| 1 | use core::ops::Neg; |
| 2 | |
| 3 | use crate::int::{CastFrom, CastInto, Int, MinInt}; |
| 4 | |
| 5 | use super::Float; |
| 6 | |
| 7 | /// Conversions from integers to floats. |
| 8 | /// |
| 9 | /// The algorithm is explained here: <https://blog.m-ou.se/floats/>. It roughly does the following: |
| 10 | /// - Calculate a base mantissa by shifting the integer into mantissa position. This gives us a |
| 11 | /// mantissa _with the implicit bit set_! |
| 12 | /// - Figure out if rounding needs to occur by classifying the bits that are to be truncated. Some |
| 13 | /// patterns are used to simplify this. Adjust the mantissa with the result if needed. |
| 14 | /// - Calculate the exponent based on the base-2 logarithm of `i` (leading zeros). Subtract one. |
| 15 | /// - Shift the exponent and add the mantissa to create the final representation. Subtracting one |
| 16 | /// from the exponent (above) accounts for the explicit bit being set in the mantissa. |
| 17 | /// |
| 18 | /// # Terminology |
| 19 | /// |
| 20 | /// - `i`: the original integer |
| 21 | /// - `i_m`: the integer, shifted fully left (no leading zeros) |
| 22 | /// - `n`: number of leading zeroes |
| 23 | /// - `e`: the resulting exponent. Usually 1 is subtracted to offset the mantissa implicit bit. |
| 24 | /// - `m_base`: the mantissa before adjusting for truncated bits. Implicit bit is usually set. |
| 25 | /// - `adj`: the bits that will be truncated, possibly compressed in some way. |
| 26 | /// - `m`: the resulting mantissa. Implicit bit is usually set. |
| 27 | mod int_to_float { |
| 28 | use super::*; |
| 29 | |
| 30 | /// Calculate the exponent from the number of leading zeros. |
| 31 | /// |
| 32 | /// Usually 1 is subtracted from this function's result, so that a mantissa with the implicit |
| 33 | /// bit set can be added back later. |
| 34 | fn exp<I: Int, F: Float<Int: CastFrom<u32>>>(n: u32) -> F::Int { |
| 35 | F::Int::cast_from(F::EXP_BIAS - 1 + I::BITS - n) |
| 36 | } |
| 37 | |
| 38 | /// Adjust a mantissa with dropped bits to perform correct rounding. |
| 39 | /// |
| 40 | /// The dropped bits should be exactly the bits that get truncated (left-aligned), but they |
| 41 | /// can be combined or compressed in some way that simplifies operations. |
| 42 | fn m_adj<F: Float>(m_base: F::Int, dropped_bits: F::Int) -> F::Int { |
| 43 | // Branchlessly extract a `1` if rounding up should happen, 0 otherwise |
| 44 | // This accounts for rounding to even. |
| 45 | let adj = (dropped_bits - ((dropped_bits >> (F::BITS - 1)) & !m_base)) >> (F::BITS - 1); |
| 46 | |
| 47 | // Add one when we need to round up. Break ties to even. |
| 48 | m_base + adj |
| 49 | } |
| 50 | |
| 51 | /// Shift the exponent to its position and add the mantissa. |
| 52 | /// |
| 53 | /// If the mantissa has the implicit bit set, the exponent should be one less than its actual |
| 54 | /// value to cancel it out. |
| 55 | fn repr<F: Float>(e: F::Int, m: F::Int) -> F::Int { |
| 56 | // + rather than | so the mantissa can overflow into the exponent |
| 57 | (e << F::SIG_BITS) + m |
| 58 | } |
| 59 | |
| 60 | /// Shift distance from a left-aligned integer to a smaller float. |
| 61 | fn shift_f_lt_i<I: Int, F: Float>() -> u32 { |
| 62 | (I::BITS - F::BITS) + F::EXP_BITS |
| 63 | } |
| 64 | |
| 65 | /// Shift distance from an integer with `n` leading zeros to a smaller float. |
| 66 | fn shift_f_gt_i<I: Int, F: Float>(n: u32) -> u32 { |
| 67 | F::SIG_BITS - I::BITS + 1 + n |
| 68 | } |
| 69 | |
| 70 | /// Perform a signed operation as unsigned, then add the sign back. |
| 71 | pub fn signed<I, F, Conv>(i: I, conv: Conv) -> F |
| 72 | where |
| 73 | F: Float, |
| 74 | I: Int, |
| 75 | F::Int: CastFrom<I>, |
| 76 | Conv: Fn(I::UnsignedInt) -> F::Int, |
| 77 | { |
| 78 | let sign_bit = F::Int::cast_from(i >> (I::BITS - 1)) << (F::BITS - 1); |
| 79 | F::from_bits(conv(i.unsigned_abs()) | sign_bit) |
| 80 | } |
| 81 | |
| 82 | pub fn u32_to_f32_bits(i: u32) -> u32 { |
| 83 | if i == 0 { |
| 84 | return 0; |
| 85 | } |
| 86 | let n = i.leading_zeros(); |
| 87 | // Mantissa with implicit bit set (significant bits) |
| 88 | let m_base = (i << n) >> f32::EXP_BITS; |
| 89 | // Bits that will be dropped (insignificant bits) |
| 90 | let adj = (i << n) << (f32::SIG_BITS + 1); |
| 91 | let m = m_adj::<f32>(m_base, adj); |
| 92 | let e = exp::<u32, f32>(n) - 1; |
| 93 | repr::<f32>(e, m) |
| 94 | } |
| 95 | |
| 96 | pub fn u32_to_f64_bits(i: u32) -> u64 { |
| 97 | if i == 0 { |
| 98 | return 0; |
| 99 | } |
| 100 | let n = i.leading_zeros(); |
| 101 | // Mantissa with implicit bit set |
| 102 | let m = (i as u64) << shift_f_gt_i::<u32, f64>(n); |
| 103 | let e = exp::<u32, f64>(n) - 1; |
| 104 | repr::<f64>(e, m) |
| 105 | } |
| 106 | |
| 107 | #[cfg (f128_enabled)] |
| 108 | pub fn u32_to_f128_bits(i: u32) -> u128 { |
| 109 | if i == 0 { |
| 110 | return 0; |
| 111 | } |
| 112 | let n = i.leading_zeros(); |
| 113 | |
| 114 | // Shift into mantissa position that is correct for the type, but shifted into the lower |
| 115 | // 64 bits over so can can avoid 128-bit math. |
| 116 | let m = (i as u64) << (shift_f_gt_i::<u32, f128>(n) - 64); |
| 117 | let e = exp::<u32, f128>(n) as u64 - 1; |
| 118 | // High 64 bits of f128 representation. |
| 119 | let h = (e << (f128::SIG_BITS - 64)) + m; |
| 120 | |
| 121 | // Shift back to the high bits, the rest of the mantissa will always be 0. |
| 122 | (h as u128) << 64 |
| 123 | } |
| 124 | |
| 125 | pub fn u64_to_f32_bits(i: u64) -> u32 { |
| 126 | let n = i.leading_zeros(); |
| 127 | let i_m = i.wrapping_shl(n); |
| 128 | // Mantissa with implicit bit set |
| 129 | let m_base: u32 = (i_m >> shift_f_lt_i::<u64, f32>()) as u32; |
| 130 | // The entire lower half of `i` will be truncated (masked portion), plus the |
| 131 | // next `EXP_BITS` bits. |
| 132 | let adj = ((i_m >> f32::EXP_BITS) | i_m & 0xFFFF) as u32; |
| 133 | let m = m_adj::<f32>(m_base, adj); |
| 134 | let e = if i == 0 { 0 } else { exp::<u64, f32>(n) - 1 }; |
| 135 | repr::<f32>(e, m) |
| 136 | } |
| 137 | |
| 138 | pub fn u64_to_f64_bits(i: u64) -> u64 { |
| 139 | if i == 0 { |
| 140 | return 0; |
| 141 | } |
| 142 | let n = i.leading_zeros(); |
| 143 | // Mantissa with implicit bit set |
| 144 | let m_base = (i << n) >> f64::EXP_BITS; |
| 145 | let adj = (i << n) << (f64::SIG_BITS + 1); |
| 146 | let m = m_adj::<f64>(m_base, adj); |
| 147 | let e = exp::<u64, f64>(n) - 1; |
| 148 | repr::<f64>(e, m) |
| 149 | } |
| 150 | |
| 151 | #[cfg (f128_enabled)] |
| 152 | pub fn u64_to_f128_bits(i: u64) -> u128 { |
| 153 | if i == 0 { |
| 154 | return 0; |
| 155 | } |
| 156 | let n = i.leading_zeros(); |
| 157 | // Mantissa with implicit bit set |
| 158 | let m = (i as u128) << shift_f_gt_i::<u64, f128>(n); |
| 159 | let e = exp::<u64, f128>(n) - 1; |
| 160 | repr::<f128>(e, m) |
| 161 | } |
| 162 | |
| 163 | pub fn u128_to_f32_bits(i: u128) -> u32 { |
| 164 | let n = i.leading_zeros(); |
| 165 | let i_m = i.wrapping_shl(n); // Mantissa, shifted so the first bit is nonzero |
| 166 | let m_base: u32 = (i_m >> shift_f_lt_i::<u128, f32>()) as u32; |
| 167 | |
| 168 | // Within the upper `F::BITS`, everything except for the signifcand |
| 169 | // gets truncated |
| 170 | let d1: u32 = (i_m >> (u128::BITS - f32::BITS - f32::SIG_BITS - 1)).cast(); |
| 171 | |
| 172 | // The entire rest of `i_m` gets truncated. Zero the upper `F::BITS` then just |
| 173 | // check if it is nonzero. |
| 174 | let d2: u32 = (i_m << f32::BITS >> f32::BITS != 0).into(); |
| 175 | let adj = d1 | d2; |
| 176 | |
| 177 | // Mantissa with implicit bit set |
| 178 | let m = m_adj::<f32>(m_base, adj); |
| 179 | let e = if i == 0 { 0 } else { exp::<u128, f32>(n) - 1 }; |
| 180 | repr::<f32>(e, m) |
| 181 | } |
| 182 | |
| 183 | pub fn u128_to_f64_bits(i: u128) -> u64 { |
| 184 | let n = i.leading_zeros(); |
| 185 | let i_m = i.wrapping_shl(n); |
| 186 | // Mantissa with implicit bit set |
| 187 | let m_base: u64 = (i_m >> shift_f_lt_i::<u128, f64>()) as u64; |
| 188 | // The entire lower half of `i` will be truncated (masked portion), plus the |
| 189 | // next `EXP_BITS` bits. |
| 190 | let adj = ((i_m >> f64::EXP_BITS) | i_m & 0xFFFF_FFFF) as u64; |
| 191 | let m = m_adj::<f64>(m_base, adj); |
| 192 | let e = if i == 0 { 0 } else { exp::<u128, f64>(n) - 1 }; |
| 193 | repr::<f64>(e, m) |
| 194 | } |
| 195 | |
| 196 | #[cfg (f128_enabled)] |
| 197 | pub fn u128_to_f128_bits(i: u128) -> u128 { |
| 198 | if i == 0 { |
| 199 | return 0; |
| 200 | } |
| 201 | let n = i.leading_zeros(); |
| 202 | // Mantissa with implicit bit set |
| 203 | let m_base = (i << n) >> f128::EXP_BITS; |
| 204 | let adj = (i << n) << (f128::SIG_BITS + 1); |
| 205 | let m = m_adj::<f128>(m_base, adj); |
| 206 | let e = exp::<u128, f128>(n) - 1; |
| 207 | repr::<f128>(e, m) |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | // Conversions from unsigned integers to floats. |
| 212 | intrinsics! { |
| 213 | #[arm_aeabi_alias = __aeabi_ui2f] |
| 214 | pub extern "C" fn __floatunsisf(i: u32) -> f32 { |
| 215 | f32::from_bits(int_to_float::u32_to_f32_bits(i)) |
| 216 | } |
| 217 | |
| 218 | #[arm_aeabi_alias = __aeabi_ui2d] |
| 219 | pub extern "C" fn __floatunsidf(i: u32) -> f64 { |
| 220 | f64::from_bits(int_to_float::u32_to_f64_bits(i)) |
| 221 | } |
| 222 | |
| 223 | #[arm_aeabi_alias = __aeabi_ul2f] |
| 224 | pub extern "C" fn __floatundisf(i: u64) -> f32 { |
| 225 | f32::from_bits(int_to_float::u64_to_f32_bits(i)) |
| 226 | } |
| 227 | |
| 228 | #[arm_aeabi_alias = __aeabi_ul2d] |
| 229 | pub extern "C" fn __floatundidf(i: u64) -> f64 { |
| 230 | f64::from_bits(int_to_float::u64_to_f64_bits(i)) |
| 231 | } |
| 232 | |
| 233 | #[cfg_attr(target_os = "uefi" , unadjusted_on_win64)] |
| 234 | pub extern "C" fn __floatuntisf(i: u128) -> f32 { |
| 235 | f32::from_bits(int_to_float::u128_to_f32_bits(i)) |
| 236 | } |
| 237 | |
| 238 | #[cfg_attr(target_os = "uefi" , unadjusted_on_win64)] |
| 239 | pub extern "C" fn __floatuntidf(i: u128) -> f64 { |
| 240 | f64::from_bits(int_to_float::u128_to_f64_bits(i)) |
| 241 | } |
| 242 | |
| 243 | #[ppc_alias = __floatunsikf] |
| 244 | #[cfg (f128_enabled)] |
| 245 | pub extern "C" fn __floatunsitf(i: u32) -> f128 { |
| 246 | f128::from_bits(int_to_float::u32_to_f128_bits(i)) |
| 247 | } |
| 248 | |
| 249 | #[ppc_alias = __floatundikf] |
| 250 | #[cfg (f128_enabled)] |
| 251 | pub extern "C" fn __floatunditf(i: u64) -> f128 { |
| 252 | f128::from_bits(int_to_float::u64_to_f128_bits(i)) |
| 253 | } |
| 254 | |
| 255 | #[ppc_alias = __floatuntikf] |
| 256 | #[cfg (f128_enabled)] |
| 257 | pub extern "C" fn __floatuntitf(i: u128) -> f128 { |
| 258 | f128::from_bits(int_to_float::u128_to_f128_bits(i)) |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | // Conversions from signed integers to floats. |
| 263 | intrinsics! { |
| 264 | #[arm_aeabi_alias = __aeabi_i2f] |
| 265 | pub extern "C" fn __floatsisf(i: i32) -> f32 { |
| 266 | int_to_float::signed(i, int_to_float::u32_to_f32_bits) |
| 267 | } |
| 268 | |
| 269 | #[arm_aeabi_alias = __aeabi_i2d] |
| 270 | pub extern "C" fn __floatsidf(i: i32) -> f64 { |
| 271 | int_to_float::signed(i, int_to_float::u32_to_f64_bits) |
| 272 | } |
| 273 | |
| 274 | #[arm_aeabi_alias = __aeabi_l2f] |
| 275 | pub extern "C" fn __floatdisf(i: i64) -> f32 { |
| 276 | int_to_float::signed(i, int_to_float::u64_to_f32_bits) |
| 277 | } |
| 278 | |
| 279 | #[arm_aeabi_alias = __aeabi_l2d] |
| 280 | pub extern "C" fn __floatdidf(i: i64) -> f64 { |
| 281 | int_to_float::signed(i, int_to_float::u64_to_f64_bits) |
| 282 | } |
| 283 | |
| 284 | #[cfg_attr(target_os = "uefi" , unadjusted_on_win64)] |
| 285 | pub extern "C" fn __floattisf(i: i128) -> f32 { |
| 286 | int_to_float::signed(i, int_to_float::u128_to_f32_bits) |
| 287 | } |
| 288 | |
| 289 | #[cfg_attr(target_os = "uefi" , unadjusted_on_win64)] |
| 290 | pub extern "C" fn __floattidf(i: i128) -> f64 { |
| 291 | int_to_float::signed(i, int_to_float::u128_to_f64_bits) |
| 292 | } |
| 293 | |
| 294 | #[ppc_alias = __floatsikf] |
| 295 | #[cfg (f128_enabled)] |
| 296 | pub extern "C" fn __floatsitf(i: i32) -> f128 { |
| 297 | int_to_float::signed(i, int_to_float::u32_to_f128_bits) |
| 298 | } |
| 299 | |
| 300 | #[ppc_alias = __floatdikf] |
| 301 | #[cfg (f128_enabled)] |
| 302 | pub extern "C" fn __floatditf(i: i64) -> f128 { |
| 303 | int_to_float::signed(i, int_to_float::u64_to_f128_bits) |
| 304 | } |
| 305 | |
| 306 | #[ppc_alias = __floattikf] |
| 307 | #[cfg (f128_enabled)] |
| 308 | pub extern "C" fn __floattitf(i: i128) -> f128 { |
| 309 | int_to_float::signed(i, int_to_float::u128_to_f128_bits) |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | /// Generic float to unsigned int conversions. |
| 314 | fn float_to_unsigned_int<F, U>(f: F) -> U |
| 315 | where |
| 316 | F: Float, |
| 317 | U: Int<UnsignedInt = U>, |
| 318 | F::Int: CastInto<U>, |
| 319 | F::Int: CastFrom<u32>, |
| 320 | F::Int: CastInto<U::UnsignedInt>, |
| 321 | u32: CastFrom<F::Int>, |
| 322 | { |
| 323 | float_to_int_inner::<F, U, _, _>(fbits:f.to_bits(), |i: U| i, || U::MAX) |
| 324 | } |
| 325 | |
| 326 | /// Generic float to signed int conversions. |
| 327 | fn float_to_signed_int<F, I>(f: F) -> I |
| 328 | where |
| 329 | F: Float, |
| 330 | I: Int + Neg<Output = I>, |
| 331 | I::UnsignedInt: Int, |
| 332 | F::Int: CastInto<I::UnsignedInt>, |
| 333 | F::Int: CastFrom<u32>, |
| 334 | u32: CastFrom<F::Int>, |
| 335 | { |
| 336 | float_to_int_inner::<F, I, _, _>( |
| 337 | fbits:f.to_bits() & !F::SIGN_MASK, |
| 338 | |i: I| if f.is_sign_negative() { -i } else { i }, |
| 339 | || if f.is_sign_negative() { I::MIN } else { I::MAX }, |
| 340 | ) |
| 341 | } |
| 342 | |
| 343 | /// Float to int conversions, generic for both signed and unsigned. |
| 344 | /// |
| 345 | /// Parameters: |
| 346 | /// - `fbits`: `abg(f)` bitcasted to an integer. |
| 347 | /// - `map_inbounds`: apply this transformation to integers that are within range (add the sign back). |
| 348 | /// - `out_of_bounds`: return value when out of range for `I`. |
| 349 | fn float_to_int_inner<F, I, FnFoo, FnOob>( |
| 350 | fbits: F::Int, |
| 351 | map_inbounds: FnFoo, |
| 352 | out_of_bounds: FnOob, |
| 353 | ) -> I |
| 354 | where |
| 355 | F: Float, |
| 356 | I: Int, |
| 357 | FnFoo: FnOnce(I) -> I, |
| 358 | FnOob: FnOnce() -> I, |
| 359 | I::UnsignedInt: Int, |
| 360 | F::Int: CastInto<I::UnsignedInt>, |
| 361 | F::Int: CastFrom<u32>, |
| 362 | u32: CastFrom<F::Int>, |
| 363 | { |
| 364 | let int_max_exp = F::EXP_BIAS + I::MAX.ilog2() + 1; |
| 365 | let foobar = F::EXP_BIAS + I::UnsignedInt::BITS - 1; |
| 366 | |
| 367 | if fbits < F::ONE.to_bits() { |
| 368 | // < 0 gets rounded to 0 |
| 369 | I::ZERO |
| 370 | } else if fbits < F::Int::cast_from(int_max_exp) << F::SIG_BITS { |
| 371 | // >= 1, < integer max |
| 372 | let m_base = if I::UnsignedInt::BITS >= F::Int::BITS { |
| 373 | I::UnsignedInt::cast_from(fbits) << (I::BITS - F::SIG_BITS - 1) |
| 374 | } else { |
| 375 | I::UnsignedInt::cast_from(fbits >> (F::SIG_BITS - I::BITS + 1)) |
| 376 | }; |
| 377 | |
| 378 | // Set the implicit 1-bit. |
| 379 | let m: I::UnsignedInt = (I::UnsignedInt::ONE << (I::BITS - 1)) | m_base; |
| 380 | |
| 381 | // Shift based on the exponent and bias. |
| 382 | let s: u32 = (foobar) - u32::cast_from(fbits >> F::SIG_BITS); |
| 383 | |
| 384 | let unsigned = m >> s; |
| 385 | map_inbounds(I::from_unsigned(unsigned)) |
| 386 | } else if fbits <= F::EXP_MASK { |
| 387 | // >= max (incl. inf) |
| 388 | out_of_bounds() |
| 389 | } else { |
| 390 | I::ZERO |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | // Conversions from floats to unsigned integers. |
| 395 | intrinsics! { |
| 396 | #[arm_aeabi_alias = __aeabi_f2uiz] |
| 397 | pub extern "C" fn __fixunssfsi(f: f32) -> u32 { |
| 398 | float_to_unsigned_int(f) |
| 399 | } |
| 400 | |
| 401 | #[arm_aeabi_alias = __aeabi_f2ulz] |
| 402 | pub extern "C" fn __fixunssfdi(f: f32) -> u64 { |
| 403 | float_to_unsigned_int(f) |
| 404 | } |
| 405 | |
| 406 | pub extern "C" fn __fixunssfti(f: f32) -> u128 { |
| 407 | float_to_unsigned_int(f) |
| 408 | } |
| 409 | |
| 410 | #[arm_aeabi_alias = __aeabi_d2uiz] |
| 411 | pub extern "C" fn __fixunsdfsi(f: f64) -> u32 { |
| 412 | float_to_unsigned_int(f) |
| 413 | } |
| 414 | |
| 415 | #[arm_aeabi_alias = __aeabi_d2ulz] |
| 416 | pub extern "C" fn __fixunsdfdi(f: f64) -> u64 { |
| 417 | float_to_unsigned_int(f) |
| 418 | } |
| 419 | |
| 420 | pub extern "C" fn __fixunsdfti(f: f64) -> u128 { |
| 421 | float_to_unsigned_int(f) |
| 422 | } |
| 423 | |
| 424 | #[ppc_alias = __fixunskfsi] |
| 425 | #[cfg (f128_enabled)] |
| 426 | pub extern "C" fn __fixunstfsi(f: f128) -> u32 { |
| 427 | float_to_unsigned_int(f) |
| 428 | } |
| 429 | |
| 430 | #[ppc_alias = __fixunskfdi] |
| 431 | #[cfg (f128_enabled)] |
| 432 | pub extern "C" fn __fixunstfdi(f: f128) -> u64 { |
| 433 | float_to_unsigned_int(f) |
| 434 | } |
| 435 | |
| 436 | #[ppc_alias = __fixunskfti] |
| 437 | #[cfg (f128_enabled)] |
| 438 | pub extern "C" fn __fixunstfti(f: f128) -> u128 { |
| 439 | float_to_unsigned_int(f) |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | // Conversions from floats to signed integers. |
| 444 | intrinsics! { |
| 445 | #[arm_aeabi_alias = __aeabi_f2iz] |
| 446 | pub extern "C" fn __fixsfsi(f: f32) -> i32 { |
| 447 | float_to_signed_int(f) |
| 448 | } |
| 449 | |
| 450 | #[arm_aeabi_alias = __aeabi_f2lz] |
| 451 | pub extern "C" fn __fixsfdi(f: f32) -> i64 { |
| 452 | float_to_signed_int(f) |
| 453 | } |
| 454 | |
| 455 | pub extern "C" fn __fixsfti(f: f32) -> i128 { |
| 456 | float_to_signed_int(f) |
| 457 | } |
| 458 | |
| 459 | #[arm_aeabi_alias = __aeabi_d2iz] |
| 460 | pub extern "C" fn __fixdfsi(f: f64) -> i32 { |
| 461 | float_to_signed_int(f) |
| 462 | } |
| 463 | |
| 464 | #[arm_aeabi_alias = __aeabi_d2lz] |
| 465 | pub extern "C" fn __fixdfdi(f: f64) -> i64 { |
| 466 | float_to_signed_int(f) |
| 467 | } |
| 468 | |
| 469 | pub extern "C" fn __fixdfti(f: f64) -> i128 { |
| 470 | float_to_signed_int(f) |
| 471 | } |
| 472 | |
| 473 | #[ppc_alias = __fixkfsi] |
| 474 | #[cfg (f128_enabled)] |
| 475 | pub extern "C" fn __fixtfsi(f: f128) -> i32 { |
| 476 | float_to_signed_int(f) |
| 477 | } |
| 478 | |
| 479 | #[ppc_alias = __fixkfdi] |
| 480 | #[cfg (f128_enabled)] |
| 481 | pub extern "C" fn __fixtfdi(f: f128) -> i64 { |
| 482 | float_to_signed_int(f) |
| 483 | } |
| 484 | |
| 485 | #[ppc_alias = __fixkfti] |
| 486 | #[cfg (f128_enabled)] |
| 487 | pub extern "C" fn __fixtfti(f: f128) -> i128 { |
| 488 | float_to_signed_int(f) |
| 489 | } |
| 490 | } |
| 491 | |