1 | //! Common context that is passed around during parsing and codegen. |
2 | |
3 | use super::super::time::Timer; |
4 | use super::analysis::{ |
5 | analyze, as_cannot_derive_set, CannotDerive, DeriveTrait, |
6 | HasDestructorAnalysis, HasFloat, HasTypeParameterInArray, |
7 | HasVtableAnalysis, HasVtableResult, SizednessAnalysis, SizednessResult, |
8 | UsedTemplateParameters, |
9 | }; |
10 | use super::derive::{ |
11 | CanDerive, CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq, |
12 | CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd, |
13 | }; |
14 | use super::function::Function; |
15 | use super::int::IntKind; |
16 | use super::item::{IsOpaque, Item, ItemAncestors, ItemSet}; |
17 | use super::item_kind::ItemKind; |
18 | use super::module::{Module, ModuleKind}; |
19 | use super::template::{TemplateInstantiation, TemplateParameters}; |
20 | use super::traversal::{self, Edge, ItemTraversal}; |
21 | use super::ty::{FloatKind, Type, TypeKind}; |
22 | use crate::clang::{self, Cursor}; |
23 | use crate::codegen::CodegenError; |
24 | use crate::BindgenOptions; |
25 | use crate::{Entry, HashMap, HashSet}; |
26 | use cexpr; |
27 | use clang_sys; |
28 | use proc_macro2::{Ident, Span, TokenStream}; |
29 | use quote::ToTokens; |
30 | use std::borrow::Cow; |
31 | use std::cell::{Cell, RefCell}; |
32 | use std::collections::{BTreeSet, HashMap as StdHashMap}; |
33 | use std::iter::IntoIterator; |
34 | use std::mem; |
35 | |
36 | /// An identifier for some kind of IR item. |
37 | #[derive (Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
38 | pub struct ItemId(usize); |
39 | |
40 | macro_rules! item_id_newtype { |
41 | ( |
42 | $( #[$attr:meta] )* |
43 | pub struct $name:ident(ItemId) |
44 | where |
45 | $( #[$checked_attr:meta] )* |
46 | checked = $checked:ident with $check_method:ident, |
47 | $( #[$expected_attr:meta] )* |
48 | expected = $expected:ident, |
49 | $( #[$unchecked_attr:meta] )* |
50 | unchecked = $unchecked:ident; |
51 | ) => { |
52 | $( #[$attr] )* |
53 | #[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
54 | pub struct $name(ItemId); |
55 | |
56 | impl $name { |
57 | /// Create an `ItemResolver` from this id. |
58 | pub fn into_resolver(self) -> ItemResolver { |
59 | let id: ItemId = self.into(); |
60 | id.into() |
61 | } |
62 | } |
63 | |
64 | impl<T> ::std::cmp::PartialEq<T> for $name |
65 | where |
66 | T: Copy + Into<ItemId> |
67 | { |
68 | fn eq(&self, rhs: &T) -> bool { |
69 | let rhs: ItemId = (*rhs).into(); |
70 | self.0 == rhs |
71 | } |
72 | } |
73 | |
74 | impl From<$name> for ItemId { |
75 | fn from(id: $name) -> ItemId { |
76 | id.0 |
77 | } |
78 | } |
79 | |
80 | impl<'a> From<&'a $name> for ItemId { |
81 | fn from(id: &'a $name) -> ItemId { |
82 | id.0 |
83 | } |
84 | } |
85 | |
86 | impl ItemId { |
87 | $( #[$checked_attr] )* |
88 | pub fn $checked(&self, ctx: &BindgenContext) -> Option<$name> { |
89 | if ctx.resolve_item(*self).kind().$check_method() { |
90 | Some($name(*self)) |
91 | } else { |
92 | None |
93 | } |
94 | } |
95 | |
96 | $( #[$expected_attr] )* |
97 | pub fn $expected(&self, ctx: &BindgenContext) -> $name { |
98 | self.$checked(ctx) |
99 | .expect(concat!( |
100 | stringify!($expected), |
101 | " called with ItemId that points to the wrong ItemKind" |
102 | )) |
103 | } |
104 | |
105 | $( #[$unchecked_attr] )* |
106 | pub fn $unchecked(&self) -> $name { |
107 | $name(*self) |
108 | } |
109 | } |
110 | } |
111 | } |
112 | |
113 | item_id_newtype! { |
114 | /// An identifier for an `Item` whose `ItemKind` is known to be |
115 | /// `ItemKind::Type`. |
116 | pub struct TypeId(ItemId) |
117 | where |
118 | /// Convert this `ItemId` into a `TypeId` if its associated item is a type, |
119 | /// otherwise return `None`. |
120 | checked = as_type_id with is_type, |
121 | |
122 | /// Convert this `ItemId` into a `TypeId`. |
123 | /// |
124 | /// If this `ItemId` does not point to a type, then panic. |
125 | expected = expect_type_id, |
126 | |
127 | /// Convert this `ItemId` into a `TypeId` without actually checking whether |
128 | /// this id actually points to a `Type`. |
129 | unchecked = as_type_id_unchecked; |
130 | } |
131 | |
132 | item_id_newtype! { |
133 | /// An identifier for an `Item` whose `ItemKind` is known to be |
134 | /// `ItemKind::Module`. |
135 | pub struct ModuleId(ItemId) |
136 | where |
137 | /// Convert this `ItemId` into a `ModuleId` if its associated item is a |
138 | /// module, otherwise return `None`. |
139 | checked = as_module_id with is_module, |
140 | |
141 | /// Convert this `ItemId` into a `ModuleId`. |
142 | /// |
143 | /// If this `ItemId` does not point to a module, then panic. |
144 | expected = expect_module_id, |
145 | |
146 | /// Convert this `ItemId` into a `ModuleId` without actually checking |
147 | /// whether this id actually points to a `Module`. |
148 | unchecked = as_module_id_unchecked; |
149 | } |
150 | |
151 | item_id_newtype! { |
152 | /// An identifier for an `Item` whose `ItemKind` is known to be |
153 | /// `ItemKind::Var`. |
154 | pub struct VarId(ItemId) |
155 | where |
156 | /// Convert this `ItemId` into a `VarId` if its associated item is a var, |
157 | /// otherwise return `None`. |
158 | checked = as_var_id with is_var, |
159 | |
160 | /// Convert this `ItemId` into a `VarId`. |
161 | /// |
162 | /// If this `ItemId` does not point to a var, then panic. |
163 | expected = expect_var_id, |
164 | |
165 | /// Convert this `ItemId` into a `VarId` without actually checking whether |
166 | /// this id actually points to a `Var`. |
167 | unchecked = as_var_id_unchecked; |
168 | } |
169 | |
170 | item_id_newtype! { |
171 | /// An identifier for an `Item` whose `ItemKind` is known to be |
172 | /// `ItemKind::Function`. |
173 | pub struct FunctionId(ItemId) |
174 | where |
175 | /// Convert this `ItemId` into a `FunctionId` if its associated item is a function, |
176 | /// otherwise return `None`. |
177 | checked = as_function_id with is_function, |
178 | |
179 | /// Convert this `ItemId` into a `FunctionId`. |
180 | /// |
181 | /// If this `ItemId` does not point to a function, then panic. |
182 | expected = expect_function_id, |
183 | |
184 | /// Convert this `ItemId` into a `FunctionId` without actually checking whether |
185 | /// this id actually points to a `Function`. |
186 | unchecked = as_function_id_unchecked; |
187 | } |
188 | |
189 | impl From<ItemId> for usize { |
190 | fn from(id: ItemId) -> usize { |
191 | id.0 |
192 | } |
193 | } |
194 | |
195 | impl ItemId { |
196 | /// Get a numeric representation of this id. |
197 | pub fn as_usize(&self) -> usize { |
198 | (*self).into() |
199 | } |
200 | } |
201 | |
202 | impl<T> ::std::cmp::PartialEq<T> for ItemId |
203 | where |
204 | T: Copy + Into<ItemId>, |
205 | { |
206 | fn eq(&self, rhs: &T) -> bool { |
207 | let rhs: ItemId = (*rhs).into(); |
208 | self.0 == rhs.0 |
209 | } |
210 | } |
211 | |
212 | impl<T> CanDeriveDebug for T |
213 | where |
214 | T: Copy + Into<ItemId>, |
215 | { |
216 | fn can_derive_debug(&self, ctx: &BindgenContext) -> bool { |
217 | ctx.options().derive_debug && ctx.lookup_can_derive_debug(*self) |
218 | } |
219 | } |
220 | |
221 | impl<T> CanDeriveDefault for T |
222 | where |
223 | T: Copy + Into<ItemId>, |
224 | { |
225 | fn can_derive_default(&self, ctx: &BindgenContext) -> bool { |
226 | ctx.options().derive_default && ctx.lookup_can_derive_default(*self) |
227 | } |
228 | } |
229 | |
230 | impl<T> CanDeriveCopy for T |
231 | where |
232 | T: Copy + Into<ItemId>, |
233 | { |
234 | fn can_derive_copy(&self, ctx: &BindgenContext) -> bool { |
235 | ctx.options().derive_copy && ctx.lookup_can_derive_copy(*self) |
236 | } |
237 | } |
238 | |
239 | impl<T> CanDeriveHash for T |
240 | where |
241 | T: Copy + Into<ItemId>, |
242 | { |
243 | fn can_derive_hash(&self, ctx: &BindgenContext) -> bool { |
244 | ctx.options().derive_hash && ctx.lookup_can_derive_hash(*self) |
245 | } |
246 | } |
247 | |
248 | impl<T> CanDerivePartialOrd for T |
249 | where |
250 | T: Copy + Into<ItemId>, |
251 | { |
252 | fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool { |
253 | ctx.options().derive_partialord && |
254 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
255 | CanDerive::Yes |
256 | } |
257 | } |
258 | |
259 | impl<T> CanDerivePartialEq for T |
260 | where |
261 | T: Copy + Into<ItemId>, |
262 | { |
263 | fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool { |
264 | ctx.options().derive_partialeq && |
265 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
266 | CanDerive::Yes |
267 | } |
268 | } |
269 | |
270 | impl<T> CanDeriveEq for T |
271 | where |
272 | T: Copy + Into<ItemId>, |
273 | { |
274 | fn can_derive_eq(&self, ctx: &BindgenContext) -> bool { |
275 | ctx.options().derive_eq && |
276 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
277 | CanDerive::Yes && |
278 | !ctx.lookup_has_float(*self) |
279 | } |
280 | } |
281 | |
282 | impl<T> CanDeriveOrd for T |
283 | where |
284 | T: Copy + Into<ItemId>, |
285 | { |
286 | fn can_derive_ord(&self, ctx: &BindgenContext) -> bool { |
287 | ctx.options().derive_ord && |
288 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
289 | CanDerive::Yes && |
290 | !ctx.lookup_has_float(*self) |
291 | } |
292 | } |
293 | |
294 | /// A key used to index a resolved type, so we only process it once. |
295 | /// |
296 | /// This is almost always a USR string (an unique identifier generated by |
297 | /// clang), but it can also be the canonical declaration if the type is unnamed, |
298 | /// in which case clang may generate the same USR for multiple nested unnamed |
299 | /// types. |
300 | #[derive (Eq, PartialEq, Hash, Debug)] |
301 | enum TypeKey { |
302 | Usr(String), |
303 | Declaration(Cursor), |
304 | } |
305 | |
306 | /// A context used during parsing and generation of structs. |
307 | #[derive (Debug)] |
308 | pub struct BindgenContext { |
309 | /// The map of all the items parsed so far, keyed off ItemId. |
310 | items: Vec<Option<Item>>, |
311 | |
312 | /// Clang USR to type map. This is needed to be able to associate types with |
313 | /// item ids during parsing. |
314 | types: HashMap<TypeKey, TypeId>, |
315 | |
316 | /// Maps from a cursor to the item id of the named template type parameter |
317 | /// for that cursor. |
318 | type_params: HashMap<clang::Cursor, TypeId>, |
319 | |
320 | /// A cursor to module map. Similar reason than above. |
321 | modules: HashMap<Cursor, ModuleId>, |
322 | |
323 | /// The root module, this is guaranteed to be an item of kind Module. |
324 | root_module: ModuleId, |
325 | |
326 | /// Current module being traversed. |
327 | current_module: ModuleId, |
328 | |
329 | /// A HashMap keyed on a type definition, and whose value is the parent id |
330 | /// of the declaration. |
331 | /// |
332 | /// This is used to handle the cases where the semantic and the lexical |
333 | /// parents of the cursor differ, like when a nested class is defined |
334 | /// outside of the parent class. |
335 | semantic_parents: HashMap<clang::Cursor, ItemId>, |
336 | |
337 | /// A stack with the current type declarations and types we're parsing. This |
338 | /// is needed to avoid infinite recursion when parsing a type like: |
339 | /// |
340 | /// struct c { struct c* next; }; |
341 | /// |
342 | /// This means effectively, that a type has a potential ID before knowing if |
343 | /// it's a correct type. But that's not important in practice. |
344 | /// |
345 | /// We could also use the `types` HashMap, but my intention with it is that |
346 | /// only valid types and declarations end up there, and this could |
347 | /// potentially break that assumption. |
348 | currently_parsed_types: Vec<PartialType>, |
349 | |
350 | /// A map with all the already parsed macro names. This is done to avoid |
351 | /// hard errors while parsing duplicated macros, as well to allow macro |
352 | /// expression parsing. |
353 | /// |
354 | /// This needs to be an std::HashMap because the cexpr API requires it. |
355 | parsed_macros: StdHashMap<Vec<u8>, cexpr::expr::EvalResult>, |
356 | |
357 | /// A set of all the included filenames. |
358 | deps: BTreeSet<String>, |
359 | |
360 | /// The active replacements collected from replaces="xxx" annotations. |
361 | replacements: HashMap<Vec<String>, ItemId>, |
362 | |
363 | collected_typerefs: bool, |
364 | |
365 | in_codegen: bool, |
366 | |
367 | /// The translation unit for parsing. |
368 | translation_unit: clang::TranslationUnit, |
369 | |
370 | /// Target information that can be useful for some stuff. |
371 | target_info: clang::TargetInfo, |
372 | |
373 | /// The options given by the user via cli or other medium. |
374 | options: BindgenOptions, |
375 | |
376 | /// Whether a bindgen complex was generated |
377 | generated_bindgen_complex: Cell<bool>, |
378 | |
379 | /// The set of `ItemId`s that are allowlisted. This the very first thing |
380 | /// computed after parsing our IR, and before running any of our analyses. |
381 | allowlisted: Option<ItemSet>, |
382 | |
383 | /// Cache for calls to `ParseCallbacks::blocklisted_type_implements_trait` |
384 | blocklisted_types_implement_traits: |
385 | RefCell<HashMap<DeriveTrait, HashMap<ItemId, CanDerive>>>, |
386 | |
387 | /// The set of `ItemId`s that are allowlisted for code generation _and_ that |
388 | /// we should generate accounting for the codegen options. |
389 | /// |
390 | /// It's computed right after computing the allowlisted items. |
391 | codegen_items: Option<ItemSet>, |
392 | |
393 | /// Map from an item's id to the set of template parameter items that it |
394 | /// uses. See `ir::named` for more details. Always `Some` during the codegen |
395 | /// phase. |
396 | used_template_parameters: Option<HashMap<ItemId, ItemSet>>, |
397 | |
398 | /// The set of `TypeKind::Comp` items found during parsing that need their |
399 | /// bitfield allocation units computed. Drained in `compute_bitfield_units`. |
400 | need_bitfield_allocation: Vec<ItemId>, |
401 | |
402 | /// The set of enums that are defined by a pair of `enum` and `typedef`, |
403 | /// which is legal in C (but not C++). |
404 | /// |
405 | /// ```c++ |
406 | /// // in either order |
407 | /// enum Enum { Variants... }; |
408 | /// typedef int16_t Enum; |
409 | /// ``` |
410 | /// |
411 | /// The stored `ItemId` is that of the `TypeKind::Enum`, not of the |
412 | /// `TypeKind::Alias`. |
413 | /// |
414 | /// This is populated when we enter codegen by `compute_enum_typedef_combos` |
415 | /// and is always `None` before that and `Some` after. |
416 | enum_typedef_combos: Option<HashSet<ItemId>>, |
417 | |
418 | /// The set of (`ItemId`s of) types that can't derive debug. |
419 | /// |
420 | /// This is populated when we enter codegen by `compute_cannot_derive_debug` |
421 | /// and is always `None` before that and `Some` after. |
422 | cannot_derive_debug: Option<HashSet<ItemId>>, |
423 | |
424 | /// The set of (`ItemId`s of) types that can't derive default. |
425 | /// |
426 | /// This is populated when we enter codegen by `compute_cannot_derive_default` |
427 | /// and is always `None` before that and `Some` after. |
428 | cannot_derive_default: Option<HashSet<ItemId>>, |
429 | |
430 | /// The set of (`ItemId`s of) types that can't derive copy. |
431 | /// |
432 | /// This is populated when we enter codegen by `compute_cannot_derive_copy` |
433 | /// and is always `None` before that and `Some` after. |
434 | cannot_derive_copy: Option<HashSet<ItemId>>, |
435 | |
436 | /// The set of (`ItemId`s of) types that can't derive hash. |
437 | /// |
438 | /// This is populated when we enter codegen by `compute_can_derive_hash` |
439 | /// and is always `None` before that and `Some` after. |
440 | cannot_derive_hash: Option<HashSet<ItemId>>, |
441 | |
442 | /// The map why specified `ItemId`s of) types that can't derive hash. |
443 | /// |
444 | /// This is populated when we enter codegen by |
445 | /// `compute_cannot_derive_partialord_partialeq_or_eq` and is always `None` |
446 | /// before that and `Some` after. |
447 | cannot_derive_partialeq_or_partialord: Option<HashMap<ItemId, CanDerive>>, |
448 | |
449 | /// The sizedness of types. |
450 | /// |
451 | /// This is populated by `compute_sizedness` and is always `None` before |
452 | /// that function is invoked and `Some` afterwards. |
453 | sizedness: Option<HashMap<TypeId, SizednessResult>>, |
454 | |
455 | /// The set of (`ItemId's of`) types that has vtable. |
456 | /// |
457 | /// Populated when we enter codegen by `compute_has_vtable`; always `None` |
458 | /// before that and `Some` after. |
459 | have_vtable: Option<HashMap<ItemId, HasVtableResult>>, |
460 | |
461 | /// The set of (`ItemId's of`) types that has destructor. |
462 | /// |
463 | /// Populated when we enter codegen by `compute_has_destructor`; always `None` |
464 | /// before that and `Some` after. |
465 | have_destructor: Option<HashSet<ItemId>>, |
466 | |
467 | /// The set of (`ItemId's of`) types that has array. |
468 | /// |
469 | /// Populated when we enter codegen by `compute_has_type_param_in_array`; always `None` |
470 | /// before that and `Some` after. |
471 | has_type_param_in_array: Option<HashSet<ItemId>>, |
472 | |
473 | /// The set of (`ItemId's of`) types that has float. |
474 | /// |
475 | /// Populated when we enter codegen by `compute_has_float`; always `None` |
476 | /// before that and `Some` after. |
477 | has_float: Option<HashSet<ItemId>>, |
478 | |
479 | /// The set of warnings raised during binding generation. |
480 | warnings: Vec<String>, |
481 | } |
482 | |
483 | /// A traversal of allowlisted items. |
484 | struct AllowlistedItemsTraversal<'ctx> { |
485 | ctx: &'ctx BindgenContext, |
486 | traversal: ItemTraversal<'ctx, ItemSet, Vec<ItemId>>, |
487 | } |
488 | |
489 | impl<'ctx> Iterator for AllowlistedItemsTraversal<'ctx> { |
490 | type Item = ItemId; |
491 | |
492 | fn next(&mut self) -> Option<ItemId> { |
493 | loop { |
494 | let id: ItemId = self.traversal.next()?; |
495 | |
496 | if self.ctx.resolve_item(item_id:id).is_blocklisted(self.ctx) { |
497 | continue; |
498 | } |
499 | |
500 | return Some(id); |
501 | } |
502 | } |
503 | } |
504 | |
505 | impl<'ctx> AllowlistedItemsTraversal<'ctx> { |
506 | /// Construct a new allowlisted items traversal. |
507 | pub fn new<R>( |
508 | ctx: &'ctx BindgenContext, |
509 | roots: R, |
510 | predicate: for<'a> fn(&'a BindgenContext, Edge) -> bool, |
511 | ) -> Self |
512 | where |
513 | R: IntoIterator<Item = ItemId>, |
514 | { |
515 | AllowlistedItemsTraversal { |
516 | ctx, |
517 | traversal: ItemTraversal::new(ctx, roots, predicate), |
518 | } |
519 | } |
520 | } |
521 | |
522 | impl BindgenContext { |
523 | /// Construct the context for the given `options`. |
524 | pub(crate) fn new( |
525 | options: BindgenOptions, |
526 | input_unsaved_files: &[clang::UnsavedFile], |
527 | ) -> Self { |
528 | // TODO(emilio): Use the CXTargetInfo here when available. |
529 | // |
530 | // see: https://reviews.llvm.org/D32389 |
531 | let index = clang::Index::new(false, true); |
532 | |
533 | let parse_options = |
534 | clang_sys::CXTranslationUnit_DetailedPreprocessingRecord; |
535 | |
536 | let translation_unit = { |
537 | let _t = |
538 | Timer::new("translation_unit" ).with_output(options.time_phases); |
539 | |
540 | clang::TranslationUnit::parse( |
541 | &index, |
542 | "" , |
543 | &options.clang_args, |
544 | input_unsaved_files, |
545 | parse_options, |
546 | ).expect("libclang error; possible causes include: |
547 | - Invalid flag syntax |
548 | - Unrecognized flags |
549 | - Invalid flag arguments |
550 | - File I/O errors |
551 | - Host vs. target architecture mismatch |
552 | If you encounter an error missing from this list, please file an issue or a PR!" ) |
553 | }; |
554 | |
555 | let target_info = clang::TargetInfo::new(&translation_unit); |
556 | let root_module = Self::build_root_module(ItemId(0)); |
557 | let root_module_id = root_module.id().as_module_id_unchecked(); |
558 | |
559 | // depfiles need to include the explicitly listed headers too |
560 | let deps = options.input_headers.iter().cloned().collect(); |
561 | |
562 | BindgenContext { |
563 | items: vec![Some(root_module)], |
564 | deps, |
565 | types: Default::default(), |
566 | type_params: Default::default(), |
567 | modules: Default::default(), |
568 | root_module: root_module_id, |
569 | current_module: root_module_id, |
570 | semantic_parents: Default::default(), |
571 | currently_parsed_types: vec![], |
572 | parsed_macros: Default::default(), |
573 | replacements: Default::default(), |
574 | collected_typerefs: false, |
575 | in_codegen: false, |
576 | translation_unit, |
577 | target_info, |
578 | options, |
579 | generated_bindgen_complex: Cell::new(false), |
580 | allowlisted: None, |
581 | blocklisted_types_implement_traits: Default::default(), |
582 | codegen_items: None, |
583 | used_template_parameters: None, |
584 | need_bitfield_allocation: Default::default(), |
585 | enum_typedef_combos: None, |
586 | cannot_derive_debug: None, |
587 | cannot_derive_default: None, |
588 | cannot_derive_copy: None, |
589 | cannot_derive_hash: None, |
590 | cannot_derive_partialeq_or_partialord: None, |
591 | sizedness: None, |
592 | have_vtable: None, |
593 | have_destructor: None, |
594 | has_type_param_in_array: None, |
595 | has_float: None, |
596 | warnings: Vec::new(), |
597 | } |
598 | } |
599 | |
600 | /// Returns `true` if the target architecture is wasm32 |
601 | pub fn is_target_wasm32(&self) -> bool { |
602 | self.target_info.triple.starts_with("wasm32-" ) |
603 | } |
604 | |
605 | /// Creates a timer for the current bindgen phase. If time_phases is `true`, |
606 | /// the timer will print to stderr when it is dropped, otherwise it will do |
607 | /// nothing. |
608 | pub fn timer<'a>(&self, name: &'a str) -> Timer<'a> { |
609 | Timer::new(name).with_output(self.options.time_phases) |
610 | } |
611 | |
612 | /// Returns the pointer width to use for the target for the current |
613 | /// translation. |
614 | pub fn target_pointer_size(&self) -> usize { |
615 | self.target_info.pointer_width / 8 |
616 | } |
617 | |
618 | /// Get the stack of partially parsed types that we are in the middle of |
619 | /// parsing. |
620 | pub fn currently_parsed_types(&self) -> &[PartialType] { |
621 | &self.currently_parsed_types[..] |
622 | } |
623 | |
624 | /// Begin parsing the given partial type, and push it onto the |
625 | /// `currently_parsed_types` stack so that we won't infinite recurse if we |
626 | /// run into a reference to it while parsing it. |
627 | pub fn begin_parsing(&mut self, partial_ty: PartialType) { |
628 | self.currently_parsed_types.push(partial_ty); |
629 | } |
630 | |
631 | /// Finish parsing the current partial type, pop it off the |
632 | /// `currently_parsed_types` stack, and return it. |
633 | pub fn finish_parsing(&mut self) -> PartialType { |
634 | self.currently_parsed_types.pop().expect( |
635 | "should have been parsing a type, if we finished parsing a type" , |
636 | ) |
637 | } |
638 | |
639 | /// Add another path to the set of included files. |
640 | pub fn include_file(&mut self, filename: String) { |
641 | for cb in &self.options().parse_callbacks { |
642 | cb.include_file(&filename); |
643 | } |
644 | self.deps.insert(filename); |
645 | } |
646 | |
647 | /// Get any included files. |
648 | pub fn deps(&self) -> &BTreeSet<String> { |
649 | &self.deps |
650 | } |
651 | |
652 | /// Define a new item. |
653 | /// |
654 | /// This inserts it into the internal items set, and its type into the |
655 | /// internal types set. |
656 | pub fn add_item( |
657 | &mut self, |
658 | item: Item, |
659 | declaration: Option<Cursor>, |
660 | location: Option<Cursor>, |
661 | ) { |
662 | debug!( |
663 | "BindgenContext::add_item( {:?}, declaration: {:?}, loc: {:?}" , |
664 | item, declaration, location |
665 | ); |
666 | debug_assert!( |
667 | declaration.is_some() || |
668 | !item.kind().is_type() || |
669 | item.kind().expect_type().is_builtin_or_type_param() || |
670 | item.kind().expect_type().is_opaque(self, &item) || |
671 | item.kind().expect_type().is_unresolved_ref(), |
672 | "Adding a type without declaration?" |
673 | ); |
674 | |
675 | let id = item.id(); |
676 | let is_type = item.kind().is_type(); |
677 | let is_unnamed = is_type && item.expect_type().name().is_none(); |
678 | let is_template_instantiation = |
679 | is_type && item.expect_type().is_template_instantiation(); |
680 | |
681 | if item.id() != self.root_module { |
682 | self.add_item_to_module(&item); |
683 | } |
684 | |
685 | if is_type && item.expect_type().is_comp() { |
686 | self.need_bitfield_allocation.push(id); |
687 | } |
688 | |
689 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
690 | assert!( |
691 | old_item.is_none(), |
692 | "should not have already associated an item with the given id" |
693 | ); |
694 | |
695 | // Unnamed items can have an USR, but they can't be referenced from |
696 | // other sites explicitly and the USR can match if the unnamed items are |
697 | // nested, so don't bother tracking them. |
698 | if !is_type || is_template_instantiation { |
699 | return; |
700 | } |
701 | if let Some(mut declaration) = declaration { |
702 | if !declaration.is_valid() { |
703 | if let Some(location) = location { |
704 | if location.is_template_like() { |
705 | declaration = location; |
706 | } |
707 | } |
708 | } |
709 | declaration = declaration.canonical(); |
710 | if !declaration.is_valid() { |
711 | // This could happen, for example, with types like `int*` or |
712 | // similar. |
713 | // |
714 | // Fortunately, we don't care about those types being |
715 | // duplicated, so we can just ignore them. |
716 | debug!( |
717 | "Invalid declaration {:?} found for type {:?}" , |
718 | declaration, |
719 | self.resolve_item_fallible(id) |
720 | .unwrap() |
721 | .kind() |
722 | .expect_type() |
723 | ); |
724 | return; |
725 | } |
726 | |
727 | let key = if is_unnamed { |
728 | TypeKey::Declaration(declaration) |
729 | } else if let Some(usr) = declaration.usr() { |
730 | TypeKey::Usr(usr) |
731 | } else { |
732 | warn!( |
733 | "Valid declaration with no USR: {:?}, {:?}" , |
734 | declaration, location |
735 | ); |
736 | TypeKey::Declaration(declaration) |
737 | }; |
738 | |
739 | let old = self.types.insert(key, id.as_type_id_unchecked()); |
740 | debug_assert_eq!(old, None); |
741 | } |
742 | } |
743 | |
744 | /// Ensure that every item (other than the root module) is in a module's |
745 | /// children list. This is to make sure that every allowlisted item get's |
746 | /// codegen'd, even if its parent is not allowlisted. See issue #769 for |
747 | /// details. |
748 | fn add_item_to_module(&mut self, item: &Item) { |
749 | assert!(item.id() != self.root_module); |
750 | assert!(self.resolve_item_fallible(item.id()).is_none()); |
751 | |
752 | if let Some(ref mut parent) = self.items[item.parent_id().0] { |
753 | if let Some(module) = parent.as_module_mut() { |
754 | debug!( |
755 | "add_item_to_module: adding {:?} as child of parent module {:?}" , |
756 | item.id(), |
757 | item.parent_id() |
758 | ); |
759 | |
760 | module.children_mut().insert(item.id()); |
761 | return; |
762 | } |
763 | } |
764 | |
765 | debug!( |
766 | "add_item_to_module: adding {:?} as child of current module {:?}" , |
767 | item.id(), |
768 | self.current_module |
769 | ); |
770 | |
771 | self.items[(self.current_module.0).0] |
772 | .as_mut() |
773 | .expect("Should always have an item for self.current_module" ) |
774 | .as_module_mut() |
775 | .expect("self.current_module should always be a module" ) |
776 | .children_mut() |
777 | .insert(item.id()); |
778 | } |
779 | |
780 | /// Add a new named template type parameter to this context's item set. |
781 | pub fn add_type_param(&mut self, item: Item, definition: clang::Cursor) { |
782 | debug!( |
783 | "BindgenContext::add_type_param: item = {:?}; definition = {:?}" , |
784 | item, definition |
785 | ); |
786 | |
787 | assert!( |
788 | item.expect_type().is_type_param(), |
789 | "Should directly be a named type, not a resolved reference or anything" |
790 | ); |
791 | assert_eq!( |
792 | definition.kind(), |
793 | clang_sys::CXCursor_TemplateTypeParameter |
794 | ); |
795 | |
796 | self.add_item_to_module(&item); |
797 | |
798 | let id = item.id(); |
799 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
800 | assert!( |
801 | old_item.is_none(), |
802 | "should not have already associated an item with the given id" |
803 | ); |
804 | |
805 | let old_named_ty = self |
806 | .type_params |
807 | .insert(definition, id.as_type_id_unchecked()); |
808 | assert!( |
809 | old_named_ty.is_none(), |
810 | "should not have already associated a named type with this id" |
811 | ); |
812 | } |
813 | |
814 | /// Get the named type defined at the given cursor location, if we've |
815 | /// already added one. |
816 | pub fn get_type_param(&self, definition: &clang::Cursor) -> Option<TypeId> { |
817 | assert_eq!( |
818 | definition.kind(), |
819 | clang_sys::CXCursor_TemplateTypeParameter |
820 | ); |
821 | self.type_params.get(definition).cloned() |
822 | } |
823 | |
824 | // TODO: Move all this syntax crap to other part of the code. |
825 | |
826 | /// Mangles a name so it doesn't conflict with any keyword. |
827 | #[rustfmt::skip] |
828 | pub fn rust_mangle<'a>(&self, name: &'a str) -> Cow<'a, str> { |
829 | if name.contains('@' ) || |
830 | name.contains('?' ) || |
831 | name.contains('$' ) || |
832 | matches!( |
833 | name, |
834 | "abstract" | "alignof" | "as" | "async" | "await" | "become" | |
835 | "box" | "break" | "const" | "continue" | "crate" | "do" | |
836 | "dyn" | "else" | "enum" | "extern" | "false" | "final" | |
837 | "fn" | "for" | "if" | "impl" | "in" | "let" | "loop" | |
838 | "macro" | "match" | "mod" | "move" | "mut" | "offsetof" | |
839 | "override" | "priv" | "proc" | "pub" | "pure" | "ref" | |
840 | "return" | "Self" | "self" | "sizeof" | "static" | |
841 | "struct" | "super" | "trait" | "true" | "try" | "type" | "typeof" | |
842 | "unsafe" | "unsized" | "use" | "virtual" | "where" | |
843 | "while" | "yield" | "str" | "bool" | "f32" | "f64" | |
844 | "usize" | "isize" | "u128" | "i128" | "u64" | "i64" | |
845 | "u32" | "i32" | "u16" | "i16" | "u8" | "i8" | "_" |
846 | ) |
847 | { |
848 | let mut s = name.to_owned(); |
849 | s = s.replace('@' , "_" ); |
850 | s = s.replace('?' , "_" ); |
851 | s = s.replace('$' , "_" ); |
852 | s.push('_' ); |
853 | return Cow::Owned(s); |
854 | } |
855 | Cow::Borrowed(name) |
856 | } |
857 | |
858 | /// Returns a mangled name as a rust identifier. |
859 | pub fn rust_ident<S>(&self, name: S) -> Ident |
860 | where |
861 | S: AsRef<str>, |
862 | { |
863 | self.rust_ident_raw(self.rust_mangle(name.as_ref())) |
864 | } |
865 | |
866 | /// Returns a mangled name as a rust identifier. |
867 | pub fn rust_ident_raw<T>(&self, name: T) -> Ident |
868 | where |
869 | T: AsRef<str>, |
870 | { |
871 | Ident::new(name.as_ref(), Span::call_site()) |
872 | } |
873 | |
874 | /// Iterate over all items that have been defined. |
875 | pub fn items(&self) -> impl Iterator<Item = (ItemId, &Item)> { |
876 | self.items.iter().enumerate().filter_map(|(index, item)| { |
877 | let item = item.as_ref()?; |
878 | Some((ItemId(index), item)) |
879 | }) |
880 | } |
881 | |
882 | /// Have we collected all unresolved type references yet? |
883 | pub fn collected_typerefs(&self) -> bool { |
884 | self.collected_typerefs |
885 | } |
886 | |
887 | /// Gather all the unresolved type references. |
888 | fn collect_typerefs( |
889 | &mut self, |
890 | ) -> Vec<(ItemId, clang::Type, clang::Cursor, Option<ItemId>)> { |
891 | debug_assert!(!self.collected_typerefs); |
892 | self.collected_typerefs = true; |
893 | let mut typerefs = vec![]; |
894 | |
895 | for (id, item) in self.items() { |
896 | let kind = item.kind(); |
897 | let ty = match kind.as_type() { |
898 | Some(ty) => ty, |
899 | None => continue, |
900 | }; |
901 | |
902 | if let TypeKind::UnresolvedTypeRef(ref ty, loc, parent_id) = |
903 | *ty.kind() |
904 | { |
905 | typerefs.push((id, *ty, loc, parent_id)); |
906 | }; |
907 | } |
908 | typerefs |
909 | } |
910 | |
911 | /// Collect all of our unresolved type references and resolve them. |
912 | fn resolve_typerefs(&mut self) { |
913 | let _t = self.timer("resolve_typerefs" ); |
914 | |
915 | let typerefs = self.collect_typerefs(); |
916 | |
917 | for (id, ty, loc, parent_id) in typerefs { |
918 | let _resolved = |
919 | { |
920 | let resolved = Item::from_ty(&ty, loc, parent_id, self) |
921 | .unwrap_or_else(|_| { |
922 | warn!("Could not resolve type reference, falling back \ |
923 | to opaque blob" ); |
924 | Item::new_opaque_type(self.next_item_id(), &ty, self) |
925 | }); |
926 | |
927 | let item = self.items[id.0].as_mut().unwrap(); |
928 | *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
929 | TypeKind::ResolvedTypeRef(resolved); |
930 | resolved |
931 | }; |
932 | |
933 | // Something in the STL is trolling me. I don't need this assertion |
934 | // right now, but worth investigating properly once this lands. |
935 | // |
936 | // debug_assert!(self.items.get(&resolved).is_some(), "How?"); |
937 | // |
938 | // if let Some(parent_id) = parent_id { |
939 | // assert_eq!(self.items[&resolved].parent_id(), parent_id); |
940 | // } |
941 | } |
942 | } |
943 | |
944 | /// Temporarily loan `Item` with the given `ItemId`. This provides means to |
945 | /// mutably borrow `Item` while having a reference to `BindgenContext`. |
946 | /// |
947 | /// `Item` with the given `ItemId` is removed from the context, given |
948 | /// closure is executed and then `Item` is placed back. |
949 | /// |
950 | /// # Panics |
951 | /// |
952 | /// Panics if attempt to resolve given `ItemId` inside the given |
953 | /// closure is made. |
954 | fn with_loaned_item<F, T>(&mut self, id: ItemId, f: F) -> T |
955 | where |
956 | F: (FnOnce(&BindgenContext, &mut Item) -> T), |
957 | { |
958 | let mut item = self.items[id.0].take().unwrap(); |
959 | |
960 | let result = f(self, &mut item); |
961 | |
962 | let existing = mem::replace(&mut self.items[id.0], Some(item)); |
963 | assert!(existing.is_none()); |
964 | |
965 | result |
966 | } |
967 | |
968 | /// Compute the bitfield allocation units for all `TypeKind::Comp` items we |
969 | /// parsed. |
970 | fn compute_bitfield_units(&mut self) { |
971 | let _t = self.timer("compute_bitfield_units" ); |
972 | |
973 | assert!(self.collected_typerefs()); |
974 | |
975 | let need_bitfield_allocation = |
976 | mem::take(&mut self.need_bitfield_allocation); |
977 | for id in need_bitfield_allocation { |
978 | self.with_loaned_item(id, |ctx, item| { |
979 | let ty = item.kind_mut().as_type_mut().unwrap(); |
980 | let layout = ty.layout(ctx); |
981 | ty.as_comp_mut() |
982 | .unwrap() |
983 | .compute_bitfield_units(ctx, layout.as_ref()); |
984 | }); |
985 | } |
986 | } |
987 | |
988 | /// Assign a new generated name for each anonymous field. |
989 | fn deanonymize_fields(&mut self) { |
990 | let _t = self.timer("deanonymize_fields" ); |
991 | |
992 | let comp_item_ids: Vec<ItemId> = self |
993 | .items() |
994 | .filter_map(|(id, item)| { |
995 | if item.kind().as_type()?.is_comp() { |
996 | return Some(id); |
997 | } |
998 | None |
999 | }) |
1000 | .collect(); |
1001 | |
1002 | for id in comp_item_ids { |
1003 | self.with_loaned_item(id, |ctx, item| { |
1004 | item.kind_mut() |
1005 | .as_type_mut() |
1006 | .unwrap() |
1007 | .as_comp_mut() |
1008 | .unwrap() |
1009 | .deanonymize_fields(ctx); |
1010 | }); |
1011 | } |
1012 | } |
1013 | |
1014 | /// Iterate over all items and replace any item that has been named in a |
1015 | /// `replaces="SomeType"` annotation with the replacement type. |
1016 | fn process_replacements(&mut self) { |
1017 | let _t = self.timer("process_replacements" ); |
1018 | if self.replacements.is_empty() { |
1019 | debug!("No replacements to process" ); |
1020 | return; |
1021 | } |
1022 | |
1023 | // FIXME: This is linear, but the replaces="xxx" annotation was already |
1024 | // there, and for better or worse it's useful, sigh... |
1025 | // |
1026 | // We leverage the ResolvedTypeRef thing, though, which is cool :P. |
1027 | |
1028 | let mut replacements = vec![]; |
1029 | |
1030 | for (id, item) in self.items() { |
1031 | if item.annotations().use_instead_of().is_some() { |
1032 | continue; |
1033 | } |
1034 | |
1035 | // Calls to `canonical_name` are expensive, so eagerly filter out |
1036 | // items that cannot be replaced. |
1037 | let ty = match item.kind().as_type() { |
1038 | Some(ty) => ty, |
1039 | None => continue, |
1040 | }; |
1041 | |
1042 | match *ty.kind() { |
1043 | TypeKind::Comp(..) | |
1044 | TypeKind::TemplateAlias(..) | |
1045 | TypeKind::Enum(..) | |
1046 | TypeKind::Alias(..) => {} |
1047 | _ => continue, |
1048 | } |
1049 | |
1050 | let path = item.path_for_allowlisting(self); |
1051 | let replacement = self.replacements.get(&path[1..]); |
1052 | |
1053 | if let Some(replacement) = replacement { |
1054 | if *replacement != id { |
1055 | // We set this just after parsing the annotation. It's |
1056 | // very unlikely, but this can happen. |
1057 | if self.resolve_item_fallible(*replacement).is_some() { |
1058 | replacements.push(( |
1059 | id.expect_type_id(self), |
1060 | replacement.expect_type_id(self), |
1061 | )); |
1062 | } |
1063 | } |
1064 | } |
1065 | } |
1066 | |
1067 | for (id, replacement_id) in replacements { |
1068 | debug!("Replacing {:?} with {:?}" , id, replacement_id); |
1069 | let new_parent = { |
1070 | let item_id: ItemId = id.into(); |
1071 | let item = self.items[item_id.0].as_mut().unwrap(); |
1072 | *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
1073 | TypeKind::ResolvedTypeRef(replacement_id); |
1074 | item.parent_id() |
1075 | }; |
1076 | |
1077 | // Relocate the replacement item from where it was declared, to |
1078 | // where the thing it is replacing was declared. |
1079 | // |
1080 | // First, we'll make sure that its parent id is correct. |
1081 | |
1082 | let old_parent = self.resolve_item(replacement_id).parent_id(); |
1083 | if new_parent == old_parent { |
1084 | // Same parent and therefore also same containing |
1085 | // module. Nothing to do here. |
1086 | continue; |
1087 | } |
1088 | |
1089 | let replacement_item_id: ItemId = replacement_id.into(); |
1090 | self.items[replacement_item_id.0] |
1091 | .as_mut() |
1092 | .unwrap() |
1093 | .set_parent_for_replacement(new_parent); |
1094 | |
1095 | // Second, make sure that it is in the correct module's children |
1096 | // set. |
1097 | |
1098 | let old_module = { |
1099 | let immut_self = &*self; |
1100 | old_parent |
1101 | .ancestors(immut_self) |
1102 | .chain(Some(immut_self.root_module.into())) |
1103 | .find(|id| { |
1104 | let item = immut_self.resolve_item(*id); |
1105 | item.as_module().map_or(false, |m| { |
1106 | m.children().contains(&replacement_id.into()) |
1107 | }) |
1108 | }) |
1109 | }; |
1110 | let old_module = old_module |
1111 | .expect("Every replacement item should be in a module" ); |
1112 | |
1113 | let new_module = { |
1114 | let immut_self = &*self; |
1115 | new_parent |
1116 | .ancestors(immut_self) |
1117 | .find(|id| immut_self.resolve_item(*id).is_module()) |
1118 | }; |
1119 | let new_module = |
1120 | new_module.unwrap_or_else(|| self.root_module.into()); |
1121 | |
1122 | if new_module == old_module { |
1123 | // Already in the correct module. |
1124 | continue; |
1125 | } |
1126 | |
1127 | self.items[old_module.0] |
1128 | .as_mut() |
1129 | .unwrap() |
1130 | .as_module_mut() |
1131 | .unwrap() |
1132 | .children_mut() |
1133 | .remove(&replacement_id.into()); |
1134 | |
1135 | self.items[new_module.0] |
1136 | .as_mut() |
1137 | .unwrap() |
1138 | .as_module_mut() |
1139 | .unwrap() |
1140 | .children_mut() |
1141 | .insert(replacement_id.into()); |
1142 | } |
1143 | } |
1144 | |
1145 | /// Enter the code generation phase, invoke the given callback `cb`, and |
1146 | /// leave the code generation phase. |
1147 | pub(crate) fn gen<F, Out>( |
1148 | mut self, |
1149 | cb: F, |
1150 | ) -> Result<(Out, BindgenOptions, Vec<String>), CodegenError> |
1151 | where |
1152 | F: FnOnce(&Self) -> Result<Out, CodegenError>, |
1153 | { |
1154 | self.in_codegen = true; |
1155 | |
1156 | self.resolve_typerefs(); |
1157 | self.compute_bitfield_units(); |
1158 | self.process_replacements(); |
1159 | |
1160 | self.deanonymize_fields(); |
1161 | |
1162 | self.assert_no_dangling_references(); |
1163 | |
1164 | // Compute the allowlisted set after processing replacements and |
1165 | // resolving type refs, as those are the final mutations of the IR |
1166 | // graph, and their completion means that the IR graph is now frozen. |
1167 | self.compute_allowlisted_and_codegen_items(); |
1168 | |
1169 | // Make sure to do this after processing replacements, since that messes |
1170 | // with the parentage and module children, and we want to assert that it |
1171 | // messes with them correctly. |
1172 | self.assert_every_item_in_a_module(); |
1173 | |
1174 | self.compute_has_vtable(); |
1175 | self.compute_sizedness(); |
1176 | self.compute_has_destructor(); |
1177 | self.find_used_template_parameters(); |
1178 | self.compute_enum_typedef_combos(); |
1179 | self.compute_cannot_derive_debug(); |
1180 | self.compute_cannot_derive_default(); |
1181 | self.compute_cannot_derive_copy(); |
1182 | self.compute_has_type_param_in_array(); |
1183 | self.compute_has_float(); |
1184 | self.compute_cannot_derive_hash(); |
1185 | self.compute_cannot_derive_partialord_partialeq_or_eq(); |
1186 | |
1187 | let ret = cb(&self)?; |
1188 | Ok((ret, self.options, self.warnings)) |
1189 | } |
1190 | |
1191 | /// When the `testing_only_extra_assertions` feature is enabled, this |
1192 | /// function walks the IR graph and asserts that we do not have any edges |
1193 | /// referencing an ItemId for which we do not have an associated IR item. |
1194 | fn assert_no_dangling_references(&self) { |
1195 | if cfg!(feature = "testing_only_extra_assertions" ) { |
1196 | for _ in self.assert_no_dangling_item_traversal() { |
1197 | // The iterator's next method does the asserting for us. |
1198 | } |
1199 | } |
1200 | } |
1201 | |
1202 | fn assert_no_dangling_item_traversal( |
1203 | &self, |
1204 | ) -> traversal::AssertNoDanglingItemsTraversal { |
1205 | assert!(self.in_codegen_phase()); |
1206 | assert!(self.current_module == self.root_module); |
1207 | |
1208 | let roots = self.items().map(|(id, _)| id); |
1209 | traversal::AssertNoDanglingItemsTraversal::new( |
1210 | self, |
1211 | roots, |
1212 | traversal::all_edges, |
1213 | ) |
1214 | } |
1215 | |
1216 | /// When the `testing_only_extra_assertions` feature is enabled, walk over |
1217 | /// every item and ensure that it is in the children set of one of its |
1218 | /// module ancestors. |
1219 | fn assert_every_item_in_a_module(&self) { |
1220 | if cfg!(feature = "testing_only_extra_assertions" ) { |
1221 | assert!(self.in_codegen_phase()); |
1222 | assert!(self.current_module == self.root_module); |
1223 | |
1224 | for (id, _item) in self.items() { |
1225 | if id == self.root_module { |
1226 | continue; |
1227 | } |
1228 | |
1229 | assert!( |
1230 | { |
1231 | let id = id |
1232 | .into_resolver() |
1233 | .through_type_refs() |
1234 | .through_type_aliases() |
1235 | .resolve(self) |
1236 | .id(); |
1237 | id.ancestors(self) |
1238 | .chain(Some(self.root_module.into())) |
1239 | .any(|ancestor| { |
1240 | debug!( |
1241 | "Checking if {:?} is a child of {:?}" , |
1242 | id, ancestor |
1243 | ); |
1244 | self.resolve_item(ancestor) |
1245 | .as_module() |
1246 | .map_or(false, |m| { |
1247 | m.children().contains(&id) |
1248 | }) |
1249 | }) |
1250 | }, |
1251 | " {:?} should be in some ancestor module's children set" , |
1252 | id |
1253 | ); |
1254 | } |
1255 | } |
1256 | } |
1257 | |
1258 | /// Compute for every type whether it is sized or not, and whether it is |
1259 | /// sized or not as a base class. |
1260 | fn compute_sizedness(&mut self) { |
1261 | let _t = self.timer("compute_sizedness" ); |
1262 | assert!(self.sizedness.is_none()); |
1263 | self.sizedness = Some(analyze::<SizednessAnalysis>(self)); |
1264 | } |
1265 | |
1266 | /// Look up whether the type with the given id is sized or not. |
1267 | pub fn lookup_sizedness(&self, id: TypeId) -> SizednessResult { |
1268 | assert!( |
1269 | self.in_codegen_phase(), |
1270 | "We only compute sizedness after we've entered codegen" |
1271 | ); |
1272 | |
1273 | self.sizedness |
1274 | .as_ref() |
1275 | .unwrap() |
1276 | .get(&id) |
1277 | .cloned() |
1278 | .unwrap_or(SizednessResult::ZeroSized) |
1279 | } |
1280 | |
1281 | /// Compute whether the type has vtable. |
1282 | fn compute_has_vtable(&mut self) { |
1283 | let _t = self.timer("compute_has_vtable" ); |
1284 | assert!(self.have_vtable.is_none()); |
1285 | self.have_vtable = Some(analyze::<HasVtableAnalysis>(self)); |
1286 | } |
1287 | |
1288 | /// Look up whether the item with `id` has vtable or not. |
1289 | pub fn lookup_has_vtable(&self, id: TypeId) -> HasVtableResult { |
1290 | assert!( |
1291 | self.in_codegen_phase(), |
1292 | "We only compute vtables when we enter codegen" |
1293 | ); |
1294 | |
1295 | // Look up the computed value for whether the item with `id` has a |
1296 | // vtable or not. |
1297 | self.have_vtable |
1298 | .as_ref() |
1299 | .unwrap() |
1300 | .get(&id.into()) |
1301 | .cloned() |
1302 | .unwrap_or(HasVtableResult::No) |
1303 | } |
1304 | |
1305 | /// Compute whether the type has a destructor. |
1306 | fn compute_has_destructor(&mut self) { |
1307 | let _t = self.timer("compute_has_destructor" ); |
1308 | assert!(self.have_destructor.is_none()); |
1309 | self.have_destructor = Some(analyze::<HasDestructorAnalysis>(self)); |
1310 | } |
1311 | |
1312 | /// Look up whether the item with `id` has a destructor. |
1313 | pub fn lookup_has_destructor(&self, id: TypeId) -> bool { |
1314 | assert!( |
1315 | self.in_codegen_phase(), |
1316 | "We only compute destructors when we enter codegen" |
1317 | ); |
1318 | |
1319 | self.have_destructor.as_ref().unwrap().contains(&id.into()) |
1320 | } |
1321 | |
1322 | fn find_used_template_parameters(&mut self) { |
1323 | let _t = self.timer("find_used_template_parameters" ); |
1324 | if self.options.allowlist_recursively { |
1325 | let used_params = analyze::<UsedTemplateParameters>(self); |
1326 | self.used_template_parameters = Some(used_params); |
1327 | } else { |
1328 | // If you aren't recursively allowlisting, then we can't really make |
1329 | // any sense of template parameter usage, and you're on your own. |
1330 | let mut used_params = HashMap::default(); |
1331 | for &id in self.allowlisted_items() { |
1332 | used_params.entry(id).or_insert_with(|| { |
1333 | id.self_template_params(self) |
1334 | .into_iter() |
1335 | .map(|p| p.into()) |
1336 | .collect() |
1337 | }); |
1338 | } |
1339 | self.used_template_parameters = Some(used_params); |
1340 | } |
1341 | } |
1342 | |
1343 | /// Return `true` if `item` uses the given `template_param`, `false` |
1344 | /// otherwise. |
1345 | /// |
1346 | /// This method may only be called during the codegen phase, because the |
1347 | /// template usage information is only computed as we enter the codegen |
1348 | /// phase. |
1349 | /// |
1350 | /// If the item is blocklisted, then we say that it always uses the template |
1351 | /// parameter. This is a little subtle. The template parameter usage |
1352 | /// analysis only considers allowlisted items, and if any blocklisted item |
1353 | /// shows up in the generated bindings, it is the user's responsibility to |
1354 | /// manually provide a definition for them. To give them the most |
1355 | /// flexibility when doing that, we assume that they use every template |
1356 | /// parameter and always pass template arguments through in instantiations. |
1357 | pub fn uses_template_parameter( |
1358 | &self, |
1359 | item: ItemId, |
1360 | template_param: TypeId, |
1361 | ) -> bool { |
1362 | assert!( |
1363 | self.in_codegen_phase(), |
1364 | "We only compute template parameter usage as we enter codegen" |
1365 | ); |
1366 | |
1367 | if self.resolve_item(item).is_blocklisted(self) { |
1368 | return true; |
1369 | } |
1370 | |
1371 | let template_param = template_param |
1372 | .into_resolver() |
1373 | .through_type_refs() |
1374 | .through_type_aliases() |
1375 | .resolve(self) |
1376 | .id(); |
1377 | |
1378 | self.used_template_parameters |
1379 | .as_ref() |
1380 | .expect("should have found template parameter usage if we're in codegen" ) |
1381 | .get(&item) |
1382 | .map_or(false, |items_used_params| items_used_params.contains(&template_param)) |
1383 | } |
1384 | |
1385 | /// Return `true` if `item` uses any unbound, generic template parameters, |
1386 | /// `false` otherwise. |
1387 | /// |
1388 | /// Has the same restrictions that `uses_template_parameter` has. |
1389 | pub fn uses_any_template_parameters(&self, item: ItemId) -> bool { |
1390 | assert!( |
1391 | self.in_codegen_phase(), |
1392 | "We only compute template parameter usage as we enter codegen" |
1393 | ); |
1394 | |
1395 | self.used_template_parameters |
1396 | .as_ref() |
1397 | .expect( |
1398 | "should have template parameter usage info in codegen phase" , |
1399 | ) |
1400 | .get(&item) |
1401 | .map_or(false, |used| !used.is_empty()) |
1402 | } |
1403 | |
1404 | // This deserves a comment. Builtin types don't get a valid declaration, so |
1405 | // we can't add it to the cursor->type map. |
1406 | // |
1407 | // That being said, they're not generated anyway, and are few, so the |
1408 | // duplication and special-casing is fine. |
1409 | // |
1410 | // If at some point we care about the memory here, probably a map TypeKind |
1411 | // -> builtin type ItemId would be the best to improve that. |
1412 | fn add_builtin_item(&mut self, item: Item) { |
1413 | debug!("add_builtin_item: item = {:?}" , item); |
1414 | debug_assert!(item.kind().is_type()); |
1415 | self.add_item_to_module(&item); |
1416 | let id = item.id(); |
1417 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
1418 | assert!(old_item.is_none(), "Inserted type twice?" ); |
1419 | } |
1420 | |
1421 | fn build_root_module(id: ItemId) -> Item { |
1422 | let module = Module::new(Some("root" .into()), ModuleKind::Normal); |
1423 | Item::new(id, None, None, id, ItemKind::Module(module), None) |
1424 | } |
1425 | |
1426 | /// Get the root module. |
1427 | pub fn root_module(&self) -> ModuleId { |
1428 | self.root_module |
1429 | } |
1430 | |
1431 | /// Resolve a type with the given id. |
1432 | /// |
1433 | /// Panics if there is no item for the given `TypeId` or if the resolved |
1434 | /// item is not a `Type`. |
1435 | pub fn resolve_type(&self, type_id: TypeId) -> &Type { |
1436 | self.resolve_item(type_id).kind().expect_type() |
1437 | } |
1438 | |
1439 | /// Resolve a function with the given id. |
1440 | /// |
1441 | /// Panics if there is no item for the given `FunctionId` or if the resolved |
1442 | /// item is not a `Function`. |
1443 | pub fn resolve_func(&self, func_id: FunctionId) -> &Function { |
1444 | self.resolve_item(func_id).kind().expect_function() |
1445 | } |
1446 | |
1447 | /// Resolve the given `ItemId` as a type, or `None` if there is no item with |
1448 | /// the given id. |
1449 | /// |
1450 | /// Panics if the id resolves to an item that is not a type. |
1451 | pub fn safe_resolve_type(&self, type_id: TypeId) -> Option<&Type> { |
1452 | self.resolve_item_fallible(type_id) |
1453 | .map(|t| t.kind().expect_type()) |
1454 | } |
1455 | |
1456 | /// Resolve the given `ItemId` into an `Item`, or `None` if no such item |
1457 | /// exists. |
1458 | pub fn resolve_item_fallible<Id: Into<ItemId>>( |
1459 | &self, |
1460 | id: Id, |
1461 | ) -> Option<&Item> { |
1462 | self.items.get(id.into().0)?.as_ref() |
1463 | } |
1464 | |
1465 | /// Resolve the given `ItemId` into an `Item`. |
1466 | /// |
1467 | /// Panics if the given id does not resolve to any item. |
1468 | pub fn resolve_item<Id: Into<ItemId>>(&self, item_id: Id) -> &Item { |
1469 | let item_id = item_id.into(); |
1470 | match self.resolve_item_fallible(item_id) { |
1471 | Some(item) => item, |
1472 | None => panic!("Not an item: {:?}" , item_id), |
1473 | } |
1474 | } |
1475 | |
1476 | /// Get the current module. |
1477 | pub fn current_module(&self) -> ModuleId { |
1478 | self.current_module |
1479 | } |
1480 | |
1481 | /// Add a semantic parent for a given type definition. |
1482 | /// |
1483 | /// We do this from the type declaration, in order to be able to find the |
1484 | /// correct type definition afterwards. |
1485 | /// |
1486 | /// TODO(emilio): We could consider doing this only when |
1487 | /// declaration.lexical_parent() != definition.lexical_parent(), but it's |
1488 | /// not sure it's worth it. |
1489 | pub fn add_semantic_parent( |
1490 | &mut self, |
1491 | definition: clang::Cursor, |
1492 | parent_id: ItemId, |
1493 | ) { |
1494 | self.semantic_parents.insert(definition, parent_id); |
1495 | } |
1496 | |
1497 | /// Returns a known semantic parent for a given definition. |
1498 | pub fn known_semantic_parent( |
1499 | &self, |
1500 | definition: clang::Cursor, |
1501 | ) -> Option<ItemId> { |
1502 | self.semantic_parents.get(&definition).cloned() |
1503 | } |
1504 | |
1505 | /// Given a cursor pointing to the location of a template instantiation, |
1506 | /// return a tuple of the form `(declaration_cursor, declaration_id, |
1507 | /// num_expected_template_args)`. |
1508 | /// |
1509 | /// Note that `declaration_id` is not guaranteed to be in the context's item |
1510 | /// set! It is possible that it is a partial type that we are still in the |
1511 | /// middle of parsing. |
1512 | fn get_declaration_info_for_template_instantiation( |
1513 | &self, |
1514 | instantiation: &Cursor, |
1515 | ) -> Option<(Cursor, ItemId, usize)> { |
1516 | instantiation |
1517 | .cur_type() |
1518 | .canonical_declaration(Some(instantiation)) |
1519 | .and_then(|canon_decl| { |
1520 | self.get_resolved_type(&canon_decl).and_then( |
1521 | |template_decl_id| { |
1522 | let num_params = |
1523 | template_decl_id.num_self_template_params(self); |
1524 | if num_params == 0 { |
1525 | None |
1526 | } else { |
1527 | Some(( |
1528 | *canon_decl.cursor(), |
1529 | template_decl_id.into(), |
1530 | num_params, |
1531 | )) |
1532 | } |
1533 | }, |
1534 | ) |
1535 | }) |
1536 | .or_else(|| { |
1537 | // If we haven't already parsed the declaration of |
1538 | // the template being instantiated, then it *must* |
1539 | // be on the stack of types we are currently |
1540 | // parsing. If it wasn't then clang would have |
1541 | // already errored out before we started |
1542 | // constructing our IR because you can't instantiate |
1543 | // a template until it is fully defined. |
1544 | instantiation |
1545 | .referenced() |
1546 | .and_then(|referenced| { |
1547 | self.currently_parsed_types() |
1548 | .iter() |
1549 | .find(|partial_ty| *partial_ty.decl() == referenced) |
1550 | .cloned() |
1551 | }) |
1552 | .and_then(|template_decl| { |
1553 | let num_template_params = |
1554 | template_decl.num_self_template_params(self); |
1555 | if num_template_params == 0 { |
1556 | None |
1557 | } else { |
1558 | Some(( |
1559 | *template_decl.decl(), |
1560 | template_decl.id(), |
1561 | num_template_params, |
1562 | )) |
1563 | } |
1564 | }) |
1565 | }) |
1566 | } |
1567 | |
1568 | /// Parse a template instantiation, eg `Foo<int>`. |
1569 | /// |
1570 | /// This is surprisingly difficult to do with libclang, due to the fact that |
1571 | /// it doesn't provide explicit template argument information, except for |
1572 | /// function template declarations(!?!??!). |
1573 | /// |
1574 | /// The only way to do this is manually inspecting the AST and looking for |
1575 | /// TypeRefs and TemplateRefs inside. This, unfortunately, doesn't work for |
1576 | /// more complex cases, see the comment on the assertion below. |
1577 | /// |
1578 | /// To add insult to injury, the AST itself has structure that doesn't make |
1579 | /// sense. Sometimes `Foo<Bar<int>>` has an AST with nesting like you might |
1580 | /// expect: `(Foo (Bar (int)))`. Other times, the AST we get is completely |
1581 | /// flat: `(Foo Bar int)`. |
1582 | /// |
1583 | /// To see an example of what this method handles: |
1584 | /// |
1585 | /// ```c++ |
1586 | /// template<typename T> |
1587 | /// class Incomplete { |
1588 | /// T p; |
1589 | /// }; |
1590 | /// |
1591 | /// template<typename U> |
1592 | /// class Foo { |
1593 | /// Incomplete<U> bar; |
1594 | /// }; |
1595 | /// ``` |
1596 | /// |
1597 | /// Finally, template instantiations are always children of the current |
1598 | /// module. They use their template's definition for their name, so the |
1599 | /// parent is only useful for ensuring that their layout tests get |
1600 | /// codegen'd. |
1601 | fn instantiate_template( |
1602 | &mut self, |
1603 | with_id: ItemId, |
1604 | template: TypeId, |
1605 | ty: &clang::Type, |
1606 | location: clang::Cursor, |
1607 | ) -> Option<TypeId> { |
1608 | let num_expected_args = |
1609 | self.resolve_type(template).num_self_template_params(self); |
1610 | if num_expected_args == 0 { |
1611 | warn!( |
1612 | "Tried to instantiate a template for which we could not \ |
1613 | determine any template parameters" |
1614 | ); |
1615 | return None; |
1616 | } |
1617 | |
1618 | let mut args = vec![]; |
1619 | let mut found_const_arg = false; |
1620 | let mut children = location.collect_children(); |
1621 | |
1622 | if children.iter().all(|c| !c.has_children()) { |
1623 | // This is insanity... If clang isn't giving us a properly nested |
1624 | // AST for which template arguments belong to which template we are |
1625 | // instantiating, we'll need to construct it ourselves. However, |
1626 | // there is an extra `NamespaceRef, NamespaceRef, ..., TemplateRef` |
1627 | // representing a reference to the outermost template declaration |
1628 | // that we need to filter out of the children. We need to do this |
1629 | // filtering because we already know which template declaration is |
1630 | // being specialized via the `location`'s type, and if we do not |
1631 | // filter it out, we'll add an extra layer of template instantiation |
1632 | // on accident. |
1633 | let idx = children |
1634 | .iter() |
1635 | .position(|c| c.kind() == clang_sys::CXCursor_TemplateRef); |
1636 | if let Some(idx) = idx { |
1637 | if children |
1638 | .iter() |
1639 | .take(idx) |
1640 | .all(|c| c.kind() == clang_sys::CXCursor_NamespaceRef) |
1641 | { |
1642 | children = children.into_iter().skip(idx + 1).collect(); |
1643 | } |
1644 | } |
1645 | } |
1646 | |
1647 | for child in children.iter().rev() { |
1648 | match child.kind() { |
1649 | clang_sys::CXCursor_TypeRef | |
1650 | clang_sys::CXCursor_TypedefDecl | |
1651 | clang_sys::CXCursor_TypeAliasDecl => { |
1652 | // The `with_id` id will potentially end up unused if we give up |
1653 | // on this type (for example, because it has const value |
1654 | // template args), so if we pass `with_id` as the parent, it is |
1655 | // potentially a dangling reference. Instead, use the canonical |
1656 | // template declaration as the parent. It is already parsed and |
1657 | // has a known-resolvable `ItemId`. |
1658 | let ty = Item::from_ty_or_ref( |
1659 | child.cur_type(), |
1660 | *child, |
1661 | Some(template.into()), |
1662 | self, |
1663 | ); |
1664 | args.push(ty); |
1665 | } |
1666 | clang_sys::CXCursor_TemplateRef => { |
1667 | let ( |
1668 | template_decl_cursor, |
1669 | template_decl_id, |
1670 | num_expected_template_args, |
1671 | ) = self.get_declaration_info_for_template_instantiation( |
1672 | child, |
1673 | )?; |
1674 | |
1675 | if num_expected_template_args == 0 || |
1676 | child.has_at_least_num_children( |
1677 | num_expected_template_args, |
1678 | ) |
1679 | { |
1680 | // Do a happy little parse. See comment in the TypeRef |
1681 | // match arm about parent IDs. |
1682 | let ty = Item::from_ty_or_ref( |
1683 | child.cur_type(), |
1684 | *child, |
1685 | Some(template.into()), |
1686 | self, |
1687 | ); |
1688 | args.push(ty); |
1689 | } else { |
1690 | // This is the case mentioned in the doc comment where |
1691 | // clang gives us a flattened AST and we have to |
1692 | // reconstruct which template arguments go to which |
1693 | // instantiation :( |
1694 | let args_len = args.len(); |
1695 | if args_len < num_expected_template_args { |
1696 | warn!( |
1697 | "Found a template instantiation without \ |
1698 | enough template arguments" |
1699 | ); |
1700 | return None; |
1701 | } |
1702 | |
1703 | let mut sub_args: Vec<_> = args |
1704 | .drain(args_len - num_expected_template_args..) |
1705 | .collect(); |
1706 | sub_args.reverse(); |
1707 | |
1708 | let sub_name = Some(template_decl_cursor.spelling()); |
1709 | let sub_inst = TemplateInstantiation::new( |
1710 | // This isn't guaranteed to be a type that we've |
1711 | // already finished parsing yet. |
1712 | template_decl_id.as_type_id_unchecked(), |
1713 | sub_args, |
1714 | ); |
1715 | let sub_kind = |
1716 | TypeKind::TemplateInstantiation(sub_inst); |
1717 | let sub_ty = Type::new( |
1718 | sub_name, |
1719 | template_decl_cursor |
1720 | .cur_type() |
1721 | .fallible_layout(self) |
1722 | .ok(), |
1723 | sub_kind, |
1724 | false, |
1725 | ); |
1726 | let sub_id = self.next_item_id(); |
1727 | let sub_item = Item::new( |
1728 | sub_id, |
1729 | None, |
1730 | None, |
1731 | self.current_module.into(), |
1732 | ItemKind::Type(sub_ty), |
1733 | Some(child.location()), |
1734 | ); |
1735 | |
1736 | // Bypass all the validations in add_item explicitly. |
1737 | debug!( |
1738 | "instantiate_template: inserting nested \ |
1739 | instantiation item: {:?}" , |
1740 | sub_item |
1741 | ); |
1742 | self.add_item_to_module(&sub_item); |
1743 | debug_assert_eq!(sub_id, sub_item.id()); |
1744 | self.items[sub_id.0] = Some(sub_item); |
1745 | args.push(sub_id.as_type_id_unchecked()); |
1746 | } |
1747 | } |
1748 | _ => { |
1749 | warn!( |
1750 | "Found template arg cursor we can't handle: {:?}" , |
1751 | child |
1752 | ); |
1753 | found_const_arg = true; |
1754 | } |
1755 | } |
1756 | } |
1757 | |
1758 | if found_const_arg { |
1759 | // This is a dependently typed template instantiation. That is, an |
1760 | // instantiation of a template with one or more const values as |
1761 | // template arguments, rather than only types as template |
1762 | // arguments. For example, `Foo<true, 5>` versus `Bar<bool, int>`. |
1763 | // We can't handle these instantiations, so just punt in this |
1764 | // situation... |
1765 | warn!( |
1766 | "Found template instantiated with a const value; \ |
1767 | bindgen can't handle this kind of template instantiation!" |
1768 | ); |
1769 | return None; |
1770 | } |
1771 | |
1772 | if args.len() != num_expected_args { |
1773 | warn!( |
1774 | "Found a template with an unexpected number of template \ |
1775 | arguments" |
1776 | ); |
1777 | return None; |
1778 | } |
1779 | |
1780 | args.reverse(); |
1781 | let type_kind = TypeKind::TemplateInstantiation( |
1782 | TemplateInstantiation::new(template, args), |
1783 | ); |
1784 | let name = ty.spelling(); |
1785 | let name = if name.is_empty() { None } else { Some(name) }; |
1786 | let ty = Type::new( |
1787 | name, |
1788 | ty.fallible_layout(self).ok(), |
1789 | type_kind, |
1790 | ty.is_const(), |
1791 | ); |
1792 | let item = Item::new( |
1793 | with_id, |
1794 | None, |
1795 | None, |
1796 | self.current_module.into(), |
1797 | ItemKind::Type(ty), |
1798 | Some(location.location()), |
1799 | ); |
1800 | |
1801 | // Bypass all the validations in add_item explicitly. |
1802 | debug!("instantiate_template: inserting item: {:?}" , item); |
1803 | self.add_item_to_module(&item); |
1804 | debug_assert_eq!(with_id, item.id()); |
1805 | self.items[with_id.0] = Some(item); |
1806 | Some(with_id.as_type_id_unchecked()) |
1807 | } |
1808 | |
1809 | /// If we have already resolved the type for the given type declaration, |
1810 | /// return its `ItemId`. Otherwise, return `None`. |
1811 | pub fn get_resolved_type( |
1812 | &self, |
1813 | decl: &clang::CanonicalTypeDeclaration, |
1814 | ) -> Option<TypeId> { |
1815 | self.types |
1816 | .get(&TypeKey::Declaration(*decl.cursor())) |
1817 | .or_else(|| { |
1818 | decl.cursor() |
1819 | .usr() |
1820 | .and_then(|usr| self.types.get(&TypeKey::Usr(usr))) |
1821 | }) |
1822 | .cloned() |
1823 | } |
1824 | |
1825 | /// Looks up for an already resolved type, either because it's builtin, or |
1826 | /// because we already have it in the map. |
1827 | pub fn builtin_or_resolved_ty( |
1828 | &mut self, |
1829 | with_id: ItemId, |
1830 | parent_id: Option<ItemId>, |
1831 | ty: &clang::Type, |
1832 | location: Option<clang::Cursor>, |
1833 | ) -> Option<TypeId> { |
1834 | use clang_sys::{CXCursor_TypeAliasTemplateDecl, CXCursor_TypeRef}; |
1835 | debug!( |
1836 | "builtin_or_resolved_ty: {:?}, {:?}, {:?}, {:?}" , |
1837 | ty, location, with_id, parent_id |
1838 | ); |
1839 | |
1840 | if let Some(decl) = ty.canonical_declaration(location.as_ref()) { |
1841 | if let Some(id) = self.get_resolved_type(&decl) { |
1842 | debug!( |
1843 | "Already resolved ty {:?}, {:?}, {:?} {:?}" , |
1844 | id, decl, ty, location |
1845 | ); |
1846 | // If the declaration already exists, then either: |
1847 | // |
1848 | // * the declaration is a template declaration of some sort, |
1849 | // and we are looking at an instantiation or specialization |
1850 | // of it, or |
1851 | // * we have already parsed and resolved this type, and |
1852 | // there's nothing left to do. |
1853 | if let Some(location) = location { |
1854 | if decl.cursor().is_template_like() && |
1855 | *ty != decl.cursor().cur_type() |
1856 | { |
1857 | // For specialized type aliases, there's no way to get the |
1858 | // template parameters as of this writing (for a struct |
1859 | // specialization we wouldn't be in this branch anyway). |
1860 | // |
1861 | // Explicitly return `None` if there aren't any |
1862 | // unspecialized parameters (contains any `TypeRef`) so we |
1863 | // resolve the canonical type if there is one and it's |
1864 | // exposed. |
1865 | // |
1866 | // This is _tricky_, I know :( |
1867 | if decl.cursor().kind() == |
1868 | CXCursor_TypeAliasTemplateDecl && |
1869 | !location.contains_cursor(CXCursor_TypeRef) && |
1870 | ty.canonical_type().is_valid_and_exposed() |
1871 | { |
1872 | return None; |
1873 | } |
1874 | |
1875 | return self |
1876 | .instantiate_template(with_id, id, ty, location) |
1877 | .or(Some(id)); |
1878 | } |
1879 | } |
1880 | |
1881 | return Some(self.build_ty_wrapper(with_id, id, parent_id, ty)); |
1882 | } |
1883 | } |
1884 | |
1885 | debug!("Not resolved, maybe builtin?" ); |
1886 | self.build_builtin_ty(ty) |
1887 | } |
1888 | |
1889 | /// Make a new item that is a resolved type reference to the `wrapped_id`. |
1890 | /// |
1891 | /// This is unfortunately a lot of bloat, but is needed to properly track |
1892 | /// constness et al. |
1893 | /// |
1894 | /// We should probably make the constness tracking separate, so it doesn't |
1895 | /// bloat that much, but hey, we already bloat the heck out of builtin |
1896 | /// types. |
1897 | pub fn build_ty_wrapper( |
1898 | &mut self, |
1899 | with_id: ItemId, |
1900 | wrapped_id: TypeId, |
1901 | parent_id: Option<ItemId>, |
1902 | ty: &clang::Type, |
1903 | ) -> TypeId { |
1904 | self.build_wrapper(with_id, wrapped_id, parent_id, ty, ty.is_const()) |
1905 | } |
1906 | |
1907 | /// A wrapper over a type that adds a const qualifier explicitly. |
1908 | /// |
1909 | /// Needed to handle const methods in C++, wrapping the type . |
1910 | pub fn build_const_wrapper( |
1911 | &mut self, |
1912 | with_id: ItemId, |
1913 | wrapped_id: TypeId, |
1914 | parent_id: Option<ItemId>, |
1915 | ty: &clang::Type, |
1916 | ) -> TypeId { |
1917 | self.build_wrapper( |
1918 | with_id, wrapped_id, parent_id, ty, /* is_const = */ true, |
1919 | ) |
1920 | } |
1921 | |
1922 | fn build_wrapper( |
1923 | &mut self, |
1924 | with_id: ItemId, |
1925 | wrapped_id: TypeId, |
1926 | parent_id: Option<ItemId>, |
1927 | ty: &clang::Type, |
1928 | is_const: bool, |
1929 | ) -> TypeId { |
1930 | let spelling = ty.spelling(); |
1931 | let layout = ty.fallible_layout(self).ok(); |
1932 | let location = ty.declaration().location(); |
1933 | let type_kind = TypeKind::ResolvedTypeRef(wrapped_id); |
1934 | let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
1935 | let item = Item::new( |
1936 | with_id, |
1937 | None, |
1938 | None, |
1939 | parent_id.unwrap_or_else(|| self.current_module.into()), |
1940 | ItemKind::Type(ty), |
1941 | Some(location), |
1942 | ); |
1943 | self.add_builtin_item(item); |
1944 | with_id.as_type_id_unchecked() |
1945 | } |
1946 | |
1947 | /// Returns the next item id to be used for an item. |
1948 | pub fn next_item_id(&mut self) -> ItemId { |
1949 | let ret = ItemId(self.items.len()); |
1950 | self.items.push(None); |
1951 | ret |
1952 | } |
1953 | |
1954 | fn build_builtin_ty(&mut self, ty: &clang::Type) -> Option<TypeId> { |
1955 | use clang_sys::*; |
1956 | let type_kind = match ty.kind() { |
1957 | CXType_NullPtr => TypeKind::NullPtr, |
1958 | CXType_Void => TypeKind::Void, |
1959 | CXType_Bool => TypeKind::Int(IntKind::Bool), |
1960 | CXType_Int => TypeKind::Int(IntKind::Int), |
1961 | CXType_UInt => TypeKind::Int(IntKind::UInt), |
1962 | CXType_Char_S => TypeKind::Int(IntKind::Char { is_signed: true }), |
1963 | CXType_Char_U => TypeKind::Int(IntKind::Char { is_signed: false }), |
1964 | CXType_SChar => TypeKind::Int(IntKind::SChar), |
1965 | CXType_UChar => TypeKind::Int(IntKind::UChar), |
1966 | CXType_Short => TypeKind::Int(IntKind::Short), |
1967 | CXType_UShort => TypeKind::Int(IntKind::UShort), |
1968 | CXType_WChar => TypeKind::Int(IntKind::WChar), |
1969 | CXType_Char16 => TypeKind::Int(IntKind::U16), |
1970 | CXType_Char32 => TypeKind::Int(IntKind::U32), |
1971 | CXType_Long => TypeKind::Int(IntKind::Long), |
1972 | CXType_ULong => TypeKind::Int(IntKind::ULong), |
1973 | CXType_LongLong => TypeKind::Int(IntKind::LongLong), |
1974 | CXType_ULongLong => TypeKind::Int(IntKind::ULongLong), |
1975 | CXType_Int128 => TypeKind::Int(IntKind::I128), |
1976 | CXType_UInt128 => TypeKind::Int(IntKind::U128), |
1977 | CXType_Float => TypeKind::Float(FloatKind::Float), |
1978 | CXType_Double => TypeKind::Float(FloatKind::Double), |
1979 | CXType_LongDouble => TypeKind::Float(FloatKind::LongDouble), |
1980 | CXType_Float128 => TypeKind::Float(FloatKind::Float128), |
1981 | CXType_Complex => { |
1982 | let float_type = |
1983 | ty.elem_type().expect("Not able to resolve complex type?" ); |
1984 | let float_kind = match float_type.kind() { |
1985 | CXType_Float => FloatKind::Float, |
1986 | CXType_Double => FloatKind::Double, |
1987 | CXType_LongDouble => FloatKind::LongDouble, |
1988 | CXType_Float128 => FloatKind::Float128, |
1989 | _ => panic!( |
1990 | "Non floating-type complex? {:?}, {:?}" , |
1991 | ty, float_type, |
1992 | ), |
1993 | }; |
1994 | TypeKind::Complex(float_kind) |
1995 | } |
1996 | _ => return None, |
1997 | }; |
1998 | |
1999 | let spelling = ty.spelling(); |
2000 | let is_const = ty.is_const(); |
2001 | let layout = ty.fallible_layout(self).ok(); |
2002 | let location = ty.declaration().location(); |
2003 | let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
2004 | let id = self.next_item_id(); |
2005 | let item = Item::new( |
2006 | id, |
2007 | None, |
2008 | None, |
2009 | self.root_module.into(), |
2010 | ItemKind::Type(ty), |
2011 | Some(location), |
2012 | ); |
2013 | self.add_builtin_item(item); |
2014 | Some(id.as_type_id_unchecked()) |
2015 | } |
2016 | |
2017 | /// Get the current Clang translation unit that is being processed. |
2018 | pub fn translation_unit(&self) -> &clang::TranslationUnit { |
2019 | &self.translation_unit |
2020 | } |
2021 | |
2022 | /// Have we parsed the macro named `macro_name` already? |
2023 | pub fn parsed_macro(&self, macro_name: &[u8]) -> bool { |
2024 | self.parsed_macros.contains_key(macro_name) |
2025 | } |
2026 | |
2027 | /// Get the currently parsed macros. |
2028 | pub fn parsed_macros( |
2029 | &self, |
2030 | ) -> &StdHashMap<Vec<u8>, cexpr::expr::EvalResult> { |
2031 | debug_assert!(!self.in_codegen_phase()); |
2032 | &self.parsed_macros |
2033 | } |
2034 | |
2035 | /// Mark the macro named `macro_name` as parsed. |
2036 | pub fn note_parsed_macro( |
2037 | &mut self, |
2038 | id: Vec<u8>, |
2039 | value: cexpr::expr::EvalResult, |
2040 | ) { |
2041 | self.parsed_macros.insert(id, value); |
2042 | } |
2043 | |
2044 | /// Are we in the codegen phase? |
2045 | pub fn in_codegen_phase(&self) -> bool { |
2046 | self.in_codegen |
2047 | } |
2048 | |
2049 | /// Mark the type with the given `name` as replaced by the type with id |
2050 | /// `potential_ty`. |
2051 | /// |
2052 | /// Replacement types are declared using the `replaces="xxx"` annotation, |
2053 | /// and implies that the original type is hidden. |
2054 | pub fn replace(&mut self, name: &[String], potential_ty: ItemId) { |
2055 | match self.replacements.entry(name.into()) { |
2056 | Entry::Vacant(entry) => { |
2057 | debug!( |
2058 | "Defining replacement for {:?} as {:?}" , |
2059 | name, potential_ty |
2060 | ); |
2061 | entry.insert(potential_ty); |
2062 | } |
2063 | Entry::Occupied(occupied) => { |
2064 | warn!( |
2065 | "Replacement for {:?} already defined as {:?}; \ |
2066 | ignoring duplicate replacement definition as {:?}" , |
2067 | name, |
2068 | occupied.get(), |
2069 | potential_ty |
2070 | ); |
2071 | } |
2072 | } |
2073 | } |
2074 | |
2075 | /// Has the item with the given `name` and `id` been replaced by another |
2076 | /// type? |
2077 | pub fn is_replaced_type<Id: Into<ItemId>>( |
2078 | &self, |
2079 | path: &[String], |
2080 | id: Id, |
2081 | ) -> bool { |
2082 | let id = id.into(); |
2083 | matches!(self.replacements.get(path), Some(replaced_by) if *replaced_by != id) |
2084 | } |
2085 | |
2086 | /// Is the type with the given `name` marked as opaque? |
2087 | pub fn opaque_by_name(&self, path: &[String]) -> bool { |
2088 | debug_assert!( |
2089 | self.in_codegen_phase(), |
2090 | "You're not supposed to call this yet" |
2091 | ); |
2092 | self.options.opaque_types.matches(path[1..].join("::" )) |
2093 | } |
2094 | |
2095 | /// Get the options used to configure this bindgen context. |
2096 | pub(crate) fn options(&self) -> &BindgenOptions { |
2097 | &self.options |
2098 | } |
2099 | |
2100 | /// Tokenizes a namespace cursor in order to get the name and kind of the |
2101 | /// namespace. |
2102 | fn tokenize_namespace( |
2103 | &self, |
2104 | cursor: &clang::Cursor, |
2105 | ) -> (Option<String>, ModuleKind) { |
2106 | assert_eq!( |
2107 | cursor.kind(), |
2108 | ::clang_sys::CXCursor_Namespace, |
2109 | "Be a nice person" |
2110 | ); |
2111 | |
2112 | let mut module_name = None; |
2113 | let spelling = cursor.spelling(); |
2114 | if !spelling.is_empty() { |
2115 | module_name = Some(spelling) |
2116 | } |
2117 | |
2118 | let mut kind = ModuleKind::Normal; |
2119 | let mut looking_for_name = false; |
2120 | for token in cursor.tokens().iter() { |
2121 | match token.spelling() { |
2122 | b"inline" => { |
2123 | debug_assert!( |
2124 | kind != ModuleKind::Inline, |
2125 | "Multiple inline keywords?" |
2126 | ); |
2127 | kind = ModuleKind::Inline; |
2128 | // When hitting a nested inline namespace we get a spelling |
2129 | // that looks like ["inline", "foo"]. Deal with it properly. |
2130 | looking_for_name = true; |
2131 | } |
2132 | // The double colon allows us to handle nested namespaces like |
2133 | // namespace foo::bar { } |
2134 | // |
2135 | // libclang still gives us two namespace cursors, which is cool, |
2136 | // but the tokenization of the second begins with the double |
2137 | // colon. That's ok, so we only need to handle the weird |
2138 | // tokenization here. |
2139 | b"namespace" | b"::" => { |
2140 | looking_for_name = true; |
2141 | } |
2142 | b"{" => { |
2143 | // This should be an anonymous namespace. |
2144 | assert!(looking_for_name); |
2145 | break; |
2146 | } |
2147 | name => { |
2148 | if looking_for_name { |
2149 | if module_name.is_none() { |
2150 | module_name = Some( |
2151 | String::from_utf8_lossy(name).into_owned(), |
2152 | ); |
2153 | } |
2154 | break; |
2155 | } else { |
2156 | // This is _likely_, but not certainly, a macro that's |
2157 | // been placed just before the namespace keyword. |
2158 | // Unfortunately, clang tokens don't let us easily see |
2159 | // through the ifdef tokens, so we don't know what this |
2160 | // token should really be. Instead of panicking though, |
2161 | // we warn the user that we assumed the token was blank, |
2162 | // and then move on. |
2163 | // |
2164 | // See also https://github.com/rust-lang/rust-bindgen/issues/1676. |
2165 | warn!( |
2166 | "Ignored unknown namespace prefix ' {}' at {:?} in {:?}" , |
2167 | String::from_utf8_lossy(name), |
2168 | token, |
2169 | cursor |
2170 | ); |
2171 | } |
2172 | } |
2173 | } |
2174 | } |
2175 | |
2176 | (module_name, kind) |
2177 | } |
2178 | |
2179 | /// Given a CXCursor_Namespace cursor, return the item id of the |
2180 | /// corresponding module, or create one on the fly. |
2181 | pub fn module(&mut self, cursor: clang::Cursor) -> ModuleId { |
2182 | use clang_sys::*; |
2183 | assert_eq!(cursor.kind(), CXCursor_Namespace, "Be a nice person" ); |
2184 | let cursor = cursor.canonical(); |
2185 | if let Some(id) = self.modules.get(&cursor) { |
2186 | return *id; |
2187 | } |
2188 | |
2189 | let (module_name, kind) = self.tokenize_namespace(&cursor); |
2190 | |
2191 | let module_id = self.next_item_id(); |
2192 | let module = Module::new(module_name, kind); |
2193 | let module = Item::new( |
2194 | module_id, |
2195 | None, |
2196 | None, |
2197 | self.current_module.into(), |
2198 | ItemKind::Module(module), |
2199 | Some(cursor.location()), |
2200 | ); |
2201 | |
2202 | let module_id = module.id().as_module_id_unchecked(); |
2203 | self.modules.insert(cursor, module_id); |
2204 | |
2205 | self.add_item(module, None, None); |
2206 | |
2207 | module_id |
2208 | } |
2209 | |
2210 | /// Start traversing the module with the given `module_id`, invoke the |
2211 | /// callback `cb`, and then return to traversing the original module. |
2212 | pub fn with_module<F>(&mut self, module_id: ModuleId, cb: F) |
2213 | where |
2214 | F: FnOnce(&mut Self), |
2215 | { |
2216 | debug_assert!(self.resolve_item(module_id).kind().is_module(), "Wat" ); |
2217 | |
2218 | let previous_id = self.current_module; |
2219 | self.current_module = module_id; |
2220 | |
2221 | cb(self); |
2222 | |
2223 | self.current_module = previous_id; |
2224 | } |
2225 | |
2226 | /// Iterate over all (explicitly or transitively) allowlisted items. |
2227 | /// |
2228 | /// If no items are explicitly allowlisted, then all items are considered |
2229 | /// allowlisted. |
2230 | pub fn allowlisted_items(&self) -> &ItemSet { |
2231 | assert!(self.in_codegen_phase()); |
2232 | assert!(self.current_module == self.root_module); |
2233 | |
2234 | self.allowlisted.as_ref().unwrap() |
2235 | } |
2236 | |
2237 | /// Check whether a particular blocklisted type implements a trait or not. |
2238 | /// Results may be cached. |
2239 | pub fn blocklisted_type_implements_trait( |
2240 | &self, |
2241 | item: &Item, |
2242 | derive_trait: DeriveTrait, |
2243 | ) -> CanDerive { |
2244 | assert!(self.in_codegen_phase()); |
2245 | assert!(self.current_module == self.root_module); |
2246 | |
2247 | *self |
2248 | .blocklisted_types_implement_traits |
2249 | .borrow_mut() |
2250 | .entry(derive_trait) |
2251 | .or_default() |
2252 | .entry(item.id()) |
2253 | .or_insert_with(|| { |
2254 | item.expect_type() |
2255 | .name() |
2256 | .and_then(|name| { |
2257 | if self.options.parse_callbacks.is_empty() { |
2258 | // Sized integer types from <stdint.h> get mapped to Rust primitive |
2259 | // types regardless of whether they are blocklisted, so ensure that |
2260 | // standard traits are considered derivable for them too. |
2261 | if self.is_stdint_type(name) { |
2262 | Some(CanDerive::Yes) |
2263 | } else { |
2264 | Some(CanDerive::No) |
2265 | } |
2266 | } else { |
2267 | self.options.last_callback(|cb| { |
2268 | cb.blocklisted_type_implements_trait( |
2269 | name, |
2270 | derive_trait, |
2271 | ) |
2272 | }) |
2273 | } |
2274 | }) |
2275 | .unwrap_or(CanDerive::No) |
2276 | }) |
2277 | } |
2278 | |
2279 | /// Is the given type a type from <stdint.h> that corresponds to a Rust primitive type? |
2280 | pub fn is_stdint_type(&self, name: &str) -> bool { |
2281 | match name { |
2282 | "int8_t" | "uint8_t" | "int16_t" | "uint16_t" | "int32_t" | |
2283 | "uint32_t" | "int64_t" | "uint64_t" | "uintptr_t" | |
2284 | "intptr_t" | "ptrdiff_t" => true, |
2285 | "size_t" | "ssize_t" => self.options.size_t_is_usize, |
2286 | _ => false, |
2287 | } |
2288 | } |
2289 | |
2290 | /// Get a reference to the set of items we should generate. |
2291 | pub fn codegen_items(&self) -> &ItemSet { |
2292 | assert!(self.in_codegen_phase()); |
2293 | assert!(self.current_module == self.root_module); |
2294 | self.codegen_items.as_ref().unwrap() |
2295 | } |
2296 | |
2297 | /// Compute the allowlisted items set and populate `self.allowlisted`. |
2298 | fn compute_allowlisted_and_codegen_items(&mut self) { |
2299 | assert!(self.in_codegen_phase()); |
2300 | assert!(self.current_module == self.root_module); |
2301 | assert!(self.allowlisted.is_none()); |
2302 | let _t = self.timer("compute_allowlisted_and_codegen_items" ); |
2303 | |
2304 | let roots = { |
2305 | let mut roots = self |
2306 | .items() |
2307 | // Only consider roots that are enabled for codegen. |
2308 | .filter(|&(_, item)| item.is_enabled_for_codegen(self)) |
2309 | .filter(|&(_, item)| { |
2310 | // If nothing is explicitly allowlisted, then everything is fair |
2311 | // game. |
2312 | if self.options().allowlisted_types.is_empty() && |
2313 | self.options().allowlisted_functions.is_empty() && |
2314 | self.options().allowlisted_vars.is_empty() && |
2315 | self.options().allowlisted_files.is_empty() |
2316 | { |
2317 | return true; |
2318 | } |
2319 | |
2320 | // If this is a type that explicitly replaces another, we assume |
2321 | // you know what you're doing. |
2322 | if item.annotations().use_instead_of().is_some() { |
2323 | return true; |
2324 | } |
2325 | |
2326 | // Items with a source location in an explicitly allowlisted file |
2327 | // are always included. |
2328 | if !self.options().allowlisted_files.is_empty() { |
2329 | if let Some(location) = item.location() { |
2330 | let (file, _, _, _) = location.location(); |
2331 | if let Some(filename) = file.name() { |
2332 | if self |
2333 | .options() |
2334 | .allowlisted_files |
2335 | .matches(filename) |
2336 | { |
2337 | return true; |
2338 | } |
2339 | } |
2340 | } |
2341 | } |
2342 | |
2343 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2344 | debug!("allowlisted_items: testing {:?}" , name); |
2345 | match *item.kind() { |
2346 | ItemKind::Module(..) => true, |
2347 | ItemKind::Function(_) => { |
2348 | self.options().allowlisted_functions.matches(&name) |
2349 | } |
2350 | ItemKind::Var(_) => { |
2351 | self.options().allowlisted_vars.matches(&name) |
2352 | } |
2353 | ItemKind::Type(ref ty) => { |
2354 | if self.options().allowlisted_types.matches(&name) { |
2355 | return true; |
2356 | } |
2357 | |
2358 | // Auto-allowlist types that don't need code |
2359 | // generation if not allowlisting recursively, to |
2360 | // make the #[derive] analysis not be lame. |
2361 | if !self.options().allowlist_recursively { |
2362 | match *ty.kind() { |
2363 | TypeKind::Void | |
2364 | TypeKind::NullPtr | |
2365 | TypeKind::Int(..) | |
2366 | TypeKind::Float(..) | |
2367 | TypeKind::Complex(..) | |
2368 | TypeKind::Array(..) | |
2369 | TypeKind::Vector(..) | |
2370 | TypeKind::Pointer(..) | |
2371 | TypeKind::Reference(..) | |
2372 | TypeKind::Function(..) | |
2373 | TypeKind::ResolvedTypeRef(..) | |
2374 | TypeKind::Opaque | |
2375 | TypeKind::TypeParam => return true, |
2376 | _ => {} |
2377 | } |
2378 | if self.is_stdint_type(&name) { |
2379 | return true; |
2380 | } |
2381 | } |
2382 | |
2383 | // Unnamed top-level enums are special and we |
2384 | // allowlist them via the `allowlisted_vars` filter, |
2385 | // since they're effectively top-level constants, |
2386 | // and there's no way for them to be referenced |
2387 | // consistently. |
2388 | let parent = self.resolve_item(item.parent_id()); |
2389 | if !parent.is_module() { |
2390 | return false; |
2391 | } |
2392 | |
2393 | let enum_ = match *ty.kind() { |
2394 | TypeKind::Enum(ref e) => e, |
2395 | _ => return false, |
2396 | }; |
2397 | |
2398 | if ty.name().is_some() { |
2399 | return false; |
2400 | } |
2401 | |
2402 | let mut prefix_path = |
2403 | parent.path_for_allowlisting(self).clone(); |
2404 | enum_.variants().iter().any(|variant| { |
2405 | prefix_path.push( |
2406 | variant.name_for_allowlisting().into(), |
2407 | ); |
2408 | let name = prefix_path[1..].join("::" ); |
2409 | prefix_path.pop().unwrap(); |
2410 | self.options().allowlisted_vars.matches(name) |
2411 | }) |
2412 | } |
2413 | } |
2414 | }) |
2415 | .map(|(id, _)| id) |
2416 | .collect::<Vec<_>>(); |
2417 | |
2418 | // The reversal preserves the expected ordering of traversal, |
2419 | // resulting in more stable-ish bindgen-generated names for |
2420 | // anonymous types (like unions). |
2421 | roots.reverse(); |
2422 | roots |
2423 | }; |
2424 | |
2425 | let allowlisted_items_predicate = |
2426 | if self.options().allowlist_recursively { |
2427 | traversal::all_edges |
2428 | } else { |
2429 | // Only follow InnerType edges from the allowlisted roots. |
2430 | // Such inner types (e.g. anonymous structs/unions) are |
2431 | // always emitted by codegen, and they need to be allowlisted |
2432 | // to make sure they are processed by e.g. the derive analysis. |
2433 | traversal::only_inner_type_edges |
2434 | }; |
2435 | |
2436 | let allowlisted = AllowlistedItemsTraversal::new( |
2437 | self, |
2438 | roots.clone(), |
2439 | allowlisted_items_predicate, |
2440 | ) |
2441 | .collect::<ItemSet>(); |
2442 | |
2443 | let codegen_items = if self.options().allowlist_recursively { |
2444 | AllowlistedItemsTraversal::new( |
2445 | self, |
2446 | roots, |
2447 | traversal::codegen_edges, |
2448 | ) |
2449 | .collect::<ItemSet>() |
2450 | } else { |
2451 | allowlisted.clone() |
2452 | }; |
2453 | |
2454 | self.allowlisted = Some(allowlisted); |
2455 | self.codegen_items = Some(codegen_items); |
2456 | |
2457 | let mut warnings = Vec::new(); |
2458 | |
2459 | for item in self.options().allowlisted_functions.unmatched_items() { |
2460 | warnings |
2461 | .push(format!("unused option: --allowlist-function {}" , item)); |
2462 | } |
2463 | |
2464 | for item in self.options().allowlisted_vars.unmatched_items() { |
2465 | warnings.push(format!("unused option: --allowlist-var {}" , item)); |
2466 | } |
2467 | |
2468 | for item in self.options().allowlisted_types.unmatched_items() { |
2469 | warnings.push(format!("unused option: --allowlist-type {}" , item)); |
2470 | } |
2471 | |
2472 | for msg in warnings { |
2473 | warn!(" {}" , msg); |
2474 | self.warnings.push(msg); |
2475 | } |
2476 | } |
2477 | |
2478 | /// Convenient method for getting the prefix to use for most traits in |
2479 | /// codegen depending on the `use_core` option. |
2480 | pub fn trait_prefix(&self) -> Ident { |
2481 | if self.options().use_core { |
2482 | self.rust_ident_raw("core" ) |
2483 | } else { |
2484 | self.rust_ident_raw("std" ) |
2485 | } |
2486 | } |
2487 | |
2488 | /// Call if a bindgen complex is generated |
2489 | pub fn generated_bindgen_complex(&self) { |
2490 | self.generated_bindgen_complex.set(true) |
2491 | } |
2492 | |
2493 | /// Whether we need to generate the bindgen complex type |
2494 | pub fn need_bindgen_complex_type(&self) -> bool { |
2495 | self.generated_bindgen_complex.get() |
2496 | } |
2497 | |
2498 | /// Compute which `enum`s have an associated `typedef` definition. |
2499 | fn compute_enum_typedef_combos(&mut self) { |
2500 | let _t = self.timer("compute_enum_typedef_combos" ); |
2501 | assert!(self.enum_typedef_combos.is_none()); |
2502 | |
2503 | let mut enum_typedef_combos = HashSet::default(); |
2504 | for item in &self.items { |
2505 | if let Some(ItemKind::Module(module)) = |
2506 | item.as_ref().map(Item::kind) |
2507 | { |
2508 | // Find typedefs in this module, and build set of their names. |
2509 | let mut names_of_typedefs = HashSet::default(); |
2510 | for child_id in module.children() { |
2511 | if let Some(ItemKind::Type(ty)) = |
2512 | self.items[child_id.0].as_ref().map(Item::kind) |
2513 | { |
2514 | if let (Some(name), TypeKind::Alias(type_id)) = |
2515 | (ty.name(), ty.kind()) |
2516 | { |
2517 | // We disregard aliases that refer to the enum |
2518 | // itself, such as in `typedef enum { ... } Enum;`. |
2519 | if type_id |
2520 | .into_resolver() |
2521 | .through_type_refs() |
2522 | .through_type_aliases() |
2523 | .resolve(self) |
2524 | .expect_type() |
2525 | .is_int() |
2526 | { |
2527 | names_of_typedefs.insert(name); |
2528 | } |
2529 | } |
2530 | } |
2531 | } |
2532 | |
2533 | // Find enums in this module, and record the id of each one that |
2534 | // has a typedef. |
2535 | for child_id in module.children() { |
2536 | if let Some(ItemKind::Type(ty)) = |
2537 | self.items[child_id.0].as_ref().map(Item::kind) |
2538 | { |
2539 | if let (Some(name), true) = (ty.name(), ty.is_enum()) { |
2540 | if names_of_typedefs.contains(name) { |
2541 | enum_typedef_combos.insert(*child_id); |
2542 | } |
2543 | } |
2544 | } |
2545 | } |
2546 | } |
2547 | } |
2548 | |
2549 | self.enum_typedef_combos = Some(enum_typedef_combos); |
2550 | } |
2551 | |
2552 | /// Look up whether `id` refers to an `enum` whose underlying type is |
2553 | /// defined by a `typedef`. |
2554 | pub fn is_enum_typedef_combo(&self, id: ItemId) -> bool { |
2555 | assert!( |
2556 | self.in_codegen_phase(), |
2557 | "We only compute enum_typedef_combos when we enter codegen" , |
2558 | ); |
2559 | self.enum_typedef_combos.as_ref().unwrap().contains(&id) |
2560 | } |
2561 | |
2562 | /// Compute whether we can derive debug. |
2563 | fn compute_cannot_derive_debug(&mut self) { |
2564 | let _t = self.timer("compute_cannot_derive_debug" ); |
2565 | assert!(self.cannot_derive_debug.is_none()); |
2566 | if self.options.derive_debug { |
2567 | self.cannot_derive_debug = |
2568 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2569 | self, |
2570 | DeriveTrait::Debug, |
2571 | )))); |
2572 | } |
2573 | } |
2574 | |
2575 | /// Look up whether the item with `id` can |
2576 | /// derive debug or not. |
2577 | pub fn lookup_can_derive_debug<Id: Into<ItemId>>(&self, id: Id) -> bool { |
2578 | let id = id.into(); |
2579 | assert!( |
2580 | self.in_codegen_phase(), |
2581 | "We only compute can_derive_debug when we enter codegen" |
2582 | ); |
2583 | |
2584 | // Look up the computed value for whether the item with `id` can |
2585 | // derive debug or not. |
2586 | !self.cannot_derive_debug.as_ref().unwrap().contains(&id) |
2587 | } |
2588 | |
2589 | /// Compute whether we can derive default. |
2590 | fn compute_cannot_derive_default(&mut self) { |
2591 | let _t = self.timer("compute_cannot_derive_default" ); |
2592 | assert!(self.cannot_derive_default.is_none()); |
2593 | if self.options.derive_default { |
2594 | self.cannot_derive_default = |
2595 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2596 | self, |
2597 | DeriveTrait::Default, |
2598 | )))); |
2599 | } |
2600 | } |
2601 | |
2602 | /// Look up whether the item with `id` can |
2603 | /// derive default or not. |
2604 | pub fn lookup_can_derive_default<Id: Into<ItemId>>(&self, id: Id) -> bool { |
2605 | let id = id.into(); |
2606 | assert!( |
2607 | self.in_codegen_phase(), |
2608 | "We only compute can_derive_default when we enter codegen" |
2609 | ); |
2610 | |
2611 | // Look up the computed value for whether the item with `id` can |
2612 | // derive default or not. |
2613 | !self.cannot_derive_default.as_ref().unwrap().contains(&id) |
2614 | } |
2615 | |
2616 | /// Compute whether we can derive copy. |
2617 | fn compute_cannot_derive_copy(&mut self) { |
2618 | let _t = self.timer("compute_cannot_derive_copy" ); |
2619 | assert!(self.cannot_derive_copy.is_none()); |
2620 | self.cannot_derive_copy = |
2621 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2622 | self, |
2623 | DeriveTrait::Copy, |
2624 | )))); |
2625 | } |
2626 | |
2627 | /// Compute whether we can derive hash. |
2628 | fn compute_cannot_derive_hash(&mut self) { |
2629 | let _t = self.timer("compute_cannot_derive_hash" ); |
2630 | assert!(self.cannot_derive_hash.is_none()); |
2631 | if self.options.derive_hash { |
2632 | self.cannot_derive_hash = |
2633 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2634 | self, |
2635 | DeriveTrait::Hash, |
2636 | )))); |
2637 | } |
2638 | } |
2639 | |
2640 | /// Look up whether the item with `id` can |
2641 | /// derive hash or not. |
2642 | pub fn lookup_can_derive_hash<Id: Into<ItemId>>(&self, id: Id) -> bool { |
2643 | let id = id.into(); |
2644 | assert!( |
2645 | self.in_codegen_phase(), |
2646 | "We only compute can_derive_debug when we enter codegen" |
2647 | ); |
2648 | |
2649 | // Look up the computed value for whether the item with `id` can |
2650 | // derive hash or not. |
2651 | !self.cannot_derive_hash.as_ref().unwrap().contains(&id) |
2652 | } |
2653 | |
2654 | /// Compute whether we can derive PartialOrd, PartialEq or Eq. |
2655 | fn compute_cannot_derive_partialord_partialeq_or_eq(&mut self) { |
2656 | let _t = self.timer("compute_cannot_derive_partialord_partialeq_or_eq" ); |
2657 | assert!(self.cannot_derive_partialeq_or_partialord.is_none()); |
2658 | if self.options.derive_partialord || |
2659 | self.options.derive_partialeq || |
2660 | self.options.derive_eq |
2661 | { |
2662 | self.cannot_derive_partialeq_or_partialord = |
2663 | Some(analyze::<CannotDerive>(( |
2664 | self, |
2665 | DeriveTrait::PartialEqOrPartialOrd, |
2666 | ))); |
2667 | } |
2668 | } |
2669 | |
2670 | /// Look up whether the item with `id` can derive `Partial{Eq,Ord}`. |
2671 | pub fn lookup_can_derive_partialeq_or_partialord<Id: Into<ItemId>>( |
2672 | &self, |
2673 | id: Id, |
2674 | ) -> CanDerive { |
2675 | let id = id.into(); |
2676 | assert!( |
2677 | self.in_codegen_phase(), |
2678 | "We only compute can_derive_partialeq_or_partialord when we enter codegen" |
2679 | ); |
2680 | |
2681 | // Look up the computed value for whether the item with `id` can |
2682 | // derive partialeq or not. |
2683 | self.cannot_derive_partialeq_or_partialord |
2684 | .as_ref() |
2685 | .unwrap() |
2686 | .get(&id) |
2687 | .cloned() |
2688 | .unwrap_or(CanDerive::Yes) |
2689 | } |
2690 | |
2691 | /// Look up whether the item with `id` can derive `Copy` or not. |
2692 | pub fn lookup_can_derive_copy<Id: Into<ItemId>>(&self, id: Id) -> bool { |
2693 | assert!( |
2694 | self.in_codegen_phase(), |
2695 | "We only compute can_derive_debug when we enter codegen" |
2696 | ); |
2697 | |
2698 | // Look up the computed value for whether the item with `id` can |
2699 | // derive `Copy` or not. |
2700 | let id = id.into(); |
2701 | |
2702 | !self.lookup_has_type_param_in_array(id) && |
2703 | !self.cannot_derive_copy.as_ref().unwrap().contains(&id) |
2704 | } |
2705 | |
2706 | /// Compute whether the type has type parameter in array. |
2707 | fn compute_has_type_param_in_array(&mut self) { |
2708 | let _t = self.timer("compute_has_type_param_in_array" ); |
2709 | assert!(self.has_type_param_in_array.is_none()); |
2710 | self.has_type_param_in_array = |
2711 | Some(analyze::<HasTypeParameterInArray>(self)); |
2712 | } |
2713 | |
2714 | /// Look up whether the item with `id` has type parameter in array or not. |
2715 | pub fn lookup_has_type_param_in_array<Id: Into<ItemId>>( |
2716 | &self, |
2717 | id: Id, |
2718 | ) -> bool { |
2719 | assert!( |
2720 | self.in_codegen_phase(), |
2721 | "We only compute has array when we enter codegen" |
2722 | ); |
2723 | |
2724 | // Look up the computed value for whether the item with `id` has |
2725 | // type parameter in array or not. |
2726 | self.has_type_param_in_array |
2727 | .as_ref() |
2728 | .unwrap() |
2729 | .contains(&id.into()) |
2730 | } |
2731 | |
2732 | /// Compute whether the type has float. |
2733 | fn compute_has_float(&mut self) { |
2734 | let _t = self.timer("compute_has_float" ); |
2735 | assert!(self.has_float.is_none()); |
2736 | if self.options.derive_eq || self.options.derive_ord { |
2737 | self.has_float = Some(analyze::<HasFloat>(self)); |
2738 | } |
2739 | } |
2740 | |
2741 | /// Look up whether the item with `id` has array or not. |
2742 | pub fn lookup_has_float<Id: Into<ItemId>>(&self, id: Id) -> bool { |
2743 | assert!( |
2744 | self.in_codegen_phase(), |
2745 | "We only compute has float when we enter codegen" |
2746 | ); |
2747 | |
2748 | // Look up the computed value for whether the item with `id` has |
2749 | // float or not. |
2750 | self.has_float.as_ref().unwrap().contains(&id.into()) |
2751 | } |
2752 | |
2753 | /// Check if `--no-partialeq` flag is enabled for this item. |
2754 | pub fn no_partialeq_by_name(&self, item: &Item) -> bool { |
2755 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2756 | self.options().no_partialeq_types.matches(name) |
2757 | } |
2758 | |
2759 | /// Check if `--no-copy` flag is enabled for this item. |
2760 | pub fn no_copy_by_name(&self, item: &Item) -> bool { |
2761 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2762 | self.options().no_copy_types.matches(name) |
2763 | } |
2764 | |
2765 | /// Check if `--no-debug` flag is enabled for this item. |
2766 | pub fn no_debug_by_name(&self, item: &Item) -> bool { |
2767 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2768 | self.options().no_debug_types.matches(name) |
2769 | } |
2770 | |
2771 | /// Check if `--no-default` flag is enabled for this item. |
2772 | pub fn no_default_by_name(&self, item: &Item) -> bool { |
2773 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2774 | self.options().no_default_types.matches(name) |
2775 | } |
2776 | |
2777 | /// Check if `--no-hash` flag is enabled for this item. |
2778 | pub fn no_hash_by_name(&self, item: &Item) -> bool { |
2779 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2780 | self.options().no_hash_types.matches(name) |
2781 | } |
2782 | |
2783 | /// Check if `--must-use-type` flag is enabled for this item. |
2784 | pub fn must_use_type_by_name(&self, item: &Item) -> bool { |
2785 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2786 | self.options().must_use_types.matches(name) |
2787 | } |
2788 | |
2789 | pub(crate) fn wrap_unsafe_ops(&self, tokens: impl ToTokens) -> TokenStream { |
2790 | if self.options.wrap_unsafe_ops { |
2791 | quote!(unsafe { #tokens }) |
2792 | } else { |
2793 | tokens.into_token_stream() |
2794 | } |
2795 | } |
2796 | |
2797 | pub(crate) fn wrap_static_fns_suffix(&self) -> &str { |
2798 | self.options() |
2799 | .wrap_static_fns_suffix |
2800 | .as_deref() |
2801 | .unwrap_or(crate::DEFAULT_NON_EXTERN_FNS_SUFFIX) |
2802 | } |
2803 | } |
2804 | |
2805 | /// A builder struct for configuring item resolution options. |
2806 | #[derive (Debug, Copy, Clone)] |
2807 | pub struct ItemResolver { |
2808 | id: ItemId, |
2809 | through_type_refs: bool, |
2810 | through_type_aliases: bool, |
2811 | } |
2812 | |
2813 | impl ItemId { |
2814 | /// Create an `ItemResolver` from this item id. |
2815 | pub fn into_resolver(self) -> ItemResolver { |
2816 | self.into() |
2817 | } |
2818 | } |
2819 | |
2820 | impl<T> From<T> for ItemResolver |
2821 | where |
2822 | T: Into<ItemId>, |
2823 | { |
2824 | fn from(id: T) -> ItemResolver { |
2825 | ItemResolver::new(id) |
2826 | } |
2827 | } |
2828 | |
2829 | impl ItemResolver { |
2830 | /// Construct a new `ItemResolver` from the given id. |
2831 | pub fn new<Id: Into<ItemId>>(id: Id) -> ItemResolver { |
2832 | let id = id.into(); |
2833 | ItemResolver { |
2834 | id, |
2835 | through_type_refs: false, |
2836 | through_type_aliases: false, |
2837 | } |
2838 | } |
2839 | |
2840 | /// Keep resolving through `Type::TypeRef` items. |
2841 | pub fn through_type_refs(mut self) -> ItemResolver { |
2842 | self.through_type_refs = true; |
2843 | self |
2844 | } |
2845 | |
2846 | /// Keep resolving through `Type::Alias` items. |
2847 | pub fn through_type_aliases(mut self) -> ItemResolver { |
2848 | self.through_type_aliases = true; |
2849 | self |
2850 | } |
2851 | |
2852 | /// Finish configuring and perform the actual item resolution. |
2853 | pub fn resolve(self, ctx: &BindgenContext) -> &Item { |
2854 | assert!(ctx.collected_typerefs()); |
2855 | |
2856 | let mut id = self.id; |
2857 | let mut seen_ids = HashSet::default(); |
2858 | loop { |
2859 | let item = ctx.resolve_item(id); |
2860 | |
2861 | // Detect cycles and bail out. These can happen in certain cases |
2862 | // involving incomplete qualified dependent types (#2085). |
2863 | if !seen_ids.insert(id) { |
2864 | return item; |
2865 | } |
2866 | |
2867 | let ty_kind = item.as_type().map(|t| t.kind()); |
2868 | match ty_kind { |
2869 | Some(&TypeKind::ResolvedTypeRef(next_id)) |
2870 | if self.through_type_refs => |
2871 | { |
2872 | id = next_id.into(); |
2873 | } |
2874 | // We intentionally ignore template aliases here, as they are |
2875 | // more complicated, and don't represent a simple renaming of |
2876 | // some type. |
2877 | Some(&TypeKind::Alias(next_id)) |
2878 | if self.through_type_aliases => |
2879 | { |
2880 | id = next_id.into(); |
2881 | } |
2882 | _ => return item, |
2883 | } |
2884 | } |
2885 | } |
2886 | } |
2887 | |
2888 | /// A type that we are in the middle of parsing. |
2889 | #[derive (Clone, Copy, Debug, PartialEq, Eq)] |
2890 | pub struct PartialType { |
2891 | decl: Cursor, |
2892 | // Just an ItemId, and not a TypeId, because we haven't finished this type |
2893 | // yet, so there's still time for things to go wrong. |
2894 | id: ItemId, |
2895 | } |
2896 | |
2897 | impl PartialType { |
2898 | /// Construct a new `PartialType`. |
2899 | pub fn new(decl: Cursor, id: ItemId) -> PartialType { |
2900 | // assert!(decl == decl.canonical()); |
2901 | PartialType { decl, id } |
2902 | } |
2903 | |
2904 | /// The cursor pointing to this partial type's declaration location. |
2905 | pub fn decl(&self) -> &Cursor { |
2906 | &self.decl |
2907 | } |
2908 | |
2909 | /// The item ID allocated for this type. This is *NOT* a key for an entry in |
2910 | /// the context's item set yet! |
2911 | pub fn id(&self) -> ItemId { |
2912 | self.id |
2913 | } |
2914 | } |
2915 | |
2916 | impl TemplateParameters for PartialType { |
2917 | fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
2918 | // Maybe at some point we will eagerly parse named types, but for now we |
2919 | // don't and this information is unavailable. |
2920 | vec![] |
2921 | } |
2922 | |
2923 | fn num_self_template_params(&self, _ctx: &BindgenContext) -> usize { |
2924 | // Wouldn't it be nice if libclang would reliably give us this |
2925 | // information‽ |
2926 | match self.decl().kind() { |
2927 | clang_sys::CXCursor_ClassTemplate | |
2928 | clang_sys::CXCursor_FunctionTemplate | |
2929 | clang_sys::CXCursor_TypeAliasTemplateDecl => { |
2930 | let mut num_params = 0; |
2931 | self.decl().visit(|c| { |
2932 | match c.kind() { |
2933 | clang_sys::CXCursor_TemplateTypeParameter | |
2934 | clang_sys::CXCursor_TemplateTemplateParameter | |
2935 | clang_sys::CXCursor_NonTypeTemplateParameter => { |
2936 | num_params += 1; |
2937 | } |
2938 | _ => {} |
2939 | }; |
2940 | clang_sys::CXChildVisit_Continue |
2941 | }); |
2942 | num_params |
2943 | } |
2944 | _ => 0, |
2945 | } |
2946 | } |
2947 | } |
2948 | |