1 | // Copyright (c) 2022-2022, The rav1e contributors. All rights reserved |
2 | // |
3 | // This source code is subject to the terms of the BSD 2 Clause License and |
4 | // the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
5 | // was not distributed with this source code in the LICENSE file, you can |
6 | // obtain it at www.aomedia.org/license/software. If the Alliance for Open |
7 | // Media Patent License 1.0 was not distributed with this source code in the |
8 | // PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
9 | |
10 | // The original work for this formula was implmented in aomenc, and this is |
11 | // an adaptation of that work: |
12 | // https://aomedia.googlesource.com/aom/+/refs/heads/main/examples/photon_noise_table.c |
13 | |
14 | // This implementation creates a film grain table, for use in stills and videos, |
15 | // representing the noise that one would get by shooting with a digital camera |
16 | // at a given light level. Much of the noise in digital images is photon shot |
17 | // noise, which is due to the characteristics of photon arrival and grows in |
18 | // standard deviation as the square root of the expected number of photons |
19 | // captured. |
20 | // https://www.photonstophotos.net/Emil%20Martinec/noise.html#shotnoise |
21 | // |
22 | // The proxy used by this implementation for the amount of light captured |
23 | // is the ISO value such that the focal plane exposure at the time of capture |
24 | // would have been mapped by a 35mm camera to the output lightness observed |
25 | // in the image. That is, if one were to shoot on a 35mm camera (36×24mm sensor) |
26 | // at the nominal exposure for that ISO setting, the resulting image should |
27 | // contain noise of the same order of magnitude as generated by this |
28 | // implementation. |
29 | // |
30 | // The (mostly) square-root relationship between light intensity and noise |
31 | // amplitude holds in linear light, but AV1 streams are most often encoded |
32 | // non-linearly, and the film grain is applied to those non-linear values. |
33 | // Therefore, this implementation must account for the non-linearity, and this |
34 | // is controlled by the transfer function parameter, which specifies the tone |
35 | // response curve that will be used when encoding the actual image. The default |
36 | // for this implementation is BT.1886, which is approximately similar to an |
37 | // encoding gamma of 1/2.8 (i.e. a decoding gamma of 2.8) though not quite |
38 | // identical. |
39 | // |
40 | // As alluded to above, the implementation assumes that the image is taken from |
41 | // the entirety of a 36×24mm (“35mm format”) sensor. If that assumption does not |
42 | // hold, then a “35mm-equivalent ISO value” that can be passed to the |
43 | // implementation can be obtained by multiplying the true ISO value by the ratio |
44 | // of 36×24mm to the area that was actually used. For formats that approximately |
45 | // share the same aspect ratio, this is often expressed as the square of the |
46 | // “equivalence ratio” which is the ratio of their diagonals. For example, APS-C |
47 | // (often ~24×16mm) is said to have an equivalence ratio of 1.5 relative to the |
48 | // 35mm format, and therefore ISO 1000 on APS-C and ISO 1000×1.5² = 2250 on 35mm |
49 | // produce an image of the same lightness from the same amount of light spread |
50 | // onto their respective surface areas (resulting in different focal plane |
51 | // exposures), and those images will thus have similar amounts of noise if the |
52 | // cameras are of similar technology. https://doi.org/10.1117/1.OE.57.11.110801 |
53 | // |
54 | // The implementation needs to know the resolution of the images to which its |
55 | // grain tables will be applied so that it can know how the light on the sensor |
56 | // was shared between its pixels. As a general rule, while a higher pixel count |
57 | // will lead to more noise per pixel, when the final image is viewed at the same |
58 | // physical size, that noise will tend to “average out” to the same amount over |
59 | // a given area, since there will be more pixels in it which, in aggregate, will |
60 | // have received essentially as much light. Put differently, the amount of noise |
61 | // depends on the scale at which it is measured, and the decision for this |
62 | // implementation was to make that scale relative to the image instead of its |
63 | // constituent samples. For more on this, see: |
64 | // |
65 | // https://www.photonstophotos.net/Emil%20Martinec/noise-p3.html#pixelsize |
66 | // https://www.dpreview.com/articles/5365920428/the-effect-of-pixel-and-sensor-sizes-on-noise/2 |
67 | // https://www.dpreview.com/videos/7940373140/dpreview-tv-why-lower-resolution-sensors-are-not-better-in-low-light |
68 | |
69 | use std::{ |
70 | fs::File, |
71 | io::{BufWriter, Write}, |
72 | path::Path, |
73 | }; |
74 | |
75 | use arrayvec::ArrayVec; |
76 | |
77 | use crate::{GrainTableSegment, ScalingPoints, DEFAULT_GRAIN_SEED, NUM_Y_POINTS}; |
78 | |
79 | const PQ_M1: f32 = 2610. / 16384.; |
80 | const PQ_M2: f32 = 128. * 2523. / 4096.; |
81 | const PQ_C1: f32 = 3424. / 4096.; |
82 | const PQ_C2: f32 = 32. * 2413. / 4096.; |
83 | const PQ_C3: f32 = 32. * 2392. / 4096.; |
84 | |
85 | const BT1886_WHITEPOINT: f32 = 203.; |
86 | const BT1886_BLACKPOINT: f32 = 0.1; |
87 | const BT1886_GAMMA: f32 = 2.4; |
88 | |
89 | // BT.1886 formula from https://en.wikipedia.org/wiki/ITU-R_BT.1886. |
90 | // |
91 | // TODO: the inverses, alpha, and beta should all be constants |
92 | // once floats in const fns are stabilized and `powf` is const. |
93 | // Until then, `inline(always)` gets us close enough. |
94 | |
95 | #[inline (always)] |
96 | fn bt1886_inv_whitepoint() -> f32 { |
97 | BT1886_WHITEPOINT.powf(1.0 / BT1886_GAMMA) |
98 | } |
99 | |
100 | #[inline (always)] |
101 | fn bt1886_inv_blackpoint() -> f32 { |
102 | BT1886_BLACKPOINT.powf(1.0 / BT1886_GAMMA) |
103 | } |
104 | |
105 | /// The variable for user gain: |
106 | /// `α = (Lw^(1/λ) - Lb^(1/λ)) ^ λ` |
107 | #[inline (always)] |
108 | fn bt1886_alpha() -> f32 { |
109 | (bt1886_inv_whitepoint() - bt1886_inv_blackpoint()).powf(BT1886_GAMMA) |
110 | } |
111 | |
112 | /// The variable for user black level lift: |
113 | /// `β = Lb^(1/λ) / (Lw^(1/λ) - Lb^(1/λ))` |
114 | #[inline (always)] |
115 | fn bt1886_beta() -> f32 { |
116 | bt1886_inv_blackpoint() / (bt1886_inv_whitepoint() - bt1886_inv_blackpoint()) |
117 | } |
118 | |
119 | /// Settings and video data defining how to generate the film grain params. |
120 | #[derive (Debug, Clone, Copy)] |
121 | pub struct NoiseGenArgs { |
122 | pub iso_setting: u32, |
123 | pub width: u32, |
124 | pub height: u32, |
125 | pub transfer_function: TransferFunction, |
126 | pub chroma_grain: bool, |
127 | pub random_seed: Option<u16>, |
128 | } |
129 | |
130 | /// Generates a set of photon noise parameters for a segment of video |
131 | /// given a set of `args`. |
132 | #[must_use ] |
133 | pub fn generate_photon_noise_params( |
134 | start_time: u64, |
135 | end_time: u64, |
136 | args: NoiseGenArgs, |
137 | ) -> GrainTableSegment { |
138 | GrainTableSegment { |
139 | start_time, |
140 | end_time, |
141 | scaling_points_y: generate_luma_noise_points(args), |
142 | scaling_points_cb: ArrayVec::new(), |
143 | scaling_points_cr: ArrayVec::new(), |
144 | scaling_shift: 8, |
145 | ar_coeff_lag: 0, |
146 | ar_coeffs_y: ArrayVec::new(), |
147 | ar_coeffs_cb: ArrayVec::try_from([0].as_slice()) |
148 | .expect("Cannot fail creation from const array" ), |
149 | ar_coeffs_cr: ArrayVec::try_from([0].as_slice()) |
150 | .expect("Cannot fail creation from const array" ), |
151 | ar_coeff_shift: 6, |
152 | cb_mult: 0, |
153 | cb_luma_mult: 0, |
154 | cb_offset: 0, |
155 | cr_mult: 0, |
156 | cr_luma_mult: 0, |
157 | cr_offset: 0, |
158 | overlap_flag: true, |
159 | chroma_scaling_from_luma: args.chroma_grain, |
160 | grain_scale_shift: 0, |
161 | random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED), |
162 | } |
163 | } |
164 | |
165 | /// Generates a set of film grain parameters for a segment of video |
166 | /// given a set of `args`. |
167 | /// |
168 | /// # Panics |
169 | /// - This is not yet implemented, so it will always panic |
170 | #[must_use ] |
171 | #[cfg (feature = "unstable" )] |
172 | pub fn generate_film_grain_params( |
173 | start_time: u64, |
174 | end_time: u64, |
175 | args: NoiseGenArgs, |
176 | ) -> GrainTableSegment { |
177 | todo!("SCIENCE" ); |
178 | // GrainTableSegment { |
179 | // start_time, |
180 | // end_time, |
181 | // scaling_points_y: generate_luma_noise_points(args), |
182 | // scaling_points_cb: ArrayVec::new(), |
183 | // scaling_points_cr: ArrayVec::new(), |
184 | // scaling_shift: 8, |
185 | // ar_coeff_lag: 0, |
186 | // ar_coeffs_y: ArrayVec::new(), |
187 | // ar_coeffs_cb: ArrayVec::try_from([0].as_slice()) |
188 | // .expect("Cannot fail creation from const array"), |
189 | // ar_coeffs_cr: ArrayVec::try_from([0].as_slice()) |
190 | // .expect("Cannot fail creation from const array"), |
191 | // ar_coeff_shift: 6, |
192 | // cb_mult: 0, |
193 | // cb_luma_mult: 0, |
194 | // cb_offset: 0, |
195 | // cr_mult: 0, |
196 | // cr_luma_mult: 0, |
197 | // cr_offset: 0, |
198 | // overlap_flag: true, |
199 | // chroma_scaling_from_luma: args.chroma_grain, |
200 | // grain_scale_shift: 0, |
201 | // random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED), |
202 | // } |
203 | } |
204 | |
205 | /// Write a set of generated film grain params to a table file, |
206 | /// using the standard film grain table format supported by |
207 | /// aomenc, rav1e, and svt-av1. |
208 | /// |
209 | /// # Errors |
210 | /// |
211 | /// - If the output file cannot be written to |
212 | pub fn write_grain_table<P: AsRef<Path>>( |
213 | filename: P, |
214 | params: &[GrainTableSegment], |
215 | ) -> anyhow::Result<()> { |
216 | let mut file: BufWriter = BufWriter::new(inner:File::create(path:filename)?); |
217 | writeln!(&mut file, "filmgrn1" )?; |
218 | for segment: &GrainTableSegment in params { |
219 | write_film_grain_segment(params:segment, &mut file)?; |
220 | } |
221 | file.flush()?; |
222 | |
223 | Ok(()) |
224 | } |
225 | |
226 | fn write_film_grain_segment( |
227 | params: &GrainTableSegment, |
228 | output: &mut BufWriter<File>, |
229 | ) -> anyhow::Result<()> { |
230 | writeln!( |
231 | output, |
232 | "E {} {} 1 {} 1" , |
233 | params.start_time, params.end_time, params.random_seed, |
234 | )?; |
235 | writeln!( |
236 | output, |
237 | " \tp {} {} {} {} {} {} {} {} {} {} {} {}" , |
238 | params.ar_coeff_lag, |
239 | params.ar_coeff_shift, |
240 | params.grain_scale_shift, |
241 | params.scaling_shift, |
242 | u8::from(params.chroma_scaling_from_luma), |
243 | u8::from(params.overlap_flag), |
244 | params.cb_mult, |
245 | params.cb_luma_mult, |
246 | params.cb_offset, |
247 | params.cr_mult, |
248 | params.cr_luma_mult, |
249 | params.cr_offset |
250 | )?; |
251 | |
252 | write!(output, " \tsY {} " , params.scaling_points_y.len())?; |
253 | for point in ¶ms.scaling_points_y { |
254 | write!(output, " {} {}" , point[0], point[1])?; |
255 | } |
256 | writeln!(output)?; |
257 | |
258 | write!(output, " \tsCb {}" , params.scaling_points_cb.len())?; |
259 | for point in ¶ms.scaling_points_cb { |
260 | write!(output, " {} {}" , point[0], point[1])?; |
261 | } |
262 | writeln!(output)?; |
263 | |
264 | write!(output, " \tsCr {}" , params.scaling_points_cr.len())?; |
265 | for point in ¶ms.scaling_points_cr { |
266 | write!(output, " {} {}" , point[0], point[1])?; |
267 | } |
268 | writeln!(output)?; |
269 | |
270 | write!(output, " \tcY" )?; |
271 | for coeff in ¶ms.ar_coeffs_y { |
272 | write!(output, " {}" , *coeff)?; |
273 | } |
274 | writeln!(output)?; |
275 | |
276 | write!(output, " \tcCb" )?; |
277 | for coeff in ¶ms.ar_coeffs_cb { |
278 | write!(output, " {}" , *coeff)?; |
279 | } |
280 | writeln!(output)?; |
281 | |
282 | write!(output, " \tcCr" )?; |
283 | for coeff in ¶ms.ar_coeffs_cr { |
284 | write!(output, " {}" , *coeff)?; |
285 | } |
286 | writeln!(output)?; |
287 | |
288 | Ok(()) |
289 | } |
290 | |
291 | #[allow (clippy::upper_case_acronyms)] |
292 | #[derive (Debug, Clone, Copy, PartialEq, Eq)] |
293 | pub enum TransferFunction { |
294 | /// For SDR content |
295 | BT1886, |
296 | /// For HDR content |
297 | SMPTE2084, |
298 | } |
299 | |
300 | impl TransferFunction { |
301 | #[must_use ] |
302 | pub fn to_linear(self, x: f32) -> f32 { |
303 | match self { |
304 | TransferFunction::BT1886 => { |
305 | // The screen luminance in cd/m^2: |
306 | // L = α * (x + β)^λ |
307 | let luma = bt1886_alpha() * (x + bt1886_beta()).powf(BT1886_GAMMA); |
308 | |
309 | // Normalize to between 0.0 and 1.0 |
310 | luma / BT1886_WHITEPOINT |
311 | } |
312 | TransferFunction::SMPTE2084 => { |
313 | let pq_pow_inv_m2 = x.powf(1. / PQ_M2); |
314 | (0_f32.max(pq_pow_inv_m2 - PQ_C1) / PQ_C3.mul_add(-pq_pow_inv_m2, PQ_C2)) |
315 | .powf(1. / PQ_M1) |
316 | } |
317 | } |
318 | } |
319 | |
320 | #[allow (clippy::wrong_self_convention)] |
321 | #[must_use ] |
322 | pub fn from_linear(self, x: f32) -> f32 { |
323 | match self { |
324 | TransferFunction::BT1886 => { |
325 | // Scale to a raw cd/m^2 value |
326 | let luma = x * BT1886_WHITEPOINT; |
327 | |
328 | // The inverse of the `to_linear` formula: |
329 | // `(L / α)^(1 / λ) - β = x` |
330 | (luma / bt1886_alpha()).powf(1.0 / BT1886_GAMMA) - bt1886_beta() |
331 | } |
332 | TransferFunction::SMPTE2084 => { |
333 | if x < f32::EPSILON { |
334 | return 0.0; |
335 | } |
336 | let linear_pow_m1 = x.powf(PQ_M1); |
337 | (PQ_C2.mul_add(linear_pow_m1, PQ_C1) / PQ_C3.mul_add(linear_pow_m1, 1.)).powf(PQ_M2) |
338 | } |
339 | } |
340 | } |
341 | |
342 | #[inline (always)] |
343 | #[must_use ] |
344 | pub fn mid_tone(self) -> f32 { |
345 | self.to_linear(0.5) |
346 | } |
347 | } |
348 | |
349 | fn generate_luma_noise_points(args: NoiseGenArgs) -> ScalingPoints { |
350 | // Assumes a daylight-like spectrum. |
351 | // https://www.strollswithmydog.com/effective-quantum-efficiency-of-sensor/#:~:text=11%2C260%20photons/um%5E2/lx-s |
352 | const PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND: f32 = 11260.; |
353 | |
354 | // Order of magnitude for cameras in the 2010-2020 decade, taking the CFA into |
355 | // account. |
356 | const EFFECTIVE_QUANTUM_EFFICIENCY: f32 = 0.2; |
357 | |
358 | // Also reasonable values for current cameras. The read noise is typically |
359 | // higher than this at low ISO settings but it matters less there. |
360 | const PHOTO_RESPONSE_NON_UNIFORMITY: f32 = 0.005; |
361 | const INPUT_REFERRED_READ_NOISE: f32 = 1.5; |
362 | |
363 | // Assumes a 35mm sensor (36mm × 24mm). |
364 | const SENSOR_AREA: f32 = 36_000. * 24_000.; |
365 | |
366 | // Focal plane exposure for a mid-tone (typically a 18% reflectance card), in |
367 | // lx·s. |
368 | let mid_tone_exposure = 10. / args.iso_setting as f32; |
369 | |
370 | let pixel_area_microns = SENSOR_AREA / (args.width * args.height) as f32; |
371 | |
372 | let mid_tone_electrons_per_pixel = EFFECTIVE_QUANTUM_EFFICIENCY |
373 | * PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND |
374 | * mid_tone_exposure |
375 | * pixel_area_microns; |
376 | let max_electrons_per_pixel = mid_tone_electrons_per_pixel / args.transfer_function.mid_tone(); |
377 | |
378 | let mut scaling_points = ScalingPoints::default(); |
379 | for i in 0..NUM_Y_POINTS { |
380 | let x = i as f32 / (NUM_Y_POINTS as f32 - 1.); |
381 | let linear = args.transfer_function.to_linear(x); |
382 | let electrons_per_pixel = max_electrons_per_pixel * linear; |
383 | |
384 | // Quadrature sum of the relevant sources of noise, in electrons rms. Photon |
385 | // shot noise is sqrt(electrons) so we can skip the square root and the |
386 | // squaring. |
387 | // https://en.wikipedia.org/wiki/Addition_in_quadrature |
388 | // https://doi.org/10.1117/3.725073 |
389 | let noise_in_electrons = (PHOTO_RESPONSE_NON_UNIFORMITY |
390 | * PHOTO_RESPONSE_NON_UNIFORMITY |
391 | * electrons_per_pixel) |
392 | .mul_add( |
393 | electrons_per_pixel, |
394 | INPUT_REFERRED_READ_NOISE.mul_add(INPUT_REFERRED_READ_NOISE, electrons_per_pixel), |
395 | ) |
396 | .sqrt(); |
397 | let linear_noise = noise_in_electrons / max_electrons_per_pixel; |
398 | let linear_range_start = 0_f32.max(2.0f32.mul_add(-linear_noise, linear)); |
399 | let linear_range_end = 1_f32.min(2_f32.mul_add(linear_noise, linear)); |
400 | let tf_slope = (args.transfer_function.from_linear(linear_range_end) |
401 | - args.transfer_function.from_linear(linear_range_start)) |
402 | / (linear_range_end - linear_range_start); |
403 | let encoded_noise = linear_noise * tf_slope; |
404 | |
405 | let x = (255. * x).round() as u8; |
406 | let encoded_noise = 255_f32.min((255. * 7.88 * encoded_noise).round()) as u8; |
407 | |
408 | scaling_points.push([x, encoded_noise]); |
409 | } |
410 | |
411 | scaling_points |
412 | } |
413 | |
414 | #[cfg (test)] |
415 | mod tests { |
416 | use quickcheck::TestResult; |
417 | use quickcheck_macros::quickcheck; |
418 | |
419 | use super::*; |
420 | |
421 | #[quickcheck] |
422 | fn bt1886_to_linear_within_range(x: f32) -> TestResult { |
423 | if !(0.0..=1.0).contains(&x) || x.is_nan() { |
424 | return TestResult::discard(); |
425 | } |
426 | |
427 | let tx = TransferFunction::BT1886; |
428 | let res = tx.to_linear(x); |
429 | TestResult::from_bool((0.0..=1.0).contains(&res)) |
430 | } |
431 | |
432 | #[quickcheck] |
433 | fn bt1886_to_linear_reverts_correctly(x: f32) -> TestResult { |
434 | if !(0.0..=1.0).contains(&x) || x.is_nan() { |
435 | return TestResult::discard(); |
436 | } |
437 | |
438 | let tx = TransferFunction::BT1886; |
439 | let res = tx.to_linear(x); |
440 | let res = tx.from_linear(res); |
441 | TestResult::from_bool((x - res).abs() < f32::EPSILON) |
442 | } |
443 | |
444 | #[quickcheck] |
445 | fn smpte2084_to_linear_within_range(x: f32) -> TestResult { |
446 | if !(0.0..=1.0).contains(&x) || x.is_nan() { |
447 | return TestResult::discard(); |
448 | } |
449 | |
450 | let tx = TransferFunction::SMPTE2084; |
451 | let res = tx.to_linear(x); |
452 | TestResult::from_bool((0.0..=1.0).contains(&res)) |
453 | } |
454 | |
455 | #[quickcheck] |
456 | fn smpte2084_to_linear_reverts_correctly(x: f32) -> TestResult { |
457 | if !(0.0..=1.0).contains(&x) || x.is_nan() { |
458 | return TestResult::discard(); |
459 | } |
460 | |
461 | let tx = TransferFunction::SMPTE2084; |
462 | let res = tx.to_linear(x); |
463 | let res = tx.from_linear(res); |
464 | TestResult::from_bool((x - res).abs() < f32::EPSILON) |
465 | } |
466 | } |
467 | |