| 1 | // Copyright (c) 2022-2022, The rav1e contributors. All rights reserved |
| 2 | // |
| 3 | // This source code is subject to the terms of the BSD 2 Clause License and |
| 4 | // the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| 5 | // was not distributed with this source code in the LICENSE file, you can |
| 6 | // obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| 7 | // Media Patent License 1.0 was not distributed with this source code in the |
| 8 | // PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| 9 | |
| 10 | // The original work for this formula was implmented in aomenc, and this is |
| 11 | // an adaptation of that work: |
| 12 | // https://aomedia.googlesource.com/aom/+/refs/heads/main/examples/photon_noise_table.c |
| 13 | |
| 14 | // This implementation creates a film grain table, for use in stills and videos, |
| 15 | // representing the noise that one would get by shooting with a digital camera |
| 16 | // at a given light level. Much of the noise in digital images is photon shot |
| 17 | // noise, which is due to the characteristics of photon arrival and grows in |
| 18 | // standard deviation as the square root of the expected number of photons |
| 19 | // captured. |
| 20 | // https://www.photonstophotos.net/Emil%20Martinec/noise.html#shotnoise |
| 21 | // |
| 22 | // The proxy used by this implementation for the amount of light captured |
| 23 | // is the ISO value such that the focal plane exposure at the time of capture |
| 24 | // would have been mapped by a 35mm camera to the output lightness observed |
| 25 | // in the image. That is, if one were to shoot on a 35mm camera (36×24mm sensor) |
| 26 | // at the nominal exposure for that ISO setting, the resulting image should |
| 27 | // contain noise of the same order of magnitude as generated by this |
| 28 | // implementation. |
| 29 | // |
| 30 | // The (mostly) square-root relationship between light intensity and noise |
| 31 | // amplitude holds in linear light, but AV1 streams are most often encoded |
| 32 | // non-linearly, and the film grain is applied to those non-linear values. |
| 33 | // Therefore, this implementation must account for the non-linearity, and this |
| 34 | // is controlled by the transfer function parameter, which specifies the tone |
| 35 | // response curve that will be used when encoding the actual image. The default |
| 36 | // for this implementation is BT.1886, which is approximately similar to an |
| 37 | // encoding gamma of 1/2.8 (i.e. a decoding gamma of 2.8) though not quite |
| 38 | // identical. |
| 39 | // |
| 40 | // As alluded to above, the implementation assumes that the image is taken from |
| 41 | // the entirety of a 36×24mm (“35mm format”) sensor. If that assumption does not |
| 42 | // hold, then a “35mm-equivalent ISO value” that can be passed to the |
| 43 | // implementation can be obtained by multiplying the true ISO value by the ratio |
| 44 | // of 36×24mm to the area that was actually used. For formats that approximately |
| 45 | // share the same aspect ratio, this is often expressed as the square of the |
| 46 | // “equivalence ratio” which is the ratio of their diagonals. For example, APS-C |
| 47 | // (often ~24×16mm) is said to have an equivalence ratio of 1.5 relative to the |
| 48 | // 35mm format, and therefore ISO 1000 on APS-C and ISO 1000×1.5² = 2250 on 35mm |
| 49 | // produce an image of the same lightness from the same amount of light spread |
| 50 | // onto their respective surface areas (resulting in different focal plane |
| 51 | // exposures), and those images will thus have similar amounts of noise if the |
| 52 | // cameras are of similar technology. https://doi.org/10.1117/1.OE.57.11.110801 |
| 53 | // |
| 54 | // The implementation needs to know the resolution of the images to which its |
| 55 | // grain tables will be applied so that it can know how the light on the sensor |
| 56 | // was shared between its pixels. As a general rule, while a higher pixel count |
| 57 | // will lead to more noise per pixel, when the final image is viewed at the same |
| 58 | // physical size, that noise will tend to “average out” to the same amount over |
| 59 | // a given area, since there will be more pixels in it which, in aggregate, will |
| 60 | // have received essentially as much light. Put differently, the amount of noise |
| 61 | // depends on the scale at which it is measured, and the decision for this |
| 62 | // implementation was to make that scale relative to the image instead of its |
| 63 | // constituent samples. For more on this, see: |
| 64 | // |
| 65 | // https://www.photonstophotos.net/Emil%20Martinec/noise-p3.html#pixelsize |
| 66 | // https://www.dpreview.com/articles/5365920428/the-effect-of-pixel-and-sensor-sizes-on-noise/2 |
| 67 | // https://www.dpreview.com/videos/7940373140/dpreview-tv-why-lower-resolution-sensors-are-not-better-in-low-light |
| 68 | |
| 69 | use std::{ |
| 70 | fs::File, |
| 71 | io::{BufWriter, Write}, |
| 72 | path::Path, |
| 73 | }; |
| 74 | |
| 75 | use arrayvec::ArrayVec; |
| 76 | |
| 77 | use crate::{GrainTableSegment, ScalingPoints, DEFAULT_GRAIN_SEED, NUM_Y_POINTS}; |
| 78 | |
| 79 | const PQ_M1: f32 = 2610. / 16384.; |
| 80 | const PQ_M2: f32 = 128. * 2523. / 4096.; |
| 81 | const PQ_C1: f32 = 3424. / 4096.; |
| 82 | const PQ_C2: f32 = 32. * 2413. / 4096.; |
| 83 | const PQ_C3: f32 = 32. * 2392. / 4096.; |
| 84 | |
| 85 | const BT1886_WHITEPOINT: f32 = 203.; |
| 86 | const BT1886_BLACKPOINT: f32 = 0.1; |
| 87 | const BT1886_GAMMA: f32 = 2.4; |
| 88 | |
| 89 | // BT.1886 formula from https://en.wikipedia.org/wiki/ITU-R_BT.1886. |
| 90 | // |
| 91 | // TODO: the inverses, alpha, and beta should all be constants |
| 92 | // once floats in const fns are stabilized and `powf` is const. |
| 93 | // Until then, `inline(always)` gets us close enough. |
| 94 | |
| 95 | #[inline (always)] |
| 96 | fn bt1886_inv_whitepoint() -> f32 { |
| 97 | BT1886_WHITEPOINT.powf(1.0 / BT1886_GAMMA) |
| 98 | } |
| 99 | |
| 100 | #[inline (always)] |
| 101 | fn bt1886_inv_blackpoint() -> f32 { |
| 102 | BT1886_BLACKPOINT.powf(1.0 / BT1886_GAMMA) |
| 103 | } |
| 104 | |
| 105 | /// The variable for user gain: |
| 106 | /// `α = (Lw^(1/λ) - Lb^(1/λ)) ^ λ` |
| 107 | #[inline (always)] |
| 108 | fn bt1886_alpha() -> f32 { |
| 109 | (bt1886_inv_whitepoint() - bt1886_inv_blackpoint()).powf(BT1886_GAMMA) |
| 110 | } |
| 111 | |
| 112 | /// The variable for user black level lift: |
| 113 | /// `β = Lb^(1/λ) / (Lw^(1/λ) - Lb^(1/λ))` |
| 114 | #[inline (always)] |
| 115 | fn bt1886_beta() -> f32 { |
| 116 | bt1886_inv_blackpoint() / (bt1886_inv_whitepoint() - bt1886_inv_blackpoint()) |
| 117 | } |
| 118 | |
| 119 | /// Settings and video data defining how to generate the film grain params. |
| 120 | #[derive (Debug, Clone, Copy)] |
| 121 | pub struct NoiseGenArgs { |
| 122 | pub iso_setting: u32, |
| 123 | pub width: u32, |
| 124 | pub height: u32, |
| 125 | pub transfer_function: TransferFunction, |
| 126 | pub chroma_grain: bool, |
| 127 | pub random_seed: Option<u16>, |
| 128 | } |
| 129 | |
| 130 | /// Generates a set of photon noise parameters for a segment of video |
| 131 | /// given a set of `args`. |
| 132 | #[must_use ] |
| 133 | pub fn generate_photon_noise_params( |
| 134 | start_time: u64, |
| 135 | end_time: u64, |
| 136 | args: NoiseGenArgs, |
| 137 | ) -> GrainTableSegment { |
| 138 | GrainTableSegment { |
| 139 | start_time, |
| 140 | end_time, |
| 141 | scaling_points_y: generate_luma_noise_points(args), |
| 142 | scaling_points_cb: ArrayVec::new(), |
| 143 | scaling_points_cr: ArrayVec::new(), |
| 144 | scaling_shift: 8, |
| 145 | ar_coeff_lag: 0, |
| 146 | ar_coeffs_y: ArrayVec::new(), |
| 147 | ar_coeffs_cb: ArrayVec::try_from([0].as_slice()) |
| 148 | .expect("Cannot fail creation from const array" ), |
| 149 | ar_coeffs_cr: ArrayVec::try_from([0].as_slice()) |
| 150 | .expect("Cannot fail creation from const array" ), |
| 151 | ar_coeff_shift: 6, |
| 152 | cb_mult: 0, |
| 153 | cb_luma_mult: 0, |
| 154 | cb_offset: 0, |
| 155 | cr_mult: 0, |
| 156 | cr_luma_mult: 0, |
| 157 | cr_offset: 0, |
| 158 | overlap_flag: true, |
| 159 | chroma_scaling_from_luma: args.chroma_grain, |
| 160 | grain_scale_shift: 0, |
| 161 | random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED), |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | /// Generates a set of film grain parameters for a segment of video |
| 166 | /// given a set of `args`. |
| 167 | /// |
| 168 | /// # Panics |
| 169 | /// - This is not yet implemented, so it will always panic |
| 170 | #[must_use ] |
| 171 | #[cfg (feature = "unstable" )] |
| 172 | pub fn generate_film_grain_params( |
| 173 | start_time: u64, |
| 174 | end_time: u64, |
| 175 | args: NoiseGenArgs, |
| 176 | ) -> GrainTableSegment { |
| 177 | todo!("SCIENCE" ); |
| 178 | // GrainTableSegment { |
| 179 | // start_time, |
| 180 | // end_time, |
| 181 | // scaling_points_y: generate_luma_noise_points(args), |
| 182 | // scaling_points_cb: ArrayVec::new(), |
| 183 | // scaling_points_cr: ArrayVec::new(), |
| 184 | // scaling_shift: 8, |
| 185 | // ar_coeff_lag: 0, |
| 186 | // ar_coeffs_y: ArrayVec::new(), |
| 187 | // ar_coeffs_cb: ArrayVec::try_from([0].as_slice()) |
| 188 | // .expect("Cannot fail creation from const array"), |
| 189 | // ar_coeffs_cr: ArrayVec::try_from([0].as_slice()) |
| 190 | // .expect("Cannot fail creation from const array"), |
| 191 | // ar_coeff_shift: 6, |
| 192 | // cb_mult: 0, |
| 193 | // cb_luma_mult: 0, |
| 194 | // cb_offset: 0, |
| 195 | // cr_mult: 0, |
| 196 | // cr_luma_mult: 0, |
| 197 | // cr_offset: 0, |
| 198 | // overlap_flag: true, |
| 199 | // chroma_scaling_from_luma: args.chroma_grain, |
| 200 | // grain_scale_shift: 0, |
| 201 | // random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED), |
| 202 | // } |
| 203 | } |
| 204 | |
| 205 | /// Write a set of generated film grain params to a table file, |
| 206 | /// using the standard film grain table format supported by |
| 207 | /// aomenc, rav1e, and svt-av1. |
| 208 | /// |
| 209 | /// # Errors |
| 210 | /// |
| 211 | /// - If the output file cannot be written to |
| 212 | pub fn write_grain_table<P: AsRef<Path>>( |
| 213 | filename: P, |
| 214 | params: &[GrainTableSegment], |
| 215 | ) -> anyhow::Result<()> { |
| 216 | let mut file: BufWriter = BufWriter::new(inner:File::create(path:filename)?); |
| 217 | writeln!(&mut file, "filmgrn1" )?; |
| 218 | for segment: &GrainTableSegment in params { |
| 219 | write_film_grain_segment(params:segment, &mut file)?; |
| 220 | } |
| 221 | file.flush()?; |
| 222 | |
| 223 | Ok(()) |
| 224 | } |
| 225 | |
| 226 | fn write_film_grain_segment( |
| 227 | params: &GrainTableSegment, |
| 228 | output: &mut BufWriter<File>, |
| 229 | ) -> anyhow::Result<()> { |
| 230 | writeln!( |
| 231 | output, |
| 232 | "E {} {} 1 {} 1" , |
| 233 | params.start_time, params.end_time, params.random_seed, |
| 234 | )?; |
| 235 | writeln!( |
| 236 | output, |
| 237 | " \tp {} {} {} {} {} {} {} {} {} {} {} {}" , |
| 238 | params.ar_coeff_lag, |
| 239 | params.ar_coeff_shift, |
| 240 | params.grain_scale_shift, |
| 241 | params.scaling_shift, |
| 242 | u8::from(params.chroma_scaling_from_luma), |
| 243 | u8::from(params.overlap_flag), |
| 244 | params.cb_mult, |
| 245 | params.cb_luma_mult, |
| 246 | params.cb_offset, |
| 247 | params.cr_mult, |
| 248 | params.cr_luma_mult, |
| 249 | params.cr_offset |
| 250 | )?; |
| 251 | |
| 252 | write!(output, " \tsY {} " , params.scaling_points_y.len())?; |
| 253 | for point in ¶ms.scaling_points_y { |
| 254 | write!(output, " {} {}" , point[0], point[1])?; |
| 255 | } |
| 256 | writeln!(output)?; |
| 257 | |
| 258 | write!(output, " \tsCb {}" , params.scaling_points_cb.len())?; |
| 259 | for point in ¶ms.scaling_points_cb { |
| 260 | write!(output, " {} {}" , point[0], point[1])?; |
| 261 | } |
| 262 | writeln!(output)?; |
| 263 | |
| 264 | write!(output, " \tsCr {}" , params.scaling_points_cr.len())?; |
| 265 | for point in ¶ms.scaling_points_cr { |
| 266 | write!(output, " {} {}" , point[0], point[1])?; |
| 267 | } |
| 268 | writeln!(output)?; |
| 269 | |
| 270 | write!(output, " \tcY" )?; |
| 271 | for coeff in ¶ms.ar_coeffs_y { |
| 272 | write!(output, " {}" , *coeff)?; |
| 273 | } |
| 274 | writeln!(output)?; |
| 275 | |
| 276 | write!(output, " \tcCb" )?; |
| 277 | for coeff in ¶ms.ar_coeffs_cb { |
| 278 | write!(output, " {}" , *coeff)?; |
| 279 | } |
| 280 | writeln!(output)?; |
| 281 | |
| 282 | write!(output, " \tcCr" )?; |
| 283 | for coeff in ¶ms.ar_coeffs_cr { |
| 284 | write!(output, " {}" , *coeff)?; |
| 285 | } |
| 286 | writeln!(output)?; |
| 287 | |
| 288 | Ok(()) |
| 289 | } |
| 290 | |
| 291 | #[allow (clippy::upper_case_acronyms)] |
| 292 | #[derive (Debug, Clone, Copy, PartialEq, Eq)] |
| 293 | pub enum TransferFunction { |
| 294 | /// For SDR content |
| 295 | BT1886, |
| 296 | /// For HDR content |
| 297 | SMPTE2084, |
| 298 | } |
| 299 | |
| 300 | impl TransferFunction { |
| 301 | #[must_use ] |
| 302 | pub fn to_linear(self, x: f32) -> f32 { |
| 303 | match self { |
| 304 | TransferFunction::BT1886 => { |
| 305 | // The screen luminance in cd/m^2: |
| 306 | // L = α * (x + β)^λ |
| 307 | let luma = bt1886_alpha() * (x + bt1886_beta()).powf(BT1886_GAMMA); |
| 308 | |
| 309 | // Normalize to between 0.0 and 1.0 |
| 310 | luma / BT1886_WHITEPOINT |
| 311 | } |
| 312 | TransferFunction::SMPTE2084 => { |
| 313 | let pq_pow_inv_m2 = x.powf(1. / PQ_M2); |
| 314 | (0_f32.max(pq_pow_inv_m2 - PQ_C1) / PQ_C3.mul_add(-pq_pow_inv_m2, PQ_C2)) |
| 315 | .powf(1. / PQ_M1) |
| 316 | } |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | #[allow (clippy::wrong_self_convention)] |
| 321 | #[must_use ] |
| 322 | pub fn from_linear(self, x: f32) -> f32 { |
| 323 | match self { |
| 324 | TransferFunction::BT1886 => { |
| 325 | // Scale to a raw cd/m^2 value |
| 326 | let luma = x * BT1886_WHITEPOINT; |
| 327 | |
| 328 | // The inverse of the `to_linear` formula: |
| 329 | // `(L / α)^(1 / λ) - β = x` |
| 330 | (luma / bt1886_alpha()).powf(1.0 / BT1886_GAMMA) - bt1886_beta() |
| 331 | } |
| 332 | TransferFunction::SMPTE2084 => { |
| 333 | if x < f32::EPSILON { |
| 334 | return 0.0; |
| 335 | } |
| 336 | let linear_pow_m1 = x.powf(PQ_M1); |
| 337 | (PQ_C2.mul_add(linear_pow_m1, PQ_C1) / PQ_C3.mul_add(linear_pow_m1, 1.)).powf(PQ_M2) |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | #[inline (always)] |
| 343 | #[must_use ] |
| 344 | pub fn mid_tone(self) -> f32 { |
| 345 | self.to_linear(0.5) |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | fn generate_luma_noise_points(args: NoiseGenArgs) -> ScalingPoints { |
| 350 | // Assumes a daylight-like spectrum. |
| 351 | // https://www.strollswithmydog.com/effective-quantum-efficiency-of-sensor/#:~:text=11%2C260%20photons/um%5E2/lx-s |
| 352 | const PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND: f32 = 11260.; |
| 353 | |
| 354 | // Order of magnitude for cameras in the 2010-2020 decade, taking the CFA into |
| 355 | // account. |
| 356 | const EFFECTIVE_QUANTUM_EFFICIENCY: f32 = 0.2; |
| 357 | |
| 358 | // Also reasonable values for current cameras. The read noise is typically |
| 359 | // higher than this at low ISO settings but it matters less there. |
| 360 | const PHOTO_RESPONSE_NON_UNIFORMITY: f32 = 0.005; |
| 361 | const INPUT_REFERRED_READ_NOISE: f32 = 1.5; |
| 362 | |
| 363 | // Assumes a 35mm sensor (36mm × 24mm). |
| 364 | const SENSOR_AREA: f32 = 36_000. * 24_000.; |
| 365 | |
| 366 | // Focal plane exposure for a mid-tone (typically a 18% reflectance card), in |
| 367 | // lx·s. |
| 368 | let mid_tone_exposure = 10. / args.iso_setting as f32; |
| 369 | |
| 370 | let pixel_area_microns = SENSOR_AREA / (args.width * args.height) as f32; |
| 371 | |
| 372 | let mid_tone_electrons_per_pixel = EFFECTIVE_QUANTUM_EFFICIENCY |
| 373 | * PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND |
| 374 | * mid_tone_exposure |
| 375 | * pixel_area_microns; |
| 376 | let max_electrons_per_pixel = mid_tone_electrons_per_pixel / args.transfer_function.mid_tone(); |
| 377 | |
| 378 | let mut scaling_points = ScalingPoints::default(); |
| 379 | for i in 0..NUM_Y_POINTS { |
| 380 | let x = i as f32 / (NUM_Y_POINTS as f32 - 1.); |
| 381 | let linear = args.transfer_function.to_linear(x); |
| 382 | let electrons_per_pixel = max_electrons_per_pixel * linear; |
| 383 | |
| 384 | // Quadrature sum of the relevant sources of noise, in electrons rms. Photon |
| 385 | // shot noise is sqrt(electrons) so we can skip the square root and the |
| 386 | // squaring. |
| 387 | // https://en.wikipedia.org/wiki/Addition_in_quadrature |
| 388 | // https://doi.org/10.1117/3.725073 |
| 389 | let noise_in_electrons = (PHOTO_RESPONSE_NON_UNIFORMITY |
| 390 | * PHOTO_RESPONSE_NON_UNIFORMITY |
| 391 | * electrons_per_pixel) |
| 392 | .mul_add( |
| 393 | electrons_per_pixel, |
| 394 | INPUT_REFERRED_READ_NOISE.mul_add(INPUT_REFERRED_READ_NOISE, electrons_per_pixel), |
| 395 | ) |
| 396 | .sqrt(); |
| 397 | let linear_noise = noise_in_electrons / max_electrons_per_pixel; |
| 398 | let linear_range_start = 0_f32.max(2.0f32.mul_add(-linear_noise, linear)); |
| 399 | let linear_range_end = 1_f32.min(2_f32.mul_add(linear_noise, linear)); |
| 400 | let tf_slope = (args.transfer_function.from_linear(linear_range_end) |
| 401 | - args.transfer_function.from_linear(linear_range_start)) |
| 402 | / (linear_range_end - linear_range_start); |
| 403 | let encoded_noise = linear_noise * tf_slope; |
| 404 | |
| 405 | let x = (255. * x).round() as u8; |
| 406 | let encoded_noise = 255_f32.min((255. * 7.88 * encoded_noise).round()) as u8; |
| 407 | |
| 408 | scaling_points.push([x, encoded_noise]); |
| 409 | } |
| 410 | |
| 411 | scaling_points |
| 412 | } |
| 413 | |
| 414 | #[cfg (test)] |
| 415 | mod tests { |
| 416 | use quickcheck::TestResult; |
| 417 | use quickcheck_macros::quickcheck; |
| 418 | |
| 419 | use super::*; |
| 420 | |
| 421 | #[quickcheck] |
| 422 | fn bt1886_to_linear_within_range(x: f32) -> TestResult { |
| 423 | if !(0.0..=1.0).contains(&x) || x.is_nan() { |
| 424 | return TestResult::discard(); |
| 425 | } |
| 426 | |
| 427 | let tx = TransferFunction::BT1886; |
| 428 | let res = tx.to_linear(x); |
| 429 | TestResult::from_bool((0.0..=1.0).contains(&res)) |
| 430 | } |
| 431 | |
| 432 | #[quickcheck] |
| 433 | fn bt1886_to_linear_reverts_correctly(x: f32) -> TestResult { |
| 434 | if !(0.0..=1.0).contains(&x) || x.is_nan() { |
| 435 | return TestResult::discard(); |
| 436 | } |
| 437 | |
| 438 | let tx = TransferFunction::BT1886; |
| 439 | let res = tx.to_linear(x); |
| 440 | let res = tx.from_linear(res); |
| 441 | TestResult::from_bool((x - res).abs() < f32::EPSILON) |
| 442 | } |
| 443 | |
| 444 | #[quickcheck] |
| 445 | fn smpte2084_to_linear_within_range(x: f32) -> TestResult { |
| 446 | if !(0.0..=1.0).contains(&x) || x.is_nan() { |
| 447 | return TestResult::discard(); |
| 448 | } |
| 449 | |
| 450 | let tx = TransferFunction::SMPTE2084; |
| 451 | let res = tx.to_linear(x); |
| 452 | TestResult::from_bool((0.0..=1.0).contains(&res)) |
| 453 | } |
| 454 | |
| 455 | #[quickcheck] |
| 456 | fn smpte2084_to_linear_reverts_correctly(x: f32) -> TestResult { |
| 457 | if !(0.0..=1.0).contains(&x) || x.is_nan() { |
| 458 | return TestResult::discard(); |
| 459 | } |
| 460 | |
| 461 | let tx = TransferFunction::SMPTE2084; |
| 462 | let res = tx.to_linear(x); |
| 463 | let res = tx.from_linear(res); |
| 464 | TestResult::from_bool((x - res).abs() < f32::EPSILON) |
| 465 | } |
| 466 | } |
| 467 | |