1 | //! Async I/O and timers. |
2 | //! |
3 | //! This crate provides two tools: |
4 | //! |
5 | //! * [`Async`], an adapter for standard networking types (and [many other] types) to use in |
6 | //! async programs. |
7 | //! * [`Timer`], a future or stream that emits timed events. |
8 | //! |
9 | //! For concrete async networking types built on top of this crate, see [`async-net`]. |
10 | //! |
11 | //! [many other]: https://github.com/smol-rs/async-io/tree/master/examples |
12 | //! [`async-net`]: https://docs.rs/async-net |
13 | //! |
14 | //! # Implementation |
15 | //! |
16 | //! The first time [`Async`] or [`Timer`] is used, a thread named "async-io" will be spawned. |
17 | //! The purpose of this thread is to wait for I/O events reported by the operating system, and then |
18 | //! wake appropriate futures blocked on I/O or timers when they can be resumed. |
19 | //! |
20 | //! To wait for the next I/O event, the "async-io" thread uses [epoll] on Linux/Android/illumos, |
21 | //! [kqueue] on macOS/iOS/BSD, [event ports] on illumos/Solaris, and [IOCP] on Windows. That |
22 | //! functionality is provided by the [`polling`] crate. |
23 | //! |
24 | //! However, note that you can also process I/O events and wake futures on any thread using the |
25 | //! [`block_on()`] function. The "async-io" thread is therefore just a fallback mechanism |
26 | //! processing I/O events in case no other threads are. |
27 | //! |
28 | //! [epoll]: https://en.wikipedia.org/wiki/Epoll |
29 | //! [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
30 | //! [event ports]: https://illumos.org/man/port_create |
31 | //! [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
32 | //! [`polling`]: https://docs.rs/polling |
33 | //! |
34 | //! # Examples |
35 | //! |
36 | //! Connect to `example.com:80`, or time out after 10 seconds. |
37 | //! |
38 | //! ``` |
39 | //! use async_io::{Async, Timer}; |
40 | //! use futures_lite::{future::FutureExt, io}; |
41 | //! |
42 | //! use std::net::{TcpStream, ToSocketAddrs}; |
43 | //! use std::time::Duration; |
44 | //! |
45 | //! # futures_lite::future::block_on(async { |
46 | //! let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
47 | //! |
48 | //! let stream = Async::<TcpStream>::connect(addr).or(async { |
49 | //! Timer::after(Duration::from_secs(10)).await; |
50 | //! Err(io::ErrorKind::TimedOut.into()) |
51 | //! }) |
52 | //! .await?; |
53 | //! # std::io::Result::Ok(()) }); |
54 | //! ``` |
55 | |
56 | #![warn (missing_docs, missing_debug_implementations, rust_2018_idioms)] |
57 | |
58 | use std::convert::TryFrom; |
59 | use std::future::Future; |
60 | use std::io::{self, IoSlice, IoSliceMut, Read, Write}; |
61 | use std::net::{SocketAddr, TcpListener, TcpStream, UdpSocket}; |
62 | use std::pin::Pin; |
63 | use std::sync::Arc; |
64 | use std::task::{Context, Poll, Waker}; |
65 | use std::time::{Duration, Instant}; |
66 | |
67 | #[cfg (all(not(async_io_no_io_safety), unix))] |
68 | use std::os::unix::io::{AsFd, BorrowedFd, OwnedFd}; |
69 | #[cfg (unix)] |
70 | use std::{ |
71 | os::unix::io::{AsRawFd, RawFd}, |
72 | os::unix::net::{SocketAddr as UnixSocketAddr, UnixDatagram, UnixListener, UnixStream}, |
73 | path::Path, |
74 | }; |
75 | |
76 | #[cfg (windows)] |
77 | use std::os::windows::io::{AsRawSocket, RawSocket}; |
78 | #[cfg (all(not(async_io_no_io_safety), windows))] |
79 | use std::os::windows::io::{AsSocket, BorrowedSocket, OwnedSocket}; |
80 | |
81 | use futures_lite::io::{AsyncRead, AsyncWrite}; |
82 | use futures_lite::stream::{self, Stream}; |
83 | use futures_lite::{future, pin, ready}; |
84 | use socket2::{Domain, Protocol, SockAddr, Socket, Type}; |
85 | |
86 | use crate::reactor::{Reactor, Source}; |
87 | |
88 | mod driver; |
89 | mod reactor; |
90 | |
91 | pub use driver::block_on; |
92 | pub use reactor::{Readable, ReadableOwned, Writable, WritableOwned}; |
93 | |
94 | /// Use `Duration::MAX` once `duration_constants` are stabilized. |
95 | fn duration_max() -> Duration { |
96 | Duration::new(secs:std::u64::MAX, nanos:1_000_000_000 - 1) |
97 | } |
98 | |
99 | /// A future or stream that emits timed events. |
100 | /// |
101 | /// Timers are futures that output a single [`Instant`] when they fire. |
102 | /// |
103 | /// Timers are also streams that can output [`Instant`]s periodically. |
104 | /// |
105 | /// # Precision |
106 | /// |
107 | /// There is a limit on the maximum precision that a `Timer` can provide. This limit is |
108 | /// dependent on the current platform; for instance, on Windows, the maximum precision is |
109 | /// about 16 milliseconds. Because of this limit, the timer may sleep for longer than the |
110 | /// requested duration. It will never sleep for less. |
111 | /// |
112 | /// # Examples |
113 | /// |
114 | /// Sleep for 1 second: |
115 | /// |
116 | /// ``` |
117 | /// use async_io::Timer; |
118 | /// use std::time::Duration; |
119 | /// |
120 | /// # futures_lite::future::block_on(async { |
121 | /// Timer::after(Duration::from_secs(1)).await; |
122 | /// # }); |
123 | /// ``` |
124 | /// |
125 | /// Timeout after 1 second: |
126 | /// |
127 | /// ``` |
128 | /// use async_io::Timer; |
129 | /// use futures_lite::FutureExt; |
130 | /// use std::time::Duration; |
131 | /// |
132 | /// # futures_lite::future::block_on(async { |
133 | /// let addrs = async_net::resolve("google.com:80" ) |
134 | /// .or(async { |
135 | /// Timer::after(Duration::from_secs(10)).await; |
136 | /// Err(std::io::ErrorKind::TimedOut.into()) |
137 | /// }) |
138 | /// .await?; |
139 | /// # std::io::Result::Ok(()) }); |
140 | /// ``` |
141 | #[derive (Debug)] |
142 | pub struct Timer { |
143 | /// This timer's ID and last waker that polled it. |
144 | /// |
145 | /// When this field is set to `None`, this timer is not registered in the reactor. |
146 | id_and_waker: Option<(usize, Waker)>, |
147 | |
148 | /// The next instant at which this timer fires. |
149 | /// |
150 | /// If this timer is a blank timer, this value is None. If the timer |
151 | /// must be set, this value contains the next instant at which the |
152 | /// timer must fire. |
153 | when: Option<Instant>, |
154 | |
155 | /// The period. |
156 | period: Duration, |
157 | } |
158 | |
159 | impl Timer { |
160 | /// Creates a timer that will never fire. |
161 | /// |
162 | /// # Examples |
163 | /// |
164 | /// This function may also be useful for creating a function with an optional timeout. |
165 | /// |
166 | /// ``` |
167 | /// # futures_lite::future::block_on(async { |
168 | /// use async_io::Timer; |
169 | /// use futures_lite::prelude::*; |
170 | /// use std::time::Duration; |
171 | /// |
172 | /// async fn run_with_timeout(timeout: Option<Duration>) { |
173 | /// let timer = timeout |
174 | /// .map(|timeout| Timer::after(timeout)) |
175 | /// .unwrap_or_else(Timer::never); |
176 | /// |
177 | /// run_lengthy_operation().or(timer).await; |
178 | /// } |
179 | /// # // Note that since a Timer as a Future returns an Instant, |
180 | /// # // this function needs to return an Instant to be used |
181 | /// # // in "or". |
182 | /// # async fn run_lengthy_operation() -> std::time::Instant { |
183 | /// # std::time::Instant::now() |
184 | /// # } |
185 | /// |
186 | /// // Times out after 5 seconds. |
187 | /// run_with_timeout(Some(Duration::from_secs(5))).await; |
188 | /// // Does not time out. |
189 | /// run_with_timeout(None).await; |
190 | /// # }); |
191 | /// ``` |
192 | pub fn never() -> Timer { |
193 | Timer { |
194 | id_and_waker: None, |
195 | when: None, |
196 | period: duration_max(), |
197 | } |
198 | } |
199 | |
200 | /// Creates a timer that emits an event once after the given duration of time. |
201 | /// |
202 | /// # Examples |
203 | /// |
204 | /// ``` |
205 | /// use async_io::Timer; |
206 | /// use std::time::Duration; |
207 | /// |
208 | /// # futures_lite::future::block_on(async { |
209 | /// Timer::after(Duration::from_secs(1)).await; |
210 | /// # }); |
211 | /// ``` |
212 | pub fn after(duration: Duration) -> Timer { |
213 | Instant::now() |
214 | .checked_add(duration) |
215 | .map_or_else(Timer::never, Timer::at) |
216 | } |
217 | |
218 | /// Creates a timer that emits an event once at the given time instant. |
219 | /// |
220 | /// # Examples |
221 | /// |
222 | /// ``` |
223 | /// use async_io::Timer; |
224 | /// use std::time::{Duration, Instant}; |
225 | /// |
226 | /// # futures_lite::future::block_on(async { |
227 | /// let now = Instant::now(); |
228 | /// let when = now + Duration::from_secs(1); |
229 | /// Timer::at(when).await; |
230 | /// # }); |
231 | /// ``` |
232 | pub fn at(instant: Instant) -> Timer { |
233 | // Use Duration::MAX once duration_constants are stabilized. |
234 | Timer::interval_at(instant, duration_max()) |
235 | } |
236 | |
237 | /// Creates a timer that emits events periodically. |
238 | /// |
239 | /// # Examples |
240 | /// |
241 | /// ``` |
242 | /// use async_io::Timer; |
243 | /// use futures_lite::StreamExt; |
244 | /// use std::time::{Duration, Instant}; |
245 | /// |
246 | /// # futures_lite::future::block_on(async { |
247 | /// let period = Duration::from_secs(1); |
248 | /// Timer::interval(period).next().await; |
249 | /// # }); |
250 | /// ``` |
251 | pub fn interval(period: Duration) -> Timer { |
252 | Instant::now() |
253 | .checked_add(period) |
254 | .map_or_else(Timer::never, |at| Timer::interval_at(at, period)) |
255 | } |
256 | |
257 | /// Creates a timer that emits events periodically, starting at `start`. |
258 | /// |
259 | /// # Examples |
260 | /// |
261 | /// ``` |
262 | /// use async_io::Timer; |
263 | /// use futures_lite::StreamExt; |
264 | /// use std::time::{Duration, Instant}; |
265 | /// |
266 | /// # futures_lite::future::block_on(async { |
267 | /// let start = Instant::now(); |
268 | /// let period = Duration::from_secs(1); |
269 | /// Timer::interval_at(start, period).next().await; |
270 | /// # }); |
271 | /// ``` |
272 | pub fn interval_at(start: Instant, period: Duration) -> Timer { |
273 | Timer { |
274 | id_and_waker: None, |
275 | when: Some(start), |
276 | period, |
277 | } |
278 | } |
279 | |
280 | /// Indicates whether or not this timer will ever fire. |
281 | /// |
282 | /// [`never()`] will never fire, and timers created with [`after()`] or [`at()`] will fire |
283 | /// if the duration is not too large. |
284 | /// |
285 | /// # Examples |
286 | /// |
287 | /// ``` |
288 | /// use async_io::Timer; |
289 | /// use std::time::Duration; |
290 | /// |
291 | /// // `never` will never fire. |
292 | /// assert!(!Timer::never().will_fire()); |
293 | /// |
294 | /// // `after` will fire if the duration is not too large. |
295 | /// assert!(Timer::after(Duration::from_secs(1)).will_fire()); |
296 | /// assert!(!Timer::after(Duration::MAX).will_fire()); |
297 | /// ``` |
298 | #[inline ] |
299 | pub fn will_fire(&self) -> bool { |
300 | self.when.is_some() |
301 | } |
302 | |
303 | /// Sets the timer to emit an en event once after the given duration of time. |
304 | /// |
305 | /// Note that resetting a timer is different from creating a new timer because |
306 | /// [`set_after()`][`Timer::set_after()`] does not remove the waker associated with the task |
307 | /// that is polling the timer. |
308 | /// |
309 | /// # Examples |
310 | /// |
311 | /// ``` |
312 | /// use async_io::Timer; |
313 | /// use std::time::Duration; |
314 | /// |
315 | /// # futures_lite::future::block_on(async { |
316 | /// let mut t = Timer::after(Duration::from_secs(1)); |
317 | /// t.set_after(Duration::from_millis(100)); |
318 | /// # }); |
319 | /// ``` |
320 | pub fn set_after(&mut self, duration: Duration) { |
321 | match Instant::now().checked_add(duration) { |
322 | Some(instant) => self.set_at(instant), |
323 | None => { |
324 | // Overflow to never going off. |
325 | self.clear(); |
326 | self.when = None; |
327 | } |
328 | } |
329 | } |
330 | |
331 | /// Sets the timer to emit an event once at the given time instant. |
332 | /// |
333 | /// Note that resetting a timer is different from creating a new timer because |
334 | /// [`set_at()`][`Timer::set_at()`] does not remove the waker associated with the task |
335 | /// that is polling the timer. |
336 | /// |
337 | /// # Examples |
338 | /// |
339 | /// ``` |
340 | /// use async_io::Timer; |
341 | /// use std::time::{Duration, Instant}; |
342 | /// |
343 | /// # futures_lite::future::block_on(async { |
344 | /// let mut t = Timer::after(Duration::from_secs(1)); |
345 | /// |
346 | /// let now = Instant::now(); |
347 | /// let when = now + Duration::from_secs(1); |
348 | /// t.set_at(when); |
349 | /// # }); |
350 | /// ``` |
351 | pub fn set_at(&mut self, instant: Instant) { |
352 | self.clear(); |
353 | |
354 | // Update the timeout. |
355 | self.when = Some(instant); |
356 | |
357 | if let Some((id, waker)) = self.id_and_waker.as_mut() { |
358 | // Re-register the timer with the new timeout. |
359 | *id = Reactor::get().insert_timer(instant, waker); |
360 | } |
361 | } |
362 | |
363 | /// Sets the timer to emit events periodically. |
364 | /// |
365 | /// Note that resetting a timer is different from creating a new timer because |
366 | /// [`set_interval()`][`Timer::set_interval()`] does not remove the waker associated with the |
367 | /// task that is polling the timer. |
368 | /// |
369 | /// # Examples |
370 | /// |
371 | /// ``` |
372 | /// use async_io::Timer; |
373 | /// use futures_lite::StreamExt; |
374 | /// use std::time::{Duration, Instant}; |
375 | /// |
376 | /// # futures_lite::future::block_on(async { |
377 | /// let mut t = Timer::after(Duration::from_secs(1)); |
378 | /// |
379 | /// let period = Duration::from_secs(2); |
380 | /// t.set_interval(period); |
381 | /// # }); |
382 | /// ``` |
383 | pub fn set_interval(&mut self, period: Duration) { |
384 | match Instant::now().checked_add(period) { |
385 | Some(instant) => self.set_interval_at(instant, period), |
386 | None => { |
387 | // Overflow to never going off. |
388 | self.clear(); |
389 | self.when = None; |
390 | } |
391 | } |
392 | } |
393 | |
394 | /// Sets the timer to emit events periodically, starting at `start`. |
395 | /// |
396 | /// Note that resetting a timer is different from creating a new timer because |
397 | /// [`set_interval_at()`][`Timer::set_interval_at()`] does not remove the waker associated with |
398 | /// the task that is polling the timer. |
399 | /// |
400 | /// # Examples |
401 | /// |
402 | /// ``` |
403 | /// use async_io::Timer; |
404 | /// use futures_lite::StreamExt; |
405 | /// use std::time::{Duration, Instant}; |
406 | /// |
407 | /// # futures_lite::future::block_on(async { |
408 | /// let mut t = Timer::after(Duration::from_secs(1)); |
409 | /// |
410 | /// let start = Instant::now(); |
411 | /// let period = Duration::from_secs(2); |
412 | /// t.set_interval_at(start, period); |
413 | /// # }); |
414 | /// ``` |
415 | pub fn set_interval_at(&mut self, start: Instant, period: Duration) { |
416 | self.clear(); |
417 | |
418 | self.when = Some(start); |
419 | self.period = period; |
420 | |
421 | if let Some((id, waker)) = self.id_and_waker.as_mut() { |
422 | // Re-register the timer with the new timeout. |
423 | *id = Reactor::get().insert_timer(start, waker); |
424 | } |
425 | } |
426 | |
427 | /// Helper function to clear the current timer. |
428 | fn clear(&mut self) { |
429 | if let (Some(when), Some((id, _))) = (self.when, self.id_and_waker.as_ref()) { |
430 | // Deregister the timer from the reactor. |
431 | Reactor::get().remove_timer(when, *id); |
432 | } |
433 | } |
434 | } |
435 | |
436 | impl Drop for Timer { |
437 | fn drop(&mut self) { |
438 | if let (Some(when: Instant), Some((id: usize, _))) = (self.when, self.id_and_waker.take()) { |
439 | // Deregister the timer from the reactor. |
440 | Reactor::get().remove_timer(when, id); |
441 | } |
442 | } |
443 | } |
444 | |
445 | impl Future for Timer { |
446 | type Output = Instant; |
447 | |
448 | fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
449 | match self.poll_next(cx) { |
450 | Poll::Ready(Some(when: Instant)) => Poll::Ready(when), |
451 | Poll::Pending => Poll::Pending, |
452 | Poll::Ready(None) => unreachable!(), |
453 | } |
454 | } |
455 | } |
456 | |
457 | impl Stream for Timer { |
458 | type Item = Instant; |
459 | |
460 | fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { |
461 | let this = self.get_mut(); |
462 | |
463 | if let Some(ref mut when) = this.when { |
464 | // Check if the timer has already fired. |
465 | if Instant::now() >= *when { |
466 | if let Some((id, _)) = this.id_and_waker.take() { |
467 | // Deregister the timer from the reactor. |
468 | Reactor::get().remove_timer(*when, id); |
469 | } |
470 | let result_time = *when; |
471 | if let Some(next) = (*when).checked_add(this.period) { |
472 | *when = next; |
473 | // Register the timer in the reactor. |
474 | let id = Reactor::get().insert_timer(next, cx.waker()); |
475 | this.id_and_waker = Some((id, cx.waker().clone())); |
476 | } |
477 | return Poll::Ready(Some(result_time)); |
478 | } else { |
479 | match &this.id_and_waker { |
480 | None => { |
481 | // Register the timer in the reactor. |
482 | let id = Reactor::get().insert_timer(*when, cx.waker()); |
483 | this.id_and_waker = Some((id, cx.waker().clone())); |
484 | } |
485 | Some((id, w)) if !w.will_wake(cx.waker()) => { |
486 | // Deregister the timer from the reactor to remove the old waker. |
487 | Reactor::get().remove_timer(*when, *id); |
488 | |
489 | // Register the timer in the reactor with the new waker. |
490 | let id = Reactor::get().insert_timer(*when, cx.waker()); |
491 | this.id_and_waker = Some((id, cx.waker().clone())); |
492 | } |
493 | Some(_) => {} |
494 | } |
495 | } |
496 | } |
497 | |
498 | Poll::Pending |
499 | } |
500 | } |
501 | |
502 | /// Async adapter for I/O types. |
503 | /// |
504 | /// This type puts an I/O handle into non-blocking mode, registers it in |
505 | /// [epoll]/[kqueue]/[event ports]/[IOCP], and then provides an async interface for it. |
506 | /// |
507 | /// [epoll]: https://en.wikipedia.org/wiki/Epoll |
508 | /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
509 | /// [event ports]: https://illumos.org/man/port_create |
510 | /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
511 | /// |
512 | /// # Caveats |
513 | /// |
514 | /// [`Async`] is a low-level primitive, and as such it comes with some caveats. |
515 | /// |
516 | /// For higher-level primitives built on top of [`Async`], look into [`async-net`] or |
517 | /// [`async-process`] (on Unix). |
518 | /// |
519 | /// [`async-net`]: https://github.com/smol-rs/async-net |
520 | /// [`async-process`]: https://github.com/smol-rs/async-process |
521 | /// |
522 | /// ### Supported types |
523 | /// |
524 | /// [`Async`] supports all networking types, as well as some OS-specific file descriptors like |
525 | /// [timerfd] and [inotify]. |
526 | /// |
527 | /// However, do not use [`Async`] with types like [`File`][`std::fs::File`], |
528 | /// [`Stdin`][`std::io::Stdin`], [`Stdout`][`std::io::Stdout`], or [`Stderr`][`std::io::Stderr`] |
529 | /// because all operating systems have issues with them when put in non-blocking mode. |
530 | /// |
531 | /// [timerfd]: https://github.com/smol-rs/async-io/blob/master/examples/linux-timerfd.rs |
532 | /// [inotify]: https://github.com/smol-rs/async-io/blob/master/examples/linux-inotify.rs |
533 | /// |
534 | /// ### Concurrent I/O |
535 | /// |
536 | /// Note that [`&Async<T>`][`Async`] implements [`AsyncRead`] and [`AsyncWrite`] if `&T` |
537 | /// implements those traits, which means tasks can concurrently read and write using shared |
538 | /// references. |
539 | /// |
540 | /// But there is a catch: only one task can read a time, and only one task can write at a time. It |
541 | /// is okay to have two tasks where one is reading and the other is writing at the same time, but |
542 | /// it is not okay to have two tasks reading at the same time or writing at the same time. If you |
543 | /// try to do that, conflicting tasks will just keep waking each other in turn, thus wasting CPU |
544 | /// time. |
545 | /// |
546 | /// Besides [`AsyncRead`] and [`AsyncWrite`], this caveat also applies to |
547 | /// [`poll_readable()`][`Async::poll_readable()`] and |
548 | /// [`poll_writable()`][`Async::poll_writable()`]. |
549 | /// |
550 | /// However, any number of tasks can be concurrently calling other methods like |
551 | /// [`readable()`][`Async::readable()`] or [`read_with()`][`Async::read_with()`]. |
552 | /// |
553 | /// ### Closing |
554 | /// |
555 | /// Closing the write side of [`Async`] with [`close()`][`futures_lite::AsyncWriteExt::close()`] |
556 | /// simply flushes. If you want to shutdown a TCP or Unix socket, use |
557 | /// [`Shutdown`][`std::net::Shutdown`]. |
558 | /// |
559 | /// # Examples |
560 | /// |
561 | /// Connect to a server and echo incoming messages back to the server: |
562 | /// |
563 | /// ```no_run |
564 | /// use async_io::Async; |
565 | /// use futures_lite::io; |
566 | /// use std::net::TcpStream; |
567 | /// |
568 | /// # futures_lite::future::block_on(async { |
569 | /// // Connect to a local server. |
570 | /// let stream = Async::<TcpStream>::connect(([127, 0, 0, 1], 8000)).await?; |
571 | /// |
572 | /// // Echo all messages from the read side of the stream into the write side. |
573 | /// io::copy(&stream, &stream).await?; |
574 | /// # std::io::Result::Ok(()) }); |
575 | /// ``` |
576 | /// |
577 | /// You can use either predefined async methods or wrap blocking I/O operations in |
578 | /// [`Async::read_with()`], [`Async::read_with_mut()`], [`Async::write_with()`], and |
579 | /// [`Async::write_with_mut()`]: |
580 | /// |
581 | /// ```no_run |
582 | /// use async_io::Async; |
583 | /// use std::net::TcpListener; |
584 | /// |
585 | /// # futures_lite::future::block_on(async { |
586 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
587 | /// |
588 | /// // These two lines are equivalent: |
589 | /// let (stream, addr) = listener.accept().await?; |
590 | /// let (stream, addr) = listener.read_with(|inner| inner.accept()).await?; |
591 | /// # std::io::Result::Ok(()) }); |
592 | /// ``` |
593 | #[derive (Debug)] |
594 | pub struct Async<T> { |
595 | /// A source registered in the reactor. |
596 | source: Arc<Source>, |
597 | |
598 | /// The inner I/O handle. |
599 | io: Option<T>, |
600 | } |
601 | |
602 | impl<T> Unpin for Async<T> {} |
603 | |
604 | #[cfg (unix)] |
605 | impl<T: AsRawFd> Async<T> { |
606 | /// Creates an async I/O handle. |
607 | /// |
608 | /// This method will put the handle in non-blocking mode and register it in |
609 | /// [epoll]/[kqueue]/[event ports]/[IOCP]. |
610 | /// |
611 | /// On Unix systems, the handle must implement `AsRawFd`, while on Windows it must implement |
612 | /// `AsRawSocket`. |
613 | /// |
614 | /// [epoll]: https://en.wikipedia.org/wiki/Epoll |
615 | /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
616 | /// [event ports]: https://illumos.org/man/port_create |
617 | /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
618 | /// |
619 | /// # Examples |
620 | /// |
621 | /// ``` |
622 | /// use async_io::Async; |
623 | /// use std::net::{SocketAddr, TcpListener}; |
624 | /// |
625 | /// # futures_lite::future::block_on(async { |
626 | /// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?; |
627 | /// let listener = Async::new(listener)?; |
628 | /// # std::io::Result::Ok(()) }); |
629 | /// ``` |
630 | pub fn new(io: T) -> io::Result<Async<T>> { |
631 | let raw = io.as_raw_fd(); |
632 | |
633 | // Put the file descriptor in non-blocking mode. |
634 | // |
635 | // Safety: We assume `as_raw_fd()` returns a valid fd. When we can |
636 | // depend on Rust >= 1.63, where `AsFd` is stabilized, and when |
637 | // `TimerFd` implements it, we can remove this unsafe and simplify this. |
638 | let fd = unsafe { rustix::fd::BorrowedFd::borrow_raw(raw) }; |
639 | cfg_if::cfg_if! { |
640 | // ioctl(FIONBIO) sets the flag atomically, but we use this only on Linux |
641 | // for now, as with the standard library, because it seems to behave |
642 | // differently depending on the platform. |
643 | // https://github.com/rust-lang/rust/commit/efeb42be2837842d1beb47b51bb693c7474aba3d |
644 | // https://github.com/libuv/libuv/blob/e9d91fccfc3e5ff772d5da90e1c4a24061198ca0/src/unix/poll.c#L78-L80 |
645 | // https://github.com/tokio-rs/mio/commit/0db49f6d5caf54b12176821363d154384357e70a |
646 | if #[cfg(target_os = "linux" )] { |
647 | rustix::io::ioctl_fionbio(fd, true)?; |
648 | } else { |
649 | let previous = rustix::fs::fcntl_getfl(fd)?; |
650 | let new = previous | rustix::fs::OFlags::NONBLOCK; |
651 | if new != previous { |
652 | rustix::fs::fcntl_setfl(fd, new)?; |
653 | } |
654 | } |
655 | } |
656 | |
657 | Ok(Async { |
658 | source: Reactor::get().insert_io(raw)?, |
659 | io: Some(io), |
660 | }) |
661 | } |
662 | } |
663 | |
664 | #[cfg (unix)] |
665 | impl<T: AsRawFd> AsRawFd for Async<T> { |
666 | fn as_raw_fd(&self) -> RawFd { |
667 | self.source.raw |
668 | } |
669 | } |
670 | |
671 | #[cfg (all(not(async_io_no_io_safety), unix))] |
672 | impl<T: AsFd> AsFd for Async<T> { |
673 | fn as_fd(&self) -> BorrowedFd<'_> { |
674 | self.get_ref().as_fd() |
675 | } |
676 | } |
677 | |
678 | #[cfg (all(not(async_io_no_io_safety), unix))] |
679 | impl<T: AsRawFd + From<OwnedFd>> TryFrom<OwnedFd> for Async<T> { |
680 | type Error = io::Error; |
681 | |
682 | fn try_from(value: OwnedFd) -> Result<Self, Self::Error> { |
683 | Async::new(io:value.into()) |
684 | } |
685 | } |
686 | |
687 | #[cfg (all(not(async_io_no_io_safety), unix))] |
688 | impl<T: Into<OwnedFd>> TryFrom<Async<T>> for OwnedFd { |
689 | type Error = io::Error; |
690 | |
691 | fn try_from(value: Async<T>) -> Result<Self, Self::Error> { |
692 | value.into_inner().map(op:Into::into) |
693 | } |
694 | } |
695 | |
696 | #[cfg (windows)] |
697 | impl<T: AsRawSocket> Async<T> { |
698 | /// Creates an async I/O handle. |
699 | /// |
700 | /// This method will put the handle in non-blocking mode and register it in |
701 | /// [epoll]/[kqueue]/[event ports]/[IOCP]. |
702 | /// |
703 | /// On Unix systems, the handle must implement `AsRawFd`, while on Windows it must implement |
704 | /// `AsRawSocket`. |
705 | /// |
706 | /// [epoll]: https://en.wikipedia.org/wiki/Epoll |
707 | /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
708 | /// [event ports]: https://illumos.org/man/port_create |
709 | /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
710 | /// |
711 | /// # Examples |
712 | /// |
713 | /// ``` |
714 | /// use async_io::Async; |
715 | /// use std::net::{SocketAddr, TcpListener}; |
716 | /// |
717 | /// # futures_lite::future::block_on(async { |
718 | /// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?; |
719 | /// let listener = Async::new(listener)?; |
720 | /// # std::io::Result::Ok(()) }); |
721 | /// ``` |
722 | pub fn new(io: T) -> io::Result<Async<T>> { |
723 | let sock = io.as_raw_socket(); |
724 | let borrowed = unsafe { rustix::fd::BorrowedFd::borrow_raw(sock) }; |
725 | |
726 | // Put the socket in non-blocking mode. |
727 | // |
728 | // Safety: We assume `as_raw_socket()` returns a valid fd. When we can |
729 | // depend on Rust >= 1.63, where `AsFd` is stabilized, and when |
730 | // `TimerFd` implements it, we can remove this unsafe and simplify this. |
731 | rustix::io::ioctl_fionbio(borrowed, true)?; |
732 | |
733 | Ok(Async { |
734 | source: Reactor::get().insert_io(sock)?, |
735 | io: Some(io), |
736 | }) |
737 | } |
738 | } |
739 | |
740 | #[cfg (windows)] |
741 | impl<T: AsRawSocket> AsRawSocket for Async<T> { |
742 | fn as_raw_socket(&self) -> RawSocket { |
743 | self.source.raw |
744 | } |
745 | } |
746 | |
747 | #[cfg (all(not(async_io_no_io_safety), windows))] |
748 | impl<T: AsSocket> AsSocket for Async<T> { |
749 | fn as_socket(&self) -> BorrowedSocket<'_> { |
750 | self.get_ref().as_socket() |
751 | } |
752 | } |
753 | |
754 | #[cfg (all(not(async_io_no_io_safety), windows))] |
755 | impl<T: AsRawSocket + From<OwnedSocket>> TryFrom<OwnedSocket> for Async<T> { |
756 | type Error = io::Error; |
757 | |
758 | fn try_from(value: OwnedSocket) -> Result<Self, Self::Error> { |
759 | Async::new(value.into()) |
760 | } |
761 | } |
762 | |
763 | #[cfg (all(not(async_io_no_io_safety), windows))] |
764 | impl<T: Into<OwnedSocket>> TryFrom<Async<T>> for OwnedSocket { |
765 | type Error = io::Error; |
766 | |
767 | fn try_from(value: Async<T>) -> Result<Self, Self::Error> { |
768 | value.into_inner().map(Into::into) |
769 | } |
770 | } |
771 | |
772 | impl<T> Async<T> { |
773 | /// Gets a reference to the inner I/O handle. |
774 | /// |
775 | /// # Examples |
776 | /// |
777 | /// ``` |
778 | /// use async_io::Async; |
779 | /// use std::net::TcpListener; |
780 | /// |
781 | /// # futures_lite::future::block_on(async { |
782 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
783 | /// let inner = listener.get_ref(); |
784 | /// # std::io::Result::Ok(()) }); |
785 | /// ``` |
786 | pub fn get_ref(&self) -> &T { |
787 | self.io.as_ref().unwrap() |
788 | } |
789 | |
790 | /// Gets a mutable reference to the inner I/O handle. |
791 | /// |
792 | /// # Examples |
793 | /// |
794 | /// ``` |
795 | /// use async_io::Async; |
796 | /// use std::net::TcpListener; |
797 | /// |
798 | /// # futures_lite::future::block_on(async { |
799 | /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
800 | /// let inner = listener.get_mut(); |
801 | /// # std::io::Result::Ok(()) }); |
802 | /// ``` |
803 | pub fn get_mut(&mut self) -> &mut T { |
804 | self.io.as_mut().unwrap() |
805 | } |
806 | |
807 | /// Unwraps the inner I/O handle. |
808 | /// |
809 | /// This method will **not** put the I/O handle back into blocking mode. |
810 | /// |
811 | /// # Examples |
812 | /// |
813 | /// ``` |
814 | /// use async_io::Async; |
815 | /// use std::net::TcpListener; |
816 | /// |
817 | /// # futures_lite::future::block_on(async { |
818 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
819 | /// let inner = listener.into_inner()?; |
820 | /// |
821 | /// // Put the listener back into blocking mode. |
822 | /// inner.set_nonblocking(false)?; |
823 | /// # std::io::Result::Ok(()) }); |
824 | /// ``` |
825 | pub fn into_inner(mut self) -> io::Result<T> { |
826 | let io = self.io.take().unwrap(); |
827 | Reactor::get().remove_io(&self.source)?; |
828 | Ok(io) |
829 | } |
830 | |
831 | /// Waits until the I/O handle is readable. |
832 | /// |
833 | /// This method completes when a read operation on this I/O handle wouldn't block. |
834 | /// |
835 | /// # Examples |
836 | /// |
837 | /// ```no_run |
838 | /// use async_io::Async; |
839 | /// use std::net::TcpListener; |
840 | /// |
841 | /// # futures_lite::future::block_on(async { |
842 | /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
843 | /// |
844 | /// // Wait until a client can be accepted. |
845 | /// listener.readable().await?; |
846 | /// # std::io::Result::Ok(()) }); |
847 | /// ``` |
848 | pub fn readable(&self) -> Readable<'_, T> { |
849 | Source::readable(self) |
850 | } |
851 | |
852 | /// Waits until the I/O handle is readable. |
853 | /// |
854 | /// This method completes when a read operation on this I/O handle wouldn't block. |
855 | pub fn readable_owned(self: Arc<Self>) -> ReadableOwned<T> { |
856 | Source::readable_owned(self) |
857 | } |
858 | |
859 | /// Waits until the I/O handle is writable. |
860 | /// |
861 | /// This method completes when a write operation on this I/O handle wouldn't block. |
862 | /// |
863 | /// # Examples |
864 | /// |
865 | /// ``` |
866 | /// use async_io::Async; |
867 | /// use std::net::{TcpStream, ToSocketAddrs}; |
868 | /// |
869 | /// # futures_lite::future::block_on(async { |
870 | /// let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
871 | /// let stream = Async::<TcpStream>::connect(addr).await?; |
872 | /// |
873 | /// // Wait until the stream is writable. |
874 | /// stream.writable().await?; |
875 | /// # std::io::Result::Ok(()) }); |
876 | /// ``` |
877 | pub fn writable(&self) -> Writable<'_, T> { |
878 | Source::writable(self) |
879 | } |
880 | |
881 | /// Waits until the I/O handle is writable. |
882 | /// |
883 | /// This method completes when a write operation on this I/O handle wouldn't block. |
884 | pub fn writable_owned(self: Arc<Self>) -> WritableOwned<T> { |
885 | Source::writable_owned(self) |
886 | } |
887 | |
888 | /// Polls the I/O handle for readability. |
889 | /// |
890 | /// When this method returns [`Poll::Ready`], that means the OS has delivered an event |
891 | /// indicating readability since the last time this task has called the method and received |
892 | /// [`Poll::Pending`]. |
893 | /// |
894 | /// # Caveats |
895 | /// |
896 | /// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks |
897 | /// will just keep waking each other in turn, thus wasting CPU time. |
898 | /// |
899 | /// Note that the [`AsyncRead`] implementation for [`Async`] also uses this method. |
900 | /// |
901 | /// # Examples |
902 | /// |
903 | /// ```no_run |
904 | /// use async_io::Async; |
905 | /// use futures_lite::future; |
906 | /// use std::net::TcpListener; |
907 | /// |
908 | /// # futures_lite::future::block_on(async { |
909 | /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
910 | /// |
911 | /// // Wait until a client can be accepted. |
912 | /// future::poll_fn(|cx| listener.poll_readable(cx)).await?; |
913 | /// # std::io::Result::Ok(()) }); |
914 | /// ``` |
915 | pub fn poll_readable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
916 | self.source.poll_readable(cx) |
917 | } |
918 | |
919 | /// Polls the I/O handle for writability. |
920 | /// |
921 | /// When this method returns [`Poll::Ready`], that means the OS has delivered an event |
922 | /// indicating writability since the last time this task has called the method and received |
923 | /// [`Poll::Pending`]. |
924 | /// |
925 | /// # Caveats |
926 | /// |
927 | /// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks |
928 | /// will just keep waking each other in turn, thus wasting CPU time. |
929 | /// |
930 | /// Note that the [`AsyncWrite`] implementation for [`Async`] also uses this method. |
931 | /// |
932 | /// # Examples |
933 | /// |
934 | /// ``` |
935 | /// use async_io::Async; |
936 | /// use futures_lite::future; |
937 | /// use std::net::{TcpStream, ToSocketAddrs}; |
938 | /// |
939 | /// # futures_lite::future::block_on(async { |
940 | /// let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
941 | /// let stream = Async::<TcpStream>::connect(addr).await?; |
942 | /// |
943 | /// // Wait until the stream is writable. |
944 | /// future::poll_fn(|cx| stream.poll_writable(cx)).await?; |
945 | /// # std::io::Result::Ok(()) }); |
946 | /// ``` |
947 | pub fn poll_writable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
948 | self.source.poll_writable(cx) |
949 | } |
950 | |
951 | /// Performs a read operation asynchronously. |
952 | /// |
953 | /// The I/O handle is registered in the reactor and put in non-blocking mode. This method |
954 | /// invokes the `op` closure in a loop until it succeeds or returns an error other than |
955 | /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS |
956 | /// sends a notification that the I/O handle is readable. |
957 | /// |
958 | /// The closure receives a shared reference to the I/O handle. |
959 | /// |
960 | /// # Examples |
961 | /// |
962 | /// ```no_run |
963 | /// use async_io::Async; |
964 | /// use std::net::TcpListener; |
965 | /// |
966 | /// # futures_lite::future::block_on(async { |
967 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
968 | /// |
969 | /// // Accept a new client asynchronously. |
970 | /// let (stream, addr) = listener.read_with(|l| l.accept()).await?; |
971 | /// # std::io::Result::Ok(()) }); |
972 | /// ``` |
973 | pub async fn read_with<R>(&self, op: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> { |
974 | let mut op = op; |
975 | loop { |
976 | match op(self.get_ref()) { |
977 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
978 | res => return res, |
979 | } |
980 | optimistic(self.readable()).await?; |
981 | } |
982 | } |
983 | |
984 | /// Performs a read operation asynchronously. |
985 | /// |
986 | /// The I/O handle is registered in the reactor and put in non-blocking mode. This method |
987 | /// invokes the `op` closure in a loop until it succeeds or returns an error other than |
988 | /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS |
989 | /// sends a notification that the I/O handle is readable. |
990 | /// |
991 | /// The closure receives a mutable reference to the I/O handle. |
992 | /// |
993 | /// # Examples |
994 | /// |
995 | /// ```no_run |
996 | /// use async_io::Async; |
997 | /// use std::net::TcpListener; |
998 | /// |
999 | /// # futures_lite::future::block_on(async { |
1000 | /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
1001 | /// |
1002 | /// // Accept a new client asynchronously. |
1003 | /// let (stream, addr) = listener.read_with_mut(|l| l.accept()).await?; |
1004 | /// # std::io::Result::Ok(()) }); |
1005 | /// ``` |
1006 | pub async fn read_with_mut<R>( |
1007 | &mut self, |
1008 | op: impl FnMut(&mut T) -> io::Result<R>, |
1009 | ) -> io::Result<R> { |
1010 | let mut op = op; |
1011 | loop { |
1012 | match op(self.get_mut()) { |
1013 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1014 | res => return res, |
1015 | } |
1016 | optimistic(self.readable()).await?; |
1017 | } |
1018 | } |
1019 | |
1020 | /// Performs a write operation asynchronously. |
1021 | /// |
1022 | /// The I/O handle is registered in the reactor and put in non-blocking mode. This method |
1023 | /// invokes the `op` closure in a loop until it succeeds or returns an error other than |
1024 | /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS |
1025 | /// sends a notification that the I/O handle is writable. |
1026 | /// |
1027 | /// The closure receives a shared reference to the I/O handle. |
1028 | /// |
1029 | /// # Examples |
1030 | /// |
1031 | /// ```no_run |
1032 | /// use async_io::Async; |
1033 | /// use std::net::UdpSocket; |
1034 | /// |
1035 | /// # futures_lite::future::block_on(async { |
1036 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1037 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1038 | /// |
1039 | /// let msg = b"hello" ; |
1040 | /// let len = socket.write_with(|s| s.send(msg)).await?; |
1041 | /// # std::io::Result::Ok(()) }); |
1042 | /// ``` |
1043 | pub async fn write_with<R>(&self, op: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> { |
1044 | let mut op = op; |
1045 | loop { |
1046 | match op(self.get_ref()) { |
1047 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1048 | res => return res, |
1049 | } |
1050 | optimistic(self.writable()).await?; |
1051 | } |
1052 | } |
1053 | |
1054 | /// Performs a write operation asynchronously. |
1055 | /// |
1056 | /// The I/O handle is registered in the reactor and put in non-blocking mode. This method |
1057 | /// invokes the `op` closure in a loop until it succeeds or returns an error other than |
1058 | /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS |
1059 | /// sends a notification that the I/O handle is writable. |
1060 | /// |
1061 | /// The closure receives a mutable reference to the I/O handle. |
1062 | /// |
1063 | /// # Examples |
1064 | /// |
1065 | /// ```no_run |
1066 | /// use async_io::Async; |
1067 | /// use std::net::UdpSocket; |
1068 | /// |
1069 | /// # futures_lite::future::block_on(async { |
1070 | /// let mut socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1071 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1072 | /// |
1073 | /// let msg = b"hello" ; |
1074 | /// let len = socket.write_with_mut(|s| s.send(msg)).await?; |
1075 | /// # std::io::Result::Ok(()) }); |
1076 | /// ``` |
1077 | pub async fn write_with_mut<R>( |
1078 | &mut self, |
1079 | op: impl FnMut(&mut T) -> io::Result<R>, |
1080 | ) -> io::Result<R> { |
1081 | let mut op = op; |
1082 | loop { |
1083 | match op(self.get_mut()) { |
1084 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1085 | res => return res, |
1086 | } |
1087 | optimistic(self.writable()).await?; |
1088 | } |
1089 | } |
1090 | } |
1091 | |
1092 | impl<T> AsRef<T> for Async<T> { |
1093 | fn as_ref(&self) -> &T { |
1094 | self.get_ref() |
1095 | } |
1096 | } |
1097 | |
1098 | impl<T> AsMut<T> for Async<T> { |
1099 | fn as_mut(&mut self) -> &mut T { |
1100 | self.get_mut() |
1101 | } |
1102 | } |
1103 | |
1104 | impl<T> Drop for Async<T> { |
1105 | fn drop(&mut self) { |
1106 | if self.io.is_some() { |
1107 | // Deregister and ignore errors because destructors should not panic. |
1108 | Reactor::get().remove_io(&self.source).ok(); |
1109 | |
1110 | // Drop the I/O handle to close it. |
1111 | self.io.take(); |
1112 | } |
1113 | } |
1114 | } |
1115 | |
1116 | impl<T: Read> AsyncRead for Async<T> { |
1117 | fn poll_read( |
1118 | mut self: Pin<&mut Self>, |
1119 | cx: &mut Context<'_>, |
1120 | buf: &mut [u8], |
1121 | ) -> Poll<io::Result<usize>> { |
1122 | loop { |
1123 | match (*self).get_mut().read(buf) { |
1124 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1125 | res => return Poll::Ready(res), |
1126 | } |
1127 | ready!(self.poll_readable(cx))?; |
1128 | } |
1129 | } |
1130 | |
1131 | fn poll_read_vectored( |
1132 | mut self: Pin<&mut Self>, |
1133 | cx: &mut Context<'_>, |
1134 | bufs: &mut [IoSliceMut<'_>], |
1135 | ) -> Poll<io::Result<usize>> { |
1136 | loop { |
1137 | match (*self).get_mut().read_vectored(bufs) { |
1138 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1139 | res => return Poll::Ready(res), |
1140 | } |
1141 | ready!(self.poll_readable(cx))?; |
1142 | } |
1143 | } |
1144 | } |
1145 | |
1146 | impl<T> AsyncRead for &Async<T> |
1147 | where |
1148 | for<'a> &'a T: Read, |
1149 | { |
1150 | fn poll_read( |
1151 | self: Pin<&mut Self>, |
1152 | cx: &mut Context<'_>, |
1153 | buf: &mut [u8], |
1154 | ) -> Poll<io::Result<usize>> { |
1155 | loop { |
1156 | match (*self).get_ref().read(buf) { |
1157 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1158 | res => return Poll::Ready(res), |
1159 | } |
1160 | ready!(self.poll_readable(cx))?; |
1161 | } |
1162 | } |
1163 | |
1164 | fn poll_read_vectored( |
1165 | self: Pin<&mut Self>, |
1166 | cx: &mut Context<'_>, |
1167 | bufs: &mut [IoSliceMut<'_>], |
1168 | ) -> Poll<io::Result<usize>> { |
1169 | loop { |
1170 | match (*self).get_ref().read_vectored(bufs) { |
1171 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1172 | res => return Poll::Ready(res), |
1173 | } |
1174 | ready!(self.poll_readable(cx))?; |
1175 | } |
1176 | } |
1177 | } |
1178 | |
1179 | impl<T: Write> AsyncWrite for Async<T> { |
1180 | fn poll_write( |
1181 | mut self: Pin<&mut Self>, |
1182 | cx: &mut Context<'_>, |
1183 | buf: &[u8], |
1184 | ) -> Poll<io::Result<usize>> { |
1185 | loop { |
1186 | match (*self).get_mut().write(buf) { |
1187 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1188 | res => return Poll::Ready(res), |
1189 | } |
1190 | ready!(self.poll_writable(cx))?; |
1191 | } |
1192 | } |
1193 | |
1194 | fn poll_write_vectored( |
1195 | mut self: Pin<&mut Self>, |
1196 | cx: &mut Context<'_>, |
1197 | bufs: &[IoSlice<'_>], |
1198 | ) -> Poll<io::Result<usize>> { |
1199 | loop { |
1200 | match (*self).get_mut().write_vectored(bufs) { |
1201 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1202 | res => return Poll::Ready(res), |
1203 | } |
1204 | ready!(self.poll_writable(cx))?; |
1205 | } |
1206 | } |
1207 | |
1208 | fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1209 | loop { |
1210 | match (*self).get_mut().flush() { |
1211 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1212 | res => return Poll::Ready(res), |
1213 | } |
1214 | ready!(self.poll_writable(cx))?; |
1215 | } |
1216 | } |
1217 | |
1218 | fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1219 | self.poll_flush(cx) |
1220 | } |
1221 | } |
1222 | |
1223 | impl<T> AsyncWrite for &Async<T> |
1224 | where |
1225 | for<'a> &'a T: Write, |
1226 | { |
1227 | fn poll_write( |
1228 | self: Pin<&mut Self>, |
1229 | cx: &mut Context<'_>, |
1230 | buf: &[u8], |
1231 | ) -> Poll<io::Result<usize>> { |
1232 | loop { |
1233 | match (*self).get_ref().write(buf) { |
1234 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1235 | res => return Poll::Ready(res), |
1236 | } |
1237 | ready!(self.poll_writable(cx))?; |
1238 | } |
1239 | } |
1240 | |
1241 | fn poll_write_vectored( |
1242 | self: Pin<&mut Self>, |
1243 | cx: &mut Context<'_>, |
1244 | bufs: &[IoSlice<'_>], |
1245 | ) -> Poll<io::Result<usize>> { |
1246 | loop { |
1247 | match (*self).get_ref().write_vectored(bufs) { |
1248 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1249 | res => return Poll::Ready(res), |
1250 | } |
1251 | ready!(self.poll_writable(cx))?; |
1252 | } |
1253 | } |
1254 | |
1255 | fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1256 | loop { |
1257 | match (*self).get_ref().flush() { |
1258 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1259 | res => return Poll::Ready(res), |
1260 | } |
1261 | ready!(self.poll_writable(cx))?; |
1262 | } |
1263 | } |
1264 | |
1265 | fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1266 | self.poll_flush(cx) |
1267 | } |
1268 | } |
1269 | |
1270 | impl Async<TcpListener> { |
1271 | /// Creates a TCP listener bound to the specified address. |
1272 | /// |
1273 | /// Binding with port number 0 will request an available port from the OS. |
1274 | /// |
1275 | /// # Examples |
1276 | /// |
1277 | /// ``` |
1278 | /// use async_io::Async; |
1279 | /// use std::net::TcpListener; |
1280 | /// |
1281 | /// # futures_lite::future::block_on(async { |
1282 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
1283 | /// println!("Listening on {}" , listener.get_ref().local_addr()?); |
1284 | /// # std::io::Result::Ok(()) }); |
1285 | /// ``` |
1286 | pub fn bind<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<TcpListener>> { |
1287 | let addr = addr.into(); |
1288 | Async::new(TcpListener::bind(addr)?) |
1289 | } |
1290 | |
1291 | /// Accepts a new incoming TCP connection. |
1292 | /// |
1293 | /// When a connection is established, it will be returned as a TCP stream together with its |
1294 | /// remote address. |
1295 | /// |
1296 | /// # Examples |
1297 | /// |
1298 | /// ```no_run |
1299 | /// use async_io::Async; |
1300 | /// use std::net::TcpListener; |
1301 | /// |
1302 | /// # futures_lite::future::block_on(async { |
1303 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 8000))?; |
1304 | /// let (stream, addr) = listener.accept().await?; |
1305 | /// println!("Accepted client: {}" , addr); |
1306 | /// # std::io::Result::Ok(()) }); |
1307 | /// ``` |
1308 | pub async fn accept(&self) -> io::Result<(Async<TcpStream>, SocketAddr)> { |
1309 | let (stream, addr) = self.read_with(|io| io.accept()).await?; |
1310 | Ok((Async::new(stream)?, addr)) |
1311 | } |
1312 | |
1313 | /// Returns a stream of incoming TCP connections. |
1314 | /// |
1315 | /// The stream is infinite, i.e. it never stops with a [`None`]. |
1316 | /// |
1317 | /// # Examples |
1318 | /// |
1319 | /// ```no_run |
1320 | /// use async_io::Async; |
1321 | /// use futures_lite::{pin, stream::StreamExt}; |
1322 | /// use std::net::TcpListener; |
1323 | /// |
1324 | /// # futures_lite::future::block_on(async { |
1325 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 8000))?; |
1326 | /// let incoming = listener.incoming(); |
1327 | /// pin!(incoming); |
1328 | /// |
1329 | /// while let Some(stream) = incoming.next().await { |
1330 | /// let stream = stream?; |
1331 | /// println!("Accepted client: {}" , stream.get_ref().peer_addr()?); |
1332 | /// } |
1333 | /// # std::io::Result::Ok(()) }); |
1334 | /// ``` |
1335 | pub fn incoming(&self) -> impl Stream<Item = io::Result<Async<TcpStream>>> + Send + '_ { |
1336 | stream::unfold(self, |listener| async move { |
1337 | let res = listener.accept().await.map(|(stream, _)| stream); |
1338 | Some((res, listener)) |
1339 | }) |
1340 | } |
1341 | } |
1342 | |
1343 | impl TryFrom<std::net::TcpListener> for Async<std::net::TcpListener> { |
1344 | type Error = io::Error; |
1345 | |
1346 | fn try_from(listener: std::net::TcpListener) -> io::Result<Self> { |
1347 | Async::new(io:listener) |
1348 | } |
1349 | } |
1350 | |
1351 | impl Async<TcpStream> { |
1352 | /// Creates a TCP connection to the specified address. |
1353 | /// |
1354 | /// # Examples |
1355 | /// |
1356 | /// ``` |
1357 | /// use async_io::Async; |
1358 | /// use std::net::{TcpStream, ToSocketAddrs}; |
1359 | /// |
1360 | /// # futures_lite::future::block_on(async { |
1361 | /// let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
1362 | /// let stream = Async::<TcpStream>::connect(addr).await?; |
1363 | /// # std::io::Result::Ok(()) }); |
1364 | /// ``` |
1365 | pub async fn connect<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<TcpStream>> { |
1366 | // Begin async connect. |
1367 | let addr = addr.into(); |
1368 | let domain = Domain::for_address(addr); |
1369 | let socket = connect(addr.into(), domain, Some(Protocol::TCP))?; |
1370 | let stream = Async::new(TcpStream::from(socket))?; |
1371 | |
1372 | // The stream becomes writable when connected. |
1373 | stream.writable().await?; |
1374 | |
1375 | // Check if there was an error while connecting. |
1376 | match stream.get_ref().take_error()? { |
1377 | None => Ok(stream), |
1378 | Some(err) => Err(err), |
1379 | } |
1380 | } |
1381 | |
1382 | /// Reads data from the stream without removing it from the buffer. |
1383 | /// |
1384 | /// Returns the number of bytes read. Successive calls of this method read the same data. |
1385 | /// |
1386 | /// # Examples |
1387 | /// |
1388 | /// ``` |
1389 | /// use async_io::Async; |
1390 | /// use futures_lite::{io::AsyncWriteExt, stream::StreamExt}; |
1391 | /// use std::net::{TcpStream, ToSocketAddrs}; |
1392 | /// |
1393 | /// # futures_lite::future::block_on(async { |
1394 | /// let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
1395 | /// let mut stream = Async::<TcpStream>::connect(addr).await?; |
1396 | /// |
1397 | /// stream |
1398 | /// .write_all(b"GET / HTTP/1.1 \r\nHost: example.com \r\n\r\n" ) |
1399 | /// .await?; |
1400 | /// |
1401 | /// let mut buf = [0u8; 1024]; |
1402 | /// let len = stream.peek(&mut buf).await?; |
1403 | /// # std::io::Result::Ok(()) }); |
1404 | /// ``` |
1405 | pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
1406 | self.read_with(|io| io.peek(buf)).await |
1407 | } |
1408 | } |
1409 | |
1410 | impl TryFrom<std::net::TcpStream> for Async<std::net::TcpStream> { |
1411 | type Error = io::Error; |
1412 | |
1413 | fn try_from(stream: std::net::TcpStream) -> io::Result<Self> { |
1414 | Async::new(io:stream) |
1415 | } |
1416 | } |
1417 | |
1418 | impl Async<UdpSocket> { |
1419 | /// Creates a UDP socket bound to the specified address. |
1420 | /// |
1421 | /// Binding with port number 0 will request an available port from the OS. |
1422 | /// |
1423 | /// # Examples |
1424 | /// |
1425 | /// ``` |
1426 | /// use async_io::Async; |
1427 | /// use std::net::UdpSocket; |
1428 | /// |
1429 | /// # futures_lite::future::block_on(async { |
1430 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 0))?; |
1431 | /// println!("Bound to {}" , socket.get_ref().local_addr()?); |
1432 | /// # std::io::Result::Ok(()) }); |
1433 | /// ``` |
1434 | pub fn bind<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<UdpSocket>> { |
1435 | let addr = addr.into(); |
1436 | Async::new(UdpSocket::bind(addr)?) |
1437 | } |
1438 | |
1439 | /// Receives a single datagram message. |
1440 | /// |
1441 | /// Returns the number of bytes read and the address the message came from. |
1442 | /// |
1443 | /// This method must be called with a valid byte slice of sufficient size to hold the message. |
1444 | /// If the message is too long to fit, excess bytes may get discarded. |
1445 | /// |
1446 | /// # Examples |
1447 | /// |
1448 | /// ```no_run |
1449 | /// use async_io::Async; |
1450 | /// use std::net::UdpSocket; |
1451 | /// |
1452 | /// # futures_lite::future::block_on(async { |
1453 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1454 | /// |
1455 | /// let mut buf = [0u8; 1024]; |
1456 | /// let (len, addr) = socket.recv_from(&mut buf).await?; |
1457 | /// # std::io::Result::Ok(()) }); |
1458 | /// ``` |
1459 | pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1460 | self.read_with(|io| io.recv_from(buf)).await |
1461 | } |
1462 | |
1463 | /// Receives a single datagram message without removing it from the queue. |
1464 | /// |
1465 | /// Returns the number of bytes read and the address the message came from. |
1466 | /// |
1467 | /// This method must be called with a valid byte slice of sufficient size to hold the message. |
1468 | /// If the message is too long to fit, excess bytes may get discarded. |
1469 | /// |
1470 | /// # Examples |
1471 | /// |
1472 | /// ```no_run |
1473 | /// use async_io::Async; |
1474 | /// use std::net::UdpSocket; |
1475 | /// |
1476 | /// # futures_lite::future::block_on(async { |
1477 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1478 | /// |
1479 | /// let mut buf = [0u8; 1024]; |
1480 | /// let (len, addr) = socket.peek_from(&mut buf).await?; |
1481 | /// # std::io::Result::Ok(()) }); |
1482 | /// ``` |
1483 | pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1484 | self.read_with(|io| io.peek_from(buf)).await |
1485 | } |
1486 | |
1487 | /// Sends data to the specified address. |
1488 | /// |
1489 | /// Returns the number of bytes writen. |
1490 | /// |
1491 | /// # Examples |
1492 | /// |
1493 | /// ```no_run |
1494 | /// use async_io::Async; |
1495 | /// use std::net::UdpSocket; |
1496 | /// |
1497 | /// # futures_lite::future::block_on(async { |
1498 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 0))?; |
1499 | /// let addr = socket.get_ref().local_addr()?; |
1500 | /// |
1501 | /// let msg = b"hello" ; |
1502 | /// let len = socket.send_to(msg, addr).await?; |
1503 | /// # std::io::Result::Ok(()) }); |
1504 | /// ``` |
1505 | pub async fn send_to<A: Into<SocketAddr>>(&self, buf: &[u8], addr: A) -> io::Result<usize> { |
1506 | let addr = addr.into(); |
1507 | self.write_with(|io| io.send_to(buf, addr)).await |
1508 | } |
1509 | |
1510 | /// Receives a single datagram message from the connected peer. |
1511 | /// |
1512 | /// Returns the number of bytes read. |
1513 | /// |
1514 | /// This method must be called with a valid byte slice of sufficient size to hold the message. |
1515 | /// If the message is too long to fit, excess bytes may get discarded. |
1516 | /// |
1517 | /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address. |
1518 | /// This method will fail if the socket is not connected. |
1519 | /// |
1520 | /// # Examples |
1521 | /// |
1522 | /// ```no_run |
1523 | /// use async_io::Async; |
1524 | /// use std::net::UdpSocket; |
1525 | /// |
1526 | /// # futures_lite::future::block_on(async { |
1527 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1528 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1529 | /// |
1530 | /// let mut buf = [0u8; 1024]; |
1531 | /// let len = socket.recv(&mut buf).await?; |
1532 | /// # std::io::Result::Ok(()) }); |
1533 | /// ``` |
1534 | pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
1535 | self.read_with(|io| io.recv(buf)).await |
1536 | } |
1537 | |
1538 | /// Receives a single datagram message from the connected peer without removing it from the |
1539 | /// queue. |
1540 | /// |
1541 | /// Returns the number of bytes read and the address the message came from. |
1542 | /// |
1543 | /// This method must be called with a valid byte slice of sufficient size to hold the message. |
1544 | /// If the message is too long to fit, excess bytes may get discarded. |
1545 | /// |
1546 | /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address. |
1547 | /// This method will fail if the socket is not connected. |
1548 | /// |
1549 | /// # Examples |
1550 | /// |
1551 | /// ```no_run |
1552 | /// use async_io::Async; |
1553 | /// use std::net::UdpSocket; |
1554 | /// |
1555 | /// # futures_lite::future::block_on(async { |
1556 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1557 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1558 | /// |
1559 | /// let mut buf = [0u8; 1024]; |
1560 | /// let len = socket.peek(&mut buf).await?; |
1561 | /// # std::io::Result::Ok(()) }); |
1562 | /// ``` |
1563 | pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
1564 | self.read_with(|io| io.peek(buf)).await |
1565 | } |
1566 | |
1567 | /// Sends data to the connected peer. |
1568 | /// |
1569 | /// Returns the number of bytes written. |
1570 | /// |
1571 | /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address. |
1572 | /// This method will fail if the socket is not connected. |
1573 | /// |
1574 | /// # Examples |
1575 | /// |
1576 | /// ```no_run |
1577 | /// use async_io::Async; |
1578 | /// use std::net::UdpSocket; |
1579 | /// |
1580 | /// # futures_lite::future::block_on(async { |
1581 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1582 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1583 | /// |
1584 | /// let msg = b"hello" ; |
1585 | /// let len = socket.send(msg).await?; |
1586 | /// # std::io::Result::Ok(()) }); |
1587 | /// ``` |
1588 | pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { |
1589 | self.write_with(|io| io.send(buf)).await |
1590 | } |
1591 | } |
1592 | |
1593 | impl TryFrom<std::net::UdpSocket> for Async<std::net::UdpSocket> { |
1594 | type Error = io::Error; |
1595 | |
1596 | fn try_from(socket: std::net::UdpSocket) -> io::Result<Self> { |
1597 | Async::new(io:socket) |
1598 | } |
1599 | } |
1600 | |
1601 | #[cfg (unix)] |
1602 | impl Async<UnixListener> { |
1603 | /// Creates a UDS listener bound to the specified path. |
1604 | /// |
1605 | /// # Examples |
1606 | /// |
1607 | /// ```no_run |
1608 | /// use async_io::Async; |
1609 | /// use std::os::unix::net::UnixListener; |
1610 | /// |
1611 | /// # futures_lite::future::block_on(async { |
1612 | /// let listener = Async::<UnixListener>::bind("/tmp/socket" )?; |
1613 | /// println!("Listening on {:?}" , listener.get_ref().local_addr()?); |
1614 | /// # std::io::Result::Ok(()) }); |
1615 | /// ``` |
1616 | pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixListener>> { |
1617 | let path = path.as_ref().to_owned(); |
1618 | Async::new(UnixListener::bind(path)?) |
1619 | } |
1620 | |
1621 | /// Accepts a new incoming UDS stream connection. |
1622 | /// |
1623 | /// When a connection is established, it will be returned as a stream together with its remote |
1624 | /// address. |
1625 | /// |
1626 | /// # Examples |
1627 | /// |
1628 | /// ```no_run |
1629 | /// use async_io::Async; |
1630 | /// use std::os::unix::net::UnixListener; |
1631 | /// |
1632 | /// # futures_lite::future::block_on(async { |
1633 | /// let listener = Async::<UnixListener>::bind("/tmp/socket" )?; |
1634 | /// let (stream, addr) = listener.accept().await?; |
1635 | /// println!("Accepted client: {:?}" , addr); |
1636 | /// # std::io::Result::Ok(()) }); |
1637 | /// ``` |
1638 | pub async fn accept(&self) -> io::Result<(Async<UnixStream>, UnixSocketAddr)> { |
1639 | let (stream, addr) = self.read_with(|io| io.accept()).await?; |
1640 | Ok((Async::new(stream)?, addr)) |
1641 | } |
1642 | |
1643 | /// Returns a stream of incoming UDS connections. |
1644 | /// |
1645 | /// The stream is infinite, i.e. it never stops with a [`None`] item. |
1646 | /// |
1647 | /// # Examples |
1648 | /// |
1649 | /// ```no_run |
1650 | /// use async_io::Async; |
1651 | /// use futures_lite::{pin, stream::StreamExt}; |
1652 | /// use std::os::unix::net::UnixListener; |
1653 | /// |
1654 | /// # futures_lite::future::block_on(async { |
1655 | /// let listener = Async::<UnixListener>::bind("/tmp/socket" )?; |
1656 | /// let incoming = listener.incoming(); |
1657 | /// pin!(incoming); |
1658 | /// |
1659 | /// while let Some(stream) = incoming.next().await { |
1660 | /// let stream = stream?; |
1661 | /// println!("Accepted client: {:?}" , stream.get_ref().peer_addr()?); |
1662 | /// } |
1663 | /// # std::io::Result::Ok(()) }); |
1664 | /// ``` |
1665 | pub fn incoming(&self) -> impl Stream<Item = io::Result<Async<UnixStream>>> + Send + '_ { |
1666 | stream::unfold(self, |listener| async move { |
1667 | let res = listener.accept().await.map(|(stream, _)| stream); |
1668 | Some((res, listener)) |
1669 | }) |
1670 | } |
1671 | } |
1672 | |
1673 | #[cfg (unix)] |
1674 | impl TryFrom<std::os::unix::net::UnixListener> for Async<std::os::unix::net::UnixListener> { |
1675 | type Error = io::Error; |
1676 | |
1677 | fn try_from(listener: std::os::unix::net::UnixListener) -> io::Result<Self> { |
1678 | Async::new(io:listener) |
1679 | } |
1680 | } |
1681 | |
1682 | #[cfg (unix)] |
1683 | impl Async<UnixStream> { |
1684 | /// Creates a UDS stream connected to the specified path. |
1685 | /// |
1686 | /// # Examples |
1687 | /// |
1688 | /// ```no_run |
1689 | /// use async_io::Async; |
1690 | /// use std::os::unix::net::UnixStream; |
1691 | /// |
1692 | /// # futures_lite::future::block_on(async { |
1693 | /// let stream = Async::<UnixStream>::connect("/tmp/socket" ).await?; |
1694 | /// # std::io::Result::Ok(()) }); |
1695 | /// ``` |
1696 | pub async fn connect<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixStream>> { |
1697 | // Begin async connect. |
1698 | let socket = connect(SockAddr::unix(path)?, Domain::UNIX, None)?; |
1699 | let stream = Async::new(UnixStream::from(socket))?; |
1700 | |
1701 | // The stream becomes writable when connected. |
1702 | stream.writable().await?; |
1703 | |
1704 | // On Linux, it appears the socket may become writable even when connecting fails, so we |
1705 | // must do an extra check here and see if the peer address is retrievable. |
1706 | stream.get_ref().peer_addr()?; |
1707 | Ok(stream) |
1708 | } |
1709 | |
1710 | /// Creates an unnamed pair of connected UDS stream sockets. |
1711 | /// |
1712 | /// # Examples |
1713 | /// |
1714 | /// ```no_run |
1715 | /// use async_io::Async; |
1716 | /// use std::os::unix::net::UnixStream; |
1717 | /// |
1718 | /// # futures_lite::future::block_on(async { |
1719 | /// let (stream1, stream2) = Async::<UnixStream>::pair()?; |
1720 | /// # std::io::Result::Ok(()) }); |
1721 | /// ``` |
1722 | pub fn pair() -> io::Result<(Async<UnixStream>, Async<UnixStream>)> { |
1723 | let (stream1, stream2) = UnixStream::pair()?; |
1724 | Ok((Async::new(stream1)?, Async::new(stream2)?)) |
1725 | } |
1726 | } |
1727 | |
1728 | #[cfg (unix)] |
1729 | impl TryFrom<std::os::unix::net::UnixStream> for Async<std::os::unix::net::UnixStream> { |
1730 | type Error = io::Error; |
1731 | |
1732 | fn try_from(stream: std::os::unix::net::UnixStream) -> io::Result<Self> { |
1733 | Async::new(io:stream) |
1734 | } |
1735 | } |
1736 | |
1737 | #[cfg (unix)] |
1738 | impl Async<UnixDatagram> { |
1739 | /// Creates a UDS datagram socket bound to the specified path. |
1740 | /// |
1741 | /// # Examples |
1742 | /// |
1743 | /// ```no_run |
1744 | /// use async_io::Async; |
1745 | /// use std::os::unix::net::UnixDatagram; |
1746 | /// |
1747 | /// # futures_lite::future::block_on(async { |
1748 | /// let socket = Async::<UnixDatagram>::bind("/tmp/socket" )?; |
1749 | /// # std::io::Result::Ok(()) }); |
1750 | /// ``` |
1751 | pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixDatagram>> { |
1752 | let path = path.as_ref().to_owned(); |
1753 | Async::new(UnixDatagram::bind(path)?) |
1754 | } |
1755 | |
1756 | /// Creates a UDS datagram socket not bound to any address. |
1757 | /// |
1758 | /// # Examples |
1759 | /// |
1760 | /// ```no_run |
1761 | /// use async_io::Async; |
1762 | /// use std::os::unix::net::UnixDatagram; |
1763 | /// |
1764 | /// # futures_lite::future::block_on(async { |
1765 | /// let socket = Async::<UnixDatagram>::unbound()?; |
1766 | /// # std::io::Result::Ok(()) }); |
1767 | /// ``` |
1768 | pub fn unbound() -> io::Result<Async<UnixDatagram>> { |
1769 | Async::new(UnixDatagram::unbound()?) |
1770 | } |
1771 | |
1772 | /// Creates an unnamed pair of connected Unix datagram sockets. |
1773 | /// |
1774 | /// # Examples |
1775 | /// |
1776 | /// ```no_run |
1777 | /// use async_io::Async; |
1778 | /// use std::os::unix::net::UnixDatagram; |
1779 | /// |
1780 | /// # futures_lite::future::block_on(async { |
1781 | /// let (socket1, socket2) = Async::<UnixDatagram>::pair()?; |
1782 | /// # std::io::Result::Ok(()) }); |
1783 | /// ``` |
1784 | pub fn pair() -> io::Result<(Async<UnixDatagram>, Async<UnixDatagram>)> { |
1785 | let (socket1, socket2) = UnixDatagram::pair()?; |
1786 | Ok((Async::new(socket1)?, Async::new(socket2)?)) |
1787 | } |
1788 | |
1789 | /// Receives data from the socket. |
1790 | /// |
1791 | /// Returns the number of bytes read and the address the message came from. |
1792 | /// |
1793 | /// # Examples |
1794 | /// |
1795 | /// ```no_run |
1796 | /// use async_io::Async; |
1797 | /// use std::os::unix::net::UnixDatagram; |
1798 | /// |
1799 | /// # futures_lite::future::block_on(async { |
1800 | /// let socket = Async::<UnixDatagram>::bind("/tmp/socket" )?; |
1801 | /// |
1802 | /// let mut buf = [0u8; 1024]; |
1803 | /// let (len, addr) = socket.recv_from(&mut buf).await?; |
1804 | /// # std::io::Result::Ok(()) }); |
1805 | /// ``` |
1806 | pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, UnixSocketAddr)> { |
1807 | self.read_with(|io| io.recv_from(buf)).await |
1808 | } |
1809 | |
1810 | /// Sends data to the specified address. |
1811 | /// |
1812 | /// Returns the number of bytes written. |
1813 | /// |
1814 | /// # Examples |
1815 | /// |
1816 | /// ```no_run |
1817 | /// use async_io::Async; |
1818 | /// use std::os::unix::net::UnixDatagram; |
1819 | /// |
1820 | /// # futures_lite::future::block_on(async { |
1821 | /// let socket = Async::<UnixDatagram>::unbound()?; |
1822 | /// |
1823 | /// let msg = b"hello" ; |
1824 | /// let addr = "/tmp/socket" ; |
1825 | /// let len = socket.send_to(msg, addr).await?; |
1826 | /// # std::io::Result::Ok(()) }); |
1827 | /// ``` |
1828 | pub async fn send_to<P: AsRef<Path>>(&self, buf: &[u8], path: P) -> io::Result<usize> { |
1829 | self.write_with(|io| io.send_to(buf, &path)).await |
1830 | } |
1831 | |
1832 | /// Receives data from the connected peer. |
1833 | /// |
1834 | /// Returns the number of bytes read and the address the message came from. |
1835 | /// |
1836 | /// The [`connect`][`UnixDatagram::connect()`] method connects this socket to a remote address. |
1837 | /// This method will fail if the socket is not connected. |
1838 | /// |
1839 | /// # Examples |
1840 | /// |
1841 | /// ```no_run |
1842 | /// use async_io::Async; |
1843 | /// use std::os::unix::net::UnixDatagram; |
1844 | /// |
1845 | /// # futures_lite::future::block_on(async { |
1846 | /// let socket = Async::<UnixDatagram>::bind("/tmp/socket1" )?; |
1847 | /// socket.get_ref().connect("/tmp/socket2" )?; |
1848 | /// |
1849 | /// let mut buf = [0u8; 1024]; |
1850 | /// let len = socket.recv(&mut buf).await?; |
1851 | /// # std::io::Result::Ok(()) }); |
1852 | /// ``` |
1853 | pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
1854 | self.read_with(|io| io.recv(buf)).await |
1855 | } |
1856 | |
1857 | /// Sends data to the connected peer. |
1858 | /// |
1859 | /// Returns the number of bytes written. |
1860 | /// |
1861 | /// The [`connect`][`UnixDatagram::connect()`] method connects this socket to a remote address. |
1862 | /// This method will fail if the socket is not connected. |
1863 | /// |
1864 | /// # Examples |
1865 | /// |
1866 | /// ```no_run |
1867 | /// use async_io::Async; |
1868 | /// use std::os::unix::net::UnixDatagram; |
1869 | /// |
1870 | /// # futures_lite::future::block_on(async { |
1871 | /// let socket = Async::<UnixDatagram>::bind("/tmp/socket1" )?; |
1872 | /// socket.get_ref().connect("/tmp/socket2" )?; |
1873 | /// |
1874 | /// let msg = b"hello" ; |
1875 | /// let len = socket.send(msg).await?; |
1876 | /// # std::io::Result::Ok(()) }); |
1877 | /// ``` |
1878 | pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { |
1879 | self.write_with(|io| io.send(buf)).await |
1880 | } |
1881 | } |
1882 | |
1883 | #[cfg (unix)] |
1884 | impl TryFrom<std::os::unix::net::UnixDatagram> for Async<std::os::unix::net::UnixDatagram> { |
1885 | type Error = io::Error; |
1886 | |
1887 | fn try_from(socket: std::os::unix::net::UnixDatagram) -> io::Result<Self> { |
1888 | Async::new(io:socket) |
1889 | } |
1890 | } |
1891 | |
1892 | /// Polls a future once, waits for a wakeup, and then optimistically assumes the future is ready. |
1893 | async fn optimistic(fut: impl Future<Output = io::Result<()>>) -> io::Result<()> { |
1894 | let mut polled: bool = false; |
1895 | pin!(fut); |
1896 | |
1897 | futurePollFn) -> …>::poll_fn(|cx: &mut Context<'_>| { |
1898 | if !polled { |
1899 | polled = true; |
1900 | fut.as_mut().poll(cx) |
1901 | } else { |
1902 | Poll::Ready(Ok(())) |
1903 | } |
1904 | }) |
1905 | .await |
1906 | } |
1907 | |
1908 | fn connect(addr: SockAddr, domain: Domain, protocol: Option<Protocol>) -> io::Result<Socket> { |
1909 | let sock_type = Type::STREAM; |
1910 | #[cfg (any( |
1911 | target_os = "android" , |
1912 | target_os = "dragonfly" , |
1913 | target_os = "freebsd" , |
1914 | target_os = "fuchsia" , |
1915 | target_os = "illumos" , |
1916 | target_os = "linux" , |
1917 | target_os = "netbsd" , |
1918 | target_os = "openbsd" |
1919 | ))] |
1920 | // If we can, set nonblocking at socket creation for unix |
1921 | let sock_type = sock_type.nonblocking(); |
1922 | // This automatically handles cloexec on unix, no_inherit on windows and nosigpipe on macos |
1923 | let socket = Socket::new(domain, sock_type, protocol)?; |
1924 | #[cfg (not(any( |
1925 | target_os = "android" , |
1926 | target_os = "dragonfly" , |
1927 | target_os = "freebsd" , |
1928 | target_os = "fuchsia" , |
1929 | target_os = "illumos" , |
1930 | target_os = "linux" , |
1931 | target_os = "netbsd" , |
1932 | target_os = "openbsd" |
1933 | )))] |
1934 | // If the current platform doesn't support nonblocking at creation, enable it after creation |
1935 | socket.set_nonblocking(true)?; |
1936 | match socket.connect(&addr) { |
1937 | Ok(_) => {} |
1938 | #[cfg (unix)] |
1939 | Err(err) if err.raw_os_error() == Some(rustix::io::Errno::INPROGRESS.raw_os_error()) => {} |
1940 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1941 | Err(err) => return Err(err), |
1942 | } |
1943 | Ok(socket) |
1944 | } |
1945 | |