| 1 | /* |
| 2 | NeuQuant Neural-Net Quantization Algorithm by Anthony Dekker, 1994. |
| 3 | See "Kohonen neural networks for optimal colour quantization" |
| 4 | in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. |
| 5 | for a discussion of the algorithm. |
| 6 | See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML |
| 7 | |
| 8 | Incorporated bugfixes and alpha channel handling from pngnq |
| 9 | http://pngnq.sourceforge.net |
| 10 | |
| 11 | Copyright (c) 2014 The Piston Developers |
| 12 | |
| 13 | Permission is hereby granted, free of charge, to any person obtaining a copy |
| 14 | of this software and associated documentation files (the "Software"), to deal |
| 15 | in the Software without restriction, including without limitation the rights |
| 16 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 17 | copies of the Software, and to permit persons to whom the Software is |
| 18 | furnished to do so, subject to the following conditions: |
| 19 | |
| 20 | The above copyright notice and this permission notice shall be included in |
| 21 | all copies or substantial portions of the Software. |
| 22 | |
| 23 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 24 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 25 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 26 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 27 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 28 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 29 | THE SOFTWARE. |
| 30 | |
| 31 | NeuQuant Neural-Net Quantization Algorithm |
| 32 | ------------------------------------------ |
| 33 | |
| 34 | Copyright (c) 1994 Anthony Dekker |
| 35 | |
| 36 | NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. |
| 37 | See "Kohonen neural networks for optimal colour quantization" |
| 38 | in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. |
| 39 | for a discussion of the algorithm. |
| 40 | See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML |
| 41 | |
| 42 | Any party obtaining a copy of these files from the author, directly or |
| 43 | indirectly, is granted, free of charge, a full and unrestricted irrevocable, |
| 44 | world-wide, paid up, royalty-free, nonexclusive right and license to deal |
| 45 | in this software and documentation files (the "Software"), including without |
| 46 | limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 47 | and/or sell copies of the Software, and to permit persons who receive |
| 48 | copies from any such party to do so, with the only requirement being |
| 49 | that this copyright notice remain intact. |
| 50 | |
| 51 | */ |
| 52 | |
| 53 | //! # Color quantization library |
| 54 | //! |
| 55 | //! This library provides a color quantizer based on the [NEUQUANT](http://members.ozemail.com.au/~dekker/NEUQUANT.HTML) |
| 56 | //! |
| 57 | //! Original literature: Dekker, A. H. (1994). Kohonen neural networks for |
| 58 | //! optimal colour quantization. *Network: Computation in Neural Systems*, 5(3), 351-367. |
| 59 | //! [doi: 10.1088/0954-898X_5_3_003](https://doi.org/10.1088/0954-898X_5_3_003) |
| 60 | //! |
| 61 | //! See also <https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/> |
| 62 | //! |
| 63 | //! ## Usage |
| 64 | //! |
| 65 | //! ``` |
| 66 | //! let data = vec![0; 40]; |
| 67 | //! let nq = color_quant::NeuQuant::new(10, 256, &data); |
| 68 | //! let indixes: Vec<u8> = data.chunks(4).map(|pix| nq.index_of(pix) as u8).collect(); |
| 69 | //! let color_map = nq.color_map_rgba(); |
| 70 | //! ``` |
| 71 | |
| 72 | mod math; |
| 73 | use crate::math::clamp; |
| 74 | |
| 75 | use std::cmp::{max, min}; |
| 76 | |
| 77 | const CHANNELS: usize = 4; |
| 78 | |
| 79 | const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle |
| 80 | |
| 81 | const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1 |
| 82 | const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits |
| 83 | |
| 84 | const GAMMA: f64 = 1024.0; |
| 85 | const BETA: f64 = 1.0 / GAMMA; |
| 86 | const BETAGAMMA: f64 = BETA * GAMMA; |
| 87 | |
| 88 | // four primes near 500 - assume no image has a length so large |
| 89 | // that it is divisible by all four primes |
| 90 | const PRIMES: [usize; 4] = [499, 491, 478, 503]; |
| 91 | |
| 92 | #[derive (Clone, Copy)] |
| 93 | struct Quad<T> { |
| 94 | r: T, |
| 95 | g: T, |
| 96 | b: T, |
| 97 | a: T, |
| 98 | } |
| 99 | |
| 100 | type Neuron = Quad<f64>; |
| 101 | type Color = Quad<i32>; |
| 102 | |
| 103 | pub struct NeuQuant { |
| 104 | network: Vec<Neuron>, |
| 105 | colormap: Vec<Color>, |
| 106 | netindex: Vec<usize>, |
| 107 | bias: Vec<f64>, // bias and freq arrays for learning |
| 108 | freq: Vec<f64>, |
| 109 | samplefac: i32, |
| 110 | netsize: usize, |
| 111 | } |
| 112 | |
| 113 | impl NeuQuant { |
| 114 | /// Creates a new neuronal network and trains it with the supplied data. |
| 115 | /// |
| 116 | /// Pixels are assumed to be in RGBA format. |
| 117 | /// `colors` should be $>=64$. `samplefac` determines the faction of |
| 118 | /// the sample that will be used to train the network. Its value must be in the |
| 119 | /// range $[1, 30]$. A value of $1$ thus produces the best result but is also |
| 120 | /// slowest. $10$ is a good compromise between speed and quality. |
| 121 | pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self { |
| 122 | let netsize = colors; |
| 123 | let mut this = NeuQuant { |
| 124 | network: Vec::with_capacity(netsize), |
| 125 | colormap: Vec::with_capacity(netsize), |
| 126 | netindex: vec![0; 256], |
| 127 | bias: Vec::with_capacity(netsize), |
| 128 | freq: Vec::with_capacity(netsize), |
| 129 | samplefac: samplefac, |
| 130 | netsize: colors, |
| 131 | }; |
| 132 | this.init(pixels); |
| 133 | this |
| 134 | } |
| 135 | |
| 136 | /// Initializes the neuronal network and trains it with the supplied data. |
| 137 | /// |
| 138 | /// This method gets called by `Self::new`. |
| 139 | pub fn init(&mut self, pixels: &[u8]) { |
| 140 | self.network.clear(); |
| 141 | self.colormap.clear(); |
| 142 | self.bias.clear(); |
| 143 | self.freq.clear(); |
| 144 | let freq = (self.netsize as f64).recip(); |
| 145 | for i in 0..self.netsize { |
| 146 | let tmp = (i as f64) * 256.0 / (self.netsize as f64); |
| 147 | // Sets alpha values at 0 for dark pixels. |
| 148 | let a = if i < 16 { i as f64 * 16.0 } else { 255.0 }; |
| 149 | self.network.push(Neuron { |
| 150 | r: tmp, |
| 151 | g: tmp, |
| 152 | b: tmp, |
| 153 | a: a, |
| 154 | }); |
| 155 | self.colormap.push(Color { |
| 156 | r: 0, |
| 157 | g: 0, |
| 158 | b: 0, |
| 159 | a: 255, |
| 160 | }); |
| 161 | self.freq.push(freq); |
| 162 | self.bias.push(0.0); |
| 163 | } |
| 164 | self.learn(pixels); |
| 165 | self.build_colormap(); |
| 166 | self.build_netindex(); |
| 167 | } |
| 168 | |
| 169 | /// Maps the rgba-pixel in-place to the best-matching color in the color map. |
| 170 | #[inline (always)] |
| 171 | pub fn map_pixel(&self, pixel: &mut [u8]) { |
| 172 | assert!(pixel.len() == 4); |
| 173 | let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]); |
| 174 | let i = self.search_netindex(b, g, r, a); |
| 175 | pixel[0] = self.colormap[i].r as u8; |
| 176 | pixel[1] = self.colormap[i].g as u8; |
| 177 | pixel[2] = self.colormap[i].b as u8; |
| 178 | pixel[3] = self.colormap[i].a as u8; |
| 179 | } |
| 180 | |
| 181 | /// Finds the best-matching index in the color map. |
| 182 | /// |
| 183 | /// `pixel` is assumed to be in RGBA format. |
| 184 | #[inline (always)] |
| 185 | pub fn index_of(&self, pixel: &[u8]) -> usize { |
| 186 | assert!(pixel.len() == 4); |
| 187 | let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]); |
| 188 | self.search_netindex(b, g, r, a) |
| 189 | } |
| 190 | |
| 191 | /// Lookup pixel values for color at `idx` in the colormap. |
| 192 | pub fn lookup(&self, idx: usize) -> Option<[u8; 4]> { |
| 193 | self.colormap |
| 194 | .get(idx) |
| 195 | .map(|p| [p.r as u8, p.g as u8, p.b as u8, p.a as u8]) |
| 196 | } |
| 197 | |
| 198 | /// Returns the RGBA color map calculated from the sample. |
| 199 | pub fn color_map_rgba(&self) -> Vec<u8> { |
| 200 | let mut map = Vec::with_capacity(self.netsize * 4); |
| 201 | for entry in &self.colormap { |
| 202 | map.push(entry.r as u8); |
| 203 | map.push(entry.g as u8); |
| 204 | map.push(entry.b as u8); |
| 205 | map.push(entry.a as u8); |
| 206 | } |
| 207 | map |
| 208 | } |
| 209 | |
| 210 | /// Returns the RGBA color map calculated from the sample. |
| 211 | pub fn color_map_rgb(&self) -> Vec<u8> { |
| 212 | let mut map = Vec::with_capacity(self.netsize * 3); |
| 213 | for entry in &self.colormap { |
| 214 | map.push(entry.r as u8); |
| 215 | map.push(entry.g as u8); |
| 216 | map.push(entry.b as u8); |
| 217 | } |
| 218 | map |
| 219 | } |
| 220 | |
| 221 | /// Move neuron i towards biased (a,b,g,r) by factor alpha |
| 222 | fn salter_single(&mut self, alpha: f64, i: i32, quad: Quad<f64>) { |
| 223 | let n = &mut self.network[i as usize]; |
| 224 | n.b -= alpha * (n.b - quad.b); |
| 225 | n.g -= alpha * (n.g - quad.g); |
| 226 | n.r -= alpha * (n.r - quad.r); |
| 227 | n.a -= alpha * (n.a - quad.a); |
| 228 | } |
| 229 | |
| 230 | /// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha |
| 231 | fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) { |
| 232 | let lo = max(i - rad, 0); |
| 233 | let hi = min(i + rad, self.netsize as i32); |
| 234 | let mut j = i + 1; |
| 235 | let mut k = i - 1; |
| 236 | let mut q = 0; |
| 237 | |
| 238 | while (j < hi) || (k > lo) { |
| 239 | let rad_sq = rad as f64 * rad as f64; |
| 240 | let alpha = (alpha * (rad_sq - q as f64 * q as f64)) / rad_sq; |
| 241 | q += 1; |
| 242 | if j < hi { |
| 243 | let p = &mut self.network[j as usize]; |
| 244 | p.b -= alpha * (p.b - quad.b); |
| 245 | p.g -= alpha * (p.g - quad.g); |
| 246 | p.r -= alpha * (p.r - quad.r); |
| 247 | p.a -= alpha * (p.a - quad.a); |
| 248 | j += 1; |
| 249 | } |
| 250 | if k > lo { |
| 251 | let p = &mut self.network[k as usize]; |
| 252 | p.b -= alpha * (p.b - quad.b); |
| 253 | p.g -= alpha * (p.g - quad.g); |
| 254 | p.r -= alpha * (p.r - quad.r); |
| 255 | p.a -= alpha * (p.a - quad.a); |
| 256 | k -= 1; |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /// Search for biased BGR values |
| 262 | /// finds closest neuron (min dist) and updates freq |
| 263 | /// finds best neuron (min dist-bias) and returns position |
| 264 | /// for frequently chosen neurons, freq[i] is high and bias[i] is negative |
| 265 | /// bias[i] = gamma*((1/self.netsize)-freq[i]) |
| 266 | fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 { |
| 267 | use std::f64; |
| 268 | |
| 269 | let mut bestd = f64::MAX; |
| 270 | let mut bestbiasd: f64 = bestd; |
| 271 | let mut bestpos = -1; |
| 272 | let mut bestbiaspos: i32 = bestpos; |
| 273 | |
| 274 | for i in 0..self.netsize { |
| 275 | let bestbiasd_biased = bestbiasd + self.bias[i]; |
| 276 | let mut dist; |
| 277 | let n = &self.network[i]; |
| 278 | dist = (n.b - b).abs(); |
| 279 | dist += (n.r - r).abs(); |
| 280 | if dist < bestd || dist < bestbiasd_biased { |
| 281 | dist += (n.g - g).abs(); |
| 282 | dist += (n.a - a).abs(); |
| 283 | if dist < bestd { |
| 284 | bestd = dist; |
| 285 | bestpos = i as i32; |
| 286 | } |
| 287 | let biasdist = dist - self.bias[i]; |
| 288 | if biasdist < bestbiasd { |
| 289 | bestbiasd = biasdist; |
| 290 | bestbiaspos = i as i32; |
| 291 | } |
| 292 | } |
| 293 | self.freq[i] -= BETA * self.freq[i]; |
| 294 | self.bias[i] += BETAGAMMA * self.freq[i]; |
| 295 | } |
| 296 | self.freq[bestpos as usize] += BETA; |
| 297 | self.bias[bestpos as usize] -= BETAGAMMA; |
| 298 | return bestbiaspos; |
| 299 | } |
| 300 | |
| 301 | /// Main learning loop |
| 302 | /// Note: the number of learning cycles is crucial and the parameters are not |
| 303 | /// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine |
| 304 | fn learn(&mut self, pixels: &[u8]) { |
| 305 | let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32 |
| 306 | let radiusbiasshift: i32 = 6; |
| 307 | let radiusbias: i32 = 1 << radiusbiasshift; |
| 308 | let init_bias_radius: i32 = initrad * radiusbias; |
| 309 | let mut bias_radius = init_bias_radius; |
| 310 | let alphadec = 30 + ((self.samplefac - 1) / 3); |
| 311 | let lengthcount = pixels.len() / CHANNELS; |
| 312 | let samplepixels = lengthcount / self.samplefac as usize; |
| 313 | // learning cycles |
| 314 | let n_cycles = match self.netsize >> 1 { |
| 315 | n if n <= 100 => 100, |
| 316 | n => n, |
| 317 | }; |
| 318 | let delta = match samplepixels / n_cycles { |
| 319 | 0 => 1, |
| 320 | n => n, |
| 321 | }; |
| 322 | let mut alpha = INIT_ALPHA; |
| 323 | |
| 324 | let mut rad = bias_radius >> radiusbiasshift; |
| 325 | if rad <= 1 { |
| 326 | rad = 0 |
| 327 | }; |
| 328 | |
| 329 | let mut pos = 0; |
| 330 | let step = *PRIMES |
| 331 | .iter() |
| 332 | .find(|&&prime| lengthcount % prime != 0) |
| 333 | .unwrap_or(&PRIMES[3]); |
| 334 | |
| 335 | let mut i = 0; |
| 336 | while i < samplepixels { |
| 337 | let (r, g, b, a) = { |
| 338 | let p = &pixels[CHANNELS * pos..][..CHANNELS]; |
| 339 | (p[0] as f64, p[1] as f64, p[2] as f64, p[3] as f64) |
| 340 | }; |
| 341 | |
| 342 | let j = self.contest(b, g, r, a); |
| 343 | |
| 344 | let alpha_ = (1.0 * alpha as f64) / INIT_ALPHA as f64; |
| 345 | self.salter_single(alpha_, j, Quad { b, g, r, a }); |
| 346 | if rad > 0 { |
| 347 | self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a }) |
| 348 | }; |
| 349 | |
| 350 | pos += step; |
| 351 | while pos >= lengthcount { |
| 352 | pos -= lengthcount |
| 353 | } |
| 354 | |
| 355 | i += 1; |
| 356 | if i % delta == 0 { |
| 357 | alpha -= alpha / alphadec; |
| 358 | bias_radius -= bias_radius / RADIUS_DEC; |
| 359 | rad = bias_radius >> radiusbiasshift; |
| 360 | if rad <= 1 { |
| 361 | rad = 0 |
| 362 | }; |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | /// initializes the color map |
| 368 | fn build_colormap(&mut self) { |
| 369 | for i in 0usize..self.netsize { |
| 370 | self.colormap[i].b = clamp(self.network[i].b.round() as i32); |
| 371 | self.colormap[i].g = clamp(self.network[i].g.round() as i32); |
| 372 | self.colormap[i].r = clamp(self.network[i].r.round() as i32); |
| 373 | self.colormap[i].a = clamp(self.network[i].a.round() as i32); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | /// Insertion sort of network and building of netindex[0..255] |
| 378 | fn build_netindex(&mut self) { |
| 379 | let mut previouscol = 0; |
| 380 | let mut startpos = 0; |
| 381 | |
| 382 | for i in 0..self.netsize { |
| 383 | let mut p = self.colormap[i]; |
| 384 | let mut q; |
| 385 | let mut smallpos = i; |
| 386 | let mut smallval = p.g as usize; // index on g |
| 387 | // find smallest in i..netsize-1 |
| 388 | for j in (i + 1)..self.netsize { |
| 389 | q = self.colormap[j]; |
| 390 | if (q.g as usize) < smallval { |
| 391 | // index on g |
| 392 | smallpos = j; |
| 393 | smallval = q.g as usize; // index on g |
| 394 | } |
| 395 | } |
| 396 | q = self.colormap[smallpos]; |
| 397 | // swap p (i) and q (smallpos) entries |
| 398 | if i != smallpos { |
| 399 | ::std::mem::swap(&mut p, &mut q); |
| 400 | self.colormap[i] = p; |
| 401 | self.colormap[smallpos] = q; |
| 402 | } |
| 403 | // smallval entry is now in position i |
| 404 | if smallval != previouscol { |
| 405 | self.netindex[previouscol] = (startpos + i) >> 1; |
| 406 | for j in (previouscol + 1)..smallval { |
| 407 | self.netindex[j] = i |
| 408 | } |
| 409 | previouscol = smallval; |
| 410 | startpos = i; |
| 411 | } |
| 412 | } |
| 413 | let max_netpos = self.netsize - 1; |
| 414 | self.netindex[previouscol] = (startpos + max_netpos) >> 1; |
| 415 | for j in (previouscol + 1)..256 { |
| 416 | self.netindex[j] = max_netpos |
| 417 | } // really 256 |
| 418 | } |
| 419 | |
| 420 | /// Search for best matching color |
| 421 | fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize { |
| 422 | let mut bestd = 1 << 30; // ~ 1_000_000 |
| 423 | let mut best = 0; |
| 424 | // start at netindex[g] and work outwards |
| 425 | let mut i = self.netindex[g as usize]; |
| 426 | let mut j = if i > 0 { i - 1 } else { 0 }; |
| 427 | |
| 428 | while (i < self.netsize) || (j > 0) { |
| 429 | if i < self.netsize { |
| 430 | let p = self.colormap[i]; |
| 431 | let mut e = p.g - g as i32; |
| 432 | let mut dist = e * e; // inx key |
| 433 | if dist >= bestd { |
| 434 | break; |
| 435 | } else { |
| 436 | e = p.b - b as i32; |
| 437 | dist += e * e; |
| 438 | if dist < bestd { |
| 439 | e = p.r - r as i32; |
| 440 | dist += e * e; |
| 441 | if dist < bestd { |
| 442 | e = p.a - a as i32; |
| 443 | dist += e * e; |
| 444 | if dist < bestd { |
| 445 | bestd = dist; |
| 446 | best = i; |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | i += 1; |
| 451 | } |
| 452 | } |
| 453 | if j > 0 { |
| 454 | let p = self.colormap[j]; |
| 455 | let mut e = p.g - g as i32; |
| 456 | let mut dist = e * e; // inx key |
| 457 | if dist >= bestd { |
| 458 | break; |
| 459 | } else { |
| 460 | e = p.b - b as i32; |
| 461 | dist += e * e; |
| 462 | if dist < bestd { |
| 463 | e = p.r - r as i32; |
| 464 | dist += e * e; |
| 465 | if dist < bestd { |
| 466 | e = p.a - a as i32; |
| 467 | dist += e * e; |
| 468 | if dist < bestd { |
| 469 | bestd = dist; |
| 470 | best = j; |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | j -= 1; |
| 475 | } |
| 476 | } |
| 477 | } |
| 478 | best |
| 479 | } |
| 480 | } |
| 481 | |