| 581 | ///
|
| 582 | /// # Panics
|
| 583 | ///
|
| 584 | /// Panics if the new capacity exceeds `isize::MAX` bytes.
|
| 585 | ///
|
| 586 | /// # Examples
|
| 587 | ///
|
| 588 | /// ```
|
| 589 | /// use std::alloc::System;
|
| 590 | ///
|
| 591 | /// let mut vec = Vec::with_capacity_in(10, System);
|
| 592 | ///
|
| 593 | /// // The vector contains no items, even though it has capacity for more
|
| 594 | /// assert_eq!(vec.len(), 0);
|
| 595 | /// assert_eq!(vec.capacity(), 10);
|
| 596 | ///
|
| 597 | /// // These are all done without reallocating...
|
| 598 | /// for i in 0..10 {
|
| 599 | /// vec.push(i);
|
| 600 | /// }
|
| 601 | /// assert_eq!(vec.len(), 10);
|
| 602 | /// assert_eq!(vec.capacity(), 10);
|
| 603 | ///
|
| 604 | /// // ...but this may make the vector reallocate
|
| 605 | /// vec.push(11);
|
| 606 | /// assert_eq!(vec.len(), 11);
|
| 607 | /// assert!(vec.capacity() >= 11);
|
| 608 | ///
|
| 609 | /// // A vector of a zero-sized type will always over-allocate, since no
|
| 610 | /// // allocation is necessary
|
| 611 | /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
|
| 612 | /// assert_eq!(vec_units.capacity(), usize::MAX);
|
| 613 | /// ```
|
| 614 | #[cfg (not(no_global_oom_handling))]
|
| 615 | #[inline (always)]
|
| 616 | pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
|
| 617 | Vec {
|
| 618 | buf: RawVec::with_capacity_in(capacity, alloc),
|
| 619 | len: 0,
|
| 620 | }
|
| 621 | }
|
| 622 |
|
| 623 | /// Creates a `Vec<T, A>` directly from a pointer, a capacity, a length,
|
| 624 | /// and an allocator.
|
| 625 | ///
|
| 626 | /// # Safety
|
| 627 | ///
|
| 628 | /// This is highly unsafe, due to the number of invariants that aren't
|
| 629 | /// checked:
|
| 630 | ///
|
| 631 | /// * `T` needs to have the same alignment as what `ptr` was allocated with.
|
| 632 | /// (`T` having a less strict alignment is not sufficient, the alignment really
|
| 633 | /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
|
| 634 | /// allocated and deallocated with the same layout.)
|
| 635 | /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
|
| 636 | /// to be the same size as the pointer was allocated with. (Because similar to
|
| 637 | /// alignment, [`dealloc`] must be called with the same layout `size`.)
|
| 638 | /// * `length` needs to be less than or equal to `capacity`.
|
| 639 | /// * The first `length` values must be properly initialized values of type `T`.
|
| 640 | /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
|
| 641 | /// * The allocated size in bytes must be no larger than `isize::MAX`.
|
| 642 | /// See the safety documentation of [`pointer::offset`](https://doc.rust-lang.org/nightly/std/primitive.pointer.html#method.offset).
|
| 643 | ///
|
| 644 | /// These requirements are always upheld by any `ptr` that has been allocated
|
| 645 | /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
|
| 646 | /// upheld.
|
| 647 | ///
|
| 648 | /// Violating these may cause problems like corrupting the allocator's
|
| 649 | /// internal data structures. For example it is **not** safe
|
| 650 | /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
|
| 651 | /// It's also not safe to build one from a `Vec<u16>` and its length, because
|
| 652 | /// the allocator cares about the alignment, and these two types have different
|
| 653 | /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
|
| 654 | /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
|
| 655 | ///
|
| 656 | /// The ownership of `ptr` is effectively transferred to the
|
| 657 | /// `Vec<T>` which may then deallocate, reallocate or change the
|
| 658 | /// contents of memory pointed to by the pointer at will. Ensure
|
| 659 | /// that nothing else uses the pointer after calling this
|
| 660 | /// function.
|
| 661 | ///
|
| 662 | /// [`String`]: alloc_crate::string::String
|
| 663 | /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
|
| 664 | /// [*fit*]: crate::alloc::Allocator#memory-fitting
|
| 665 | ///
|
| 666 | /// # Examples
|
| 667 | ///
|
| 668 | /// ```
|
| 669 | /// use std::alloc::System;
|
| 670 | ///
|
| 671 | /// use std::ptr;
|
| 672 | /// use std::mem;
|
| 673 | ///
|
| 674 | ///
|
| 675 | /// # use allocator_api2::vec::Vec;
|
| 676 | /// let mut v = Vec::with_capacity_in(3, System);
|
| 677 | /// v.push(1);
|
| 678 | /// v.push(2);
|
| 679 | /// v.push(3);
|
| 680 | ///
|
| 681 | // FIXME Update this when vec_into_raw_parts is stabilized
|
| 682 | /// // Prevent running `v`'s destructor so we are in complete control
|
| 683 | /// // of the allocation.
|
| 684 | /// let mut v = mem::ManuallyDrop::new(v);
|
| 685 | ///
|
| 686 | /// // Pull out the various important pieces of information about `v`
|
| 687 | /// let p = v.as_mut_ptr();
|
| 688 | /// let len = v.len();
|
| 689 | /// let cap = v.capacity();
|
| 690 | /// let alloc = v.allocator();
|
| 691 | ///
|
| 692 | /// unsafe {
|
| 693 | /// // Overwrite memory with 4, 5, 6
|
| 694 | /// for i in 0..len {
|
| 695 | /// ptr::write(p.add(i), 4 + i);
|
| 696 | /// }
|
| 697 | ///
|
| 698 | /// // Put everything back together into a Vec
|
| 699 | /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
|
| 700 | /// assert_eq!(rebuilt, [4, 5, 6]);
|
| 701 | /// }
|
| 702 | /// ```
|
| 703 | ///
|
| 704 | /// Using memory that was allocated elsewhere:
|
| 705 | ///
|
| 706 | /// ```rust
|
| 707 | /// use std::alloc::{alloc, Layout};
|
| 708 | ///
|
| 709 | /// fn main() {
|
| 710 | /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen" );
|
| 711 | /// let vec = unsafe {
|
| 712 | /// let mem = alloc(layout).cast::<u32>();
|
| 713 | /// if mem.is_null() {
|
| 714 | /// return;
|
| 715 | /// }
|
| 716 | ///
|
| 717 | /// mem.write(1_000_000);
|
| 718 | ///
|
| 719 | /// Vec::from_raw_parts(mem, 1, 16)
|
| 720 | /// };
|
| 721 | ///
|
| 722 | /// assert_eq!(vec, &[1_000_000]);
|
| 723 | /// assert_eq!(vec.capacity(), 16);
|
| 724 | /// }
|
| 725 | /// ```
|
| 726 | #[inline (always)]
|
| 727 | pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
|
| 728 | unsafe {
|
| 729 | Vec {
|
| 730 | buf: RawVec::from_raw_parts_in(ptr, capacity, alloc),
|
| 731 | len: length,
|
| 732 | }
|
| 733 | }
|
| 734 | }
|
| 735 |
|
| 736 | /// Decomposes a `Vec<T>` into its raw components.
|
| 737 | ///
|
| 738 | /// Returns the raw pointer to the underlying data, the length of
|
| 739 | /// the vector (in elements), and the allocated capacity of the
|
| 740 | /// data (in elements). These are the same arguments in the same
|
| 741 | /// order as the arguments to [`from_raw_parts`].
|
| 742 | ///
|
| 743 | /// After calling this function, the caller is responsible for the
|
| 744 | /// memory previously managed by the `Vec`. The only way to do
|
| 745 | /// this is to convert the raw pointer, length, and capacity back
|
| 746 | /// into a `Vec` with the [`from_raw_parts`] function, allowing
|
| 747 | /// the destructor to perform the cleanup.
|
| 748 | ///
|
| 749 | /// [`from_raw_parts`]: Vec::from_raw_parts
|
| 750 | ///
|
| 751 | /// # Examples
|
| 752 | ///
|
| 753 | /// ```
|
| 754 | /// #![feature(vec_into_raw_parts)]
|
| 755 | /// let v: Vec<i32> = vec![-1, 0, 1];
|
| 756 | ///
|
| 757 | /// let (ptr, len, cap) = v.into_raw_parts();
|
| 758 | ///
|
| 759 | /// let rebuilt = unsafe {
|
| 760 | /// // We can now make changes to the components, such as
|
| 761 | /// // transmuting the raw pointer to a compatible type.
|
| 762 | /// let ptr = ptr as *mut u32;
|
| 763 | ///
|
| 764 | /// Vec::from_raw_parts(ptr, len, cap)
|
| 765 | /// };
|
| 766 | /// assert_eq!(rebuilt, [4294967295, 0, 1]);
|
| 767 | /// ```
|
| 768 | pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
|
| 769 | let mut me = ManuallyDrop::new(self);
|
| 770 | (me.as_mut_ptr(), me.len(), me.capacity())
|
| 771 | }
|
| 772 |
|
| 773 | /// Decomposes a `Vec<T>` into its raw components.
|
| 774 | ///
|
| 775 | /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
|
| 776 | /// the allocated capacity of the data (in elements), and the allocator. These are the same
|
| 777 | /// arguments in the same order as the arguments to [`from_raw_parts_in`].
|
| 778 | ///
|
| 779 | /// After calling this function, the caller is responsible for the
|
| 780 | /// memory previously managed by the `Vec`. The only way to do
|
| 781 | /// this is to convert the raw pointer, length, and capacity back
|
| 782 | /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
|
| 783 | /// the destructor to perform the cleanup.
|
| 784 | ///
|
| 785 | /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
|
| 786 | ///
|
| 787 | /// # Examples
|
| 788 | ///
|
| 789 | /// ```
|
| 790 | /// #![feature(allocator_api, vec_into_raw_parts)]
|
| 791 | ///
|
| 792 | /// use std::alloc::System;
|
| 793 | ///
|
| 794 | /// let mut v: Vec<i32, System> = Vec::new_in(System);
|
| 795 | /// v.push(-1);
|
| 796 | /// v.push(0);
|
| 797 | /// v.push(1);
|
| 798 | ///
|
| 799 | /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
|
| 800 | ///
|
| 801 | /// let rebuilt = unsafe {
|
| 802 | /// // We can now make changes to the components, such as
|
| 803 | /// // transmuting the raw pointer to a compatible type.
|
| 804 | /// let ptr = ptr as *mut u32;
|
| 805 | ///
|
| 806 | /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
|
| 807 | /// };
|
| 808 | /// assert_eq!(rebuilt, [4294967295, 0, 1]);
|
| 809 | /// ```
|
| 810 | // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
|
| 811 | pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
|
| 812 | let mut me = ManuallyDrop::new(self);
|
| 813 | let len = me.len();
|
| 814 | let capacity = me.capacity();
|
| 815 | let ptr = me.as_mut_ptr();
|
| 816 | let alloc = unsafe { ptr::read(me.allocator()) };
|
| 817 | (ptr, len, capacity, alloc)
|
| 818 | }
|
| 819 |
|
| 820 | /// Returns the total number of elements the vector can hold without
|
| 821 | /// reallocating.
|
| 822 | ///
|
| 823 | /// # Examples
|
| 824 | ///
|
| 825 | /// ```
|
| 826 | /// let mut vec: Vec<i32> = Vec::with_capacity(10);
|
| 827 | /// vec.push(42);
|
| 828 | /// assert_eq!(vec.capacity(), 10);
|
| 829 | /// ```
|
| 830 | #[inline (always)]
|
| 831 | pub fn capacity(&self) -> usize {
|
| 832 | self.buf.capacity()
|
| 833 | }
|
| 834 |
|
| 835 | /// Reserves capacity for at least `additional` more elements to be inserted
|
| 836 | /// in the given `Vec<T>`. The collection may reserve more space to
|
| 837 | /// speculatively avoid frequent reallocations. After calling `reserve`,
|
| 838 | /// capacity will be greater than or equal to `self.len() + additional`.
|
| 839 | /// Does nothing if capacity is already sufficient.
|
| 840 | ///
|
| 841 | /// # Panics
|
| 842 | ///
|
| 843 | /// Panics if the new capacity exceeds `isize::MAX` bytes.
|
| 844 | ///
|
| 845 | /// # Examples
|
| 846 | ///
|
| 847 | /// ```
|
| 848 | /// let mut vec = vec![1];
|
| 849 | /// vec.reserve(10);
|
| 850 | /// assert!(vec.capacity() >= 11);
|
| 851 | /// ```
|
| 852 | #[cfg (not(no_global_oom_handling))]
|
| 853 | #[inline (always)]
|
| 854 | pub fn reserve(&mut self, additional: usize) {
|
| 855 | self.buf.reserve(self.len, additional);
|
| 856 | }
|
| 857 |
|
| 858 | /// Reserves the minimum capacity for at least `additional` more elements to
|
| 859 | /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
|
| 860 | /// deliberately over-allocate to speculatively avoid frequent allocations.
|
| 861 | /// After calling `reserve_exact`, capacity will be greater than or equal to
|
| 862 | /// `self.len() + additional`. Does nothing if the capacity is already
|
| 863 | /// sufficient.
|
| 864 | ///
|
| 865 | /// Note that the allocator may give the collection more space than it
|
| 866 | /// requests. Therefore, capacity can not be relied upon to be precisely
|
| 867 | /// minimal. Prefer [`reserve`] if future insertions are expected.
|
| 868 | ///
|
| 869 | /// [`reserve`]: Vec::reserve
|
| 870 | ///
|
| 871 | /// # Panics
|
| 872 | ///
|
| 873 | /// Panics if the new capacity exceeds `isize::MAX` bytes.
|
| 874 | ///
|
| 875 | /// # Examples
|
| 876 | ///
|
| 877 | /// ```
|
| 878 | /// let mut vec = vec![1];
|
| 879 | /// vec.reserve_exact(10);
|
| 880 | /// assert!(vec.capacity() >= 11);
|
| 881 | /// ```
|
| 882 | #[cfg (not(no_global_oom_handling))]
|
| 883 | #[inline (always)]
|
| 884 | pub fn reserve_exact(&mut self, additional: usize) {
|
| 885 | self.buf.reserve_exact(self.len, additional);
|
| 886 | }
|
| 887 |
|
| 888 | /// Tries to reserve capacity for at least `additional` more elements to be inserted
|
| 889 | /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
|
| 890 | /// frequent reallocations. After calling `try_reserve`, capacity will be
|
| 891 | /// greater than or equal to `self.len() + additional` if it returns
|
| 892 | /// `Ok(())`. Does nothing if capacity is already sufficient. This method
|
| 893 | /// preserves the contents even if an error occurs.
|
| 894 | ///
|
| 895 | /// # Errors
|
| 896 | ///
|
| 897 | /// If the capacity overflows, or the allocator reports a failure, then an error
|
| 898 | /// is returned.
|
| 899 | ///
|
| 900 | /// # Examples
|
| 901 | ///
|
| 902 | /// ```
|
| 903 | /// use allocator_api2::collections::TryReserveError;
|
| 904 | ///
|
| 905 | /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
|
| 906 | /// let mut output = Vec::new();
|
| 907 | ///
|
| 908 | /// // Pre-reserve the memory, exiting if we can't
|
| 909 | /// output.try_reserve(data.len())?;
|
| 910 | ///
|
| 911 | /// // Now we know this can't OOM in the middle of our complex work
|
| 912 | /// output.extend(data.iter().map(|&val| {
|
| 913 | /// val * 2 + 5 // very complicated
|
| 914 | /// }));
|
| 915 | ///
|
| 916 | /// Ok(output)
|
| 917 | /// }
|
| 918 | /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?" );
|
| 919 | /// ```
|
| 920 | #[inline (always)]
|
| 921 | pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
|
| 922 | self.buf.try_reserve(self.len, additional)
|
| 923 | }
|
| 924 |
|
| 925 | /// Tries to reserve the minimum capacity for at least `additional`
|
| 926 | /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
|
| 927 | /// this will not deliberately over-allocate to speculatively avoid frequent
|
| 928 | /// allocations. After calling `try_reserve_exact`, capacity will be greater
|
| 929 | /// than or equal to `self.len() + additional` if it returns `Ok(())`.
|
| 930 | /// Does nothing if the capacity is already sufficient.
|
| 931 | ///
|
| 932 | /// Note that the allocator may give the collection more space than it
|
| 933 | /// requests. Therefore, capacity can not be relied upon to be precisely
|
| 934 | /// minimal. Prefer [`try_reserve`] if future insertions are expected.
|
| 935 | ///
|
| 936 | /// [`try_reserve`]: Vec::try_reserve
|
| 937 | ///
|
| 938 | /// # Errors
|
| 939 | ///
|
| 940 | /// If the capacity overflows, or the allocator reports a failure, then an error
|
| 941 | /// is returned.
|
| 942 | ///
|
| 943 | /// # Examples
|
| 944 | ///
|
| 945 | /// ```
|
| 946 | /// use allocator_api2::collections::TryReserveError;
|
| 947 | ///
|
| 948 | /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
|
| 949 | /// let mut output = Vec::new();
|
| 950 | ///
|
| 951 | /// // Pre-reserve the memory, exiting if we can't
|
| 952 | /// output.try_reserve_exact(data.len())?;
|
| 953 | ///
|
| 954 | /// // Now we know this can't OOM in the middle of our complex work
|
| 955 | /// output.extend(data.iter().map(|&val| {
|
| 956 | /// val * 2 + 5 // very complicated
|
| 957 | /// }));
|
| 958 | ///
|
| 959 | /// Ok(output)
|
| 960 | /// }
|
| 961 | /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?" );
|
| 962 | /// ```
|
| 963 | #[inline (always)]
|
| 964 | pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
|
| 965 | self.buf.try_reserve_exact(self.len, additional)
|
| 966 | }
|
| 967 |
|
| 968 | /// Shrinks the capacity of the vector as much as possible.
|
| 969 | ///
|
| 970 | /// It will drop down as close as possible to the length but the allocator
|
| 971 | /// may still inform the vector that there is space for a few more elements.
|
| 972 | ///
|
| 973 | /// # Examples
|
| 974 | ///
|
| 975 | /// ```
|
| 976 | /// let mut vec = Vec::with_capacity(10);
|
| 977 | /// vec.extend([1, 2, 3]);
|
| 978 | /// assert_eq!(vec.capacity(), 10);
|
| 979 | /// vec.shrink_to_fit();
|
| 980 | /// assert!(vec.capacity() >= 3);
|
| 981 | /// ```
|
| 982 | #[cfg (not(no_global_oom_handling))]
|
| 983 | #[inline (always)]
|
| 984 | pub fn shrink_to_fit(&mut self) {
|
| 985 | // The capacity is never less than the length, and there's nothing to do when
|
| 986 | // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
|
| 987 | // by only calling it with a greater capacity.
|
| 988 | if self.capacity() > self.len {
|
| 989 | self.buf.shrink_to_fit(self.len);
|
| 990 | }
|
| 991 | }
|
| 992 |
|
| 993 | /// Shrinks the capacity of the vector with a lower bound.
|
| 994 | ///
|
| 995 | /// The capacity will remain at least as large as both the length
|
| 996 | /// and the supplied value.
|
| 997 | ///
|
| 998 | /// If the current capacity is less than the lower limit, this is a no-op.
|
| 999 | ///
|
| 1000 | /// # Examples
|
| 1001 | ///
|
| 1002 | /// ```
|
| 1003 | /// let mut vec = Vec::with_capacity(10);
|
| 1004 | /// vec.extend([1, 2, 3]);
|
| 1005 | /// assert_eq!(vec.capacity(), 10);
|
| 1006 | /// vec.shrink_to(4);
|
| 1007 | /// assert!(vec.capacity() >= 4);
|
| 1008 | /// vec.shrink_to(0);
|
| 1009 | /// assert!(vec.capacity() >= 3);
|
| 1010 | /// ```
|
| 1011 | #[cfg (not(no_global_oom_handling))]
|
| 1012 | #[inline (always)]
|
| 1013 | pub fn shrink_to(&mut self, min_capacity: usize) {
|
| 1014 | if self.capacity() > min_capacity {
|
| 1015 | self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
|
| 1016 | }
|
| 1017 | }
|
| 1018 |
|
| 1019 | /// Converts the vector into [`Box<[T]>`][owned slice].
|
| 1020 | ///
|
| 1021 | /// If the vector has excess capacity, its items will be moved into a
|
| 1022 | /// newly-allocated buffer with exactly the right capacity.
|
| 1023 | ///
|
| 1024 | /// [owned slice]: Box
|
| 1025 | ///
|
| 1026 | /// # Examples
|
| 1027 | ///
|
| 1028 | /// ```
|
| 1029 | /// let v = vec![1, 2, 3];
|
| 1030 | ///
|
| 1031 | /// let slice = v.into_boxed_slice();
|
| 1032 | /// ```
|
| 1033 | ///
|
| 1034 | /// Any excess capacity is removed:
|
| 1035 | ///
|
| 1036 | /// ```
|
| 1037 | /// let mut vec = Vec::with_capacity(10);
|
| 1038 | /// vec.extend([1, 2, 3]);
|
| 1039 | ///
|
| 1040 | /// assert_eq!(vec.capacity(), 10);
|
| 1041 | /// let slice = vec.into_boxed_slice();
|
| 1042 | /// assert_eq!(slice.into_vec().capacity(), 3);
|
| 1043 | /// ```
|
| 1044 | #[cfg (not(no_global_oom_handling))]
|
| 1045 | #[inline (always)]
|
| 1046 | pub fn into_boxed_slice(mut self) -> Box<[T], A> {
|
| 1047 | unsafe {
|
| 1048 | self.shrink_to_fit();
|
| 1049 | let me = ManuallyDrop::new(self);
|
| 1050 | let buf = ptr::read(&me.buf);
|
| 1051 | let len = me.len();
|
| 1052 | Box::<[mem::MaybeUninit<T>], A>::assume_init(buf.into_box(len))
|
| 1053 | }
|
| 1054 | }
|
| 1055 |
|
| 1056 | /// Shortens the vector, keeping the first `len` elements and dropping
|
| 1057 | /// the rest.
|
| 1058 | ///
|
| 1059 | /// If `len` is greater than the vector's current length, this has no
|
| 1060 | /// effect.
|
| 1061 | ///
|
| 1062 | /// The [`drain`] method can emulate `truncate`, but causes the excess
|
| 1063 | /// elements to be returned instead of dropped.
|
| 1064 | ///
|
| 1065 | /// Note that this method has no effect on the allocated capacity
|
| 1066 | /// of the vector.
|
| 1067 | ///
|
| 1068 | /// # Examples
|
| 1069 | ///
|
| 1070 | /// Truncating a five element vector to two elements:
|
| 1071 | ///
|
| 1072 | /// ```
|
| 1073 | /// let mut vec = vec![1, 2, 3, 4, 5];
|
| 1074 | /// vec.truncate(2);
|
| 1075 | /// assert_eq!(vec, [1, 2]);
|
| 1076 | /// ```
|
| 1077 | ///
|
| 1078 | /// No truncation occurs when `len` is greater than the vector's current
|
| 1079 | /// length:
|
| 1080 | ///
|
| 1081 | /// ```
|
| 1082 | /// let mut vec = vec![1, 2, 3];
|
| 1083 | /// vec.truncate(8);
|
| 1084 | /// assert_eq!(vec, [1, 2, 3]);
|
| 1085 | /// ```
|
| 1086 | ///
|
| 1087 | /// Truncating when `len == 0` is equivalent to calling the [`clear`]
|
| 1088 | /// method.
|
| 1089 | ///
|
| 1090 | /// ```
|
| 1091 | /// let mut vec = vec![1, 2, 3];
|
| 1092 | /// vec.truncate(0);
|
| 1093 | /// assert_eq!(vec, []);
|
| 1094 | /// ```
|
| 1095 | ///
|
| 1096 | /// [`clear`]: Vec::clear
|
| 1097 | /// [`drain`]: Vec::drain
|
| 1098 | #[inline (always)]
|
| 1099 | pub fn truncate(&mut self, len: usize) {
|
| 1100 | // This is safe because:
|
| 1101 | //
|
| 1102 | // * the slice passed to `drop_in_place` is valid; the `len > self.len`
|
| 1103 | // case avoids creating an invalid slice, and
|
| 1104 | // * the `len` of the vector is shrunk before calling `drop_in_place`,
|
| 1105 | // such that no value will be dropped twice in case `drop_in_place`
|
| 1106 | // were to panic once (if it panics twice, the program aborts).
|
| 1107 | unsafe {
|
| 1108 | // Note: It's intentional that this is `>` and not `>=`.
|
| 1109 | // Changing it to `>=` has negative performance
|
| 1110 | // implications in some cases. See #78884 for more.
|
| 1111 | if len > self.len {
|
| 1112 | return;
|
| 1113 | }
|
| 1114 | let remaining_len = self.len - len;
|
| 1115 | let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
|
| 1116 | self.len = len;
|
| 1117 | ptr::drop_in_place(s);
|
| 1118 | }
|
| 1119 | }
|
| 1120 |
|
| 1121 | /// Extracts a slice containing the entire vector.
|
| 1122 | ///
|
| 1123 | /// Equivalent to `&s[..]`.
|
| 1124 | ///
|
| 1125 | /// # Examples
|
| 1126 | ///
|
| 1127 | /// ```
|
| 1128 | /// use std::io::{self, Write};
|
| 1129 | /// let buffer = vec![1, 2, 3, 5, 8];
|
| 1130 | /// io::sink().write(buffer.as_slice()).unwrap();
|
| 1131 | /// ```
|
| 1132 | #[inline (always)]
|
| 1133 | pub fn as_slice(&self) -> &[T] {
|
| 1134 | self
|
| 1135 | }
|
| 1136 |
|
| 1137 | /// Extracts a mutable slice of the entire vector.
|
| 1138 | ///
|
| 1139 | /// Equivalent to `&mut s[..]`.
|
| 1140 | ///
|
| 1141 | /// # Examples
|
| 1142 | ///
|
| 1143 | /// ```
|
| 1144 | /// use std::io::{self, Read};
|
| 1145 | /// let mut buffer = vec![0; 3];
|
| 1146 | /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
|
| 1147 | /// ```
|
| 1148 | #[inline (always)]
|
| 1149 | pub fn as_mut_slice(&mut self) -> &mut [T] {
|
| 1150 | self
|
| 1151 | }
|
| 1152 |
|
| 1153 | /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
|
| 1154 | /// valid for zero sized reads if the vector didn't allocate.
|
| 1155 | ///
|
| 1156 | /// The caller must ensure that the vector outlives the pointer this
|
| 1157 | /// function returns, or else it will end up pointing to garbage.
|
| 1158 | /// Modifying the vector may cause its buffer to be reallocated,
|
| 1159 | /// which would also make any pointers to it invalid.
|
| 1160 | ///
|
| 1161 | /// The caller must also ensure that the memory the pointer (non-transitively) points to
|
| 1162 | /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
|
| 1163 | /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
|
| 1164 | ///
|
| 1165 | /// # Examples
|
| 1166 | ///
|
| 1167 | /// ```
|
| 1168 | /// let x = vec![1, 2, 4];
|
| 1169 | /// let x_ptr = x.as_ptr();
|
| 1170 | ///
|
| 1171 | /// unsafe {
|
| 1172 | /// for i in 0..x.len() {
|
| 1173 | /// assert_eq!(*x_ptr.add(i), 1 << i);
|
| 1174 | /// }
|
| 1175 | /// }
|
| 1176 | /// ```
|
| 1177 | ///
|
| 1178 | /// [`as_mut_ptr`]: Vec::as_mut_ptr
|
| 1179 | #[inline (always)]
|
| 1180 | pub fn as_ptr(&self) -> *const T {
|
| 1181 | // We shadow the slice method of the same name to avoid going through
|
| 1182 | // `deref`, which creates an intermediate reference.
|
| 1183 | let ptr = self.buf.ptr();
|
| 1184 | unsafe {
|
| 1185 | assume(!ptr.is_null());
|
| 1186 | }
|
| 1187 | ptr
|
| 1188 | }
|
| 1189 |
|
| 1190 | /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
|
| 1191 | /// raw pointer valid for zero sized reads if the vector didn't allocate.
|
| 1192 | ///
|
| 1193 | /// The caller must ensure that the vector outlives the pointer this
|
| 1194 | /// function returns, or else it will end up pointing to garbage.
|
| 1195 | /// Modifying the vector may cause its buffer to be reallocated,
|
| 1196 | /// which would also make any pointers to it invalid.
|
| 1197 | ///
|
| 1198 | /// # Examples
|
| 1199 | ///
|
| 1200 | /// ```
|
| 1201 | /// // Allocate vector big enough for 4 elements.
|
| 1202 | /// let size = 4;
|
| 1203 | /// let mut x: Vec<i32> = Vec::with_capacity(size);
|
| 1204 | /// let x_ptr = x.as_mut_ptr();
|
| 1205 | ///
|
| 1206 | /// // Initialize elements via raw pointer writes, then set length.
|
| 1207 | /// unsafe {
|
| 1208 | /// for i in 0..size {
|
| 1209 | /// *x_ptr.add(i) = i as i32;
|
| 1210 | /// }
|
| 1211 | /// x.set_len(size);
|
| 1212 | /// }
|
| 1213 | /// assert_eq!(&*x, &[0, 1, 2, 3]);
|
| 1214 | /// ```
|
| 1215 | #[inline (always)]
|
| 1216 | pub fn as_mut_ptr(&mut self) -> *mut T {
|
| 1217 | // We shadow the slice method of the same name to avoid going through
|
| 1218 | // `deref_mut`, which creates an intermediate reference.
|
| 1219 | let ptr = self.buf.ptr();
|
| 1220 | unsafe {
|
| 1221 | assume(!ptr.is_null());
|
| 1222 | }
|
| 1223 | ptr
|
| 1224 | }
|
| 1225 |
|
| 1226 | /// Returns a reference to the underlying allocator.
|
| 1227 | #[inline (always)]
|
| 1228 | pub fn allocator(&self) -> &A {
|
| 1229 | self.buf.allocator()
|
| 1230 | }
|
| 1231 |
|
| 1232 | /// Forces the length of the vector to `new_len`.
|
| 1233 | ///
|
| 1234 | /// This is a low-level operation that maintains none of the normal
|
| 1235 | /// invariants of the type. Normally changing the length of a vector
|
| 1236 | /// is done using one of the safe operations instead, such as
|
| 1237 | /// [`truncate`], [`resize`], [`extend`], or [`clear`].
|
| 1238 | ///
|
| 1239 | /// [`truncate`]: Vec::truncate
|
| 1240 | /// [`resize`]: Vec::resize
|
| 1241 | /// [`extend`]: Extend::extend
|
| 1242 | /// [`clear`]: Vec::clear
|
| 1243 | ///
|
| 1244 | /// # Safety
|
| 1245 | ///
|
| 1246 | /// - `new_len` must be less than or equal to [`capacity()`].
|
| 1247 | /// - The elements at `old_len..new_len` must be initialized.
|
| 1248 | ///
|
| 1249 | /// [`capacity()`]: Vec::capacity
|
| 1250 | ///
|
| 1251 | /// # Examples
|
| 1252 | ///
|
| 1253 | /// This method can be useful for situations in which the vector
|
| 1254 | /// is serving as a buffer for other code, particularly over FFI:
|
| 1255 | ///
|
| 1256 | /// ```no_run
|
| 1257 | /// # #![allow (dead_code)]
|
| 1258 | /// # // This is just a minimal skeleton for the doc example;
|
| 1259 | /// # // don't use this as a starting point for a real library.
|
| 1260 | /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
|
| 1261 | /// # const Z_OK: i32 = 0;
|
| 1262 | /// # extern "C" {
|
| 1263 | /// # fn deflateGetDictionary(
|
| 1264 | /// # strm: *mut std::ffi::c_void,
|
| 1265 | /// # dictionary: *mut u8,
|
| 1266 | /// # dictLength: *mut usize,
|
| 1267 | /// # ) -> i32;
|
| 1268 | /// # }
|
| 1269 | /// # impl StreamWrapper {
|
| 1270 | /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
|
| 1271 | /// // Per the FFI method's docs, "32768 bytes is always enough".
|
| 1272 | /// let mut dict = Vec::with_capacity(32_768);
|
| 1273 | /// let mut dict_length = 0;
|
| 1274 | /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
|
| 1275 | /// // 1. `dict_length` elements were initialized.
|
| 1276 | /// // 2. `dict_length` <= the capacity (32_768)
|
| 1277 | /// // which makes `set_len` safe to call.
|
| 1278 | /// unsafe {
|
| 1279 | /// // Make the FFI call...
|
| 1280 | /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
|
| 1281 | /// if r == Z_OK {
|
| 1282 | /// // ...and update the length to what was initialized.
|
| 1283 | /// dict.set_len(dict_length);
|
| 1284 | /// Some(dict)
|
| 1285 | /// } else {
|
| 1286 | /// None
|
| 1287 | /// }
|
| 1288 | /// }
|
| 1289 | /// }
|
| 1290 | /// # }
|
| 1291 | /// ```
|
| 1292 | ///
|
| 1293 | /// While the following example is sound, there is a memory leak since
|
| 1294 | /// the inner vectors were not freed prior to the `set_len` call:
|
| 1295 | ///
|
| 1296 | /// ```
|
| 1297 | /// let mut vec = vec![vec![1, 0, 0],
|
| 1298 | /// vec![0, 1, 0],
|
| 1299 | /// vec![0, 0, 1]];
|
| 1300 | /// // SAFETY:
|
| 1301 | /// // 1. `old_len..0` is empty so no elements need to be initialized.
|
| 1302 | /// // 2. `0 <= capacity` always holds whatever `capacity` is.
|
| 1303 | /// unsafe {
|
| 1304 | /// vec.set_len(0);
|
| 1305 | /// }
|
| 1306 | /// ```
|
| 1307 | ///
|
| 1308 | /// Normally, here, one would use [`clear`] instead to correctly drop
|
| 1309 | /// the contents and thus not leak memory.
|
| 1310 | #[inline (always)]
|
| 1311 | pub unsafe fn set_len(&mut self, new_len: usize) {
|
| 1312 | debug_assert!(new_len <= self.capacity());
|
| 1313 |
|
| 1314 | self.len = new_len;
|
| 1315 | }
|
| 1316 |
|
| 1317 | /// Removes an element from the vector and returns it.
|
| 1318 | ///
|
| 1319 | /// The removed element is replaced by the last element of the vector.
|
| 1320 | ///
|
| 1321 | /// This does not preserve ordering, but is *O*(1).
|
| 1322 | /// If you need to preserve the element order, use [`remove`] instead.
|
| 1323 | ///
|
| 1324 | /// [`remove`]: Vec::remove
|
| 1325 | ///
|
| 1326 | /// # Panics
|
| 1327 | ///
|
| 1328 | /// Panics if `index` is out of bounds.
|
| 1329 | ///
|
| 1330 | /// # Examples
|
| 1331 | ///
|
| 1332 | /// ```
|
| 1333 | /// let mut v = vec!["foo" , "bar" , "baz" , "qux" ];
|
| 1334 | ///
|
| 1335 | /// assert_eq!(v.swap_remove(1), "bar" );
|
| 1336 | /// assert_eq!(v, ["foo" , "qux" , "baz" ]);
|
| 1337 | ///
|
| 1338 | /// assert_eq!(v.swap_remove(0), "foo" );
|
| 1339 | /// assert_eq!(v, ["baz" , "qux" ]);
|
| 1340 | /// ```
|
| 1341 | #[inline (always)]
|
| 1342 | pub fn swap_remove(&mut self, index: usize) -> T {
|
| 1343 | #[cold ]
|
| 1344 | #[inline (never)]
|
| 1345 | fn assert_failed(index: usize, len: usize) -> ! {
|
| 1346 | panic!(
|
| 1347 | "swap_remove index (is {}) should be < len (is {})" ,
|
| 1348 | index, len
|
| 1349 | );
|
| 1350 | }
|
| 1351 |
|
| 1352 | let len = self.len();
|
| 1353 | if index >= len {
|
| 1354 | assert_failed(index, len);
|
| 1355 | }
|
| 1356 | unsafe {
|
| 1357 | // We replace self[index] with the last element. Note that if the
|
| 1358 | // bounds check above succeeds there must be a last element (which
|
| 1359 | // can be self[index] itself).
|
| 1360 | let value = ptr::read(self.as_ptr().add(index));
|
| 1361 | let base_ptr = self.as_mut_ptr();
|
| 1362 | ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
|
| 1363 | self.set_len(len - 1);
|
| 1364 | value
|
| 1365 | }
|
| 1366 | }
|
| 1367 |
|
| 1368 | /// Inserts an element at position `index` within the vector, shifting all
|
| 1369 | /// elements after it to the right.
|
| 1370 | ///
|
| 1371 | /// # Panics
|
| 1372 | ///
|
| 1373 | /// Panics if `index > len`.
|
| 1374 | ///
|
| 1375 | /// # Examples
|
| 1376 | ///
|
| 1377 | /// ```
|
| 1378 | /// let mut vec = vec![1, 2, 3];
|
| 1379 | /// vec.insert(1, 4);
|
| 1380 | /// assert_eq!(vec, [1, 4, 2, 3]);
|
| 1381 | /// vec.insert(4, 5);
|
| 1382 | /// assert_eq!(vec, [1, 4, 2, 3, 5]);
|
| 1383 | /// ```
|
| 1384 | #[cfg (not(no_global_oom_handling))]
|
| 1385 | pub fn insert(&mut self, index: usize, element: T) {
|
| 1386 | #[cold ]
|
| 1387 | #[inline (never)]
|
| 1388 | fn assert_failed(index: usize, len: usize) -> ! {
|
| 1389 | panic!(
|
| 1390 | "insertion index (is {}) should be <= len (is {})" ,
|
| 1391 | index, len
|
| 1392 | );
|
| 1393 | }
|
| 1394 |
|
| 1395 | let len = self.len();
|
| 1396 |
|
| 1397 | // space for the new element
|
| 1398 | if len == self.buf.capacity() {
|
| 1399 | self.reserve(1);
|
| 1400 | }
|
| 1401 |
|
| 1402 | unsafe {
|
| 1403 | // infallible
|
| 1404 | // The spot to put the new value
|
| 1405 | {
|
| 1406 | let p = self.as_mut_ptr().add(index);
|
| 1407 | match cmp::Ord::cmp(&index, &len) {
|
| 1408 | Ordering::Less => {
|
| 1409 | // Shift everything over to make space. (Duplicating the
|
| 1410 | // `index`th element into two consecutive places.)
|
| 1411 | ptr::copy(p, p.add(1), len - index);
|
| 1412 | }
|
| 1413 | Ordering::Equal => {
|
| 1414 | // No elements need shifting.
|
| 1415 | }
|
| 1416 | Ordering::Greater => {
|
| 1417 | assert_failed(index, len);
|
| 1418 | }
|
| 1419 | }
|
| 1420 | // Write it in, overwriting the first copy of the `index`th
|
| 1421 | // element.
|
| 1422 | ptr::write(p, element);
|
| 1423 | }
|
| 1424 | self.set_len(len + 1);
|
| 1425 | }
|
| 1426 | }
|
| 1427 |
|
| 1428 | /// Removes and returns the element at position `index` within the vector,
|
| 1429 | /// shifting all elements after it to the left.
|
| 1430 | ///
|
| 1431 | /// Note: Because this shifts over the remaining elements, it has a
|
| 1432 | /// worst-case performance of *O*(*n*). If you don't need the order of elements
|
| 1433 | /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
|
| 1434 | /// elements from the beginning of the `Vec`, consider using
|
| 1435 | /// [`VecDeque::pop_front`] instead.
|
| 1436 | ///
|
| 1437 | /// [`swap_remove`]: Vec::swap_remove
|
| 1438 | /// [`VecDeque::pop_front`]: alloc_crate::collections::VecDeque::pop_front
|
| 1439 | ///
|
| 1440 | /// # Panics
|
| 1441 | ///
|
| 1442 | /// Panics if `index` is out of bounds.
|
| 1443 | ///
|
| 1444 | /// # Examples
|
| 1445 | ///
|
| 1446 | /// ```
|
| 1447 | /// let mut v = vec![1, 2, 3];
|
| 1448 | /// assert_eq!(v.remove(1), 2);
|
| 1449 | /// assert_eq!(v, [1, 3]);
|
| 1450 | /// ```
|
| 1451 | #[track_caller ]
|
| 1452 | #[inline (always)]
|
| 1453 | pub fn remove(&mut self, index: usize) -> T {
|
| 1454 | #[cold ]
|
| 1455 | #[inline (never)]
|
| 1456 | #[track_caller ]
|
| 1457 | fn assert_failed(index: usize, len: usize) -> ! {
|
| 1458 | panic!("removal index (is {}) should be < len (is {})" , index, len);
|
| 1459 | }
|
| 1460 |
|
| 1461 | let len = self.len();
|
| 1462 | if index >= len {
|
| 1463 | assert_failed(index, len);
|
| 1464 | }
|
| 1465 | unsafe {
|
| 1466 | // infallible
|
| 1467 | let ret;
|
| 1468 | {
|
| 1469 | // the place we are taking from.
|
| 1470 | let ptr = self.as_mut_ptr().add(index);
|
| 1471 | // copy it out, unsafely having a copy of the value on
|
| 1472 | // the stack and in the vector at the same time.
|
| 1473 | ret = ptr::read(ptr);
|
| 1474 |
|
| 1475 | // Shift everything down to fill in that spot.
|
| 1476 | ptr::copy(ptr.add(1), ptr, len - index - 1);
|
| 1477 | }
|
| 1478 | self.set_len(len - 1);
|
| 1479 | ret
|
| 1480 | }
|
| 1481 | }
|
| 1482 |
|
| 1483 | /// Retains only the elements specified by the predicate.
|
| 1484 | ///
|
| 1485 | /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
|
| 1486 | /// This method operates in place, visiting each element exactly once in the
|
| 1487 | /// original order, and preserves the order of the retained elements.
|
| 1488 | ///
|
| 1489 | /// # Examples
|
| 1490 | ///
|
| 1491 | /// ```
|
| 1492 | /// let mut vec = vec![1, 2, 3, 4];
|
| 1493 | /// vec.retain(|&x| x % 2 == 0);
|
| 1494 | /// assert_eq!(vec, [2, 4]);
|
| 1495 | /// ```
|
| 1496 | ///
|
| 1497 | /// Because the elements are visited exactly once in the original order,
|
| 1498 | /// external state may be used to decide which elements to keep.
|
| 1499 | ///
|
| 1500 | /// ```
|
| 1501 | /// let mut vec = vec![1, 2, 3, 4, 5];
|
| 1502 | /// let keep = [false, true, true, false, true];
|
| 1503 | /// let mut iter = keep.iter();
|
| 1504 | /// vec.retain(|_| *iter.next().unwrap());
|
| 1505 | /// assert_eq!(vec, [2, 3, 5]);
|
| 1506 | /// ```
|
| 1507 | #[inline (always)]
|
| 1508 | pub fn retain<F>(&mut self, mut f: F)
|
| 1509 | where
|
| 1510 | F: FnMut(&T) -> bool,
|
| 1511 | {
|
| 1512 | self.retain_mut(|elem| f(elem));
|
| 1513 | }
|
| 1514 |
|
| 1515 | /// Retains only the elements specified by the predicate, passing a mutable reference to it.
|
| 1516 | ///
|
| 1517 | /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
|
| 1518 | /// This method operates in place, visiting each element exactly once in the
|
| 1519 | /// original order, and preserves the order of the retained elements.
|
| 1520 | ///
|
| 1521 | /// # Examples
|
| 1522 | ///
|
| 1523 | /// ```
|
| 1524 | /// let mut vec = vec![1, 2, 3, 4];
|
| 1525 | /// vec.retain_mut(|x| if *x <= 3 {
|
| 1526 | /// *x += 1;
|
| 1527 | /// true
|
| 1528 | /// } else {
|
| 1529 | /// false
|
| 1530 | /// });
|
| 1531 | /// assert_eq!(vec, [2, 3, 4]);
|
| 1532 | /// ```
|
| 1533 | #[inline ]
|
| 1534 | pub fn retain_mut<F>(&mut self, mut f: F)
|
| 1535 | where
|
| 1536 | F: FnMut(&mut T) -> bool,
|
| 1537 | {
|
| 1538 | let original_len = self.len();
|
| 1539 | // Avoid double drop if the drop guard is not executed,
|
| 1540 | // since we may make some holes during the process.
|
| 1541 | unsafe { self.set_len(0) };
|
| 1542 |
|
| 1543 | // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
|
| 1544 | // |<- processed len ->| ^- next to check
|
| 1545 | // |<- deleted cnt ->|
|
| 1546 | // |<- original_len ->|
|
| 1547 | // Kept: Elements which predicate returns true on.
|
| 1548 | // Hole: Moved or dropped element slot.
|
| 1549 | // Unchecked: Unchecked valid elements.
|
| 1550 | //
|
| 1551 | // This drop guard will be invoked when predicate or `drop` of element panicked.
|
| 1552 | // It shifts unchecked elements to cover holes and `set_len` to the correct length.
|
| 1553 | // In cases when predicate and `drop` never panick, it will be optimized out.
|
| 1554 | struct BackshiftOnDrop<'a, T, A: Allocator> {
|
| 1555 | v: &'a mut Vec<T, A>,
|
| 1556 | processed_len: usize,
|
| 1557 | deleted_cnt: usize,
|
| 1558 | original_len: usize,
|
| 1559 | }
|
| 1560 |
|
| 1561 | impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
|
| 1562 | fn drop(&mut self) {
|
| 1563 | if self.deleted_cnt > 0 {
|
| 1564 | // SAFETY: Trailing unchecked items must be valid since we never touch them.
|
| 1565 | unsafe {
|
| 1566 | ptr::copy(
|
| 1567 | self.v.as_ptr().add(self.processed_len),
|
| 1568 | self.v
|
| 1569 | .as_mut_ptr()
|
| 1570 | .add(self.processed_len - self.deleted_cnt),
|
| 1571 | self.original_len - self.processed_len,
|
| 1572 | );
|
| 1573 | }
|
| 1574 | }
|
| 1575 | // SAFETY: After filling holes, all items are in contiguous memory.
|
| 1576 | unsafe {
|
| 1577 | self.v.set_len(self.original_len - self.deleted_cnt);
|
| 1578 | }
|
| 1579 | }
|
| 1580 | }
|
| 1581 |
|
| 1582 | let mut g = BackshiftOnDrop {
|
| 1583 | v: self,
|
| 1584 | processed_len: 0,
|
| 1585 | deleted_cnt: 0,
|
| 1586 | original_len,
|
| 1587 | };
|
| 1588 |
|
| 1589 | fn process_loop<F, T, A: Allocator, const DELETED: bool>(
|
| 1590 | original_len: usize,
|
| 1591 | f: &mut F,
|
| 1592 | g: &mut BackshiftOnDrop<'_, T, A>,
|
| 1593 | ) where
|
| 1594 | F: FnMut(&mut T) -> bool,
|
| 1595 | {
|
| 1596 | while g.processed_len != original_len {
|
| 1597 | // SAFETY: Unchecked element must be valid.
|
| 1598 | let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
|
| 1599 | if !f(cur) {
|
| 1600 | // Advance early to avoid double drop if `drop_in_place` panicked.
|
| 1601 | g.processed_len += 1;
|
| 1602 | g.deleted_cnt += 1;
|
| 1603 | // SAFETY: We never touch this element again after dropped.
|
| 1604 | unsafe { ptr::drop_in_place(cur) };
|
| 1605 | // We already advanced the counter.
|
| 1606 | if DELETED {
|
| 1607 | continue;
|
| 1608 | } else {
|
| 1609 | break;
|
| 1610 | }
|
| 1611 | }
|
| 1612 | if DELETED {
|
| 1613 | // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
|
| 1614 | // We use copy for move, and never touch this element again.
|
| 1615 | unsafe {
|
| 1616 | let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
|
| 1617 | ptr::copy_nonoverlapping(cur, hole_slot, 1);
|
| 1618 | }
|
| 1619 | }
|
| 1620 | g.processed_len += 1;
|
| 1621 | }
|
| 1622 | }
|
| 1623 |
|
| 1624 | // Stage 1: Nothing was deleted.
|
| 1625 | process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
|
| 1626 |
|
| 1627 | // Stage 2: Some elements were deleted.
|
| 1628 | process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
|
| 1629 |
|
| 1630 | // All item are processed. This can be optimized to `set_len` by LLVM.
|
| 1631 | drop(g);
|
| 1632 | }
|
| 1633 |
|
| 1634 | /// Removes all but the first of consecutive elements in the vector that resolve to the same
|
| 1635 | /// key.
|
| 1636 | ///
|
| 1637 | /// If the vector is sorted, this removes all duplicates.
|
| 1638 | ///
|
| 1639 | /// # Examples
|
| 1640 | ///
|
| 1641 | /// ```
|
| 1642 | /// let mut vec = vec![10, 20, 21, 30, 20];
|
| 1643 | ///
|
| 1644 | /// vec.dedup_by_key(|i| *i / 10);
|
| 1645 | ///
|
| 1646 | /// assert_eq!(vec, [10, 20, 30, 20]);
|
| 1647 | /// ```
|
| 1648 | #[inline (always)]
|
| 1649 | pub fn dedup_by_key<F, K>(&mut self, mut key: F)
|
| 1650 | where
|
| 1651 | F: FnMut(&mut T) -> K,
|
| 1652 | K: PartialEq,
|
| 1653 | {
|
| 1654 | self.dedup_by(|a, b| key(a) == key(b))
|
| 1655 | }
|
| 1656 |
|
| 1657 | /// Removes all but the first of consecutive elements in the vector satisfying a given equality
|
| 1658 | /// relation.
|
| 1659 | ///
|
| 1660 | /// The `same_bucket` function is passed references to two elements from the vector and
|
| 1661 | /// must determine if the elements compare equal. The elements are passed in opposite order
|
| 1662 | /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
|
| 1663 | ///
|
| 1664 | /// If the vector is sorted, this removes all duplicates.
|
| 1665 | ///
|
| 1666 | /// # Examples
|
| 1667 | ///
|
| 1668 | /// ```
|
| 1669 | /// let mut vec = vec!["foo" , "bar" , "Bar" , "baz" , "bar" ];
|
| 1670 | ///
|
| 1671 | /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
|
| 1672 | ///
|
| 1673 | /// assert_eq!(vec, ["foo" , "bar" , "baz" , "bar" ]);
|
| 1674 | /// ```
|
| 1675 | #[inline ]
|
| 1676 | pub fn dedup_by<F>(&mut self, mut same_bucket: F)
|
| 1677 | where
|
| 1678 | F: FnMut(&mut T, &mut T) -> bool,
|
| 1679 | {
|
| 1680 | let len = self.len();
|
| 1681 | if len <= 1 {
|
| 1682 | return;
|
| 1683 | }
|
| 1684 |
|
| 1685 | /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
|
| 1686 | struct FillGapOnDrop<'a, T, A: Allocator> {
|
| 1687 | /* Offset of the element we want to check if it is duplicate */
|
| 1688 | read: usize,
|
| 1689 |
|
| 1690 | /* Offset of the place where we want to place the non-duplicate
|
| 1691 | * when we find it. */
|
| 1692 | write: usize,
|
| 1693 |
|
| 1694 | /* The Vec that would need correction if `same_bucket` panicked */
|
| 1695 | vec: &'a mut Vec<T, A>,
|
| 1696 | }
|
| 1697 |
|
| 1698 | impl<'a, T, A: Allocator> Drop for FillGapOnDrop<'a, T, A> {
|
| 1699 | fn drop(&mut self) {
|
| 1700 | /* This code gets executed when `same_bucket` panics */
|
| 1701 |
|
| 1702 | /* SAFETY: invariant guarantees that `read - write`
|
| 1703 | * and `len - read` never overflow and that the copy is always
|
| 1704 | * in-bounds. */
|
| 1705 | unsafe {
|
| 1706 | let ptr = self.vec.as_mut_ptr();
|
| 1707 | let len = self.vec.len();
|
| 1708 |
|
| 1709 | /* How many items were left when `same_bucket` panicked.
|
| 1710 | * Basically vec[read..].len() */
|
| 1711 | let items_left = len.wrapping_sub(self.read);
|
| 1712 |
|
| 1713 | /* Pointer to first item in vec[write..write+items_left] slice */
|
| 1714 | let dropped_ptr = ptr.add(self.write);
|
| 1715 | /* Pointer to first item in vec[read..] slice */
|
| 1716 | let valid_ptr = ptr.add(self.read);
|
| 1717 |
|
| 1718 | /* Copy `vec[read..]` to `vec[write..write+items_left]`.
|
| 1719 | * The slices can overlap, so `copy_nonoverlapping` cannot be used */
|
| 1720 | ptr::copy(valid_ptr, dropped_ptr, items_left);
|
| 1721 |
|
| 1722 | /* How many items have been already dropped
|
| 1723 | * Basically vec[read..write].len() */
|
| 1724 | let dropped = self.read.wrapping_sub(self.write);
|
| 1725 |
|
| 1726 | self.vec.set_len(len - dropped);
|
| 1727 | }
|
| 1728 | }
|
| 1729 | }
|
| 1730 |
|
| 1731 | let mut gap = FillGapOnDrop {
|
| 1732 | read: 1,
|
| 1733 | write: 1,
|
| 1734 | vec: self,
|
| 1735 | };
|
| 1736 | let ptr = gap.vec.as_mut_ptr();
|
| 1737 |
|
| 1738 | /* Drop items while going through Vec, it should be more efficient than
|
| 1739 | * doing slice partition_dedup + truncate */
|
| 1740 |
|
| 1741 | /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
|
| 1742 | * are always in-bounds and read_ptr never aliases prev_ptr */
|
| 1743 | unsafe {
|
| 1744 | while gap.read < len {
|
| 1745 | let read_ptr = ptr.add(gap.read);
|
| 1746 | let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
|
| 1747 |
|
| 1748 | if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
|
| 1749 | // Increase `gap.read` now since the drop may panic.
|
| 1750 | gap.read += 1;
|
| 1751 | /* We have found duplicate, drop it in-place */
|
| 1752 | ptr::drop_in_place(read_ptr);
|
| 1753 | } else {
|
| 1754 | let write_ptr = ptr.add(gap.write);
|
| 1755 |
|
| 1756 | /* Because `read_ptr` can be equal to `write_ptr`, we either
|
| 1757 | * have to use `copy` or conditional `copy_nonoverlapping`.
|
| 1758 | * Looks like the first option is faster. */
|
| 1759 | ptr::copy(read_ptr, write_ptr, 1);
|
| 1760 |
|
| 1761 | /* We have filled that place, so go further */
|
| 1762 | gap.write += 1;
|
| 1763 | gap.read += 1;
|
| 1764 | }
|
| 1765 | }
|
| 1766 |
|
| 1767 | /* Technically we could let `gap` clean up with its Drop, but
|
| 1768 | * when `same_bucket` is guaranteed to not panic, this bloats a little
|
| 1769 | * the codegen, so we just do it manually */
|
| 1770 | gap.vec.set_len(gap.write);
|
| 1771 | mem::forget(gap);
|
| 1772 | }
|
| 1773 | }
|
| 1774 |
|
| 1775 | /// Appends an element to the back of a collection.
|
| 1776 | ///
|
| 1777 | /// # Panics
|
| 1778 | ///
|
| 1779 | /// Panics if the new capacity exceeds `isize::MAX` bytes.
|
| 1780 | ///
|
| 1781 | /// # Examples
|
| 1782 | ///
|
| 1783 | /// ```
|
| 1784 | /// let mut vec = vec![1, 2];
|
| 1785 | /// vec.push(3);
|
| 1786 | /// assert_eq!(vec, [1, 2, 3]);
|
| 1787 | /// ```
|
| 1788 | #[cfg (not(no_global_oom_handling))]
|
| 1789 | #[inline (always)]
|
| 1790 | pub fn push(&mut self, value: T) {
|
| 1791 | // This will panic or abort if we would allocate > isize::MAX bytes
|
| 1792 | // or if the length increment would overflow for zero-sized types.
|
| 1793 | if self.len == self.buf.capacity() {
|
| 1794 | self.buf.reserve_for_push(self.len);
|
| 1795 | }
|
| 1796 | unsafe {
|
| 1797 | let end = self.as_mut_ptr().add(self.len);
|
| 1798 | ptr::write(end, value);
|
| 1799 | self.len += 1;
|
| 1800 | }
|
| 1801 | }
|
| 1802 |
|
| 1803 | /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
|
| 1804 | /// with the element.
|
| 1805 | ///
|
| 1806 | /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
|
| 1807 | /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
|
| 1808 | ///
|
| 1809 | /// [`push`]: Vec::push
|
| 1810 | /// [`reserve`]: Vec::reserve
|
| 1811 | /// [`try_reserve`]: Vec::try_reserve
|
| 1812 | ///
|
| 1813 | /// # Examples
|
| 1814 | ///
|
| 1815 | /// A manual, panic-free alternative to [`FromIterator`]:
|
| 1816 | ///
|
| 1817 | /// ```
|
| 1818 | /// #![feature(vec_push_within_capacity)]
|
| 1819 | ///
|
| 1820 | /// use std::collections::TryReserveError;
|
| 1821 | /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
|
| 1822 | /// let mut vec = Vec::new();
|
| 1823 | /// for value in iter {
|
| 1824 | /// if let Err(value) = vec.push_within_capacity(value) {
|
| 1825 | /// vec.try_reserve(1)?;
|
| 1826 | /// // this cannot fail, the previous line either returned or added at least 1 free slot
|
| 1827 | /// let _ = vec.push_within_capacity(value);
|
| 1828 | /// }
|
| 1829 | /// }
|
| 1830 | /// Ok(vec)
|
| 1831 | /// }
|
| 1832 | /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
|
| 1833 | /// ```
|
| 1834 | #[inline (always)]
|
| 1835 | pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
|
| 1836 | if self.len == self.buf.capacity() {
|
| 1837 | return Err(value);
|
| 1838 | }
|
| 1839 | unsafe {
|
| 1840 | let end = self.as_mut_ptr().add(self.len);
|
| 1841 | ptr::write(end, value);
|
| 1842 | self.len += 1;
|
| 1843 | }
|
| 1844 | Ok(())
|
| 1845 | }
|
| 1846 |
|
| 1847 | /// Removes the last element from a vector and returns it, or [`None`] if it
|
| 1848 | /// is empty.
|
| 1849 | ///
|
| 1850 | /// If you'd like to pop the first element, consider using
|
| 1851 | /// [`VecDeque::pop_front`] instead.
|
| 1852 | ///
|
| 1853 | /// [`VecDeque::pop_front`]: alloc_crate::collections::VecDeque::pop_front
|
| 1854 | ///
|
| 1855 | /// # Examples
|
| 1856 | ///
|
| 1857 | /// ```
|
| 1858 | /// let mut vec = vec![1, 2, 3];
|
| 1859 | /// assert_eq!(vec.pop(), Some(3));
|
| 1860 | /// assert_eq!(vec, [1, 2]);
|
| 1861 | /// ```
|
| 1862 | #[inline (always)]
|
| 1863 | pub fn pop(&mut self) -> Option<T> {
|
| 1864 | if self.len == 0 {
|
| 1865 | None
|
| 1866 | } else {
|
| 1867 | unsafe {
|
| 1868 | self.len -= 1;
|
| 1869 | Some(ptr::read(self.as_ptr().add(self.len())))
|
| 1870 | }
|
| 1871 | }
|
| 1872 | }
|
| 1873 |
|
| 1874 | /// Moves all the elements of `other` into `self`, leaving `other` empty.
|
| 1875 | ///
|
| 1876 | /// # Panics
|
| 1877 | ///
|
| 1878 | /// Panics if the new capacity exceeds `isize::MAX` bytes.
|
| 1879 | ///
|
| 1880 | /// # Examples
|
| 1881 | ///
|
| 1882 | /// ```
|
| 1883 | /// let mut vec = vec![1, 2, 3];
|
| 1884 | /// let mut vec2 = vec![4, 5, 6];
|
| 1885 | /// vec.append(&mut vec2);
|
| 1886 | /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
|
| 1887 | /// assert_eq!(vec2, []);
|
| 1888 | /// ```
|
| 1889 | #[cfg (not(no_global_oom_handling))]
|
| 1890 | #[inline (always)]
|
| 1891 | pub fn append(&mut self, other: &mut Self) {
|
| 1892 | unsafe {
|
| 1893 | self.append_elements(other.as_slice() as _);
|
| 1894 | other.set_len(0);
|
| 1895 | }
|
| 1896 | }
|
| 1897 |
|
| 1898 | /// Appends elements to `self` from other buffer.
|
| 1899 | #[cfg (not(no_global_oom_handling))]
|
| 1900 | #[inline (always)]
|
| 1901 | unsafe fn append_elements(&mut self, other: *const [T]) {
|
| 1902 | let count = unsafe { (*other).len() };
|
| 1903 | self.reserve(count);
|
| 1904 | let len = self.len();
|
| 1905 | unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
|
| 1906 | self.len += count;
|
| 1907 | }
|
| 1908 |
|
| 1909 | /// Removes the specified range from the vector in bulk, returning all
|
| 1910 | /// removed elements as an iterator. If the iterator is dropped before
|
| 1911 | /// being fully consumed, it drops the remaining removed elements.
|
| 1912 | ///
|
| 1913 | /// The returned iterator keeps a mutable borrow on the vector to optimize
|
| 1914 | /// its implementation.
|
| 1915 | ///
|
| 1916 | /// # Panics
|
| 1917 | ///
|
| 1918 | /// Panics if the starting point is greater than the end point or if
|
| 1919 | /// the end point is greater than the length of the vector.
|
| 1920 | ///
|
| 1921 | /// # Leaking
|
| 1922 | ///
|
| 1923 | /// If the returned iterator goes out of scope without being dropped (due to
|
| 1924 | /// [`mem::forget`], for example), the vector may have lost and leaked
|
| 1925 | /// elements arbitrarily, including elements outside the range.
|
| 1926 | ///
|
| 1927 | /// # Examples
|
| 1928 | ///
|
| 1929 | /// ```
|
| 1930 | /// let mut v = vec![1, 2, 3];
|
| 1931 | /// let u: Vec<_> = v.drain(1..).collect();
|
| 1932 | /// assert_eq!(v, &[1]);
|
| 1933 | /// assert_eq!(u, &[2, 3]);
|
| 1934 | ///
|
| 1935 | /// // A full range clears the vector, like `clear()` does
|
| 1936 | /// v.drain(..);
|
| 1937 | /// assert_eq!(v, &[]);
|
| 1938 | /// ```
|
| 1939 | #[inline (always)]
|
| 1940 | pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
|
| 1941 | where
|
| 1942 | R: RangeBounds<usize>,
|
| 1943 | {
|
| 1944 | // Memory safety
|
| 1945 | //
|
| 1946 | // When the Drain is first created, it shortens the length of
|
| 1947 | // the source vector to make sure no uninitialized or moved-from elements
|
| 1948 | // are accessible at all if the Drain's destructor never gets to run.
|
| 1949 | //
|
| 1950 | // Drain will ptr::read out the values to remove.
|
| 1951 | // When finished, remaining tail of the vec is copied back to cover
|
| 1952 | // the hole, and the vector length is restored to the new length.
|
| 1953 | //
|
| 1954 | let len = self.len();
|
| 1955 |
|
| 1956 | // Replaced by code below
|
| 1957 | // let Range { start, end } = slice::range(range, ..len);
|
| 1958 |
|
| 1959 | // Panics if range is out of bounds
|
| 1960 | let _ = &self.as_slice()[(range.start_bound().cloned(), range.end_bound().cloned())];
|
| 1961 |
|
| 1962 | let start = match range.start_bound() {
|
| 1963 | Bound::Included(&n) => n,
|
| 1964 | Bound::Excluded(&n) => n + 1,
|
| 1965 | Bound::Unbounded => 0,
|
| 1966 | };
|
| 1967 | let end = match range.end_bound() {
|
| 1968 | Bound::Included(&n) => n + 1,
|
| 1969 | Bound::Excluded(&n) => n,
|
| 1970 | Bound::Unbounded => len,
|
| 1971 | };
|
| 1972 |
|
| 1973 | unsafe {
|
| 1974 | // set self.vec length's to start, to be safe in case Drain is leaked
|
| 1975 | self.set_len(start);
|
| 1976 | let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
|
| 1977 | Drain {
|
| 1978 | tail_start: end,
|
| 1979 | tail_len: len - end,
|
| 1980 | iter: range_slice.iter(),
|
| 1981 | vec: NonNull::from(self),
|
| 1982 | }
|
| 1983 | }
|
| 1984 | }
|
| 1985 |
|
| 1986 | /// Clears the vector, removing all values.
|
| 1987 | ///
|
| 1988 | /// Note that this method has no effect on the allocated capacity
|
| 1989 | /// of the vector.
|
| 1990 | ///
|
| 1991 | /// # Examples
|
| 1992 | ///
|
| 1993 | /// ```
|
| 1994 | /// let mut v = vec![1, 2, 3];
|
| 1995 | ///
|
| 1996 | /// v.clear();
|
| 1997 | ///
|
| 1998 | /// assert!(v.is_empty());
|
| 1999 | /// ```
|
| 2000 | #[inline (always)]
|
| 2001 | pub fn clear(&mut self) {
|
| 2002 | let elems: *mut [T] = self.as_mut_slice();
|
| 2003 |
|
| 2004 | // SAFETY:
|
| 2005 | // - `elems` comes directly from `as_mut_slice` and is therefore valid.
|
| 2006 | // - Setting `self.len` before calling `drop_in_place` means that,
|
| 2007 | // if an element's `Drop` impl panics, the vector's `Drop` impl will
|
| 2008 | // do nothing (leaking the rest of the elements) instead of dropping
|
| 2009 | // some twice.
|
| 2010 | unsafe {
|
| 2011 | self.len = 0;
|
| 2012 | ptr::drop_in_place(elems);
|
| 2013 | }
|
| 2014 | }
|
| 2015 |
|
| 2016 | /// Returns the number of elements in the vector, also referred to
|
| 2017 | /// as its 'length'.
|
| 2018 | ///
|
| 2019 | /// # Examples
|
| 2020 | ///
|
| 2021 | /// ```
|
| 2022 | /// let a = vec![1, 2, 3];
|
| 2023 | /// assert_eq!(a.len(), 3);
|
| 2024 | /// ```
|
| 2025 | #[inline (always)]
|
| 2026 | pub fn len(&self) -> usize {
|
| 2027 | self.len
|
| 2028 | }
|
| 2029 |
|
| 2030 | /// Returns `true` if the vector contains no elements.
|
| 2031 | ///
|
| 2032 | /// # Examples
|
| 2033 | ///
|
| 2034 | /// ```
|
| 2035 | /// let mut v = Vec::new();
|
| 2036 | /// assert!(v.is_empty());
|
| 2037 | ///
|
| 2038 | /// v.push(1);
|
| 2039 | /// assert!(!v.is_empty());
|
| 2040 | /// ```
|
| 2041 | #[inline (always)]
|
| 2042 | pub fn is_empty(&self) -> bool {
|
| 2043 | self.len() == 0
|
| 2044 | }
|
| 2045 |
|
| 2046 | /// Splits the collection into two at the given index.
|
| 2047 | ///
|
| 2048 | /// Returns a newly allocated vector containing the elements in the range
|
| 2049 | /// `[at, len)`. After the call, the original vector will be left containing
|
| 2050 | /// the elements `[0, at)` with its previous capacity unchanged.
|
| 2051 | ///
|
| 2052 | /// # Panics
|
| 2053 | ///
|
| 2054 | /// Panics if `at > len`.
|
| 2055 | ///
|
| 2056 | /// # Examples
|
| 2057 | ///
|
| 2058 | /// ```
|
| 2059 | /// let mut vec = vec![1, 2, 3];
|
| 2060 | /// let vec2 = vec.split_off(1);
|
| 2061 | /// assert_eq!(vec, [1]);
|
| 2062 | /// assert_eq!(vec2, [2, 3]);
|
| 2063 | /// ```
|
| 2064 | #[cfg (not(no_global_oom_handling))]
|
| 2065 | #[inline (always)]
|
| 2066 | #[must_use = "use `.truncate()` if you don't need the other half" ]
|
| 2067 | pub fn split_off(&mut self, at: usize) -> Self
|
| 2068 | where
|
| 2069 | A: Clone,
|
| 2070 | {
|
| 2071 | #[cold ]
|
| 2072 | #[inline (never)]
|
| 2073 | fn assert_failed(at: usize, len: usize) -> ! {
|
| 2074 | panic!("`at` split index (is {}) should be <= len (is {})" , at, len);
|
| 2075 | }
|
| 2076 |
|
| 2077 | if at > self.len() {
|
| 2078 | assert_failed(at, self.len());
|
| 2079 | }
|
| 2080 |
|
| 2081 | if at == 0 {
|
| 2082 | // the new vector can take over the original buffer and avoid the copy
|
| 2083 | return mem::replace(
|
| 2084 | self,
|
| 2085 | Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
|
| 2086 | );
|
| 2087 | }
|
| 2088 |
|
| 2089 | let other_len = self.len - at;
|
| 2090 | let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
|
| 2091 |
|
| 2092 | // Unsafely `set_len` and copy items to `other`.
|
| 2093 | unsafe {
|
| 2094 | self.set_len(at);
|
| 2095 | other.set_len(other_len);
|
| 2096 |
|
| 2097 | ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
|
| 2098 | }
|
| 2099 | other
|
| 2100 | }
|
| 2101 |
|
| 2102 | /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
|
| 2103 | ///
|
| 2104 | /// If `new_len` is greater than `len`, the `Vec` is extended by the
|
| 2105 | /// difference, with each additional slot filled with the result of
|
| 2106 | /// calling the closure `f`. The return values from `f` will end up
|
| 2107 | /// in the `Vec` in the order they have been generated.
|
| 2108 | ///
|
| 2109 | /// If `new_len` is less than `len`, the `Vec` is simply truncated.
|
| 2110 | ///
|
| 2111 | /// This method uses a closure to create new values on every push. If
|
| 2112 | /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
|
| 2113 | /// want to use the [`Default`] trait to generate values, you can
|
| 2114 | /// pass [`Default::default`] as the second argument.
|
| 2115 | ///
|
| 2116 | /// # Examples
|
| 2117 | ///
|
| 2118 | /// ```
|
| 2119 | /// let mut vec = vec![1, 2, 3];
|
| 2120 | /// vec.resize_with(5, Default::default);
|
| 2121 | /// assert_eq!(vec, [1, 2, 3, 0, 0]);
|
| 2122 | ///
|
| 2123 | /// let mut vec = vec![];
|
| 2124 | /// let mut p = 1;
|
| 2125 | /// vec.resize_with(4, || { p *= 2; p });
|
| 2126 | /// assert_eq!(vec, [2, 4, 8, 16]);
|
| 2127 | /// ```
|
| 2128 | #[cfg (not(no_global_oom_handling))]
|
| 2129 | #[inline (always)]
|
| 2130 | pub fn resize_with<F>(&mut self, new_len: usize, f: F)
|
| 2131 | where
|
| 2132 | F: FnMut() -> T,
|
| 2133 | {
|
| 2134 | let len = self.len();
|
| 2135 | if new_len > len {
|
| 2136 | self.extend(iter::repeat_with(f).take(new_len - len));
|
| 2137 | } else {
|
| 2138 | self.truncate(new_len);
|
| 2139 | }
|
| 2140 | }
|
| 2141 |
|
| 2142 | /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
|
| 2143 | /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
|
| 2144 | /// `'a`. If the type has only static references, or none at all, then this
|
| 2145 | /// may be chosen to be `'static`.
|
| 2146 | ///
|
| 2147 | /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
|
| 2148 | /// so the leaked allocation may include unused capacity that is not part
|
| 2149 | /// of the returned slice.
|
| 2150 | ///
|
| 2151 | /// This function is mainly useful for data that lives for the remainder of
|
| 2152 | /// the program's life. Dropping the returned reference will cause a memory
|
| 2153 | /// leak.
|
| 2154 | ///
|
| 2155 | /// # Examples
|
| 2156 | ///
|
| 2157 | /// Simple usage:
|
| 2158 | ///
|
| 2159 | /// ```
|
| 2160 | /// let x = vec![1, 2, 3];
|
| 2161 | /// let static_ref: &'static mut [usize] = x.leak();
|
| 2162 | /// static_ref[0] += 1;
|
| 2163 | /// assert_eq!(static_ref, &[2, 2, 3]);
|
| 2164 | /// ```
|
| 2165 | #[inline (always)]
|
| 2166 | pub fn leak<'a>(self) -> &'a mut [T]
|
| 2167 | where
|
| 2168 | A: 'a,
|
| 2169 | {
|
| 2170 | let mut me = ManuallyDrop::new(self);
|
| 2171 | unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
|
| 2172 | }
|
| 2173 |
|
| 2174 | /// Returns the remaining spare capacity of the vector as a slice of
|
| 2175 | /// `MaybeUninit<T>`.
|
| 2176 | ///
|
| 2177 | /// The returned slice can be used to fill the vector with data (e.g. by
|
| 2178 | /// reading from a file) before marking the data as initialized using the
|
| 2179 | /// [`set_len`] method.
|
| 2180 | ///
|
| 2181 | /// [`set_len`]: Vec::set_len
|
| 2182 | ///
|
| 2183 | /// # Examples
|
| 2184 | ///
|
| 2185 | /// ```
|
| 2186 | /// // Allocate vector big enough for 10 elements.
|
| 2187 | /// let mut v = Vec::with_capacity(10);
|
| 2188 | ///
|
| 2189 | /// // Fill in the first 3 elements.
|
| 2190 | /// let uninit = v.spare_capacity_mut();
|
| 2191 | /// uninit[0].write(0);
|
| 2192 | /// uninit[1].write(1);
|
| 2193 | /// uninit[2].write(2);
|
| 2194 | ///
|
| 2195 | /// // Mark the first 3 elements of the vector as being initialized.
|
| 2196 | /// unsafe {
|
| 2197 | /// v.set_len(3);
|
| 2198 | /// }
|
| 2199 | ///
|
| 2200 | /// assert_eq!(&v, &[0, 1, 2]);
|
| 2201 | /// ```
|
| 2202 | #[inline (always)]
|
| 2203 | pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
|
| 2204 | // Note:
|
| 2205 | // This method is not implemented in terms of `split_at_spare_mut`,
|
| 2206 | // to prevent invalidation of pointers to the buffer.
|
| 2207 | unsafe {
|
| 2208 | slice::from_raw_parts_mut(
|
| 2209 | self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
|
| 2210 | self.buf.capacity() - self.len,
|
| 2211 | )
|
| 2212 | }
|
| 2213 | }
|
| 2214 |
|
| 2215 | /// Returns vector content as a slice of `T`, along with the remaining spare
|
| 2216 | /// capacity of the vector as a slice of `MaybeUninit<T>`.
|
| 2217 | ///
|
| 2218 | /// The returned spare capacity slice can be used to fill the vector with data
|
| 2219 | /// (e.g. by reading from a file) before marking the data as initialized using
|
| 2220 | /// the [`set_len`] method.
|
| 2221 | ///
|
| 2222 | /// [`set_len`]: Vec::set_len
|
| 2223 | ///
|
| 2224 | /// Note that this is a low-level API, which should be used with care for
|
| 2225 | /// optimization purposes. If you need to append data to a `Vec`
|
| 2226 | /// you can use [`push`], [`extend`], [`extend_from_slice`],
|
| 2227 | /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
|
| 2228 | /// [`resize_with`], depending on your exact needs.
|
| 2229 | ///
|
| 2230 | /// [`push`]: Vec::push
|
| 2231 | /// [`extend`]: Vec::extend
|
| 2232 | /// [`extend_from_slice`]: Vec::extend_from_slice
|
| 2233 | /// [`extend_from_within`]: Vec::extend_from_within
|
| 2234 | /// [`insert`]: Vec::insert
|
| 2235 | /// [`append`]: Vec::append
|
| 2236 | /// [`resize`]: Vec::resize
|
| 2237 | /// [`resize_with`]: Vec::resize_with
|
| 2238 | ///
|
| 2239 | /// # Examples
|
| 2240 | ///
|
| 2241 | /// ```
|
| 2242 | /// #![feature(vec_split_at_spare)]
|
| 2243 | ///
|
| 2244 | /// let mut v = vec![1, 1, 2];
|
| 2245 | ///
|
| 2246 | /// // Reserve additional space big enough for 10 elements.
|
| 2247 | /// v.reserve(10);
|
| 2248 | ///
|
| 2249 | /// let (init, uninit) = v.split_at_spare_mut();
|
| 2250 | /// let sum = init.iter().copied().sum::<u32>();
|
| 2251 | ///
|
| 2252 | /// // Fill in the next 4 elements.
|
| 2253 | /// uninit[0].write(sum);
|
| 2254 | /// uninit[1].write(sum * 2);
|
| 2255 | /// uninit[2].write(sum * 3);
|
| 2256 | /// uninit[3].write(sum * 4);
|
| 2257 | ///
|
| 2258 | /// // Mark the 4 elements of the vector as being initialized.
|
| 2259 | /// unsafe {
|
| 2260 | /// let len = v.len();
|
| 2261 | /// v.set_len(len + 4);
|
| 2262 | /// }
|
| 2263 | ///
|
| 2264 | /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
|
| 2265 | /// ```
|
| 2266 | #[inline (always)]
|
| 2267 | pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
|
| 2268 | // SAFETY:
|
| 2269 | // - len is ignored and so never changed
|
| 2270 | let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
|
| 2271 | (init, spare)
|
| 2272 | }
|
| 2273 |
|
| 2274 | /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
|
| 2275 | ///
|
| 2276 | /// This method provides unique access to all vec parts at once in `extend_from_within`.
|
| 2277 | unsafe fn split_at_spare_mut_with_len(
|
| 2278 | &mut self,
|
| 2279 | ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
|
| 2280 | let ptr = self.as_mut_ptr();
|
| 2281 | // SAFETY:
|
| 2282 | // - `ptr` is guaranteed to be valid for `self.len` elements
|
| 2283 | // - but the allocation extends out to `self.buf.capacity()` elements, possibly
|
| 2284 | // uninitialized
|
| 2285 | let spare_ptr = unsafe { ptr.add(self.len) };
|
| 2286 | let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
|
| 2287 | let spare_len = self.buf.capacity() - self.len;
|
| 2288 |
|
| 2289 | // SAFETY:
|
| 2290 | // - `ptr` is guaranteed to be valid for `self.len` elements
|
| 2291 | // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
|
| 2292 | unsafe {
|
| 2293 | let initialized = slice::from_raw_parts_mut(ptr, self.len);
|
| 2294 | let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
|
| 2295 |
|
| 2296 | (initialized, spare, &mut self.len)
|
| 2297 | }
|
| 2298 | }
|
| 2299 | }
|
| 2300 |
|
| 2301 | impl<T: Clone, A: Allocator> Vec<T, A> {
|
| 2302 | /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
|
| 2303 | ///
|
| 2304 | /// If `new_len` is greater than `len`, the `Vec` is extended by the
|
| 2305 | /// difference, with each additional slot filled with `value`.
|
| 2306 | /// If `new_len` is less than `len`, the `Vec` is simply truncated.
|
| 2307 | ///
|
| 2308 | /// This method requires `T` to implement [`Clone`],
|
| 2309 | /// in order to be able to clone the passed value.
|
| 2310 | /// If you need more flexibility (or want to rely on [`Default`] instead of
|
| 2311 | /// [`Clone`]), use [`Vec::resize_with`].
|
| 2312 | /// If you only need to resize to a smaller size, use [`Vec::truncate`].
|
| 2313 | ///
|
| 2314 | /// # Examples
|
| 2315 | ///
|
| 2316 | /// ```
|
| 2317 | /// let mut vec = vec!["hello" ];
|
| 2318 | /// vec.resize(3, "world" );
|
| 2319 | /// assert_eq!(vec, ["hello" , "world" , "world" ]);
|
| 2320 | ///
|
| 2321 | /// let mut vec = vec![1, 2, 3, 4];
|
| 2322 | /// vec.resize(2, 0);
|
| 2323 | /// assert_eq!(vec, [1, 2]);
|
| 2324 | /// ```
|
| 2325 | #[cfg (not(no_global_oom_handling))]
|
| 2326 | #[inline (always)]
|
| 2327 | pub fn resize(&mut self, new_len: usize, value: T) {
|
| 2328 | let len = self.len();
|
| 2329 |
|
| 2330 | if new_len > len {
|
| 2331 | self.extend_with(new_len - len, ExtendElement(value))
|
| 2332 | } else {
|
| 2333 | self.truncate(new_len);
|
| 2334 | }
|
| 2335 | }
|
| 2336 |
|
| 2337 | /// Clones and appends all elements in a slice to the `Vec`.
|
| 2338 | ///
|
| 2339 | /// Iterates over the slice `other`, clones each element, and then appends
|
| 2340 | /// it to this `Vec`. The `other` slice is traversed in-order.
|
| 2341 | ///
|
| 2342 | /// Note that this function is same as [`extend`] except that it is
|
| 2343 | /// specialized to work with slices instead. If and when Rust gets
|
| 2344 | /// specialization this function will likely be deprecated (but still
|
| 2345 | /// available).
|
| 2346 | ///
|
| 2347 | /// # Examples
|
| 2348 | ///
|
| 2349 | /// ```
|
| 2350 | /// let mut vec = vec![1];
|
| 2351 | /// vec.extend_from_slice(&[2, 3, 4]);
|
| 2352 | /// assert_eq!(vec, [1, 2, 3, 4]);
|
| 2353 | /// ```
|
| 2354 | ///
|
| 2355 | /// [`extend`]: Vec::extend
|
| 2356 | #[cfg (not(no_global_oom_handling))]
|
| 2357 | #[inline (always)]
|
| 2358 | pub fn extend_from_slice(&mut self, other: &[T]) {
|
| 2359 | self.extend(other.iter().cloned())
|
| 2360 | }
|
| 2361 |
|
| 2362 | /// Copies elements from `src` range to the end of the vector.
|
| 2363 | ///
|
| 2364 | /// # Panics
|
| 2365 | ///
|
| 2366 | /// Panics if the starting point is greater than the end point or if
|
| 2367 | /// the end point is greater than the length of the vector.
|
| 2368 | ///
|
| 2369 | /// # Examples
|
| 2370 | ///
|
| 2371 | /// ```
|
| 2372 | /// let mut vec = vec![0, 1, 2, 3, 4];
|
| 2373 | ///
|
| 2374 | /// vec.extend_from_within(2..);
|
| 2375 | /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
|
| 2376 | ///
|
| 2377 | /// vec.extend_from_within(..2);
|
| 2378 | /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
|
| 2379 | ///
|
| 2380 | /// vec.extend_from_within(4..8);
|
| 2381 | /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
|
| 2382 | /// ```
|
| 2383 | #[cfg (not(no_global_oom_handling))]
|
| 2384 | #[inline (always)]
|
| 2385 | pub fn extend_from_within<R>(&mut self, src: R)
|
| 2386 | where
|
| 2387 | R: RangeBounds<usize>,
|
| 2388 | {
|
| 2389 | // let range = slice::range(src, ..self.len());
|
| 2390 |
|
| 2391 | let _ = &self.as_slice()[(src.start_bound().cloned(), src.end_bound().cloned())];
|
| 2392 |
|
| 2393 | let len = self.len();
|
| 2394 |
|
| 2395 | let start: ops::Bound<&usize> = src.start_bound();
|
| 2396 | let start = match start {
|
| 2397 | ops::Bound::Included(&start) => start,
|
| 2398 | ops::Bound::Excluded(start) => start + 1,
|
| 2399 | ops::Bound::Unbounded => 0,
|
| 2400 | };
|
| 2401 |
|
| 2402 | let end: ops::Bound<&usize> = src.end_bound();
|
| 2403 | let end = match end {
|
| 2404 | ops::Bound::Included(end) => end + 1,
|
| 2405 | ops::Bound::Excluded(&end) => end,
|
| 2406 | ops::Bound::Unbounded => len,
|
| 2407 | };
|
| 2408 |
|
| 2409 | let range = start..end;
|
| 2410 |
|
| 2411 | self.reserve(range.len());
|
| 2412 |
|
| 2413 | // SAFETY:
|
| 2414 | // - len is increased only after initializing elements
|
| 2415 | let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
|
| 2416 |
|
| 2417 | // SAFETY:
|
| 2418 | // - caller guarantees that src is a valid index
|
| 2419 | let to_clone = unsafe { this.get_unchecked(range) };
|
| 2420 |
|
| 2421 | iter::zip(to_clone, spare)
|
| 2422 | .map(|(src, dst)| dst.write(src.clone()))
|
| 2423 | // Note:
|
| 2424 | // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
|
| 2425 | // - len is increased after each element to prevent leaks (see issue #82533)
|
| 2426 | .for_each(|_| *len += 1);
|
| 2427 | }
|
| 2428 | }
|
| 2429 |
|
| 2430 | impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
|
| 2431 | /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
|
| 2432 | ///
|
| 2433 | /// # Panics
|
| 2434 | ///
|
| 2435 | /// Panics if the length of the resulting vector would overflow a `usize`.
|
| 2436 | ///
|
| 2437 | /// This is only possible when flattening a vector of arrays of zero-sized
|
| 2438 | /// types, and thus tends to be irrelevant in practice. If
|
| 2439 | /// `size_of::<T>() > 0`, this will never panic.
|
| 2440 | ///
|
| 2441 | /// # Examples
|
| 2442 | ///
|
| 2443 | /// ```
|
| 2444 | /// #![feature(slice_flatten)]
|
| 2445 | ///
|
| 2446 | /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
|
| 2447 | /// assert_eq!(vec.pop(), Some([7, 8, 9]));
|
| 2448 | ///
|
| 2449 | /// let mut flattened = vec.into_flattened();
|
| 2450 | /// assert_eq!(flattened.pop(), Some(6));
|
| 2451 | /// ```
|
| 2452 | #[inline (always)]
|
| 2453 | pub fn into_flattened(self) -> Vec<T, A> {
|
| 2454 | let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
|
| 2455 | let (new_len, new_cap) = if size_of::<T>() == 0 {
|
| 2456 | (len.checked_mul(N).expect("vec len overflow" ), usize::MAX)
|
| 2457 | } else {
|
| 2458 | // SAFETY:
|
| 2459 | // - `cap * N` cannot overflow because the allocation is already in
|
| 2460 | // the address space.
|
| 2461 | // - Each `[T; N]` has `N` valid elements, so there are `len * N`
|
| 2462 | // valid elements in the allocation.
|
| 2463 | (len * N, cap * N)
|
| 2464 | };
|
| 2465 | // SAFETY:
|
| 2466 | // - `ptr` was allocated by `self`
|
| 2467 | // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
|
| 2468 | // - `new_cap` refers to the same sized allocation as `cap` because
|
| 2469 | // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
|
| 2470 | // - `len` <= `cap`, so `len * N` <= `cap * N`.
|
| 2471 | unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
|
| 2472 | }
|
| 2473 | }
|
| 2474 |
|
| 2475 | // This code generalizes `extend_with_{element,default}`.
|
| 2476 | trait ExtendWith<T> {
|
| 2477 | fn next(&mut self) -> T;
|
| 2478 | fn last(self) -> T;
|
| 2479 | }
|
| 2480 |
|
| 2481 | struct ExtendElement<T>(T);
|
| 2482 | impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
|
| 2483 | #[inline (always)]
|
| 2484 | fn next(&mut self) -> T {
|
| 2485 | self.0.clone()
|
| 2486 | }
|
| 2487 |
|
| 2488 | #[inline (always)]
|
| 2489 | fn last(self) -> T {
|
| 2490 | self.0
|
| 2491 | }
|
| 2492 | }
|
| 2493 |
|
| 2494 | impl<T, A: Allocator> Vec<T, A> {
|
| 2495 | #[cfg (not(no_global_oom_handling))]
|
| 2496 | #[inline (always)]
|
| 2497 | /// Extend the vector by `n` values, using the given generator.
|
| 2498 | fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
|
| 2499 | self.reserve(n);
|
| 2500 |
|
| 2501 | unsafe {
|
| 2502 | let mut ptr = self.as_mut_ptr().add(self.len());
|
| 2503 | // Use SetLenOnDrop to work around bug where compiler
|
| 2504 | // might not realize the store through `ptr` through self.set_len()
|
| 2505 | // don't alias.
|
| 2506 | let mut local_len = SetLenOnDrop::new(&mut self.len);
|
| 2507 |
|
| 2508 | // Write all elements except the last one
|
| 2509 | for _ in 1..n {
|
| 2510 | ptr::write(ptr, value.next());
|
| 2511 | ptr = ptr.add(1);
|
| 2512 | // Increment the length in every step in case next() panics
|
| 2513 | local_len.increment_len(1);
|
| 2514 | }
|
| 2515 |
|
| 2516 | if n > 0 {
|
| 2517 | // We can write the last element directly without cloning needlessly
|
| 2518 | ptr::write(ptr, value.last());
|
| 2519 | local_len.increment_len(1);
|
| 2520 | }
|
| 2521 |
|
| 2522 | // len set by scope guard
|
| 2523 | }
|
| 2524 | }
|
| 2525 | }
|
| 2526 |
|
| 2527 | impl<T: PartialEq, A: Allocator> Vec<T, A> {
|
| 2528 | /// Removes consecutive repeated elements in the vector according to the
|
| 2529 | /// [`PartialEq`] trait implementation.
|
| 2530 | ///
|
| 2531 | /// If the vector is sorted, this removes all duplicates.
|
| 2532 | ///
|
| 2533 | /// # Examples
|
| 2534 | ///
|
| 2535 | /// ```
|
| 2536 | /// let mut vec = vec![1, 2, 2, 3, 2];
|
| 2537 | ///
|
| 2538 | /// vec.dedup();
|
| 2539 | ///
|
| 2540 | /// assert_eq!(vec, [1, 2, 3, 2]);
|
| 2541 | /// ```
|
| 2542 | #[inline (always)]
|
| 2543 | pub fn dedup(&mut self) {
|
| 2544 | self.dedup_by(|a: &mut T, b: &mut T| a == b)
|
| 2545 | }
|
| 2546 | }
|
| 2547 |
|
| 2548 | ////////////////////////////////////////////////////////////////////////////////
|
| 2549 | // Common trait implementations for Vec
|
| 2550 | ////////////////////////////////////////////////////////////////////////////////
|
| 2551 |
|
| 2552 | impl<T, A: Allocator> ops::Deref for Vec<T, A> {
|
| 2553 | type Target = [T];
|
| 2554 |
|
| 2555 | #[inline (always)]
|
| 2556 | fn deref(&self) -> &[T] {
|
| 2557 | unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
|
| 2558 | }
|
| 2559 | }
|
| 2560 |
|
| 2561 | impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
|
| 2562 | #[inline (always)]
|
| 2563 | fn deref_mut(&mut self) -> &mut [T] {
|
| 2564 | unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
|
| 2565 | }
|
| 2566 | }
|
| 2567 |
|
| 2568 | #[cfg (not(no_global_oom_handling))]
|
| 2569 | impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
|
| 2570 | #[inline (always)]
|
| 2571 | fn clone(&self) -> Self {
|
| 2572 | let alloc: A = self.allocator().clone();
|
| 2573 | let mut vec: Vec = Vec::with_capacity_in(self.len(), alloc);
|
| 2574 | vec.extend_from_slice(self);
|
| 2575 | vec
|
| 2576 | }
|
| 2577 |
|
| 2578 | #[inline (always)]
|
| 2579 | fn clone_from(&mut self, other: &Self) {
|
| 2580 | // drop anything that will not be overwritten
|
| 2581 | self.truncate(other.len());
|
| 2582 |
|
| 2583 | // self.len <= other.len due to the truncate above, so the
|
| 2584 | // slices here are always in-bounds.
|
| 2585 | let (init: &[T], tail: &[T]) = other.split_at(self.len());
|
| 2586 |
|
| 2587 | // reuse the contained values' allocations/resources.
|
| 2588 | self.clone_from_slice(src:init);
|
| 2589 | self.extend_from_slice(tail);
|
| 2590 | }
|
| 2591 | }
|
| 2592 |
|
| 2593 | /// The hash of a vector is the same as that of the corresponding slice,
|
| 2594 | /// as required by the `core::borrow::Borrow` implementation.
|
| 2595 | ///
|
| 2596 | /// ```
|
| 2597 | /// #![feature(build_hasher_simple_hash_one)]
|
| 2598 | /// use std::hash::BuildHasher;
|
| 2599 | ///
|
| 2600 | /// let b = std::collections::hash_map::RandomState::new();
|
| 2601 | /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
|
| 2602 | /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
|
| 2603 | /// assert_eq!(b.hash_one(v), b.hash_one(s));
|
| 2604 | /// ```
|
| 2605 | impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
|
| 2606 | #[inline (always)]
|
| 2607 | fn hash<H: Hasher>(&self, state: &mut H) {
|
| 2608 | Hash::hash(&**self, state)
|
| 2609 | }
|
| 2610 | }
|
| 2611 |
|
| 2612 | impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
|
| 2613 | type Output = I::Output;
|
| 2614 |
|
| 2615 | #[inline (always)]
|
| 2616 | fn index(&self, index: I) -> &Self::Output {
|
| 2617 | Index::index(&**self, index)
|
| 2618 | }
|
| 2619 | }
|
| 2620 |
|
| 2621 | impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
|
| 2622 | #[inline (always)]
|
| 2623 | fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
| 2624 | IndexMut::index_mut(&mut **self, index)
|
| 2625 | }
|
| 2626 | }
|
| 2627 |
|
| 2628 | #[cfg (not(no_global_oom_handling))]
|
| 2629 | impl<T> FromIterator<T> for Vec<T> {
|
| 2630 | #[inline (always)]
|
| 2631 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
|
| 2632 | let mut vec: Vec = Vec::new();
|
| 2633 | vec.extend(iter);
|
| 2634 | vec
|
| 2635 | }
|
| 2636 | }
|
| 2637 |
|
| 2638 | impl<T, A: Allocator> IntoIterator for Vec<T, A> {
|
| 2639 | type Item = T;
|
| 2640 | type IntoIter = IntoIter<T, A>;
|
| 2641 |
|
| 2642 | /// Creates a consuming iterator, that is, one that moves each value out of
|
| 2643 | /// the vector (from start to end). The vector cannot be used after calling
|
| 2644 | /// this.
|
| 2645 | ///
|
| 2646 | /// # Examples
|
| 2647 | ///
|
| 2648 | /// ```
|
| 2649 | /// let v = vec!["a" .to_string(), "b" .to_string()];
|
| 2650 | /// let mut v_iter = v.into_iter();
|
| 2651 | ///
|
| 2652 | /// let first_element: Option<String> = v_iter.next();
|
| 2653 | ///
|
| 2654 | /// assert_eq!(first_element, Some("a" .to_string()));
|
| 2655 | /// assert_eq!(v_iter.next(), Some("b" .to_string()));
|
| 2656 | /// assert_eq!(v_iter.next(), None);
|
| 2657 | /// ```
|
| 2658 | #[inline (always)]
|
| 2659 | fn into_iter(self) -> Self::IntoIter {
|
| 2660 | unsafe {
|
| 2661 | let mut me = ManuallyDrop::new(self);
|
| 2662 | let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
|
| 2663 | let begin = me.as_mut_ptr();
|
| 2664 | let end = if size_of::<T>() == 0 {
|
| 2665 | begin.cast::<u8>().wrapping_add(me.len()).cast()
|
| 2666 | } else {
|
| 2667 | begin.add(me.len()) as *const T
|
| 2668 | };
|
| 2669 | let cap = me.buf.capacity();
|
| 2670 | IntoIter {
|
| 2671 | buf: NonNull::new_unchecked(begin),
|
| 2672 | phantom: PhantomData,
|
| 2673 | cap,
|
| 2674 | alloc,
|
| 2675 | ptr: begin,
|
| 2676 | end,
|
| 2677 | }
|
| 2678 | }
|
| 2679 | }
|
| 2680 | }
|
| 2681 |
|
| 2682 | impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
|
| 2683 | type Item = &'a T;
|
| 2684 | type IntoIter = slice::Iter<'a, T>;
|
| 2685 |
|
| 2686 | #[inline (always)]
|
| 2687 | fn into_iter(self) -> Self::IntoIter {
|
| 2688 | self.iter()
|
| 2689 | }
|
| 2690 | }
|
| 2691 |
|
| 2692 | impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
|
| 2693 | type Item = &'a mut T;
|
| 2694 | type IntoIter = slice::IterMut<'a, T>;
|
| 2695 |
|
| 2696 | fn into_iter(self) -> Self::IntoIter {
|
| 2697 | self.iter_mut()
|
| 2698 | }
|
| 2699 | }
|
| 2700 |
|
| 2701 | #[cfg (not(no_global_oom_handling))]
|
| 2702 | impl<T, A: Allocator> Extend<T> for Vec<T, A> {
|
| 2703 | #[inline (always)]
|
| 2704 | fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
|
| 2705 | // This is the case for a general iter.
|
| 2706 | //
|
| 2707 | // This function should be the moral equivalent of:
|
| 2708 | //
|
| 2709 | // for item in iter {
|
| 2710 | // self.push(item);
|
| 2711 | // }
|
| 2712 |
|
| 2713 | let mut iter = iter.into_iter();
|
| 2714 | while let Some(element) = iter.next() {
|
| 2715 | let len = self.len();
|
| 2716 | if len == self.capacity() {
|
| 2717 | let (lower, _) = iter.size_hint();
|
| 2718 | self.reserve(lower.saturating_add(1));
|
| 2719 | }
|
| 2720 | unsafe {
|
| 2721 | ptr::write(self.as_mut_ptr().add(len), element);
|
| 2722 | // Since next() executes user code which can panic we have to bump the length
|
| 2723 | // after each step.
|
| 2724 | // NB can't overflow since we would have had to alloc the address space
|
| 2725 | self.set_len(len + 1);
|
| 2726 | }
|
| 2727 | }
|
| 2728 | }
|
| 2729 | }
|
| 2730 |
|
| 2731 | impl<T, A: Allocator> Vec<T, A> {
|
| 2732 | /// Creates a splicing iterator that replaces the specified range in the vector
|
| 2733 | /// with the given `replace_with` iterator and yields the removed items.
|
| 2734 | /// `replace_with` does not need to be the same length as `range`.
|
| 2735 | ///
|
| 2736 | /// `range` is removed even if the iterator is not consumed until the end.
|
| 2737 | ///
|
| 2738 | /// It is unspecified how many elements are removed from the vector
|
| 2739 | /// if the `Splice` value is leaked.
|
| 2740 | ///
|
| 2741 | /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
|
| 2742 | ///
|
| 2743 | /// This is optimal if:
|
| 2744 | ///
|
| 2745 | /// * The tail (elements in the vector after `range`) is empty,
|
| 2746 | /// * or `replace_with` yields fewer or equal elements than `range`’s length
|
| 2747 | /// * or the lower bound of its `size_hint()` is exact.
|
| 2748 | ///
|
| 2749 | /// Otherwise, a temporary vector is allocated and the tail is moved twice.
|
| 2750 | ///
|
| 2751 | /// # Panics
|
| 2752 | ///
|
| 2753 | /// Panics if the starting point is greater than the end point or if
|
| 2754 | /// the end point is greater than the length of the vector.
|
| 2755 | ///
|
| 2756 | /// # Examples
|
| 2757 | ///
|
| 2758 | /// ```
|
| 2759 | /// let mut v = vec![1, 2, 3, 4];
|
| 2760 | /// let new = [7, 8, 9];
|
| 2761 | /// let u: Vec<_> = v.splice(1..3, new).collect();
|
| 2762 | /// assert_eq!(v, &[1, 7, 8, 9, 4]);
|
| 2763 | /// assert_eq!(u, &[2, 3]);
|
| 2764 | /// ```
|
| 2765 | #[cfg (not(no_global_oom_handling))]
|
| 2766 | #[inline (always)]
|
| 2767 | pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
|
| 2768 | where
|
| 2769 | R: RangeBounds<usize>,
|
| 2770 | I: IntoIterator<Item = T>,
|
| 2771 | {
|
| 2772 | Splice {
|
| 2773 | drain: self.drain(range),
|
| 2774 | replace_with: replace_with.into_iter(),
|
| 2775 | }
|
| 2776 | }
|
| 2777 | }
|
| 2778 |
|
| 2779 | /// Extend implementation that copies elements out of references before pushing them onto the Vec.
|
| 2780 | ///
|
| 2781 | /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
|
| 2782 | /// append the entire slice at once.
|
| 2783 | ///
|
| 2784 | /// [`copy_from_slice`]: slice::copy_from_slice
|
| 2785 | #[cfg (not(no_global_oom_handling))]
|
| 2786 | impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
|
| 2787 | #[inline (always)]
|
| 2788 | fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
|
| 2789 | let mut iter: ::IntoIter = iter.into_iter();
|
| 2790 | while let Some(element: &'a T) = iter.next() {
|
| 2791 | let len: usize = self.len();
|
| 2792 | if len == self.capacity() {
|
| 2793 | let (lower: usize, _) = iter.size_hint();
|
| 2794 | self.reserve(additional:lower.saturating_add(1));
|
| 2795 | }
|
| 2796 | unsafe {
|
| 2797 | ptr::write(self.as_mut_ptr().add(len), *element);
|
| 2798 | // Since next() executes user code which can panic we have to bump the length
|
| 2799 | // after each step.
|
| 2800 | // NB can't overflow since we would have had to alloc the address space
|
| 2801 | self.set_len(new_len:len + 1);
|
| 2802 | }
|
| 2803 | }
|
| 2804 | }
|
| 2805 | }
|
| 2806 |
|
| 2807 | /// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
|
| 2808 | impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
|
| 2809 | #[inline (always)]
|
| 2810 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
| 2811 | PartialOrd::partial_cmp(&**self, &**other)
|
| 2812 | }
|
| 2813 | }
|
| 2814 |
|
| 2815 | impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
|
| 2816 |
|
| 2817 | /// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
|
| 2818 | impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
|
| 2819 | #[inline (always)]
|
| 2820 | fn cmp(&self, other: &Self) -> Ordering {
|
| 2821 | Ord::cmp(&**self, &**other)
|
| 2822 | }
|
| 2823 | }
|
| 2824 |
|
| 2825 | impl<T, A: Allocator> Drop for Vec<T, A> {
|
| 2826 | #[inline (always)]
|
| 2827 | fn drop(&mut self) {
|
| 2828 | unsafe {
|
| 2829 | // use drop for [T]
|
| 2830 | // use a raw slice to refer to the elements of the vector as weakest necessary type;
|
| 2831 | // could avoid questions of validity in certain cases
|
| 2832 | ptr::drop_in_place(to_drop:ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
|
| 2833 | }
|
| 2834 | // RawVec handles deallocation
|
| 2835 | }
|
| 2836 | }
|
| 2837 |
|
| 2838 | impl<T> Default for Vec<T> {
|
| 2839 | /// Creates an empty `Vec<T>`.
|
| 2840 | ///
|
| 2841 | /// The vector will not allocate until elements are pushed onto it.
|
| 2842 | #[inline (always)]
|
| 2843 | fn default() -> Vec<T> {
|
| 2844 | Vec::new()
|
| 2845 | }
|
| 2846 | }
|
| 2847 |
|
| 2848 | impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
|
| 2849 | #[inline (always)]
|
| 2850 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
| 2851 | fmt::Debug::fmt(&**self, f)
|
| 2852 | }
|
| 2853 | }
|
| 2854 |
|
| 2855 | impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
|
| 2856 | #[inline (always)]
|
| 2857 | fn as_ref(&self) -> &Vec<T, A> {
|
| 2858 | self
|
| 2859 | }
|
| 2860 | }
|
| 2861 |
|
| 2862 | impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
|
| 2863 | #[inline (always)]
|
| 2864 | fn as_mut(&mut self) -> &mut Vec<T, A> {
|
| 2865 | self
|
| 2866 | }
|
| 2867 | }
|
| 2868 |
|
| 2869 | impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
|
| 2870 | #[inline (always)]
|
| 2871 | fn as_ref(&self) -> &[T] {
|
| 2872 | self
|
| 2873 | }
|
| 2874 | }
|
| 2875 |
|
| 2876 | impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
|
| 2877 | #[inline (always)]
|
| 2878 | fn as_mut(&mut self) -> &mut [T] {
|
| 2879 | self
|
| 2880 | }
|
| 2881 | }
|
| 2882 |
|
| 2883 | #[cfg (not(no_global_oom_handling))]
|
| 2884 | impl<T: Clone> From<&[T]> for Vec<T> {
|
| 2885 | /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
|
| 2886 | ///
|
| 2887 | /// # Examples
|
| 2888 | ///
|
| 2889 | /// ```
|
| 2890 | /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
|
| 2891 | /// ```
|
| 2892 | #[inline (always)]
|
| 2893 | fn from(s: &[T]) -> Vec<T> {
|
| 2894 | let mut vec: Vec = Vec::with_capacity(s.len());
|
| 2895 | vec.extend_from_slice(s);
|
| 2896 | vec
|
| 2897 | }
|
| 2898 | }
|
| 2899 |
|
| 2900 | #[cfg (not(no_global_oom_handling))]
|
| 2901 | impl<T: Clone> From<&mut [T]> for Vec<T> {
|
| 2902 | /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
|
| 2903 | ///
|
| 2904 | /// # Examples
|
| 2905 | ///
|
| 2906 | /// ```
|
| 2907 | /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
|
| 2908 | /// ```
|
| 2909 | #[inline (always)]
|
| 2910 | fn from(s: &mut [T]) -> Vec<T> {
|
| 2911 | let mut vec: Vec = Vec::with_capacity(s.len());
|
| 2912 | vec.extend_from_slice(s);
|
| 2913 | vec
|
| 2914 | }
|
| 2915 | }
|
| 2916 |
|
| 2917 | #[cfg (not(no_global_oom_handling))]
|
| 2918 | impl<T, const N: usize> From<[T; N]> for Vec<T> {
|
| 2919 | #[inline (always)]
|
| 2920 | fn from(s: [T; N]) -> Vec<T> {
|
| 2921 | Box::slice(Box::new(s)).into_vec()
|
| 2922 | }
|
| 2923 | }
|
| 2924 |
|
| 2925 | impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
|
| 2926 | /// Convert a boxed slice into a vector by transferring ownership of
|
| 2927 | /// the existing heap allocation.
|
| 2928 | ///
|
| 2929 | /// # Examples
|
| 2930 | ///
|
| 2931 | /// ```
|
| 2932 | /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
|
| 2933 | /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
|
| 2934 | /// ```
|
| 2935 | #[inline (always)]
|
| 2936 | fn from(s: Box<[T], A>) -> Self {
|
| 2937 | s.into_vec()
|
| 2938 | }
|
| 2939 | }
|
| 2940 |
|
| 2941 | impl<T, A: Allocator, const N: usize> From<Box<[T; N], A>> for Vec<T, A> {
|
| 2942 | /// Convert a boxed array into a vector by transferring ownership of
|
| 2943 | /// the existing heap allocation.
|
| 2944 | ///
|
| 2945 | /// # Examples
|
| 2946 | ///
|
| 2947 | /// ```
|
| 2948 | /// let b: Box<[i32; 3]> = Box::new([1, 2, 3]);
|
| 2949 | /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
|
| 2950 | /// ```
|
| 2951 | #[inline (always)]
|
| 2952 | fn from(s: Box<[T; N], A>) -> Self {
|
| 2953 | s.into_vec()
|
| 2954 | }
|
| 2955 | }
|
| 2956 |
|
| 2957 | // note: test pulls in libstd, which causes errors here
|
| 2958 | #[cfg (not(no_global_oom_handling))]
|
| 2959 | impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
|
| 2960 | /// Convert a vector into a boxed slice.
|
| 2961 | ///
|
| 2962 | /// If `v` has excess capacity, its items will be moved into a
|
| 2963 | /// newly-allocated buffer with exactly the right capacity.
|
| 2964 | ///
|
| 2965 | /// # Examples
|
| 2966 | ///
|
| 2967 | /// ```
|
| 2968 | /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
|
| 2969 | /// ```
|
| 2970 | ///
|
| 2971 | /// Any excess capacity is removed:
|
| 2972 | /// ```
|
| 2973 | /// let mut vec = Vec::with_capacity(10);
|
| 2974 | /// vec.extend([1, 2, 3]);
|
| 2975 | ///
|
| 2976 | /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
|
| 2977 | /// ```
|
| 2978 | #[inline (always)]
|
| 2979 | fn from(v: Vec<T, A>) -> Self {
|
| 2980 | v.into_boxed_slice()
|
| 2981 | }
|
| 2982 | }
|
| 2983 |
|
| 2984 | #[cfg (not(no_global_oom_handling))]
|
| 2985 | impl From<&str> for Vec<u8> {
|
| 2986 | /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
|
| 2987 | ///
|
| 2988 | /// # Examples
|
| 2989 | ///
|
| 2990 | /// ```
|
| 2991 | /// assert_eq!(Vec::from("123" ), vec![b'1' , b'2' , b'3' ]);
|
| 2992 | /// ```
|
| 2993 | #[inline (always)]
|
| 2994 | fn from(s: &str) -> Vec<u8> {
|
| 2995 | From::from(s.as_bytes())
|
| 2996 | }
|
| 2997 | }
|
| 2998 |
|
| 2999 | impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
|
| 3000 | type Error = Vec<T, A>;
|
| 3001 |
|
| 3002 | /// Gets the entire contents of the `Vec<T>` as an array,
|
| 3003 | /// if its size exactly matches that of the requested array.
|
| 3004 | ///
|
| 3005 | /// # Examples
|
| 3006 | ///
|
| 3007 | /// ```
|
| 3008 | /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
|
| 3009 | /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
|
| 3010 | /// ```
|
| 3011 | ///
|
| 3012 | /// If the length doesn't match, the input comes back in `Err`:
|
| 3013 | /// ```
|
| 3014 | /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
|
| 3015 | /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
|
| 3016 | /// ```
|
| 3017 | ///
|
| 3018 | /// If you're fine with just getting a prefix of the `Vec<T>`,
|
| 3019 | /// you can call [`.truncate(N)`](Vec::truncate) first.
|
| 3020 | /// ```
|
| 3021 | /// let mut v = String::from("hello world" ).into_bytes();
|
| 3022 | /// v.sort();
|
| 3023 | /// v.truncate(2);
|
| 3024 | /// let [a, b]: [_; 2] = v.try_into().unwrap();
|
| 3025 | /// assert_eq!(a, b' ' );
|
| 3026 | /// assert_eq!(b, b'd' );
|
| 3027 | /// ```
|
| 3028 | #[inline (always)]
|
| 3029 | fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
|
| 3030 | if vec.len() != N {
|
| 3031 | return Err(vec);
|
| 3032 | }
|
| 3033 |
|
| 3034 | // SAFETY: `.set_len(0)` is always sound.
|
| 3035 | unsafe { vec.set_len(0) };
|
| 3036 |
|
| 3037 | // SAFETY: A `Vec`'s pointer is always aligned properly, and
|
| 3038 | // the alignment the array needs is the same as the items.
|
| 3039 | // We checked earlier that we have sufficient items.
|
| 3040 | // The items will not double-drop as the `set_len`
|
| 3041 | // tells the `Vec` not to also drop them.
|
| 3042 | let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
|
| 3043 | Ok(array)
|
| 3044 | }
|
| 3045 | }
|
| 3046 |
|
| 3047 | #[inline (always)]
|
| 3048 | #[cfg (not(no_global_oom_handling))]
|
| 3049 | #[doc (hidden)]
|
| 3050 | pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
|
| 3051 | let mut v: Vec = Vec::with_capacity_in(capacity:n, alloc);
|
| 3052 | v.extend_with(n, value:ExtendElement(elem));
|
| 3053 | v
|
| 3054 | }
|
| 3055 |
|
| 3056 | #[inline (always)]
|
| 3057 | #[cfg (not(no_global_oom_handling))]
|
| 3058 | #[doc (hidden)]
|
| 3059 | pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
|
| 3060 | let mut v: Vec = Vec::with_capacity(n);
|
| 3061 | v.extend_with(n, value:ExtendElement(elem));
|
| 3062 | v
|
| 3063 | }
|
| 3064 |
|
| 3065 | /// Write is implemented for `Vec<u8>` by appending to the vector.
|
| 3066 | /// The vector will grow as needed.
|
| 3067 | #[cfg (feature = "std" )]
|
| 3068 | impl<A: Allocator> io::Write for Vec<u8, A> {
|
| 3069 | #[inline ]
|
| 3070 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
|
| 3071 | self.extend_from_slice(buf);
|
| 3072 | Ok(buf.len())
|
| 3073 | }
|
| 3074 |
|
| 3075 | #[inline ]
|
| 3076 | fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
|
| 3077 | let len = bufs.iter().map(|b| b.len()).sum();
|
| 3078 | self.reserve(len);
|
| 3079 | for buf in bufs {
|
| 3080 | self.extend_from_slice(buf);
|
| 3081 | }
|
| 3082 | Ok(len)
|
| 3083 | }
|
| 3084 |
|
| 3085 | #[inline ]
|
| 3086 | fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
|
| 3087 | self.extend_from_slice(buf);
|
| 3088 | Ok(())
|
| 3089 | }
|
| 3090 |
|
| 3091 | #[inline ]
|
| 3092 | fn flush(&mut self) -> io::Result<()> {
|
| 3093 | Ok(())
|
| 3094 | }
|
| 3095 | }
|
| 3096 |
|
| 3097 | #[cfg (feature = "serde" )]
|
| 3098 | impl<T, A> serde::Serialize for Vec<T, A>
|
| 3099 | where
|
| 3100 | T: serde::Serialize,
|
| 3101 | A: Allocator,
|
| 3102 | {
|
| 3103 | #[inline (always)]
|
| 3104 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
| 3105 | where
|
| 3106 | S: serde::ser::Serializer,
|
| 3107 | {
|
| 3108 | serializer.collect_seq(self)
|
| 3109 | }
|
| 3110 | }
|
| 3111 |
|
| 3112 | #[cfg (feature = "serde" )]
|
| 3113 | impl<'de, T, A> serde::de::Deserialize<'de> for Vec<T, A>
|
| 3114 | where
|
| 3115 | T: serde::de::Deserialize<'de>,
|
| 3116 | A: Allocator + Default,
|
| 3117 | {
|
| 3118 | #[inline (always)]
|
| 3119 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
| 3120 | where
|
| 3121 | D: serde::de::Deserializer<'de>,
|
| 3122 | {
|
| 3123 | struct VecVisitor<T, A> {
|
| 3124 | marker: PhantomData<(T, A)>,
|
| 3125 | }
|
| 3126 |
|
| 3127 | impl<'de, T, A> serde::de::Visitor<'de> for VecVisitor<T, A>
|
| 3128 | where
|
| 3129 | T: serde::de::Deserialize<'de>,
|
| 3130 | A: Allocator + Default,
|
| 3131 | {
|
| 3132 | type Value = Vec<T, A>;
|
| 3133 |
|
| 3134 | fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
|
| 3135 | formatter.write_str("a sequence" )
|
| 3136 | }
|
| 3137 |
|
| 3138 | fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>
|
| 3139 | where
|
| 3140 | S: serde::de::SeqAccess<'de>,
|
| 3141 | {
|
| 3142 | let mut values = Vec::with_capacity_in(cautious(seq.size_hint()), A::default());
|
| 3143 |
|
| 3144 | while let Some(value) = seq.next_element()? {
|
| 3145 | values.push(value);
|
| 3146 | }
|
| 3147 |
|
| 3148 | Ok(values)
|
| 3149 | }
|
| 3150 | }
|
| 3151 |
|
| 3152 | let visitor = VecVisitor {
|
| 3153 | marker: PhantomData,
|
| 3154 | };
|
| 3155 | deserializer.deserialize_seq(visitor)
|
| 3156 | }
|
| 3157 |
|
| 3158 | #[inline (always)]
|
| 3159 | fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error>
|
| 3160 | where
|
| 3161 | D: serde::de::Deserializer<'de>,
|
| 3162 | {
|
| 3163 | struct VecInPlaceVisitor<'a, T: 'a, A: Allocator + 'a>(&'a mut Vec<T, A>);
|
| 3164 |
|
| 3165 | impl<'a, 'de, T, A> serde::de::Visitor<'de> for VecInPlaceVisitor<'a, T, A>
|
| 3166 | where
|
| 3167 | T: serde::de::Deserialize<'de>,
|
| 3168 | A: Allocator + Default,
|
| 3169 | {
|
| 3170 | type Value = ();
|
| 3171 |
|
| 3172 | fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
|
| 3173 | formatter.write_str("a sequence" )
|
| 3174 | }
|
| 3175 |
|
| 3176 | fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>
|
| 3177 | where
|
| 3178 | S: serde::de::SeqAccess<'de>,
|
| 3179 | {
|
| 3180 | let hint = cautious(seq.size_hint());
|
| 3181 | if let Some(additional) = hint.checked_sub(self.0.len()) {
|
| 3182 | self.0.reserve(additional);
|
| 3183 | }
|
| 3184 |
|
| 3185 | for i in 0..self.0.len() {
|
| 3186 | let next = {
|
| 3187 | let next_place = InPlaceSeed(&mut self.0[i]);
|
| 3188 | seq.next_element_seed(next_place)?
|
| 3189 | };
|
| 3190 | if next.is_none() {
|
| 3191 | self.0.truncate(i);
|
| 3192 | return Ok(());
|
| 3193 | }
|
| 3194 | }
|
| 3195 |
|
| 3196 | while let Some(value) = seq.next_element()? {
|
| 3197 | self.0.push(value);
|
| 3198 | }
|
| 3199 |
|
| 3200 | Ok(())
|
| 3201 | }
|
| 3202 | }
|
| 3203 |
|
| 3204 | deserializer.deserialize_seq(VecInPlaceVisitor(place))
|
| 3205 | }
|
| 3206 | }
|
| 3207 |
|
| 3208 | #[cfg (feature = "serde" )]
|
| 3209 | pub fn cautious(hint: Option<usize>) -> usize {
|
| 3210 | cmp::min(hint.unwrap_or(0), 4096)
|
| 3211 | }
|
| 3212 |
|
| 3213 | /// A DeserializeSeed helper for implementing deserialize_in_place Visitors.
|
| 3214 | ///
|
| 3215 | /// Wraps a mutable reference and calls deserialize_in_place on it.
|
| 3216 |
|
| 3217 | #[cfg (feature = "serde" )]
|
| 3218 | pub struct InPlaceSeed<'a, T: 'a>(pub &'a mut T);
|
| 3219 |
|
| 3220 | #[cfg (feature = "serde" )]
|
| 3221 | impl<'a, 'de, T> serde::de::DeserializeSeed<'de> for InPlaceSeed<'a, T>
|
| 3222 | where
|
| 3223 | T: serde::de::Deserialize<'de>,
|
| 3224 | {
|
| 3225 | type Value = ();
|
| 3226 | fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
|
| 3227 | where
|
| 3228 | D: serde::de::Deserializer<'de>,
|
| 3229 | {
|
| 3230 | T::deserialize_in_place(deserializer, self.0)
|
| 3231 | }
|
| 3232 | }
|
| 3233 | |