1 | //! Compound types (unions and structs) in our intermediate representation. |
2 | |
3 | use super::analysis::Sizedness; |
4 | use super::annotations::Annotations; |
5 | use super::context::{BindgenContext, FunctionId, ItemId, TypeId, VarId}; |
6 | use super::dot::DotAttributes; |
7 | use super::item::{IsOpaque, Item}; |
8 | use super::layout::Layout; |
9 | use super::template::TemplateParameters; |
10 | use super::traversal::{EdgeKind, Trace, Tracer}; |
11 | use super::ty::RUST_DERIVE_IN_ARRAY_LIMIT; |
12 | use crate::clang; |
13 | use crate::codegen::struct_layout::{align_to, bytes_from_bits_pow2}; |
14 | use crate::ir::derive::CanDeriveCopy; |
15 | use crate::parse::ParseError; |
16 | use crate::HashMap; |
17 | use crate::NonCopyUnionStyle; |
18 | use peeking_take_while::PeekableExt; |
19 | use std::cmp; |
20 | use std::io; |
21 | use std::mem; |
22 | |
23 | /// The kind of compound type. |
24 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
25 | pub enum CompKind { |
26 | /// A struct. |
27 | Struct, |
28 | /// A union. |
29 | Union, |
30 | } |
31 | |
32 | /// The kind of C++ method. |
33 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
34 | pub enum MethodKind { |
35 | /// A constructor. We represent it as method for convenience, to avoid code |
36 | /// duplication. |
37 | Constructor, |
38 | /// A destructor. |
39 | Destructor, |
40 | /// A virtual destructor. |
41 | VirtualDestructor { |
42 | /// Whether it's pure virtual. |
43 | pure_virtual: bool, |
44 | }, |
45 | /// A static method. |
46 | Static, |
47 | /// A normal method. |
48 | Normal, |
49 | /// A virtual method. |
50 | Virtual { |
51 | /// Whether it's pure virtual. |
52 | pure_virtual: bool, |
53 | }, |
54 | } |
55 | |
56 | impl MethodKind { |
57 | /// Is this a destructor method? |
58 | pub fn is_destructor(&self) -> bool { |
59 | matches!( |
60 | *self, |
61 | MethodKind::Destructor | MethodKind::VirtualDestructor { .. } |
62 | ) |
63 | } |
64 | |
65 | /// Is this a pure virtual method? |
66 | pub fn is_pure_virtual(&self) -> bool { |
67 | match *self { |
68 | MethodKind::Virtual { pure_virtual: bool } | |
69 | MethodKind::VirtualDestructor { pure_virtual: bool } => pure_virtual, |
70 | _ => false, |
71 | } |
72 | } |
73 | } |
74 | |
75 | /// A struct representing a C++ method, either static, normal, or virtual. |
76 | #[derive (Debug)] |
77 | pub struct Method { |
78 | kind: MethodKind, |
79 | /// The signature of the method. Take into account this is not a `Type` |
80 | /// item, but a `Function` one. |
81 | /// |
82 | /// This is tricky and probably this field should be renamed. |
83 | signature: FunctionId, |
84 | is_const: bool, |
85 | } |
86 | |
87 | impl Method { |
88 | /// Construct a new `Method`. |
89 | pub fn new( |
90 | kind: MethodKind, |
91 | signature: FunctionId, |
92 | is_const: bool, |
93 | ) -> Self { |
94 | Method { |
95 | kind, |
96 | signature, |
97 | is_const, |
98 | } |
99 | } |
100 | |
101 | /// What kind of method is this? |
102 | pub fn kind(&self) -> MethodKind { |
103 | self.kind |
104 | } |
105 | |
106 | /// Is this a constructor? |
107 | pub fn is_constructor(&self) -> bool { |
108 | self.kind == MethodKind::Constructor |
109 | } |
110 | |
111 | /// Is this a virtual method? |
112 | pub fn is_virtual(&self) -> bool { |
113 | matches!( |
114 | self.kind, |
115 | MethodKind::Virtual { .. } | MethodKind::VirtualDestructor { .. } |
116 | ) |
117 | } |
118 | |
119 | /// Is this a static method? |
120 | pub fn is_static(&self) -> bool { |
121 | self.kind == MethodKind::Static |
122 | } |
123 | |
124 | /// Get the id for the `Function` signature for this method. |
125 | pub fn signature(&self) -> FunctionId { |
126 | self.signature |
127 | } |
128 | |
129 | /// Is this a const qualified method? |
130 | pub fn is_const(&self) -> bool { |
131 | self.is_const |
132 | } |
133 | } |
134 | |
135 | /// Methods common to the various field types. |
136 | pub trait FieldMethods { |
137 | /// Get the name of this field. |
138 | fn name(&self) -> Option<&str>; |
139 | |
140 | /// Get the type of this field. |
141 | fn ty(&self) -> TypeId; |
142 | |
143 | /// Get the comment for this field. |
144 | fn comment(&self) -> Option<&str>; |
145 | |
146 | /// If this is a bitfield, how many bits does it need? |
147 | fn bitfield_width(&self) -> Option<u32>; |
148 | |
149 | /// Is this feild declared public? |
150 | fn is_public(&self) -> bool; |
151 | |
152 | /// Get the annotations for this field. |
153 | fn annotations(&self) -> &Annotations; |
154 | |
155 | /// The offset of the field (in bits) |
156 | fn offset(&self) -> Option<usize>; |
157 | } |
158 | |
159 | /// A contiguous set of logical bitfields that live within the same physical |
160 | /// allocation unit. See 9.2.4 [class.bit] in the C++ standard and [section |
161 | /// 2.4.II.1 in the Itanium C++ |
162 | /// ABI](http://itanium-cxx-abi.github.io/cxx-abi/abi.html#class-types). |
163 | #[derive (Debug)] |
164 | pub struct BitfieldUnit { |
165 | nth: usize, |
166 | layout: Layout, |
167 | bitfields: Vec<Bitfield>, |
168 | } |
169 | |
170 | impl BitfieldUnit { |
171 | /// Get the 1-based index of this bitfield unit within its containing |
172 | /// struct. Useful for generating a Rust struct's field name for this unit |
173 | /// of bitfields. |
174 | pub fn nth(&self) -> usize { |
175 | self.nth |
176 | } |
177 | |
178 | /// Get the layout within which these bitfields reside. |
179 | pub fn layout(&self) -> Layout { |
180 | self.layout |
181 | } |
182 | |
183 | /// Get the bitfields within this unit. |
184 | pub fn bitfields(&self) -> &[Bitfield] { |
185 | &self.bitfields |
186 | } |
187 | } |
188 | |
189 | /// A struct representing a C++ field. |
190 | #[derive (Debug)] |
191 | pub enum Field { |
192 | /// A normal data member. |
193 | DataMember(FieldData), |
194 | |
195 | /// A physical allocation unit containing many logical bitfields. |
196 | Bitfields(BitfieldUnit), |
197 | } |
198 | |
199 | impl Field { |
200 | /// Get this field's layout. |
201 | pub fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
202 | match *self { |
203 | Field::Bitfields(BitfieldUnit { layout: Layout, .. }) => Some(layout), |
204 | Field::DataMember(ref data: &FieldData) => { |
205 | ctx.resolve_type(type_id:data.ty).layout(ctx) |
206 | } |
207 | } |
208 | } |
209 | } |
210 | |
211 | impl Trace for Field { |
212 | type Extra = (); |
213 | |
214 | fn trace<T>(&self, _: &BindgenContext, tracer: &mut T, _: &()) |
215 | where |
216 | T: Tracer, |
217 | { |
218 | match *self { |
219 | Field::DataMember(ref data: &FieldData) => { |
220 | tracer.visit_kind(item:data.ty.into(), kind:EdgeKind::Field); |
221 | } |
222 | Field::Bitfields(BitfieldUnit { ref bitfields: &Vec, .. }) => { |
223 | for bf: &Bitfield in bitfields { |
224 | tracer.visit_kind(item:bf.ty().into(), kind:EdgeKind::Field); |
225 | } |
226 | } |
227 | } |
228 | } |
229 | } |
230 | |
231 | impl DotAttributes for Field { |
232 | fn dot_attributes<W>( |
233 | &self, |
234 | ctx: &BindgenContext, |
235 | out: &mut W, |
236 | ) -> io::Result<()> |
237 | where |
238 | W: io::Write, |
239 | { |
240 | match *self { |
241 | Field::DataMember(ref data) => data.dot_attributes(ctx, out), |
242 | Field::Bitfields(BitfieldUnit { |
243 | layout, |
244 | ref bitfields, |
245 | .. |
246 | }) => { |
247 | writeln!( |
248 | out, |
249 | r#"<tr> |
250 | <td>bitfield unit</td> |
251 | <td> |
252 | <table border="0"> |
253 | <tr> |
254 | <td>unit.size</td><td> {}</td> |
255 | </tr> |
256 | <tr> |
257 | <td>unit.align</td><td> {}</td> |
258 | </tr> |
259 | "# , |
260 | layout.size, layout.align |
261 | )?; |
262 | for bf in bitfields { |
263 | bf.dot_attributes(ctx, out)?; |
264 | } |
265 | writeln!(out, "</table></td></tr>" ) |
266 | } |
267 | } |
268 | } |
269 | } |
270 | |
271 | impl DotAttributes for FieldData { |
272 | fn dot_attributes<W>( |
273 | &self, |
274 | _ctx: &BindgenContext, |
275 | out: &mut W, |
276 | ) -> io::Result<()> |
277 | where |
278 | W: io::Write, |
279 | { |
280 | writeln!( |
281 | out, |
282 | "<tr><td> {}</td><td> {:?}</td></tr>" , |
283 | self.name().unwrap_or("(anonymous)" ), |
284 | self.ty() |
285 | ) |
286 | } |
287 | } |
288 | |
289 | impl DotAttributes for Bitfield { |
290 | fn dot_attributes<W>( |
291 | &self, |
292 | _ctx: &BindgenContext, |
293 | out: &mut W, |
294 | ) -> io::Result<()> |
295 | where |
296 | W: io::Write, |
297 | { |
298 | writeln!( |
299 | out, |
300 | "<tr><td> {} : {}</td><td> {:?}</td></tr>" , |
301 | self.name().unwrap_or("(anonymous)" ), |
302 | self.width(), |
303 | self.ty() |
304 | ) |
305 | } |
306 | } |
307 | |
308 | /// A logical bitfield within some physical bitfield allocation unit. |
309 | #[derive (Debug)] |
310 | pub struct Bitfield { |
311 | /// Index of the bit within this bitfield's allocation unit where this |
312 | /// bitfield's bits begin. |
313 | offset_into_unit: usize, |
314 | |
315 | /// The field data for this bitfield. |
316 | data: FieldData, |
317 | |
318 | /// Name of the generated Rust getter for this bitfield. |
319 | /// |
320 | /// Should be assigned before codegen. |
321 | getter_name: Option<String>, |
322 | |
323 | /// Name of the generated Rust setter for this bitfield. |
324 | /// |
325 | /// Should be assigned before codegen. |
326 | setter_name: Option<String>, |
327 | } |
328 | |
329 | impl Bitfield { |
330 | /// Construct a new bitfield. |
331 | fn new(offset_into_unit: usize, raw: RawField) -> Bitfield { |
332 | assert!(raw.bitfield_width().is_some()); |
333 | |
334 | Bitfield { |
335 | offset_into_unit, |
336 | data: raw.0, |
337 | getter_name: None, |
338 | setter_name: None, |
339 | } |
340 | } |
341 | |
342 | /// Get the index of the bit within this bitfield's allocation unit where |
343 | /// this bitfield begins. |
344 | pub fn offset_into_unit(&self) -> usize { |
345 | self.offset_into_unit |
346 | } |
347 | |
348 | /// Get the mask value that when &'ed with this bitfield's allocation unit |
349 | /// produces this bitfield's value. |
350 | pub fn mask(&self) -> u64 { |
351 | use std::u64; |
352 | |
353 | let unoffseted_mask = |
354 | if self.width() as u64 == mem::size_of::<u64>() as u64 * 8 { |
355 | u64::MAX |
356 | } else { |
357 | (1u64 << self.width()) - 1u64 |
358 | }; |
359 | |
360 | unoffseted_mask << self.offset_into_unit() |
361 | } |
362 | |
363 | /// Get the bit width of this bitfield. |
364 | pub fn width(&self) -> u32 { |
365 | self.data.bitfield_width().unwrap() |
366 | } |
367 | |
368 | /// Name of the generated Rust getter for this bitfield. |
369 | /// |
370 | /// Panics if called before assigning bitfield accessor names or if |
371 | /// this bitfield have no name. |
372 | pub fn getter_name(&self) -> &str { |
373 | assert!( |
374 | self.name().is_some(), |
375 | "`Bitfield::getter_name` called on anonymous field" |
376 | ); |
377 | self.getter_name.as_ref().expect( |
378 | "`Bitfield::getter_name` should only be called after\ |
379 | assigning bitfield accessor names" , |
380 | ) |
381 | } |
382 | |
383 | /// Name of the generated Rust setter for this bitfield. |
384 | /// |
385 | /// Panics if called before assigning bitfield accessor names or if |
386 | /// this bitfield have no name. |
387 | pub fn setter_name(&self) -> &str { |
388 | assert!( |
389 | self.name().is_some(), |
390 | "`Bitfield::setter_name` called on anonymous field" |
391 | ); |
392 | self.setter_name.as_ref().expect( |
393 | "`Bitfield::setter_name` should only be called\ |
394 | after assigning bitfield accessor names" , |
395 | ) |
396 | } |
397 | } |
398 | |
399 | impl FieldMethods for Bitfield { |
400 | fn name(&self) -> Option<&str> { |
401 | self.data.name() |
402 | } |
403 | |
404 | fn ty(&self) -> TypeId { |
405 | self.data.ty() |
406 | } |
407 | |
408 | fn comment(&self) -> Option<&str> { |
409 | self.data.comment() |
410 | } |
411 | |
412 | fn bitfield_width(&self) -> Option<u32> { |
413 | self.data.bitfield_width() |
414 | } |
415 | |
416 | fn is_public(&self) -> bool { |
417 | self.data.is_public() |
418 | } |
419 | |
420 | fn annotations(&self) -> &Annotations { |
421 | self.data.annotations() |
422 | } |
423 | |
424 | fn offset(&self) -> Option<usize> { |
425 | self.data.offset() |
426 | } |
427 | } |
428 | |
429 | /// A raw field might be either of a plain data member or a bitfield within a |
430 | /// bitfield allocation unit, but we haven't processed it and determined which |
431 | /// yet (which would involve allocating it into a bitfield unit if it is a |
432 | /// bitfield). |
433 | #[derive (Debug)] |
434 | struct RawField(FieldData); |
435 | |
436 | impl RawField { |
437 | /// Construct a new `RawField`. |
438 | fn new( |
439 | name: Option<String>, |
440 | ty: TypeId, |
441 | comment: Option<String>, |
442 | annotations: Option<Annotations>, |
443 | bitfield_width: Option<u32>, |
444 | public: bool, |
445 | offset: Option<usize>, |
446 | ) -> RawField { |
447 | RawField(FieldData { |
448 | name, |
449 | ty, |
450 | comment, |
451 | annotations: annotations.unwrap_or_default(), |
452 | bitfield_width, |
453 | public, |
454 | offset, |
455 | }) |
456 | } |
457 | } |
458 | |
459 | impl FieldMethods for RawField { |
460 | fn name(&self) -> Option<&str> { |
461 | self.0.name() |
462 | } |
463 | |
464 | fn ty(&self) -> TypeId { |
465 | self.0.ty() |
466 | } |
467 | |
468 | fn comment(&self) -> Option<&str> { |
469 | self.0.comment() |
470 | } |
471 | |
472 | fn bitfield_width(&self) -> Option<u32> { |
473 | self.0.bitfield_width() |
474 | } |
475 | |
476 | fn is_public(&self) -> bool { |
477 | self.0.is_public() |
478 | } |
479 | |
480 | fn annotations(&self) -> &Annotations { |
481 | self.0.annotations() |
482 | } |
483 | |
484 | fn offset(&self) -> Option<usize> { |
485 | self.0.offset() |
486 | } |
487 | } |
488 | |
489 | /// Convert the given ordered set of raw fields into a list of either plain data |
490 | /// members, and/or bitfield units containing multiple bitfields. |
491 | /// |
492 | /// If we do not have the layout for a bitfield's type, then we can't reliably |
493 | /// compute its allocation unit. In such cases, we return an error. |
494 | fn raw_fields_to_fields_and_bitfield_units<I>( |
495 | ctx: &BindgenContext, |
496 | raw_fields: I, |
497 | packed: bool, |
498 | ) -> Result<(Vec<Field>, bool), ()> |
499 | where |
500 | I: IntoIterator<Item = RawField>, |
501 | { |
502 | let mut raw_fields = raw_fields.into_iter().fuse().peekable(); |
503 | let mut fields = vec![]; |
504 | let mut bitfield_unit_count = 0; |
505 | |
506 | loop { |
507 | // While we have plain old data members, just keep adding them to our |
508 | // resulting fields. We introduce a scope here so that we can use |
509 | // `raw_fields` again after the `by_ref` iterator adaptor is dropped. |
510 | { |
511 | let non_bitfields = raw_fields |
512 | .by_ref() |
513 | .peeking_take_while(|f| f.bitfield_width().is_none()) |
514 | .map(|f| Field::DataMember(f.0)); |
515 | fields.extend(non_bitfields); |
516 | } |
517 | |
518 | // Now gather all the consecutive bitfields. Only consecutive bitfields |
519 | // may potentially share a bitfield allocation unit with each other in |
520 | // the Itanium C++ ABI. |
521 | let mut bitfields = raw_fields |
522 | .by_ref() |
523 | .peeking_take_while(|f| f.bitfield_width().is_some()) |
524 | .peekable(); |
525 | |
526 | if bitfields.peek().is_none() { |
527 | break; |
528 | } |
529 | |
530 | bitfields_to_allocation_units( |
531 | ctx, |
532 | &mut bitfield_unit_count, |
533 | &mut fields, |
534 | bitfields, |
535 | packed, |
536 | )?; |
537 | } |
538 | |
539 | assert!( |
540 | raw_fields.next().is_none(), |
541 | "The above loop should consume all items in `raw_fields`" |
542 | ); |
543 | |
544 | Ok((fields, bitfield_unit_count != 0)) |
545 | } |
546 | |
547 | /// Given a set of contiguous raw bitfields, group and allocate them into |
548 | /// (potentially multiple) bitfield units. |
549 | fn bitfields_to_allocation_units<E, I>( |
550 | ctx: &BindgenContext, |
551 | bitfield_unit_count: &mut usize, |
552 | fields: &mut E, |
553 | raw_bitfields: I, |
554 | packed: bool, |
555 | ) -> Result<(), ()> |
556 | where |
557 | E: Extend<Field>, |
558 | I: IntoIterator<Item = RawField>, |
559 | { |
560 | assert!(ctx.collected_typerefs()); |
561 | |
562 | // NOTE: What follows is reverse-engineered from LLVM's |
563 | // lib/AST/RecordLayoutBuilder.cpp |
564 | // |
565 | // FIXME(emilio): There are some differences between Microsoft and the |
566 | // Itanium ABI, but we'll ignore those and stick to Itanium for now. |
567 | // |
568 | // Also, we need to handle packed bitfields and stuff. |
569 | // |
570 | // TODO(emilio): Take into account C++'s wide bitfields, and |
571 | // packing, sigh. |
572 | |
573 | fn flush_allocation_unit<E>( |
574 | fields: &mut E, |
575 | bitfield_unit_count: &mut usize, |
576 | unit_size_in_bits: usize, |
577 | unit_align_in_bits: usize, |
578 | bitfields: Vec<Bitfield>, |
579 | packed: bool, |
580 | ) where |
581 | E: Extend<Field>, |
582 | { |
583 | *bitfield_unit_count += 1; |
584 | let align = if packed { |
585 | 1 |
586 | } else { |
587 | bytes_from_bits_pow2(unit_align_in_bits) |
588 | }; |
589 | let size = align_to(unit_size_in_bits, 8) / 8; |
590 | let layout = Layout::new(size, align); |
591 | fields.extend(Some(Field::Bitfields(BitfieldUnit { |
592 | nth: *bitfield_unit_count, |
593 | layout, |
594 | bitfields, |
595 | }))); |
596 | } |
597 | |
598 | let mut max_align = 0; |
599 | let mut unfilled_bits_in_unit = 0; |
600 | let mut unit_size_in_bits = 0; |
601 | let mut unit_align = 0; |
602 | let mut bitfields_in_unit = vec![]; |
603 | |
604 | // TODO(emilio): Determine this from attributes or pragma ms_struct |
605 | // directives. Also, perhaps we should check if the target is MSVC? |
606 | const is_ms_struct: bool = false; |
607 | |
608 | for bitfield in raw_bitfields { |
609 | let bitfield_width = bitfield.bitfield_width().unwrap() as usize; |
610 | let bitfield_layout = |
611 | ctx.resolve_type(bitfield.ty()).layout(ctx).ok_or(())?; |
612 | let bitfield_size = bitfield_layout.size; |
613 | let bitfield_align = bitfield_layout.align; |
614 | |
615 | let mut offset = unit_size_in_bits; |
616 | if !packed { |
617 | if is_ms_struct { |
618 | if unit_size_in_bits != 0 && |
619 | (bitfield_width == 0 || |
620 | bitfield_width > unfilled_bits_in_unit) |
621 | { |
622 | // We've reached the end of this allocation unit, so flush it |
623 | // and its bitfields. |
624 | unit_size_in_bits = |
625 | align_to(unit_size_in_bits, unit_align * 8); |
626 | flush_allocation_unit( |
627 | fields, |
628 | bitfield_unit_count, |
629 | unit_size_in_bits, |
630 | unit_align, |
631 | mem::take(&mut bitfields_in_unit), |
632 | packed, |
633 | ); |
634 | |
635 | // Now we're working on a fresh bitfield allocation unit, so reset |
636 | // the current unit size and alignment. |
637 | offset = 0; |
638 | unit_align = 0; |
639 | } |
640 | } else if offset != 0 && |
641 | (bitfield_width == 0 || |
642 | (offset & (bitfield_align * 8 - 1)) + bitfield_width > |
643 | bitfield_size * 8) |
644 | { |
645 | offset = align_to(offset, bitfield_align * 8); |
646 | } |
647 | } |
648 | |
649 | // According to the x86[-64] ABI spec: "Unnamed bit-fields’ types do not |
650 | // affect the alignment of a structure or union". This makes sense: such |
651 | // bit-fields are only used for padding, and we can't perform an |
652 | // un-aligned read of something we can't read because we can't even name |
653 | // it. |
654 | if bitfield.name().is_some() { |
655 | max_align = cmp::max(max_align, bitfield_align); |
656 | |
657 | // NB: The `bitfield_width` here is completely, absolutely |
658 | // intentional. Alignment of the allocation unit is based on the |
659 | // maximum bitfield width, not (directly) on the bitfields' types' |
660 | // alignment. |
661 | unit_align = cmp::max(unit_align, bitfield_width); |
662 | } |
663 | |
664 | // Always keep all bitfields around. While unnamed bitifields are used |
665 | // for padding (and usually not needed hereafter), large unnamed |
666 | // bitfields over their types size cause weird allocation size behavior from clang. |
667 | // Therefore, all bitfields needed to be kept around in order to check for this |
668 | // and make the struct opaque in this case |
669 | bitfields_in_unit.push(Bitfield::new(offset, bitfield)); |
670 | |
671 | unit_size_in_bits = offset + bitfield_width; |
672 | |
673 | // Compute what the physical unit's final size would be given what we |
674 | // have seen so far, and use that to compute how many bits are still |
675 | // available in the unit. |
676 | let data_size = align_to(unit_size_in_bits, bitfield_align * 8); |
677 | unfilled_bits_in_unit = data_size - unit_size_in_bits; |
678 | } |
679 | |
680 | if unit_size_in_bits != 0 { |
681 | // Flush the last allocation unit and its bitfields. |
682 | flush_allocation_unit( |
683 | fields, |
684 | bitfield_unit_count, |
685 | unit_size_in_bits, |
686 | unit_align, |
687 | bitfields_in_unit, |
688 | packed, |
689 | ); |
690 | } |
691 | |
692 | Ok(()) |
693 | } |
694 | |
695 | /// A compound structure's fields are initially raw, and have bitfields that |
696 | /// have not been grouped into allocation units. During this time, the fields |
697 | /// are mutable and we build them up during parsing. |
698 | /// |
699 | /// Then, once resolving typerefs is completed, we compute all structs' fields' |
700 | /// bitfield allocation units, and they remain frozen and immutable forever |
701 | /// after. |
702 | #[derive (Debug)] |
703 | enum CompFields { |
704 | Before(Vec<RawField>), |
705 | After { |
706 | fields: Vec<Field>, |
707 | has_bitfield_units: bool, |
708 | }, |
709 | Error, |
710 | } |
711 | |
712 | impl Default for CompFields { |
713 | fn default() -> CompFields { |
714 | CompFields::Before(vec![]) |
715 | } |
716 | } |
717 | |
718 | impl CompFields { |
719 | fn append_raw_field(&mut self, raw: RawField) { |
720 | match *self { |
721 | CompFields::Before(ref mut raws) => { |
722 | raws.push(raw); |
723 | } |
724 | _ => { |
725 | panic!( |
726 | "Must not append new fields after computing bitfield allocation units" |
727 | ); |
728 | } |
729 | } |
730 | } |
731 | |
732 | fn compute_bitfield_units(&mut self, ctx: &BindgenContext, packed: bool) { |
733 | let raws = match *self { |
734 | CompFields::Before(ref mut raws) => mem::take(raws), |
735 | _ => { |
736 | panic!("Already computed bitfield units" ); |
737 | } |
738 | }; |
739 | |
740 | let result = raw_fields_to_fields_and_bitfield_units(ctx, raws, packed); |
741 | |
742 | match result { |
743 | Ok((fields, has_bitfield_units)) => { |
744 | *self = CompFields::After { |
745 | fields, |
746 | has_bitfield_units, |
747 | }; |
748 | } |
749 | Err(()) => { |
750 | *self = CompFields::Error; |
751 | } |
752 | } |
753 | } |
754 | |
755 | fn deanonymize_fields(&mut self, ctx: &BindgenContext, methods: &[Method]) { |
756 | let fields = match *self { |
757 | CompFields::After { ref mut fields, .. } => fields, |
758 | // Nothing to do here. |
759 | CompFields::Error => return, |
760 | CompFields::Before(_) => { |
761 | panic!("Not yet computed bitfield units." ); |
762 | } |
763 | }; |
764 | |
765 | fn has_method( |
766 | methods: &[Method], |
767 | ctx: &BindgenContext, |
768 | name: &str, |
769 | ) -> bool { |
770 | methods.iter().any(|method| { |
771 | let method_name = ctx.resolve_func(method.signature()).name(); |
772 | method_name == name || ctx.rust_mangle(method_name) == name |
773 | }) |
774 | } |
775 | |
776 | struct AccessorNamesPair { |
777 | getter: String, |
778 | setter: String, |
779 | } |
780 | |
781 | let mut accessor_names: HashMap<String, AccessorNamesPair> = fields |
782 | .iter() |
783 | .flat_map(|field| match *field { |
784 | Field::Bitfields(ref bu) => &*bu.bitfields, |
785 | Field::DataMember(_) => &[], |
786 | }) |
787 | .filter_map(|bitfield| bitfield.name()) |
788 | .map(|bitfield_name| { |
789 | let bitfield_name = bitfield_name.to_string(); |
790 | let getter = { |
791 | let mut getter = |
792 | ctx.rust_mangle(&bitfield_name).to_string(); |
793 | if has_method(methods, ctx, &getter) { |
794 | getter.push_str("_bindgen_bitfield" ); |
795 | } |
796 | getter |
797 | }; |
798 | let setter = { |
799 | let setter = format!("set_ {}" , bitfield_name); |
800 | let mut setter = ctx.rust_mangle(&setter).to_string(); |
801 | if has_method(methods, ctx, &setter) { |
802 | setter.push_str("_bindgen_bitfield" ); |
803 | } |
804 | setter |
805 | }; |
806 | (bitfield_name, AccessorNamesPair { getter, setter }) |
807 | }) |
808 | .collect(); |
809 | |
810 | let mut anon_field_counter = 0; |
811 | for field in fields.iter_mut() { |
812 | match *field { |
813 | Field::DataMember(FieldData { ref mut name, .. }) => { |
814 | if name.is_some() { |
815 | continue; |
816 | } |
817 | |
818 | anon_field_counter += 1; |
819 | *name = Some(format!( |
820 | " {}{}" , |
821 | ctx.options().anon_fields_prefix, |
822 | anon_field_counter |
823 | )); |
824 | } |
825 | Field::Bitfields(ref mut bu) => { |
826 | for bitfield in &mut bu.bitfields { |
827 | if bitfield.name().is_none() { |
828 | continue; |
829 | } |
830 | |
831 | if let Some(AccessorNamesPair { getter, setter }) = |
832 | accessor_names.remove(bitfield.name().unwrap()) |
833 | { |
834 | bitfield.getter_name = Some(getter); |
835 | bitfield.setter_name = Some(setter); |
836 | } |
837 | } |
838 | } |
839 | } |
840 | } |
841 | } |
842 | } |
843 | |
844 | impl Trace for CompFields { |
845 | type Extra = (); |
846 | |
847 | fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, _: &()) |
848 | where |
849 | T: Tracer, |
850 | { |
851 | match *self { |
852 | CompFields::Error => {} |
853 | CompFields::Before(ref fields: &Vec) => { |
854 | for f: &RawField in fields { |
855 | tracer.visit_kind(item:f.ty().into(), kind:EdgeKind::Field); |
856 | } |
857 | } |
858 | CompFields::After { ref fields: &Vec, .. } => { |
859 | for f: &Field in fields { |
860 | f.trace(context, tracer, &()); |
861 | } |
862 | } |
863 | } |
864 | } |
865 | } |
866 | |
867 | /// Common data shared across different field types. |
868 | #[derive (Clone, Debug)] |
869 | pub struct FieldData { |
870 | /// The name of the field, empty if it's an unnamed bitfield width. |
871 | name: Option<String>, |
872 | |
873 | /// The inner type. |
874 | ty: TypeId, |
875 | |
876 | /// The doc comment on the field if any. |
877 | comment: Option<String>, |
878 | |
879 | /// Annotations for this field, or the default. |
880 | annotations: Annotations, |
881 | |
882 | /// If this field is a bitfield, and how many bits does it contain if it is. |
883 | bitfield_width: Option<u32>, |
884 | |
885 | /// If the C++ field is declared `public` |
886 | public: bool, |
887 | |
888 | /// The offset of the field (in bits) |
889 | offset: Option<usize>, |
890 | } |
891 | |
892 | impl FieldMethods for FieldData { |
893 | fn name(&self) -> Option<&str> { |
894 | self.name.as_deref() |
895 | } |
896 | |
897 | fn ty(&self) -> TypeId { |
898 | self.ty |
899 | } |
900 | |
901 | fn comment(&self) -> Option<&str> { |
902 | self.comment.as_deref() |
903 | } |
904 | |
905 | fn bitfield_width(&self) -> Option<u32> { |
906 | self.bitfield_width |
907 | } |
908 | |
909 | fn is_public(&self) -> bool { |
910 | self.public |
911 | } |
912 | |
913 | fn annotations(&self) -> &Annotations { |
914 | &self.annotations |
915 | } |
916 | |
917 | fn offset(&self) -> Option<usize> { |
918 | self.offset |
919 | } |
920 | } |
921 | |
922 | /// The kind of inheritance a base class is using. |
923 | #[derive (Clone, Debug, PartialEq, Eq)] |
924 | pub enum BaseKind { |
925 | /// Normal inheritance, like: |
926 | /// |
927 | /// ```cpp |
928 | /// class A : public B {}; |
929 | /// ``` |
930 | Normal, |
931 | /// Virtual inheritance, like: |
932 | /// |
933 | /// ```cpp |
934 | /// class A: public virtual B {}; |
935 | /// ``` |
936 | Virtual, |
937 | } |
938 | |
939 | /// A base class. |
940 | #[derive (Clone, Debug)] |
941 | pub struct Base { |
942 | /// The type of this base class. |
943 | pub ty: TypeId, |
944 | /// The kind of inheritance we're doing. |
945 | pub kind: BaseKind, |
946 | /// Name of the field in which this base should be stored. |
947 | pub field_name: String, |
948 | /// Whether this base is inherited from publically. |
949 | pub is_pub: bool, |
950 | } |
951 | |
952 | impl Base { |
953 | /// Whether this base class is inheriting virtually. |
954 | pub fn is_virtual(&self) -> bool { |
955 | self.kind == BaseKind::Virtual |
956 | } |
957 | |
958 | /// Whether this base class should have it's own field for storage. |
959 | pub fn requires_storage(&self, ctx: &BindgenContext) -> bool { |
960 | // Virtual bases are already taken into account by the vtable |
961 | // pointer. |
962 | // |
963 | // FIXME(emilio): Is this always right? |
964 | if self.is_virtual() { |
965 | return false; |
966 | } |
967 | |
968 | // NB: We won't include zero-sized types in our base chain because they |
969 | // would contribute to our size given the dummy field we insert for |
970 | // zero-sized types. |
971 | if self.ty.is_zero_sized(ctx) { |
972 | return false; |
973 | } |
974 | |
975 | true |
976 | } |
977 | |
978 | /// Whether this base is inherited from publically. |
979 | pub fn is_public(&self) -> bool { |
980 | self.is_pub |
981 | } |
982 | } |
983 | |
984 | /// A compound type. |
985 | /// |
986 | /// Either a struct or union, a compound type is built up from the combination |
987 | /// of fields which also are associated with their own (potentially compound) |
988 | /// type. |
989 | #[derive (Debug)] |
990 | pub struct CompInfo { |
991 | /// Whether this is a struct or a union. |
992 | kind: CompKind, |
993 | |
994 | /// The members of this struct or union. |
995 | fields: CompFields, |
996 | |
997 | /// The abstract template parameters of this class. Note that these are NOT |
998 | /// concrete template arguments, and should always be a |
999 | /// `Type(TypeKind::TypeParam(name))`. For concrete template arguments, see |
1000 | /// `TypeKind::TemplateInstantiation`. |
1001 | template_params: Vec<TypeId>, |
1002 | |
1003 | /// The method declarations inside this class, if in C++ mode. |
1004 | methods: Vec<Method>, |
1005 | |
1006 | /// The different constructors this struct or class contains. |
1007 | constructors: Vec<FunctionId>, |
1008 | |
1009 | /// The destructor of this type. The bool represents whether this destructor |
1010 | /// is virtual. |
1011 | destructor: Option<(MethodKind, FunctionId)>, |
1012 | |
1013 | /// Vector of classes this one inherits from. |
1014 | base_members: Vec<Base>, |
1015 | |
1016 | /// The inner types that were declared inside this class, in something like: |
1017 | /// |
1018 | /// class Foo { |
1019 | /// typedef int FooTy; |
1020 | /// struct Bar { |
1021 | /// int baz; |
1022 | /// }; |
1023 | /// } |
1024 | /// |
1025 | /// static Foo::Bar const = {3}; |
1026 | inner_types: Vec<TypeId>, |
1027 | |
1028 | /// Set of static constants declared inside this class. |
1029 | inner_vars: Vec<VarId>, |
1030 | |
1031 | /// Whether this type should generate an vtable (TODO: Should be able to |
1032 | /// look at the virtual methods and ditch this field). |
1033 | has_own_virtual_method: bool, |
1034 | |
1035 | /// Whether this type has destructor. |
1036 | has_destructor: bool, |
1037 | |
1038 | /// Whether this type has a base type with more than one member. |
1039 | /// |
1040 | /// TODO: We should be able to compute this. |
1041 | has_nonempty_base: bool, |
1042 | |
1043 | /// If this type has a template parameter which is not a type (e.g.: a |
1044 | /// size_t) |
1045 | has_non_type_template_params: bool, |
1046 | |
1047 | /// Whether this type has a bit field member whose width couldn't be |
1048 | /// evaluated (e.g. if it depends on a template parameter). We generate an |
1049 | /// opaque type in this case. |
1050 | has_unevaluable_bit_field_width: bool, |
1051 | |
1052 | /// Whether we saw `__attribute__((packed))` on or within this type. |
1053 | packed_attr: bool, |
1054 | |
1055 | /// Used to know if we've found an opaque attribute that could cause us to |
1056 | /// generate a type with invalid layout. This is explicitly used to avoid us |
1057 | /// generating bad alignments when parsing types like max_align_t. |
1058 | /// |
1059 | /// It's not clear what the behavior should be here, if generating the item |
1060 | /// and pray, or behave as an opaque type. |
1061 | found_unknown_attr: bool, |
1062 | |
1063 | /// Used to indicate when a struct has been forward declared. Usually used |
1064 | /// in headers so that APIs can't modify them directly. |
1065 | is_forward_declaration: bool, |
1066 | } |
1067 | |
1068 | impl CompInfo { |
1069 | /// Construct a new compound type. |
1070 | pub fn new(kind: CompKind) -> Self { |
1071 | CompInfo { |
1072 | kind, |
1073 | fields: CompFields::default(), |
1074 | template_params: vec![], |
1075 | methods: vec![], |
1076 | constructors: vec![], |
1077 | destructor: None, |
1078 | base_members: vec![], |
1079 | inner_types: vec![], |
1080 | inner_vars: vec![], |
1081 | has_own_virtual_method: false, |
1082 | has_destructor: false, |
1083 | has_nonempty_base: false, |
1084 | has_non_type_template_params: false, |
1085 | has_unevaluable_bit_field_width: false, |
1086 | packed_attr: false, |
1087 | found_unknown_attr: false, |
1088 | is_forward_declaration: false, |
1089 | } |
1090 | } |
1091 | |
1092 | /// Compute the layout of this type. |
1093 | /// |
1094 | /// This is called as a fallback under some circumstances where LLVM doesn't |
1095 | /// give us the correct layout. |
1096 | /// |
1097 | /// If we're a union without known layout, we try to compute it from our |
1098 | /// members. This is not ideal, but clang fails to report the size for these |
1099 | /// kind of unions, see test/headers/template_union.hpp |
1100 | pub fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
1101 | // We can't do better than clang here, sorry. |
1102 | if self.kind == CompKind::Struct { |
1103 | return None; |
1104 | } |
1105 | |
1106 | // By definition, we don't have the right layout information here if |
1107 | // we're a forward declaration. |
1108 | if self.is_forward_declaration() { |
1109 | return None; |
1110 | } |
1111 | |
1112 | // empty union case |
1113 | if !self.has_fields() { |
1114 | return None; |
1115 | } |
1116 | |
1117 | let mut max_size = 0; |
1118 | // Don't allow align(0) |
1119 | let mut max_align = 1; |
1120 | self.each_known_field_layout(ctx, |layout| { |
1121 | max_size = cmp::max(max_size, layout.size); |
1122 | max_align = cmp::max(max_align, layout.align); |
1123 | }); |
1124 | |
1125 | Some(Layout::new(max_size, max_align)) |
1126 | } |
1127 | |
1128 | /// Get this type's set of fields. |
1129 | pub fn fields(&self) -> &[Field] { |
1130 | match self.fields { |
1131 | CompFields::Error => &[], |
1132 | CompFields::After { ref fields, .. } => fields, |
1133 | CompFields::Before(..) => { |
1134 | panic!("Should always have computed bitfield units first" ); |
1135 | } |
1136 | } |
1137 | } |
1138 | |
1139 | fn has_fields(&self) -> bool { |
1140 | match self.fields { |
1141 | CompFields::Error => false, |
1142 | CompFields::After { ref fields, .. } => !fields.is_empty(), |
1143 | CompFields::Before(ref raw_fields) => !raw_fields.is_empty(), |
1144 | } |
1145 | } |
1146 | |
1147 | fn each_known_field_layout( |
1148 | &self, |
1149 | ctx: &BindgenContext, |
1150 | mut callback: impl FnMut(Layout), |
1151 | ) { |
1152 | match self.fields { |
1153 | CompFields::Error => {} |
1154 | CompFields::After { ref fields, .. } => { |
1155 | for field in fields.iter() { |
1156 | if let Some(layout) = field.layout(ctx) { |
1157 | callback(layout); |
1158 | } |
1159 | } |
1160 | } |
1161 | CompFields::Before(ref raw_fields) => { |
1162 | for field in raw_fields.iter() { |
1163 | let field_ty = ctx.resolve_type(field.0.ty); |
1164 | if let Some(layout) = field_ty.layout(ctx) { |
1165 | callback(layout); |
1166 | } |
1167 | } |
1168 | } |
1169 | } |
1170 | } |
1171 | |
1172 | fn has_bitfields(&self) -> bool { |
1173 | match self.fields { |
1174 | CompFields::Error => false, |
1175 | CompFields::After { |
1176 | has_bitfield_units, .. |
1177 | } => has_bitfield_units, |
1178 | CompFields::Before(_) => { |
1179 | panic!("Should always have computed bitfield units first" ); |
1180 | } |
1181 | } |
1182 | } |
1183 | |
1184 | /// Returns whether we have a too large bitfield unit, in which case we may |
1185 | /// not be able to derive some of the things we should be able to normally |
1186 | /// derive. |
1187 | pub fn has_too_large_bitfield_unit(&self) -> bool { |
1188 | if !self.has_bitfields() { |
1189 | return false; |
1190 | } |
1191 | self.fields().iter().any(|field| match *field { |
1192 | Field::DataMember(..) => false, |
1193 | Field::Bitfields(ref unit) => { |
1194 | unit.layout.size > RUST_DERIVE_IN_ARRAY_LIMIT |
1195 | } |
1196 | }) |
1197 | } |
1198 | |
1199 | /// Does this type have any template parameters that aren't types |
1200 | /// (e.g. int)? |
1201 | pub fn has_non_type_template_params(&self) -> bool { |
1202 | self.has_non_type_template_params |
1203 | } |
1204 | |
1205 | /// Do we see a virtual function during parsing? |
1206 | /// Get the has_own_virtual_method boolean. |
1207 | pub fn has_own_virtual_method(&self) -> bool { |
1208 | self.has_own_virtual_method |
1209 | } |
1210 | |
1211 | /// Did we see a destructor when parsing this type? |
1212 | pub fn has_own_destructor(&self) -> bool { |
1213 | self.has_destructor |
1214 | } |
1215 | |
1216 | /// Get this type's set of methods. |
1217 | pub fn methods(&self) -> &[Method] { |
1218 | &self.methods |
1219 | } |
1220 | |
1221 | /// Get this type's set of constructors. |
1222 | pub fn constructors(&self) -> &[FunctionId] { |
1223 | &self.constructors |
1224 | } |
1225 | |
1226 | /// Get this type's destructor. |
1227 | pub fn destructor(&self) -> Option<(MethodKind, FunctionId)> { |
1228 | self.destructor |
1229 | } |
1230 | |
1231 | /// What kind of compound type is this? |
1232 | pub fn kind(&self) -> CompKind { |
1233 | self.kind |
1234 | } |
1235 | |
1236 | /// Is this a union? |
1237 | pub fn is_union(&self) -> bool { |
1238 | self.kind() == CompKind::Union |
1239 | } |
1240 | |
1241 | /// The set of types that this one inherits from. |
1242 | pub fn base_members(&self) -> &[Base] { |
1243 | &self.base_members |
1244 | } |
1245 | |
1246 | /// Construct a new compound type from a Clang type. |
1247 | pub fn from_ty( |
1248 | potential_id: ItemId, |
1249 | ty: &clang::Type, |
1250 | location: Option<clang::Cursor>, |
1251 | ctx: &mut BindgenContext, |
1252 | ) -> Result<Self, ParseError> { |
1253 | use clang_sys::*; |
1254 | assert!( |
1255 | ty.template_args().is_none(), |
1256 | "We handle template instantiations elsewhere" |
1257 | ); |
1258 | |
1259 | let mut cursor = ty.declaration(); |
1260 | let mut kind = Self::kind_from_cursor(&cursor); |
1261 | if kind.is_err() { |
1262 | if let Some(location) = location { |
1263 | kind = Self::kind_from_cursor(&location); |
1264 | cursor = location; |
1265 | } |
1266 | } |
1267 | |
1268 | let kind = kind?; |
1269 | |
1270 | debug!("CompInfo::from_ty( {:?}, {:?})" , kind, cursor); |
1271 | |
1272 | let mut ci = CompInfo::new(kind); |
1273 | ci.is_forward_declaration = |
1274 | location.map_or(true, |cur| match cur.kind() { |
1275 | CXCursor_ParmDecl => true, |
1276 | CXCursor_StructDecl | CXCursor_UnionDecl | |
1277 | CXCursor_ClassDecl => !cur.is_definition(), |
1278 | _ => false, |
1279 | }); |
1280 | |
1281 | let mut maybe_anonymous_struct_field = None; |
1282 | cursor.visit(|cur| { |
1283 | if cur.kind() != CXCursor_FieldDecl { |
1284 | if let Some((ty, clang_ty, public, offset)) = |
1285 | maybe_anonymous_struct_field.take() |
1286 | { |
1287 | if cur.kind() == CXCursor_TypedefDecl && |
1288 | cur.typedef_type().unwrap().canonical_type() == |
1289 | clang_ty |
1290 | { |
1291 | // Typedefs of anonymous structs appear later in the ast |
1292 | // than the struct itself, that would otherwise be an |
1293 | // anonymous field. Detect that case here, and do |
1294 | // nothing. |
1295 | } else { |
1296 | let field = RawField::new( |
1297 | None, ty, None, None, None, public, offset, |
1298 | ); |
1299 | ci.fields.append_raw_field(field); |
1300 | } |
1301 | } |
1302 | } |
1303 | |
1304 | match cur.kind() { |
1305 | CXCursor_FieldDecl => { |
1306 | if let Some((ty, clang_ty, public, offset)) = |
1307 | maybe_anonymous_struct_field.take() |
1308 | { |
1309 | let mut used = false; |
1310 | cur.visit(|child| { |
1311 | if child.cur_type() == clang_ty { |
1312 | used = true; |
1313 | } |
1314 | CXChildVisit_Continue |
1315 | }); |
1316 | |
1317 | if !used { |
1318 | let field = RawField::new( |
1319 | None, ty, None, None, None, public, offset, |
1320 | ); |
1321 | ci.fields.append_raw_field(field); |
1322 | } |
1323 | } |
1324 | |
1325 | let bit_width = if cur.is_bit_field() { |
1326 | let width = cur.bit_width(); |
1327 | |
1328 | // Make opaque type if the bit width couldn't be |
1329 | // evaluated. |
1330 | if width.is_none() { |
1331 | ci.has_unevaluable_bit_field_width = true; |
1332 | return CXChildVisit_Break; |
1333 | } |
1334 | |
1335 | width |
1336 | } else { |
1337 | None |
1338 | }; |
1339 | |
1340 | let field_type = Item::from_ty_or_ref( |
1341 | cur.cur_type(), |
1342 | cur, |
1343 | Some(potential_id), |
1344 | ctx, |
1345 | ); |
1346 | |
1347 | let comment = cur.raw_comment(); |
1348 | let annotations = Annotations::new(&cur); |
1349 | let name = cur.spelling(); |
1350 | let is_public = cur.public_accessible(); |
1351 | let offset = cur.offset_of_field().ok(); |
1352 | |
1353 | // Name can be empty if there are bitfields, for example, |
1354 | // see tests/headers/struct_with_bitfields.h |
1355 | assert!( |
1356 | !name.is_empty() || bit_width.is_some(), |
1357 | "Empty field name?" |
1358 | ); |
1359 | |
1360 | let name = if name.is_empty() { None } else { Some(name) }; |
1361 | |
1362 | let field = RawField::new( |
1363 | name, |
1364 | field_type, |
1365 | comment, |
1366 | annotations, |
1367 | bit_width, |
1368 | is_public, |
1369 | offset, |
1370 | ); |
1371 | ci.fields.append_raw_field(field); |
1372 | |
1373 | // No we look for things like attributes and stuff. |
1374 | cur.visit(|cur| { |
1375 | if cur.kind() == CXCursor_UnexposedAttr { |
1376 | ci.found_unknown_attr = true; |
1377 | } |
1378 | CXChildVisit_Continue |
1379 | }); |
1380 | } |
1381 | CXCursor_UnexposedAttr => { |
1382 | ci.found_unknown_attr = true; |
1383 | } |
1384 | CXCursor_EnumDecl | |
1385 | CXCursor_TypeAliasDecl | |
1386 | CXCursor_TypeAliasTemplateDecl | |
1387 | CXCursor_TypedefDecl | |
1388 | CXCursor_StructDecl | |
1389 | CXCursor_UnionDecl | |
1390 | CXCursor_ClassTemplate | |
1391 | CXCursor_ClassDecl => { |
1392 | // We can find non-semantic children here, clang uses a |
1393 | // StructDecl to note incomplete structs that haven't been |
1394 | // forward-declared before, see [1]. |
1395 | // |
1396 | // Also, clang seems to scope struct definitions inside |
1397 | // unions, and other named struct definitions inside other |
1398 | // structs to the whole translation unit. |
1399 | // |
1400 | // Let's just assume that if the cursor we've found is a |
1401 | // definition, it's a valid inner type. |
1402 | // |
1403 | // [1]: https://github.com/rust-lang/rust-bindgen/issues/482 |
1404 | let is_inner_struct = |
1405 | cur.semantic_parent() == cursor || cur.is_definition(); |
1406 | if !is_inner_struct { |
1407 | return CXChildVisit_Continue; |
1408 | } |
1409 | |
1410 | // Even if this is a definition, we may not be the semantic |
1411 | // parent, see #1281. |
1412 | let inner = Item::parse(cur, Some(potential_id), ctx) |
1413 | .expect("Inner ClassDecl" ); |
1414 | |
1415 | // If we avoided recursion parsing this type (in |
1416 | // `Item::from_ty_with_id()`), then this might not be a |
1417 | // valid type ID, so check and gracefully handle this. |
1418 | if ctx.resolve_item_fallible(inner).is_some() { |
1419 | let inner = inner.expect_type_id(ctx); |
1420 | |
1421 | ci.inner_types.push(inner); |
1422 | |
1423 | // A declaration of an union or a struct without name |
1424 | // could also be an unnamed field, unfortunately. |
1425 | if cur.is_anonymous() && cur.kind() != CXCursor_EnumDecl |
1426 | { |
1427 | let ty = cur.cur_type(); |
1428 | let public = cur.public_accessible(); |
1429 | let offset = cur.offset_of_field().ok(); |
1430 | |
1431 | maybe_anonymous_struct_field = |
1432 | Some((inner, ty, public, offset)); |
1433 | } |
1434 | } |
1435 | } |
1436 | CXCursor_PackedAttr => { |
1437 | ci.packed_attr = true; |
1438 | } |
1439 | CXCursor_TemplateTypeParameter => { |
1440 | let param = Item::type_param(None, cur, ctx).expect( |
1441 | "Item::type_param should't fail when pointing \ |
1442 | at a TemplateTypeParameter" , |
1443 | ); |
1444 | ci.template_params.push(param); |
1445 | } |
1446 | CXCursor_CXXBaseSpecifier => { |
1447 | let is_virtual_base = cur.is_virtual_base(); |
1448 | ci.has_own_virtual_method |= is_virtual_base; |
1449 | |
1450 | let kind = if is_virtual_base { |
1451 | BaseKind::Virtual |
1452 | } else { |
1453 | BaseKind::Normal |
1454 | }; |
1455 | |
1456 | let field_name = match ci.base_members.len() { |
1457 | 0 => "_base" .into(), |
1458 | n => format!("_base_ {}" , n), |
1459 | }; |
1460 | let type_id = |
1461 | Item::from_ty_or_ref(cur.cur_type(), cur, None, ctx); |
1462 | ci.base_members.push(Base { |
1463 | ty: type_id, |
1464 | kind, |
1465 | field_name, |
1466 | is_pub: cur.access_specifier() == |
1467 | clang_sys::CX_CXXPublic, |
1468 | }); |
1469 | } |
1470 | CXCursor_Constructor | CXCursor_Destructor | |
1471 | CXCursor_CXXMethod => { |
1472 | let is_virtual = cur.method_is_virtual(); |
1473 | let is_static = cur.method_is_static(); |
1474 | debug_assert!(!(is_static && is_virtual), "How?" ); |
1475 | |
1476 | ci.has_destructor |= cur.kind() == CXCursor_Destructor; |
1477 | ci.has_own_virtual_method |= is_virtual; |
1478 | |
1479 | // This used to not be here, but then I tried generating |
1480 | // stylo bindings with this (without path filters), and |
1481 | // cried a lot with a method in gfx/Point.h |
1482 | // (ToUnknownPoint), that somehow was causing the same type |
1483 | // to be inserted in the map two times. |
1484 | // |
1485 | // I couldn't make a reduced test case, but anyway... |
1486 | // Methods of template functions not only used to be inlined, |
1487 | // but also instantiated, and we wouldn't be able to call |
1488 | // them, so just bail out. |
1489 | if !ci.template_params.is_empty() { |
1490 | return CXChildVisit_Continue; |
1491 | } |
1492 | |
1493 | // NB: This gets us an owned `Function`, not a |
1494 | // `FunctionSig`. |
1495 | let signature = |
1496 | match Item::parse(cur, Some(potential_id), ctx) { |
1497 | Ok(item) |
1498 | if ctx |
1499 | .resolve_item(item) |
1500 | .kind() |
1501 | .is_function() => |
1502 | { |
1503 | item |
1504 | } |
1505 | _ => return CXChildVisit_Continue, |
1506 | }; |
1507 | |
1508 | let signature = signature.expect_function_id(ctx); |
1509 | |
1510 | match cur.kind() { |
1511 | CXCursor_Constructor => { |
1512 | ci.constructors.push(signature); |
1513 | } |
1514 | CXCursor_Destructor => { |
1515 | let kind = if is_virtual { |
1516 | MethodKind::VirtualDestructor { |
1517 | pure_virtual: cur.method_is_pure_virtual(), |
1518 | } |
1519 | } else { |
1520 | MethodKind::Destructor |
1521 | }; |
1522 | ci.destructor = Some((kind, signature)); |
1523 | } |
1524 | CXCursor_CXXMethod => { |
1525 | let is_const = cur.method_is_const(); |
1526 | let method_kind = if is_static { |
1527 | MethodKind::Static |
1528 | } else if is_virtual { |
1529 | MethodKind::Virtual { |
1530 | pure_virtual: cur.method_is_pure_virtual(), |
1531 | } |
1532 | } else { |
1533 | MethodKind::Normal |
1534 | }; |
1535 | |
1536 | let method = |
1537 | Method::new(method_kind, signature, is_const); |
1538 | |
1539 | ci.methods.push(method); |
1540 | } |
1541 | _ => unreachable!("How can we see this here?" ), |
1542 | } |
1543 | } |
1544 | CXCursor_NonTypeTemplateParameter => { |
1545 | ci.has_non_type_template_params = true; |
1546 | } |
1547 | CXCursor_VarDecl => { |
1548 | let linkage = cur.linkage(); |
1549 | if linkage != CXLinkage_External && |
1550 | linkage != CXLinkage_UniqueExternal |
1551 | { |
1552 | return CXChildVisit_Continue; |
1553 | } |
1554 | |
1555 | let visibility = cur.visibility(); |
1556 | if visibility != CXVisibility_Default { |
1557 | return CXChildVisit_Continue; |
1558 | } |
1559 | |
1560 | if let Ok(item) = Item::parse(cur, Some(potential_id), ctx) |
1561 | { |
1562 | ci.inner_vars.push(item.as_var_id_unchecked()); |
1563 | } |
1564 | } |
1565 | // Intentionally not handled |
1566 | CXCursor_CXXAccessSpecifier | |
1567 | CXCursor_CXXFinalAttr | |
1568 | CXCursor_FunctionTemplate | |
1569 | CXCursor_ConversionFunction => {} |
1570 | _ => { |
1571 | warn!( |
1572 | "unhandled comp member ` {}` (kind {:?}) in ` {}` ( {})" , |
1573 | cur.spelling(), |
1574 | clang::kind_to_str(cur.kind()), |
1575 | cursor.spelling(), |
1576 | cur.location() |
1577 | ); |
1578 | } |
1579 | } |
1580 | CXChildVisit_Continue |
1581 | }); |
1582 | |
1583 | if let Some((ty, _, public, offset)) = maybe_anonymous_struct_field { |
1584 | let field = |
1585 | RawField::new(None, ty, None, None, None, public, offset); |
1586 | ci.fields.append_raw_field(field); |
1587 | } |
1588 | |
1589 | Ok(ci) |
1590 | } |
1591 | |
1592 | fn kind_from_cursor( |
1593 | cursor: &clang::Cursor, |
1594 | ) -> Result<CompKind, ParseError> { |
1595 | use clang_sys::*; |
1596 | Ok(match cursor.kind() { |
1597 | CXCursor_UnionDecl => CompKind::Union, |
1598 | CXCursor_ClassDecl | CXCursor_StructDecl => CompKind::Struct, |
1599 | CXCursor_CXXBaseSpecifier | |
1600 | CXCursor_ClassTemplatePartialSpecialization | |
1601 | CXCursor_ClassTemplate => match cursor.template_kind() { |
1602 | CXCursor_UnionDecl => CompKind::Union, |
1603 | _ => CompKind::Struct, |
1604 | }, |
1605 | _ => { |
1606 | warn!("Unknown kind for comp type: {:?}" , cursor); |
1607 | return Err(ParseError::Continue); |
1608 | } |
1609 | }) |
1610 | } |
1611 | |
1612 | /// Get the set of types that were declared within this compound type |
1613 | /// (e.g. nested class definitions). |
1614 | pub fn inner_types(&self) -> &[TypeId] { |
1615 | &self.inner_types |
1616 | } |
1617 | |
1618 | /// Get the set of static variables declared within this compound type. |
1619 | pub fn inner_vars(&self) -> &[VarId] { |
1620 | &self.inner_vars |
1621 | } |
1622 | |
1623 | /// Have we found a field with an opaque type that could potentially mess up |
1624 | /// the layout of this compound type? |
1625 | pub fn found_unknown_attr(&self) -> bool { |
1626 | self.found_unknown_attr |
1627 | } |
1628 | |
1629 | /// Is this compound type packed? |
1630 | pub fn is_packed( |
1631 | &self, |
1632 | ctx: &BindgenContext, |
1633 | layout: Option<&Layout>, |
1634 | ) -> bool { |
1635 | if self.packed_attr { |
1636 | return true; |
1637 | } |
1638 | |
1639 | // Even though `libclang` doesn't expose `#pragma packed(...)`, we can |
1640 | // detect it through its effects. |
1641 | if let Some(parent_layout) = layout { |
1642 | let mut packed = false; |
1643 | self.each_known_field_layout(ctx, |layout| { |
1644 | packed = packed || layout.align > parent_layout.align; |
1645 | }); |
1646 | if packed { |
1647 | info!("Found a struct that was defined within `#pragma packed(...)`" ); |
1648 | return true; |
1649 | } |
1650 | |
1651 | if self.has_own_virtual_method && parent_layout.align == 1 { |
1652 | return true; |
1653 | } |
1654 | } |
1655 | |
1656 | false |
1657 | } |
1658 | |
1659 | /// Returns true if compound type has been forward declared |
1660 | pub fn is_forward_declaration(&self) -> bool { |
1661 | self.is_forward_declaration |
1662 | } |
1663 | |
1664 | /// Compute this compound structure's bitfield allocation units. |
1665 | pub fn compute_bitfield_units( |
1666 | &mut self, |
1667 | ctx: &BindgenContext, |
1668 | layout: Option<&Layout>, |
1669 | ) { |
1670 | let packed = self.is_packed(ctx, layout); |
1671 | self.fields.compute_bitfield_units(ctx, packed) |
1672 | } |
1673 | |
1674 | /// Assign for each anonymous field a generated name. |
1675 | pub fn deanonymize_fields(&mut self, ctx: &BindgenContext) { |
1676 | self.fields.deanonymize_fields(ctx, &self.methods); |
1677 | } |
1678 | |
1679 | /// Returns whether the current union can be represented as a Rust `union` |
1680 | /// |
1681 | /// Requirements: |
1682 | /// 1. Current RustTarget allows for `untagged_union` |
1683 | /// 2. Each field can derive `Copy` or we use ManuallyDrop. |
1684 | /// 3. It's not zero-sized. |
1685 | /// |
1686 | /// Second boolean returns whether all fields can be copied (and thus |
1687 | /// ManuallyDrop is not needed). |
1688 | pub fn is_rust_union( |
1689 | &self, |
1690 | ctx: &BindgenContext, |
1691 | layout: Option<&Layout>, |
1692 | name: &str, |
1693 | ) -> (bool, bool) { |
1694 | if !self.is_union() { |
1695 | return (false, false); |
1696 | } |
1697 | |
1698 | if !ctx.options().rust_features().untagged_union { |
1699 | return (false, false); |
1700 | } |
1701 | |
1702 | if self.is_forward_declaration() { |
1703 | return (false, false); |
1704 | } |
1705 | |
1706 | let union_style = if ctx.options().bindgen_wrapper_union.matches(name) { |
1707 | NonCopyUnionStyle::BindgenWrapper |
1708 | } else if ctx.options().manually_drop_union.matches(name) { |
1709 | NonCopyUnionStyle::ManuallyDrop |
1710 | } else { |
1711 | ctx.options().default_non_copy_union_style |
1712 | }; |
1713 | |
1714 | let all_can_copy = self.fields().iter().all(|f| match *f { |
1715 | Field::DataMember(ref field_data) => { |
1716 | field_data.ty().can_derive_copy(ctx) |
1717 | } |
1718 | Field::Bitfields(_) => true, |
1719 | }); |
1720 | |
1721 | if !all_can_copy && union_style == NonCopyUnionStyle::BindgenWrapper { |
1722 | return (false, false); |
1723 | } |
1724 | |
1725 | if layout.map_or(false, |l| l.size == 0) { |
1726 | return (false, false); |
1727 | } |
1728 | |
1729 | (true, all_can_copy) |
1730 | } |
1731 | } |
1732 | |
1733 | impl DotAttributes for CompInfo { |
1734 | fn dot_attributes<W>( |
1735 | &self, |
1736 | ctx: &BindgenContext, |
1737 | out: &mut W, |
1738 | ) -> io::Result<()> |
1739 | where |
1740 | W: io::Write, |
1741 | { |
1742 | writeln!(out, "<tr><td>CompKind</td><td> {:?}</td></tr>" , self.kind)?; |
1743 | |
1744 | if self.has_own_virtual_method { |
1745 | writeln!(out, "<tr><td>has_vtable</td><td>true</td></tr>" )?; |
1746 | } |
1747 | |
1748 | if self.has_destructor { |
1749 | writeln!(out, "<tr><td>has_destructor</td><td>true</td></tr>" )?; |
1750 | } |
1751 | |
1752 | if self.has_nonempty_base { |
1753 | writeln!(out, "<tr><td>has_nonempty_base</td><td>true</td></tr>" )?; |
1754 | } |
1755 | |
1756 | if self.has_non_type_template_params { |
1757 | writeln!( |
1758 | out, |
1759 | "<tr><td>has_non_type_template_params</td><td>true</td></tr>" |
1760 | )?; |
1761 | } |
1762 | |
1763 | if self.packed_attr { |
1764 | writeln!(out, "<tr><td>packed_attr</td><td>true</td></tr>" )?; |
1765 | } |
1766 | |
1767 | if self.is_forward_declaration { |
1768 | writeln!( |
1769 | out, |
1770 | "<tr><td>is_forward_declaration</td><td>true</td></tr>" |
1771 | )?; |
1772 | } |
1773 | |
1774 | if !self.fields().is_empty() { |
1775 | writeln!(out, r#"<tr><td>fields</td><td><table border="0">"# )?; |
1776 | for field in self.fields() { |
1777 | field.dot_attributes(ctx, out)?; |
1778 | } |
1779 | writeln!(out, "</table></td></tr>" )?; |
1780 | } |
1781 | |
1782 | Ok(()) |
1783 | } |
1784 | } |
1785 | |
1786 | impl IsOpaque for CompInfo { |
1787 | type Extra = Option<Layout>; |
1788 | |
1789 | fn is_opaque(&self, ctx: &BindgenContext, layout: &Option<Layout>) -> bool { |
1790 | if self.has_non_type_template_params || |
1791 | self.has_unevaluable_bit_field_width |
1792 | { |
1793 | return true; |
1794 | } |
1795 | |
1796 | // When we do not have the layout for a bitfield's type (for example, it |
1797 | // is a type parameter), then we can't compute bitfield units. We are |
1798 | // left with no choice but to make the whole struct opaque, or else we |
1799 | // might generate structs with incorrect sizes and alignments. |
1800 | if let CompFields::Error = self.fields { |
1801 | return true; |
1802 | } |
1803 | |
1804 | // Bitfields with a width that is larger than their unit's width have |
1805 | // some strange things going on, and the best we can do is make the |
1806 | // whole struct opaque. |
1807 | if self.fields().iter().any(|f| match *f { |
1808 | Field::DataMember(_) => false, |
1809 | Field::Bitfields(ref unit) => unit.bitfields().iter().any(|bf| { |
1810 | let bitfield_layout = ctx |
1811 | .resolve_type(bf.ty()) |
1812 | .layout(ctx) |
1813 | .expect("Bitfield without layout? Gah!" ); |
1814 | bf.width() / 8 > bitfield_layout.size as u32 |
1815 | }), |
1816 | }) { |
1817 | return true; |
1818 | } |
1819 | |
1820 | if !ctx.options().rust_features().repr_packed_n { |
1821 | // If we don't have `#[repr(packed(N)]`, the best we can |
1822 | // do is make this struct opaque. |
1823 | // |
1824 | // See https://github.com/rust-lang/rust-bindgen/issues/537 and |
1825 | // https://github.com/rust-lang/rust/issues/33158 |
1826 | if self.is_packed(ctx, layout.as_ref()) && |
1827 | layout.map_or(false, |l| l.align > 1) |
1828 | { |
1829 | warn!("Found a type that is both packed and aligned to greater than \ |
1830 | 1; Rust before version 1.33 doesn't have `#[repr(packed(N))]`, so we \ |
1831 | are treating it as opaque. You may wish to set bindgen's rust target \ |
1832 | version to 1.33 or later to enable `#[repr(packed(N))]` support." ); |
1833 | return true; |
1834 | } |
1835 | } |
1836 | |
1837 | false |
1838 | } |
1839 | } |
1840 | |
1841 | impl TemplateParameters for CompInfo { |
1842 | fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
1843 | self.template_params.clone() |
1844 | } |
1845 | } |
1846 | |
1847 | impl Trace for CompInfo { |
1848 | type Extra = Item; |
1849 | |
1850 | fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item) |
1851 | where |
1852 | T: Tracer, |
1853 | { |
1854 | for p in item.all_template_params(context) { |
1855 | tracer.visit_kind(p.into(), EdgeKind::TemplateParameterDefinition); |
1856 | } |
1857 | |
1858 | for ty in self.inner_types() { |
1859 | tracer.visit_kind(ty.into(), EdgeKind::InnerType); |
1860 | } |
1861 | |
1862 | for &var in self.inner_vars() { |
1863 | tracer.visit_kind(var.into(), EdgeKind::InnerVar); |
1864 | } |
1865 | |
1866 | for method in self.methods() { |
1867 | tracer.visit_kind(method.signature.into(), EdgeKind::Method); |
1868 | } |
1869 | |
1870 | if let Some((_kind, signature)) = self.destructor() { |
1871 | tracer.visit_kind(signature.into(), EdgeKind::Destructor); |
1872 | } |
1873 | |
1874 | for ctor in self.constructors() { |
1875 | tracer.visit_kind(ctor.into(), EdgeKind::Constructor); |
1876 | } |
1877 | |
1878 | // Base members and fields are not generated for opaque types (but all |
1879 | // of the above things are) so stop here. |
1880 | if item.is_opaque(context, &()) { |
1881 | return; |
1882 | } |
1883 | |
1884 | for base in self.base_members() { |
1885 | tracer.visit_kind(base.ty.into(), EdgeKind::BaseMember); |
1886 | } |
1887 | |
1888 | self.fields.trace(context, tracer, &()); |
1889 | } |
1890 | } |
1891 | |