| 1 | use crate::{
|
| 2 | alloc::{Allocator, Global},
|
| 3 | vec::Vec,
|
| 4 | };
|
| 5 |
|
| 6 | /// Slice methods that use `Box` and `Vec` from this crate.
|
| 7 | pub trait SliceExt<T> {
|
| 8 | /// Copies `self` into a new `Vec`.
|
| 9 | ///
|
| 10 | /// # Examples
|
| 11 | ///
|
| 12 | /// ```
|
| 13 | /// let s = [10, 40, 30];
|
| 14 | /// let x = s.to_vec();
|
| 15 | /// // Here, `s` and `x` can be modified independently.
|
| 16 | /// ```
|
| 17 | #[cfg (not(no_global_oom_handling))]
|
| 18 | #[inline (always)]
|
| 19 | fn to_vec(&self) -> Vec<T, Global>
|
| 20 | where
|
| 21 | T: Clone,
|
| 22 | {
|
| 23 | self.to_vec_in(Global)
|
| 24 | }
|
| 25 |
|
| 26 | /// Copies `self` into a new `Vec` with an allocator.
|
| 27 | ///
|
| 28 | /// # Examples
|
| 29 | ///
|
| 30 | /// ```
|
| 31 | /// #![feature(allocator_api)]
|
| 32 | ///
|
| 33 | /// use std::alloc::System;
|
| 34 | ///
|
| 35 | /// let s = [10, 40, 30];
|
| 36 | /// let x = s.to_vec_in(System);
|
| 37 | /// // Here, `s` and `x` can be modified independently.
|
| 38 | /// ```
|
| 39 | #[cfg (not(no_global_oom_handling))]
|
| 40 | fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
|
| 41 | where
|
| 42 | T: Clone;
|
| 43 |
|
| 44 | /// Creates a vector by copying a slice `n` times.
|
| 45 | ///
|
| 46 | /// # Panics
|
| 47 | ///
|
| 48 | /// This function will panic if the capacity would overflow.
|
| 49 | ///
|
| 50 | /// # Examples
|
| 51 | ///
|
| 52 | /// Basic usage:
|
| 53 | ///
|
| 54 | /// ```
|
| 55 | /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
|
| 56 | /// ```
|
| 57 | ///
|
| 58 | /// A panic upon overflow:
|
| 59 | ///
|
| 60 | /// ```should_panic
|
| 61 | /// // this will panic at runtime
|
| 62 | /// b"0123456789abcdef" .repeat(usize::MAX);
|
| 63 | /// ```
|
| 64 | fn repeat(&self, n: usize) -> Vec<T, Global>
|
| 65 | where
|
| 66 | T: Copy;
|
| 67 | }
|
| 68 |
|
| 69 | impl<T> SliceExt<T> for [T] {
|
| 70 | #[cfg (not(no_global_oom_handling))]
|
| 71 | #[inline ]
|
| 72 | fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
|
| 73 | where
|
| 74 | T: Clone,
|
| 75 | {
|
| 76 | struct DropGuard<'a, T, A: Allocator> {
|
| 77 | vec: &'a mut Vec<T, A>,
|
| 78 | num_init: usize,
|
| 79 | }
|
| 80 | impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
|
| 81 | #[inline ]
|
| 82 | fn drop(&mut self) {
|
| 83 | // SAFETY:
|
| 84 | // items were marked initialized in the loop below
|
| 85 | unsafe {
|
| 86 | self.vec.set_len(self.num_init);
|
| 87 | }
|
| 88 | }
|
| 89 | }
|
| 90 |
|
| 91 | let mut vec = Vec::with_capacity_in(self.len(), alloc);
|
| 92 | let mut guard = DropGuard {
|
| 93 | vec: &mut vec,
|
| 94 | num_init: 0,
|
| 95 | };
|
| 96 | let slots = guard.vec.spare_capacity_mut();
|
| 97 | // .take(slots.len()) is necessary for LLVM to remove bounds checks
|
| 98 | // and has better codegen than zip.
|
| 99 | for (i, b) in self.iter().enumerate().take(slots.len()) {
|
| 100 | guard.num_init = i;
|
| 101 | slots[i].write(b.clone());
|
| 102 | }
|
| 103 | core::mem::forget(guard);
|
| 104 | // SAFETY:
|
| 105 | // the vec was allocated and initialized above to at least this length.
|
| 106 | unsafe {
|
| 107 | vec.set_len(self.len());
|
| 108 | }
|
| 109 | vec
|
| 110 | }
|
| 111 |
|
| 112 | #[cfg (not(no_global_oom_handling))]
|
| 113 | #[inline ]
|
| 114 | fn repeat(&self, n: usize) -> Vec<T, Global>
|
| 115 | where
|
| 116 | T: Copy,
|
| 117 | {
|
| 118 | if n == 0 {
|
| 119 | return Vec::new();
|
| 120 | }
|
| 121 |
|
| 122 | // If `n` is larger than zero, it can be split as
|
| 123 | // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
|
| 124 | // `2^expn` is the number represented by the leftmost '1' bit of `n`,
|
| 125 | // and `rem` is the remaining part of `n`.
|
| 126 |
|
| 127 | // Using `Vec` to access `set_len()`.
|
| 128 | let capacity = self.len().checked_mul(n).expect("capacity overflow" );
|
| 129 | let mut buf = Vec::with_capacity(capacity);
|
| 130 |
|
| 131 | // `2^expn` repetition is done by doubling `buf` `expn`-times.
|
| 132 | buf.extend(self);
|
| 133 | {
|
| 134 | let mut m = n >> 1;
|
| 135 | // If `m > 0`, there are remaining bits up to the leftmost '1'.
|
| 136 | while m > 0 {
|
| 137 | // `buf.extend(buf)`:
|
| 138 | unsafe {
|
| 139 | core::ptr::copy_nonoverlapping(
|
| 140 | buf.as_ptr(),
|
| 141 | (buf.as_mut_ptr() as *mut T).add(buf.len()),
|
| 142 | buf.len(),
|
| 143 | );
|
| 144 | // `buf` has capacity of `self.len() * n`.
|
| 145 | let buf_len = buf.len();
|
| 146 | buf.set_len(buf_len * 2);
|
| 147 | }
|
| 148 |
|
| 149 | m >>= 1;
|
| 150 | }
|
| 151 | }
|
| 152 |
|
| 153 | // `rem` (`= n - 2^expn`) repetition is done by copying
|
| 154 | // first `rem` repetitions from `buf` itself.
|
| 155 | let rem_len = capacity - buf.len(); // `self.len() * rem`
|
| 156 | if rem_len > 0 {
|
| 157 | // `buf.extend(buf[0 .. rem_len])`:
|
| 158 | unsafe {
|
| 159 | // This is non-overlapping since `2^expn > rem`.
|
| 160 | core::ptr::copy_nonoverlapping(
|
| 161 | buf.as_ptr(),
|
| 162 | (buf.as_mut_ptr() as *mut T).add(buf.len()),
|
| 163 | rem_len,
|
| 164 | );
|
| 165 | // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
|
| 166 | buf.set_len(capacity);
|
| 167 | }
|
| 168 | }
|
| 169 | buf
|
| 170 | }
|
| 171 | }
|
| 172 | |